code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """wavlm""" def __init__( self : Optional[Any] , lowerCamelCase : Optional[int]=32 , lowerCamelCase : str=768 , lowerCamelCase : List[str]=12 , lowerCamelCase : int=12 , lowerCamelCase : List[Any]=3_072 , lowerCamelCase : str="gelu" , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : int=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int=0.0 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : Union[str, Any]=1e-5 , lowerCamelCase : str="group" , lowerCamelCase : Union[str, Any]="gelu" , lowerCamelCase : str=(512, 512, 512, 512, 512, 512, 512) , lowerCamelCase : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase : Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase : int=False , lowerCamelCase : str=128 , lowerCamelCase : str=16 , lowerCamelCase : Tuple=320 , lowerCamelCase : Any=800 , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Tuple=True , lowerCamelCase : int=0.05 , lowerCamelCase : Optional[int]=10 , lowerCamelCase : str=2 , lowerCamelCase : str=0.0 , lowerCamelCase : Optional[Any]=10 , lowerCamelCase : Dict=320 , lowerCamelCase : Tuple=2 , lowerCamelCase : Any=0.1 , lowerCamelCase : Optional[int]=100 , lowerCamelCase : Any=256 , lowerCamelCase : Optional[Any]=256 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : str="mean" , lowerCamelCase : List[Any]=False , lowerCamelCase : str=False , lowerCamelCase : Dict=256 , lowerCamelCase : str=(512, 512, 512, 512, 1_500) , lowerCamelCase : Optional[Any]=(5, 3, 3, 1, 1) , lowerCamelCase : List[str]=(1, 2, 3, 1, 1) , lowerCamelCase : int=512 , lowerCamelCase : List[str]=80 , lowerCamelCase : Tuple=0 , lowerCamelCase : Tuple=1 , lowerCamelCase : Tuple=2 , lowerCamelCase : Any=False , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Dict=2 , lowerCamelCase : int=3 , lowerCamelCase : Dict=None , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(lowerCamelCase ) __lowercase = list(lowerCamelCase ) __lowercase = list(lowerCamelCase ) __lowercase = conv_bias __lowercase = num_buckets __lowercase = max_bucket_distance __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = num_ctc_classes __lowercase = vocab_size __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum __lowercase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # adapter __lowercase = add_adapter __lowercase = adapter_kernel_size __lowercase = adapter_stride __lowercase = num_adapter_layers __lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase = list(lowerCamelCase ) __lowercase = list(lowerCamelCase ) __lowercase = list(lowerCamelCase ) __lowercase = xvector_output_dim @property def _snake_case ( self : List[Any] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
655
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
1
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING snake_case__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class _A ( _lowercase ): '''simple docstring''' def __init__( self : Tuple , *lowerCamelCase : Dict , **lowerCamelCase : Dict ): '''simple docstring''' super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , "decord" ) self.check_model_type(lowerCamelCase ) def _snake_case ( self : int , lowerCamelCase : List[str]=None , lowerCamelCase : Any=None , lowerCamelCase : Any=None ): '''simple docstring''' __lowercase = {} if frame_sampling_rate is not None: __lowercase = frame_sampling_rate if num_frames is not None: __lowercase = num_frames __lowercase = {} if top_k is not None: __lowercase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[str] , lowerCamelCase : Union[str, List[str]] , **lowerCamelCase : Any ): '''simple docstring''' return super().__call__(lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Any , lowerCamelCase : int , lowerCamelCase : Any=None , lowerCamelCase : Tuple=1 ): '''simple docstring''' if num_frames is None: __lowercase = self.model.config.num_frames if video.startswith("http://" ) or video.startswith("https://" ): __lowercase = BytesIO(requests.get(lowerCamelCase ).content ) __lowercase = VideoReader(lowerCamelCase ) videoreader.seek(0 ) __lowercase = 0 __lowercase = num_frames * frame_sampling_rate - 1 __lowercase = np.linspace(lowerCamelCase , lowerCamelCase , num=lowerCamelCase , dtype=np.intaa ) __lowercase = videoreader.get_batch(lowerCamelCase ).asnumpy() __lowercase = list(lowerCamelCase ) __lowercase = self.image_processor(lowerCamelCase , return_tensors=self.framework ) return model_inputs def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = self.model(**lowerCamelCase ) return model_outputs def _snake_case ( self : int , lowerCamelCase : Any , lowerCamelCase : Any=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: __lowercase = self.model.config.num_labels if self.framework == "pt": __lowercase = model_outputs.logits.softmax(-1 )[0] __lowercase , __lowercase = probs.topk(lowerCamelCase ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __lowercase = scores.tolist() __lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
655
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : '''simple docstring''' @staticmethod def _snake_case ( *lowerCamelCase : Any , **lowerCamelCase : Dict ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class _A ( unittest.TestCase ): '''simple docstring''' _snake_case : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING def _snake_case ( self : Any , lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = ObjectDetectionPipeline(model=lowerCamelCase , image_processor=lowerCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _snake_case ( self : Tuple , lowerCamelCase : Tuple , lowerCamelCase : List[str] ): '''simple docstring''' __lowercase = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(lowerCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCamelCase , { "score": ANY(lowerCamelCase ), "label": ANY(lowerCamelCase ), "box": {"xmin": ANY(lowerCamelCase ), "ymin": ANY(lowerCamelCase ), "xmax": ANY(lowerCamelCase ), "ymax": ANY(lowerCamelCase )}, } , ) import datasets __lowercase = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) __lowercase = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] __lowercase = object_detector(lowerCamelCase , threshold=0.0 ) self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(lowerCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCamelCase , { "score": ANY(lowerCamelCase ), "label": ANY(lowerCamelCase ), "box": {"xmin": ANY(lowerCamelCase ), "ymin": ANY(lowerCamelCase ), "xmax": ANY(lowerCamelCase ), "ymax": ANY(lowerCamelCase )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' pass @require_torch def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = "hf-internal-testing/tiny-detr-mobilenetsv3" __lowercase = AutoModelForObjectDetection.from_pretrained(lowerCamelCase ) __lowercase = AutoFeatureExtractor.from_pretrained(lowerCamelCase ) __lowercase = ObjectDetectionPipeline(model=lowerCamelCase , feature_extractor=lowerCamelCase ) __lowercase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) __lowercase = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def _snake_case ( self : int ): '''simple docstring''' __lowercase = "facebook/detr-resnet-50" __lowercase = AutoModelForObjectDetection.from_pretrained(lowerCamelCase ) __lowercase = AutoFeatureExtractor.from_pretrained(lowerCamelCase ) __lowercase = ObjectDetectionPipeline(model=lowerCamelCase , feature_extractor=lowerCamelCase ) __lowercase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) __lowercase = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "facebook/detr-resnet-50" __lowercase = pipeline("object-detection" , model=lowerCamelCase ) __lowercase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) __lowercase = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 0.9985 __lowercase = "facebook/detr-resnet-50" __lowercase = pipeline("object-detection" , model=lowerCamelCase ) __lowercase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=lowerCamelCase ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = "Narsil/layoutlmv3-finetuned-funsd" __lowercase = 0.9993 __lowercase = pipeline("object-detection" , model=lowerCamelCase , threshold=lowerCamelCase ) __lowercase = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
655
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) ): __lowercase = tau * frequency / samplerate __lowercase = sin(_SCREAMING_SNAKE_CASE ) __lowercase = cos(_SCREAMING_SNAKE_CASE ) __lowercase = _sin / (2 * q_factor) __lowercase = (1 - _cos) / 2 __lowercase = 1 - _cos __lowercase = 1 + alpha __lowercase = -2 * _cos __lowercase = 1 - alpha __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) ): __lowercase = tau * frequency / samplerate __lowercase = sin(_SCREAMING_SNAKE_CASE ) __lowercase = cos(_SCREAMING_SNAKE_CASE ) __lowercase = _sin / (2 * q_factor) __lowercase = (1 + _cos) / 2 __lowercase = -1 - _cos __lowercase = 1 + alpha __lowercase = -2 * _cos __lowercase = 1 - alpha __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) ): __lowercase = tau * frequency / samplerate __lowercase = sin(_SCREAMING_SNAKE_CASE ) __lowercase = cos(_SCREAMING_SNAKE_CASE ) __lowercase = _sin / (2 * q_factor) __lowercase = _sin / 2 __lowercase = 0 __lowercase = -ba __lowercase = 1 + alpha __lowercase = -2 * _cos __lowercase = 1 - alpha __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) ): __lowercase = tau * frequency / samplerate __lowercase = sin(_SCREAMING_SNAKE_CASE ) __lowercase = cos(_SCREAMING_SNAKE_CASE ) __lowercase = _sin / (2 * q_factor) __lowercase = 1 - alpha __lowercase = -2 * _cos __lowercase = 1 + alpha __lowercase = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) , ): __lowercase = tau * frequency / samplerate __lowercase = sin(_SCREAMING_SNAKE_CASE ) __lowercase = cos(_SCREAMING_SNAKE_CASE ) __lowercase = _sin / (2 * q_factor) __lowercase = 1_0 ** (gain_db / 4_0) __lowercase = 1 + alpha * big_a __lowercase = -2 * _cos __lowercase = 1 - alpha * big_a __lowercase = 1 + alpha / big_a __lowercase = -2 * _cos __lowercase = 1 - alpha / big_a __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) , ): __lowercase = tau * frequency / samplerate __lowercase = sin(_SCREAMING_SNAKE_CASE ) __lowercase = cos(_SCREAMING_SNAKE_CASE ) __lowercase = _sin / (2 * q_factor) __lowercase = 1_0 ** (gain_db / 4_0) __lowercase = (big_a + 1) - (big_a - 1) * _cos __lowercase = (big_a + 1) + (big_a - 1) * _cos __lowercase = (big_a - 1) - (big_a + 1) * _cos __lowercase = (big_a - 1) + (big_a + 1) * _cos __lowercase = 2 * sqrt(_SCREAMING_SNAKE_CASE ) * alpha __lowercase = big_a * (pmc + aaa) __lowercase = 2 * big_a * mpc __lowercase = big_a * (pmc - aaa) __lowercase = ppmc + aaa __lowercase = -2 * pmpc __lowercase = ppmc - aaa __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) , ): __lowercase = tau * frequency / samplerate __lowercase = sin(_SCREAMING_SNAKE_CASE ) __lowercase = cos(_SCREAMING_SNAKE_CASE ) __lowercase = _sin / (2 * q_factor) __lowercase = 1_0 ** (gain_db / 4_0) __lowercase = (big_a + 1) - (big_a - 1) * _cos __lowercase = (big_a + 1) + (big_a - 1) * _cos __lowercase = (big_a - 1) - (big_a + 1) * _cos __lowercase = (big_a - 1) + (big_a + 1) * _cos __lowercase = 2 * sqrt(_SCREAMING_SNAKE_CASE ) * alpha __lowercase = big_a * (ppmc + aaa) __lowercase = -2 * big_a * pmpc __lowercase = big_a * (ppmc - aaa) __lowercase = pmc + aaa __lowercase = 2 * mpc __lowercase = pmc - aaa __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
655
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch snake_case__ : str = logging.get_logger(__name__) @dataclass class _A : '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : Dict=False , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[Any]=6.0 , lowerCamelCase : str=None , lowerCamelCase : int=False , lowerCamelCase : Union[str, Any]=False , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Optional[Any]="fp4" , lowerCamelCase : str=False , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' __lowercase = load_in_abit __lowercase = load_in_abit __lowercase = llm_inta_threshold __lowercase = llm_inta_skip_modules __lowercase = llm_inta_enable_fpaa_cpu_offload __lowercase = llm_inta_has_fpaa_weight __lowercase = bnb_abit_quant_type __lowercase = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __lowercase = torch.floataa elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = getattr(lowerCamelCase , lowerCamelCase ) elif isinstance(lowerCamelCase , torch.dtype ): __lowercase = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def _snake_case ( self : List[str] ): '''simple docstring''' if not isinstance(self.llm_inta_threshold , lowerCamelCase ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowerCamelCase ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowerCamelCase ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , lowerCamelCase ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , lowerCamelCase ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , lowerCamelCase ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return self.load_in_abit or self.load_in_abit def _snake_case ( self : str ): '''simple docstring''' if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _snake_case ( cls : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Optional[int] , **lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = cls(**lowerCamelCase ) __lowercase = [] for key, value in kwargs.items(): if hasattr(lowerCamelCase , lowerCamelCase ): setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) to_remove.append(lowerCamelCase ) for key in to_remove: kwargs.pop(lowerCamelCase , lowerCamelCase ) if return_unused_kwargs: return config, kwargs else: return config def _snake_case ( self : Any , lowerCamelCase : Union[str, os.PathLike] ): '''simple docstring''' with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: __lowercase = self.to_dict() __lowercase = json.dumps(lowerCamelCase , indent=2 , sort_keys=lowerCamelCase ) + "\n" writer.write(lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self : List[str] ): '''simple docstring''' return f"""{self.__class__.__name__} {self.to_json_string()}""" def _snake_case ( self : int , lowerCamelCase : bool = True ): '''simple docstring''' if use_diff is True: __lowercase = self.to_diff_dict() else: __lowercase = self.to_dict() return json.dumps(lowerCamelCase , indent=2 , sort_keys=lowerCamelCase ) + "\n" def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = self.to_dict() # get the default config dict __lowercase = BitsAndBytesConfig().to_dict() __lowercase = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __lowercase = value return serializable_config_dict
655
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 ): __lowercase = None if token is not None: __lowercase = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) __lowercase = "636036" __lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" __lowercase = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) __lowercase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __lowercase = workflow_run["id"] break return workflow_run_id def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: __lowercase = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __lowercase = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = {} for artifact_name in artifact_names: __lowercase = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): __lowercase = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: __lowercase = f.read().decode("UTF-8" ) return results
655
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
1
import inspect import unittest class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ): '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def _snake_case ( self : List[Any] ): '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps __lowercase = inspect.getmembers(lowerCamelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __lowercase = "k-diffusion" elif backend == "invisible_watermark": __lowercase = "invisible-watermark" assert backend in deps, f"""{backend} is not in the deps table!"""
655
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu snake_case__ : Optional[int] = False class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self : Any ): '''simple docstring''' return 12 @property def _snake_case ( self : Optional[int] ): '''simple docstring''' return 12 @property def _snake_case ( self : int ): '''simple docstring''' return 32 @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _snake_case ( self : str ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCamelCase ) @property def _snake_case ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } __lowercase = TransformeraDModel(**lowerCamelCase ) return model def _snake_case ( self : Any ): '''simple docstring''' __lowercase = "cpu" __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , transformer=lowerCamelCase , scheduler=lowerCamelCase , learned_classifier_free_sampling_embeddings=lowerCamelCase , ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = "teddy bear playing in the pool" __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] , generator=lowerCamelCase , num_inference_steps=2 , output_type="np" ) __lowercase = output.images __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] , generator=lowerCamelCase , output_type="np" , return_dict=lowerCamelCase , num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = "cpu" __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCamelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , transformer=lowerCamelCase , scheduler=lowerCamelCase , learned_classifier_free_sampling_embeddings=lowerCamelCase , ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = "teddy bear playing in the pool" __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] , generator=lowerCamelCase , num_inference_steps=2 , output_type="np" ) __lowercase = output.images __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] , generator=lowerCamelCase , output_type="np" , return_dict=lowerCamelCase , num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) __lowercase = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) __lowercase = pipeline.to(lowerCamelCase ) pipeline.set_progress_bar_config(disable=lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=lowerCamelCase , output_type="np" , ) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
655
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Union[str, Any] = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
1
from torch import nn class _A ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__() __lowercase = class_size __lowercase = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Dict , lowerCamelCase : Any ): '''simple docstring''' __lowercase = self.mlp(lowerCamelCase ) return logits
655
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [] for part_id in partition_order: __lowercase = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(_SCREAMING_SNAKE_CASE ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() __lowercase = spark.range(1_0_0 ).repartition(1 ) __lowercase = Spark(_SCREAMING_SNAKE_CASE ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=1_6 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 5_0 @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() __lowercase = spark.range(1_0 ).repartition(2 ) __lowercase = [1, 0] __lowercase = _generate_iterable_examples(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Reverse the partitions. __lowercase = _get_expected_row_ids_and_row_dicts_for_partition_order(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __lowercase , __lowercase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() __lowercase = spark.range(1_0 ).repartition(1 ) __lowercase = SparkExamplesIterable(_SCREAMING_SNAKE_CASE ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_SCREAMING_SNAKE_CASE ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() __lowercase = spark.range(3_0 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: __lowercase = lambda _SCREAMING_SNAKE_CASE : x.reverse() __lowercase = _get_expected_row_ids_and_row_dicts_for_partition_order(_SCREAMING_SNAKE_CASE , [2, 1, 0] ) __lowercase = SparkExamplesIterable(_SCREAMING_SNAKE_CASE ).shuffle_data_sources(_SCREAMING_SNAKE_CASE ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() __lowercase = spark.range(2_0 ).repartition(4 ) # Partitions 0 and 2 __lowercase = SparkExamplesIterable(_SCREAMING_SNAKE_CASE ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowercase = _get_expected_row_ids_and_row_dicts_for_partition_order(_SCREAMING_SNAKE_CASE , [0, 2] ) for i, (row_id, row_dict) in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __lowercase = SparkExamplesIterable(_SCREAMING_SNAKE_CASE ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowercase = _get_expected_row_ids_and_row_dicts_for_partition_order(_SCREAMING_SNAKE_CASE , [1, 3] ) for i, (row_id, row_dict) in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() __lowercase = spark.range(1_0_0 ).repartition(1 ) __lowercase = Spark(_SCREAMING_SNAKE_CASE ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
655
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): '''simple docstring''' _snake_case : Optional[int] = ViTImageProcessor if is_vision_available() else None @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = (3, 32, 128) __lowercase = tempfile.mkdtemp() # fmt: off __lowercase = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase ) + "\n" ) __lowercase = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 128}, } __lowercase = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Union[str, Any] , **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def _snake_case ( self : str , **lowerCamelCase : List[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __lowercase = Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) return image_input def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_image_processor() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_image_processor() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __lowercase = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) __lowercase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(lowerCamelCase , return_tensors="np" ) __lowercase = processor(images=lowerCamelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __lowercase = "test" __lowercase = processor(text=lowerCamelCase ) __lowercase = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __lowercase = "test" __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.char_decode(lowerCamelCase ) __lowercase = tokenizer.batch_decode(lowerCamelCase ) __lowercase = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __lowercase = None __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __lowercase = torch.randn(1 , 27 , 38 ) __lowercase = torch.randn(1 , 27 , 50_257 ) __lowercase = torch.randn(1 , 27 , 30_522 ) __lowercase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
655
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
1
import argparse import json import subprocess def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [] __lowercase = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" " https://api.github.com/repos/huggingface/transformers/actions/runners" ) __lowercase = subprocess.run(_SCREAMING_SNAKE_CASE , shell=_SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE ) __lowercase = output.stdout.decode("utf-8" ) __lowercase = json.loads(_SCREAMING_SNAKE_CASE ) __lowercase = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_SCREAMING_SNAKE_CASE ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: __lowercase = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def snake_case_ ( _SCREAMING_SNAKE_CASE ): return values.split("," ) snake_case__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) snake_case__ : Union[str, Any] = parser.parse_args() get_runner_status(args.target_runners, args.token)
655
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = [], [] while len(_SCREAMING_SNAKE_CASE ) > 1: __lowercase , __lowercase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) start.append(_SCREAMING_SNAKE_CASE ) end.append(_SCREAMING_SNAKE_CASE ) collection.remove(_SCREAMING_SNAKE_CASE ) collection.remove(_SCREAMING_SNAKE_CASE ) end.reverse() return start + collection + end if __name__ == "__main__": snake_case__ : Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ : Dict = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
655
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
1
from ...processing_utils import ProcessorMixin class _A ( _lowercase ): '''simple docstring''' _snake_case : int = """WhisperFeatureExtractor""" _snake_case : Tuple = """WhisperTokenizer""" def __init__( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(lowerCamelCase , lowerCamelCase ) __lowercase = self.feature_extractor __lowercase = False def _snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any]=None , lowerCamelCase : Any=None , lowerCamelCase : Any=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase , language=lowerCamelCase , no_timestamps=lowerCamelCase ) def __call__( self : str , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Optional[int] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase , **lowerCamelCase ) __lowercase = kwargs.pop("audio" , lowerCamelCase ) __lowercase = kwargs.pop("sampling_rate" , lowerCamelCase ) __lowercase = kwargs.pop("text" , lowerCamelCase ) if len(lowerCamelCase ) > 0: __lowercase = args[0] __lowercase = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: __lowercase = self.feature_extractor(lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , **lowerCamelCase ) if text is not None: __lowercase = self.tokenizer(lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: __lowercase = encodings["input_ids"] return inputs def _snake_case ( self : Union[str, Any] , *lowerCamelCase : Optional[int] , **lowerCamelCase : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Any , *lowerCamelCase : List[str] , **lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : List[Any]="np" ): '''simple docstring''' return self.tokenizer.get_prompt_ids(lowerCamelCase , return_tensors=lowerCamelCase )
655
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def snake_case_ ( ): raise RuntimeError("CUDA out of memory." ) class _A ( nn.Module ): '''simple docstring''' def __init__( self : str ): '''simple docstring''' super().__init__() __lowercase = nn.Linear(3 , 4 ) __lowercase = nn.BatchNormad(4 ) __lowercase = nn.Linear(4 , 5 ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(lowerCamelCase ) ) ) class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : int ): '''simple docstring''' __lowercase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCamelCase : Tuple ): nonlocal batch_sizes batch_sizes.append(lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase , [128, 64, 32, 16, 8] ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCamelCase : str , lowerCamelCase : Dict ): nonlocal batch_sizes batch_sizes.append(lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __lowercase , __lowercase = mock_training_loop_function("hello" ) self.assertListEqual(lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def _snake_case ( self : int ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCamelCase : List[Any] ): pass with self.assertRaises(lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def _snake_case ( self : Any ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCamelCase : str ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def _snake_case ( self : Optional[int] ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : List[Any] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase ) as cm: mock_training_loop_function(128 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def _snake_case ( self : List[str] ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCamelCase : str ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch.cuda.memory_allocated() __lowercase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase ) __lowercase = release_memory(lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase )
655
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
655
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ : Optional[int] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = state_dict.pop(_SCREAMING_SNAKE_CASE ) __lowercase = val def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowercase = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) __lowercase = value else: __lowercase = value return new_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowercase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __lowercase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:2_5_6, :] __lowercase = in_proj_bias[:2_5_6] __lowercase = in_proj_weight[2_5_6:5_1_2, :] __lowercase = in_proj_bias[2_5_6:5_1_2] __lowercase = in_proj_weight[-2_5_6:, :] __lowercase = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __lowercase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __lowercase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:2_5_6, :] __lowercase = in_proj_bias[:2_5_6] __lowercase = in_proj_weight[2_5_6:5_1_2, :] __lowercase = in_proj_bias[2_5_6:5_1_2] __lowercase = in_proj_weight[-2_5_6:, :] __lowercase = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention __lowercase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) __lowercase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __lowercase = in_proj_weight_cross_attn[:2_5_6, :] __lowercase = in_proj_bias_cross_attn[:2_5_6] __lowercase = in_proj_weight_cross_attn[2_5_6:5_1_2, :] __lowercase = in_proj_bias_cross_attn[2_5_6:5_1_2] __lowercase = in_proj_weight_cross_attn[-2_5_6:, :] __lowercase = in_proj_bias_cross_attn[-2_5_6:] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = image.size __lowercase = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = 8_0_0 if "detection" in checkpoint_url else 1_0_0_0 __lowercase = target_max_size / current_max_size __lowercase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = F.to_tensor(_SCREAMING_SNAKE_CASE ) __lowercase = F.normalize(_SCREAMING_SNAKE_CASE , mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ) return image @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info("Converting model..." ) # load original state dict __lowercase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowercase = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): __lowercase = state_dict.pop(_SCREAMING_SNAKE_CASE ) __lowercase = val # create HuggingFace model and load state dict __lowercase = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __lowercase = 1_5 __lowercase = 2 __lowercase = {0: "table", 1: "table rotated"} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_2_5 __lowercase = 6 __lowercase = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = DetrImageProcessor( format="coco_detection" , max_size=8_0_0 if "detection" in checkpoint_url else 1_0_0_0 ) __lowercase = TableTransformerForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion __lowercase = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" __lowercase = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=_SCREAMING_SNAKE_CASE ) __lowercase = Image.open(_SCREAMING_SNAKE_CASE ).convert("RGB" ) __lowercase = normalize(resize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) __lowercase = model(_SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: __lowercase = (1, 1_5, 3) __lowercase = torch.tensor( [[-6.7_8_9_7, -1_6.9_9_8_5, 6.7_9_3_7], [-8.0_1_8_6, -2_2.2_1_9_2, 6.9_6_7_7], [-7.3_1_1_7, -2_1.0_7_0_8, 7.4_0_5_5]] ) __lowercase = torch.tensor([[0.4_8_6_7, 0.1_7_6_7, 0.6_7_3_2], [0.6_7_1_8, 0.4_4_7_9, 0.3_8_3_0], [0.4_7_1_6, 0.1_7_6_0, 0.6_3_6_4]] ) else: __lowercase = (1, 1_2_5, 7) __lowercase = torch.tensor( [[-1_8.1_4_3_0, -8.3_2_1_4, 4.8_2_7_4], [-1_8.4_6_8_5, -7.1_3_6_1, -4.2_6_6_7], [-2_6.3_6_9_3, -9.3_4_2_9, -4.9_9_6_2]] ) __lowercase = torch.tensor([[0.4_9_8_3, 0.5_5_9_5, 0.9_4_4_0], [0.4_9_1_6, 0.6_3_1_5, 0.5_9_5_4], [0.6_1_0_8, 0.8_6_3_7, 0.1_1_3_5]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) __lowercase = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : List[str] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
655
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version snake_case__ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class _A : '''simple docstring''' _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=_lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=_lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.1_5 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=_lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=_lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = {} if self.train_dir is not None: __lowercase = self.train_dir if self.validation_dir is not None: __lowercase = self.validation_dir __lowercase = data_files if data_files else None @dataclass class _A : '''simple docstring''' _snake_case : str = field( default=_lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=_lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=_lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.7_5 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=_lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class _A ( _lowercase ): '''simple docstring''' _snake_case : float = field( default=1E-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase = training_args.get_process_log_level() logger.setLevel(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __lowercase = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: __lowercase = ds["train"].train_test_split(data_args.train_val_split ) __lowercase = split["train"] __lowercase = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: __lowercase = ViTMAEConfig.from_pretrained(model_args.config_name , **_SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: __lowercase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_SCREAMING_SNAKE_CASE ) else: __lowercase = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __lowercase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: __lowercase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_SCREAMING_SNAKE_CASE ) else: __lowercase = ViTImageProcessor() # create model if model_args.model_name_or_path: __lowercase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) __lowercase = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) if training_args.do_train: __lowercase = ds["train"].column_names else: __lowercase = ds["validation"].column_names if data_args.image_column_name is not None: __lowercase = data_args.image_column_name elif "image" in column_names: __lowercase = "image" elif "img" in column_names: __lowercase = "img" else: __lowercase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __lowercase = image_processor.size["shortest_edge"] else: __lowercase = (image_processor.size["height"], image_processor.size["width"]) __lowercase = Compose( [ Lambda(lambda _SCREAMING_SNAKE_CASE : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(_SCREAMING_SNAKE_CASE , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_SCREAMING_SNAKE_CASE ): __lowercase = [transforms(_SCREAMING_SNAKE_CASE ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: __lowercase = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: __lowercase = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_SCREAMING_SNAKE_CASE ) # Compute absolute learning rate __lowercase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __lowercase = training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer __lowercase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: __lowercase = None if training_args.resume_from_checkpoint is not None: __lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase = last_checkpoint __lowercase = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase = trainer.evaluate() trainer.log_metrics("eval" , _SCREAMING_SNAKE_CASE ) trainer.save_metrics("eval" , _SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub __lowercase = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**_SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )): raise ValueError("longest_common_substring() takes two strings for inputs" ) __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __lowercase = 0 __lowercase = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __lowercase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __lowercase = i __lowercase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
655
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
1
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _A ( unittest.TestCase ): '''simple docstring''' @property def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = self.dummy_uncond_unet __lowercase = ScoreSdeVeScheduler() __lowercase = ScoreSdeVePipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) sde_ve.to(lowerCamelCase ) sde_ve.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = torch.manual_seed(0 ) __lowercase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=lowerCamelCase ).images __lowercase = torch.manual_seed(0 ) __lowercase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=lowerCamelCase , return_dict=lowerCamelCase )[ 0 ] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = "google/ncsnpp-church-256" __lowercase = UNetaDModel.from_pretrained(lowerCamelCase ) __lowercase = ScoreSdeVeScheduler.from_pretrained(lowerCamelCase ) __lowercase = ScoreSdeVePipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) sde_ve.to(lowerCamelCase ) sde_ve.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = torch.manual_seed(0 ) __lowercase = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __lowercase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
655
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs snake_case__ : str = imread(R"""digital_image_processing/image_data/lena_small.jpg""") snake_case__ : List[Any] = cvtColor(img, COLOR_BGR2GRAY) def snake_case_ ( ): __lowercase = cn.convert_to_negative(_SCREAMING_SNAKE_CASE ) # assert negative_img array for at least one True assert negative_img.any() def snake_case_ ( ): with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(_SCREAMING_SNAKE_CASE , 1_1_0 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def snake_case_ ( ): __lowercase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def snake_case_ ( ): __lowercase = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowercase = canny.canny(_SCREAMING_SNAKE_CASE ) # assert canny array for at least one True assert canny_array.any() def snake_case_ ( ): assert gg.gaussian_filter(_SCREAMING_SNAKE_CASE , 5 , sigma=0.9 ).all() def snake_case_ ( ): # laplace diagonals __lowercase = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) __lowercase = conv.img_convolve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).astype(_SCREAMING_SNAKE_CASE ) assert res.any() def snake_case_ ( ): assert med.median_filter(_SCREAMING_SNAKE_CASE , 3 ).any() def snake_case_ ( ): __lowercase , __lowercase = sob.sobel_filter(_SCREAMING_SNAKE_CASE ) assert grad.any() and theta.any() def snake_case_ ( ): __lowercase = sp.make_sepia(_SCREAMING_SNAKE_CASE , 2_0 ) assert sepia.all() def snake_case_ ( _SCREAMING_SNAKE_CASE = "digital_image_processing/image_data/lena_small.jpg" ): __lowercase = bs.Burkes(imread(_SCREAMING_SNAKE_CASE , 1 ) , 1_2_0 ) burkes.process() assert burkes.output_img.any() def snake_case_ ( _SCREAMING_SNAKE_CASE = "digital_image_processing/image_data/lena_small.jpg" , ): __lowercase = rs.NearestNeighbour(imread(_SCREAMING_SNAKE_CASE , 1 ) , 4_0_0 , 2_0_0 ) nn.process() assert nn.output.any() def snake_case_ ( ): __lowercase = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. __lowercase = imread(_SCREAMING_SNAKE_CASE , 0 ) # Test for get_neighbors_pixel function() return not None __lowercase = 0 __lowercase = 0 __lowercase = image[x_coordinate][y_coordinate] __lowercase = lbp.get_neighbors_pixel( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowercase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __lowercase = lbp.local_binary_value(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert lbp_image.any()
655
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[Any] = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case__ : List[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case__ : Dict = 12_80_22 snake_case__ : Any = 12_80_28 @require_sentencepiece class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Optional[Any] = MaMaaaTokenizer _snake_case : List[str] = False _snake_case : Optional[Any] = False _snake_case : Union[str, Any] = True def _snake_case ( self : Dict ): '''simple docstring''' super().setUp() __lowercase = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(lowerCamelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCamelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) __lowercase = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : List[Any] , **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def _snake_case ( self : List[Any] , lowerCamelCase : Any ): '''simple docstring''' return ( "This is a test", "This is a test", ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = "</s>" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowerCamelCase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _snake_case ( self : Tuple ): '''simple docstring''' pass def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [2, 3, 4, 5, 6] , ) __lowercase = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) __lowercase = tokenizer.convert_tokens_to_string(lowerCamelCase ) self.assertEqual(lowerCamelCase , "This is a test" ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): '''simple docstring''' _snake_case : int = """facebook/m2m100_418M""" _snake_case : List[str] = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] _snake_case : Any = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off _snake_case : List[Any] = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def _snake_case ( cls : Optional[int] ): '''simple docstring''' __lowercase = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) __lowercase = 1 return cls def _snake_case ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.tokenizer.get_vocab() self.assertEqual(len(lowerCamelCase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = "en" __lowercase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' self.assertIn(lowerCamelCase , self.tokenizer.all_special_ids ) # fmt: off __lowercase = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on __lowercase = self.tokenizer.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCamelCase ) __lowercase = MaMaaaTokenizer.from_pretrained(lowerCamelCase ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCamelCase ) @require_torch def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = "en" __lowercase = "fr" __lowercase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase , return_tensors="pt" ) __lowercase = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __lowercase = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __lowercase = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __lowercase = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowerCamelCase ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
655
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
1
from PIL import Image def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = image.size __lowercase = 0 __lowercase = image.load() for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): __lowercase = pixels[j, i] mean += pixel mean //= width * height for j in range(_SCREAMING_SNAKE_CASE ): for i in range(_SCREAMING_SNAKE_CASE ): __lowercase = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": snake_case__ : int = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
655
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
1
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : Dict = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _A : '''simple docstring''' _snake_case : List[Any] = PegasusConfig _snake_case : Union[str, Any] = {} _snake_case : List[Any] = """gelu""" def __init__( self : str , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any]=13 , lowerCamelCase : List[Any]=7 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Dict=99 , lowerCamelCase : Dict=32 , lowerCamelCase : Union[str, Any]=5 , lowerCamelCase : Any=4 , lowerCamelCase : int=37 , lowerCamelCase : int=0.1 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : Dict=20 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : str=1 , lowerCamelCase : Optional[int]=0 , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __lowercase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = np.concatenate([input_ids, eos_tensor] , axis=1 ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase = prepare_pegasus_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return config, inputs_dict def _snake_case ( self : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = 20 __lowercase = model_class_name(lowerCamelCase ) __lowercase = model.encode(inputs_dict["input_ids"] ) __lowercase , __lowercase = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __lowercase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase ) __lowercase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __lowercase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) __lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __lowercase = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase , ) __lowercase = model.decode(lowerCamelCase , lowerCamelCase ) __lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _snake_case ( self : Any , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = 20 __lowercase = model_class_name(lowerCamelCase ) __lowercase = model.encode(inputs_dict["input_ids"] ) __lowercase , __lowercase = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __lowercase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowercase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase ) __lowercase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) __lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __lowercase = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) __lowercase = model.decode(lowerCamelCase , lowerCamelCase , decoder_attention_mask=lowerCamelCase ) __lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ): if attention_mask is None: __lowercase = np.not_equal(_SCREAMING_SNAKE_CASE , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __lowercase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : List[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _snake_case : Tuple = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _snake_case : Tuple = True _snake_case : Any = False _snake_case : Optional[int] = False _snake_case : int = False def _snake_case ( self : str ): '''simple docstring''' __lowercase = FlaxPegasusModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) __lowercase = model_class(lowerCamelCase ) @jax.jit def encode_jitted(lowerCamelCase : int , lowerCamelCase : Optional[Any]=None , **lowerCamelCase : int ): return model.encode(input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) with self.subTest("JIT Enabled" ): __lowercase = encode_jitted(**lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = encode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( self : str ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = model_class(lowerCamelCase ) __lowercase = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __lowercase = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ): return model.decode( decoder_input_ids=lowerCamelCase , decoder_attention_mask=lowerCamelCase , encoder_outputs=lowerCamelCase , ) with self.subTest("JIT Enabled" ): __lowercase = decode_jitted(**lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = decode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("google/pegasus-large" , from_pt=lowerCamelCase ) __lowercase = np.ones((1, 1) ) __lowercase = model(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @slow def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) __lowercase = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) __lowercase = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __lowercase = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] __lowercase = tokenizer(lowerCamelCase , return_tensors="np" , truncation=lowerCamelCase , max_length=512 , padding=lowerCamelCase ) __lowercase = model.generate(**lowerCamelCase , num_beams=2 ).sequences __lowercase = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) assert tgt_text == decoded
655
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _A : '''simple docstring''' def __init__( self : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=13 , lowerCamelCase : Optional[int]=7 , lowerCamelCase : int=True , lowerCamelCase : Dict=True , lowerCamelCase : List[Any]=99 , lowerCamelCase : Any=32 , lowerCamelCase : Dict=5 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : str=37 , lowerCamelCase : Any="gelu" , lowerCamelCase : Dict=0.1 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : List[str]=50 , lowerCamelCase : str=0.02 , lowerCamelCase : List[str]=True , lowerCamelCase : Any=None , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = use_labels __lowercase = scope def _snake_case ( self : int ): '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = self.get_config() return config, input_ids, input_mask, token_labels def _snake_case ( self : Optional[Any] ): '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) def _snake_case ( self : List[str] ): '''simple docstring''' ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self : Dict , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' __lowercase = BertGenerationEncoder(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase , attention_mask=lowerCamelCase ) __lowercase = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : int , **lowerCamelCase : Optional[int] , ): '''simple docstring''' __lowercase = True __lowercase = BertGenerationEncoder(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __lowercase = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = True __lowercase = True __lowercase = BertGenerationDecoder(config=lowerCamelCase ).to(lowerCamelCase ).eval() # first forward pass __lowercase = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , use_cache=lowerCamelCase , ) __lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowercase = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] __lowercase = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] # select random slice __lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) def _snake_case ( self : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , *lowerCamelCase : Tuple , ): '''simple docstring''' __lowercase = BertGenerationDecoder(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.prepare_config_and_inputs() __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Any = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _snake_case : Dict = (BertGenerationDecoder,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = BertGenerationEncoderTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() __lowercase = "bert" self.model_tester.create_and_check_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase ) @slow def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) self.assertIsNotNone(lowerCamelCase ) @require_torch class _A ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) __lowercase = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]] ) with torch.no_grad(): __lowercase = model(lowerCamelCase )[0] __lowercase = torch.Size([1, 8, 1_024] ) self.assertEqual(output.shape , lowerCamelCase ) __lowercase = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase , atol=1e-4 ) ) @require_torch class _A ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) __lowercase = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]] ) with torch.no_grad(): __lowercase = model(lowerCamelCase )[0] __lowercase = torch.Size([1, 8, 50_358] ) self.assertEqual(output.shape , lowerCamelCase ) __lowercase = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase , atol=1e-4 ) )
655
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
1
from __future__ import annotations def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( _SCREAMING_SNAKE_CASE , nominal_annual_percentage_rate / 3_6_5 , number_of_years * 3_6_5 ) if __name__ == "__main__": import doctest doctest.testmod()
655
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters snake_case__ : Dict = False snake_case__ : Dict = False def snake_case_ ( _SCREAMING_SNAKE_CASE ): return TrainCommand(_SCREAMING_SNAKE_CASE ) class _A ( _lowercase ): '''simple docstring''' @staticmethod def _snake_case ( lowerCamelCase : ArgumentParser ): '''simple docstring''' __lowercase = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=lowerCamelCase , required=lowerCamelCase , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=lowerCamelCase , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=lowerCamelCase , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=lowerCamelCase , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=lowerCamelCase , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=lowerCamelCase , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=lowerCamelCase , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=lowerCamelCase , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=lowerCamelCase , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=lowerCamelCase , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=lowerCamelCase , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=lowerCamelCase , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=lowerCamelCase , default=1e-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=lowerCamelCase ) def __init__( self : int , lowerCamelCase : Namespace ): '''simple docstring''' __lowercase = logging.get_logger("transformers-cli/training" ) __lowercase = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=lowerCamelCase ) __lowercase = args.output __lowercase = args.column_label __lowercase = args.column_text __lowercase = args.column_id self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": __lowercase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"""Loading dataset from {args.train_data}""" ) __lowercase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __lowercase = None if args.validation_data: self.logger.info(f"""Loading validation dataset from {args.validation_data}""" ) __lowercase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __lowercase = args.validation_split __lowercase = args.train_batch_size __lowercase = args.valid_batch_size __lowercase = args.learning_rate __lowercase = args.adam_epsilon def _snake_case ( self : Union[str, Any] ): '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def _snake_case ( self : Union[str, Any] ): '''simple docstring''' raise NotImplementedError def _snake_case ( self : int ): '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
655
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
1
import os from collections import deque import torch from torch.utils.data import Dataset class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : Dict="" , lowerCamelCase : int="train" ): '''simple docstring''' assert os.path.isdir(lowerCamelCase ) __lowercase = [] __lowercase = os.listdir(lowerCamelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isfile(lowerCamelCase ): continue self.documents.append(lowerCamelCase ) def __len__( self : Dict ): '''simple docstring''' return len(self.documents ) def __getitem__( self : int , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = self.documents[idx] __lowercase = document_path.split("/" )[-1] with open(lowerCamelCase , encoding="utf-8" ) as source: __lowercase = source.read() __lowercase , __lowercase = process_story(lowerCamelCase ) return document_name, story_lines, summary_lines def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = list(filter(lambda _SCREAMING_SNAKE_CASE : len(_SCREAMING_SNAKE_CASE ) != 0 , [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it __lowercase = [_add_missing_period(_SCREAMING_SNAKE_CASE ) for line in nonempty_lines] # gather article lines __lowercase = [] __lowercase = deque(_SCREAMING_SNAKE_CASE ) while True: try: __lowercase = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(_SCREAMING_SNAKE_CASE ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines __lowercase = list(filter(lambda _SCREAMING_SNAKE_CASE : not t.startswith("@highlight" ) , _SCREAMING_SNAKE_CASE ) ) return story_lines, summary_lines def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(_SCREAMING_SNAKE_CASE )) ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = torch.ones_like(_SCREAMING_SNAKE_CASE ) __lowercase = sequence == pad_token_id __lowercase = 0 return mask def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [tokenizer.encode(_SCREAMING_SNAKE_CASE ) for line in story_lines] __lowercase = [token for sentence in story_lines_token_ids for token in sentence] __lowercase = [tokenizer.encode(_SCREAMING_SNAKE_CASE ) for line in summary_lines] __lowercase = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [] for sequence in batch: __lowercase = -1 __lowercase = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(_SCREAMING_SNAKE_CASE ) return torch.tensor(_SCREAMING_SNAKE_CASE )
655
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
1
import argparse from collections import defaultdict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_SCREAMING_SNAKE_CASE , "r" ) as f: __lowercase = f.readlines() __lowercase = F"""class {class_name}(""" __lowercase = F"""{4 * ' '}def {test_name}(""" __lowercase = F"""{8 * ' '}{correct_line.split()[0]}""" __lowercase = F"""{1_6 * ' '}{correct_line.split()[0]}""" __lowercase = False __lowercase = False __lowercase = False __lowercase = False __lowercase = 0 __lowercase = 0 __lowercase = [] for line in lines: if line.startswith(_SCREAMING_SNAKE_CASE ): __lowercase = True elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ): __lowercase = True elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )): __lowercase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __lowercase = True if in_class and in_func and in_line: if ")" not in line: continue else: __lowercase = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * ' '}{correct_line}""" ) __lowercase = __lowercase = __lowercase = __lowercase = False else: new_lines.append(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for line in new_lines: f.write(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if fail is not None: with open(_SCREAMING_SNAKE_CASE , "r" ) as f: __lowercase = {l.strip() for l in f.readlines()} else: __lowercase = None with open(_SCREAMING_SNAKE_CASE , "r" ) as f: __lowercase = f.readlines() __lowercase = defaultdict(_SCREAMING_SNAKE_CASE ) for line in correct_lines: __lowercase , __lowercase , __lowercase , __lowercase = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) snake_case__ : Optional[int] = parser.parse_args() main(args.correct_filename, args.fail_filename)
655
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _A : '''simple docstring''' def __init__( self : Dict , lowerCamelCase : Any , ): '''simple docstring''' __lowercase = parent __lowercase = 13 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = True __lowercase = 99 __lowercase = 32 __lowercase = 2 __lowercase = 4 __lowercase = 37 __lowercase = "gelu" __lowercase = 0.1 __lowercase = 0.1 __lowercase = 512 __lowercase = 16 __lowercase = 2 __lowercase = 0.02 __lowercase = 3 __lowercase = 4 __lowercase = None def _snake_case ( self : int ): '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : Tuple ): '''simple docstring''' ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : str ): '''simple docstring''' __lowercase = TFEsmModel(config=lowerCamelCase ) __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} __lowercase = model(lowerCamelCase ) __lowercase = [input_ids, input_mask] __lowercase = model(lowerCamelCase ) __lowercase = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : Any , ): '''simple docstring''' __lowercase = True __lowercase = TFEsmModel(config=lowerCamelCase ) __lowercase = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } __lowercase = model(lowerCamelCase ) __lowercase = [input_ids, input_mask] __lowercase = model(lowerCamelCase , encoder_hidden_states=lowerCamelCase ) # Also check the case where encoder outputs are not passed __lowercase = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Dict , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] ): '''simple docstring''' __lowercase = TFEsmForMaskedLM(config=lowerCamelCase ) __lowercase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Dict , lowerCamelCase : Dict , lowerCamelCase : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.num_labels __lowercase = TFEsmForTokenClassification(config=lowerCamelCase ) __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} __lowercase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _A ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _snake_case : str = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : List[Any] = False def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = TFEsmModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @slow def _snake_case ( self : int ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEsmModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skip("Protein models do not support embedding resizing." ) def _snake_case ( self : int ): '''simple docstring''' pass @unittest.skip("Protein models do not support embedding resizing." ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' pass def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer __lowercase = model.get_bias() assert isinstance(lowerCamelCase , lowerCamelCase ) for k, v in name.items(): assert isinstance(lowerCamelCase , tf.Variable ) else: __lowercase = model.get_output_embeddings() assert x is None __lowercase = model.get_bias() assert name is None @require_tf class _A ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(lowerCamelCase )[0] __lowercase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowerCamelCase ) # compare the actual values for a slice. __lowercase = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) __lowercase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase = model(lowerCamelCase )[0] # compare the actual values for a slice. __lowercase = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
655
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case__ : str = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] snake_case__ : Dict = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] snake_case__ : Dict = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): snake_case__ : List[str] = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ) , end="\t" ) else: print("INF" , end="\t" ) print() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [[float("inf" ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): __lowercase = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): __lowercase = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": snake_case__ : Dict = int(input("""Enter number of vertices: """)) snake_case__ : str = int(input("""Enter number of edges: """)) snake_case__ : str = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): snake_case__ : Optional[int] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) snake_case__ : Union[str, Any] = int(input("""Enter source:""")) snake_case__ : Optional[Any] = int(input("""Enter destination:""")) snake_case__ : int = float(input("""Enter weight:""")) snake_case__ : Dict = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
655
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0_0_0_0 ): __lowercase = set(range(3 , _SCREAMING_SNAKE_CASE , 2 ) ) primes.add(2 ) for p in range(3 , _SCREAMING_SNAKE_CASE , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) __lowercase = [float(_SCREAMING_SNAKE_CASE ) for n in range(limit + 1 )] for p in primes: for n in range(_SCREAMING_SNAKE_CASE , limit + 1 , _SCREAMING_SNAKE_CASE ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
655
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Dict = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """autoformer""" _snake_case : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Optional[Any] , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : str = "student_t" , lowerCamelCase : str = "nll" , lowerCamelCase : int = 1 , lowerCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCamelCase : bool = True , lowerCamelCase : int = 0 , lowerCamelCase : int = 0 , lowerCamelCase : int = 0 , lowerCamelCase : int = 0 , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : int = 64 , lowerCamelCase : int = 2 , lowerCamelCase : int = 2 , lowerCamelCase : int = 2 , lowerCamelCase : int = 2 , lowerCamelCase : int = 32 , lowerCamelCase : int = 32 , lowerCamelCase : str = "gelu" , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 0.1 , lowerCamelCase : int = 100 , lowerCamelCase : float = 0.02 , lowerCamelCase : bool = True , lowerCamelCase : List[Any]=True , lowerCamelCase : int = 10 , lowerCamelCase : int = 25 , lowerCamelCase : int = 3 , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' __lowercase = prediction_length __lowercase = context_length if context_length is not None else prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowerCamelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowerCamelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(self.lags_sequence ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache # Autoformer __lowercase = label_length __lowercase = moving_average __lowercase = autocorrelation_factor super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : List[str] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
655
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex snake_case__ : List[Any] = logging.getLogger(__name__) class _A : '''simple docstring''' def __init__( self : Union[str, Any] ): '''simple docstring''' __lowercase = False def _snake_case ( self : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] ): '''simple docstring''' if not self.initialized: __lowercase = RagRetriever( lowerCamelCase , question_encoder_tokenizer=lowerCamelCase , generator_tokenizer=lowerCamelCase , index=lowerCamelCase , init_retrieval=lowerCamelCase , ) __lowercase = True def _snake_case ( self : Dict ): '''simple docstring''' self.retriever.index.init_index() def _snake_case ( self : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Any ): '''simple docstring''' __lowercase , __lowercase = self.retriever._main_retrieve(lowerCamelCase , lowerCamelCase ) return doc_ids, retrieved_doc_embeds class _A ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple=None ): '''simple docstring''' if index is not None and index.is_initialized() and len(lowerCamelCase ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( lowerCamelCase , question_encoder_tokenizer=lowerCamelCase , generator_tokenizer=lowerCamelCase , index=lowerCamelCase , init_retrieval=lowerCamelCase , ) __lowercase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) for worker in self.retrieval_workers ] ) def _snake_case ( self : Tuple ): '''simple docstring''' logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _snake_case ( self : Dict , lowerCamelCase : str , lowerCamelCase : Tuple ): '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __lowercase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __lowercase , __lowercase = ray.get(random_worker.retrieve.remote(lowerCamelCase , lowerCamelCase ) ) else: __lowercase , __lowercase = self._main_retrieve(lowerCamelCase , lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase ) @classmethod def _snake_case ( cls : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=None , **lowerCamelCase : int ): '''simple docstring''' return super(lowerCamelCase , cls ).get_tokenizers(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) @classmethod def _snake_case ( cls : Optional[int] , lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : str=None , **lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = kwargs.pop("config" , lowerCamelCase ) or RagConfig.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = RagTokenizer.from_pretrained(lowerCamelCase , config=lowerCamelCase ) __lowercase = rag_tokenizer.question_encoder __lowercase = rag_tokenizer.generator if indexed_dataset is not None: __lowercase = "custom" __lowercase = CustomHFIndex(config.retrieval_vector_size , lowerCamelCase ) else: __lowercase = cls._build_index(lowerCamelCase ) return cls( lowerCamelCase , question_encoder_tokenizer=lowerCamelCase , generator_tokenizer=lowerCamelCase , retrieval_workers=lowerCamelCase , index=lowerCamelCase , )
655
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants snake_case__ : List[Any] = Mapping[str, np.ndarray] snake_case__ : Any = Mapping[str, Any] # Is a nested dict. snake_case__ : Any = 0.0_1 @dataclasses.dataclass(frozen=_lowercase ) class _A : '''simple docstring''' _snake_case : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _snake_case : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _snake_case : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _snake_case : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _snake_case : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions _snake_case : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files _snake_case : Optional[str] = None # Templates used to generate this protein (prediction-only) _snake_case : Optional[Sequence[str]] = None # Chain corresponding to each parent _snake_case : Optional[Sequence[int]] = None def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = R"(\[[A-Z]+\]\n)" __lowercase = [tag.strip() for tag in re.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0] __lowercase = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) __lowercase = ["N", "CA", "C"] __lowercase = None __lowercase = None __lowercase = None for g in groups: if "[PRIMARY]" == g[0]: __lowercase = g[1][0].strip() for i in range(len(_SCREAMING_SNAKE_CASE ) ): if seq[i] not in residue_constants.restypes: __lowercase = "X" # FIXME: strings are immutable __lowercase = np.array( [residue_constants.restype_order.get(_SCREAMING_SNAKE_CASE , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __lowercase = [] for axis in range(3 ): tertiary.append(list(map(_SCREAMING_SNAKE_CASE , g[1][axis].split() ) ) ) __lowercase = np.array(_SCREAMING_SNAKE_CASE ) __lowercase = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __lowercase = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) __lowercase = np.zeros( ( len(_SCREAMING_SNAKE_CASE ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_SCREAMING_SNAKE_CASE , atom_mask=_SCREAMING_SNAKE_CASE , aatype=_SCREAMING_SNAKE_CASE , residue_index=np.arange(len(_SCREAMING_SNAKE_CASE ) ) , b_factors=_SCREAMING_SNAKE_CASE , ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 ): __lowercase = [] __lowercase = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) __lowercase = prot.parents __lowercase = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __lowercase = [p for i, p in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if i == chain_id] if parents is None or len(_SCREAMING_SNAKE_CASE ) == 0: __lowercase = ["N/A"] pdb_headers.append(F"""PARENT {' '.join(_SCREAMING_SNAKE_CASE )}""" ) return pdb_headers def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [] __lowercase = pdb_str.split("\n" ) __lowercase = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) __lowercase = 42 if prot.parents is not None and len(prot.parents ) > 0: __lowercase = [] if prot.parents_chain_index is not None: __lowercase = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_SCREAMING_SNAKE_CASE ) , [] ) parent_dict[str(_SCREAMING_SNAKE_CASE )].append(_SCREAMING_SNAKE_CASE ) __lowercase = max([int(_SCREAMING_SNAKE_CASE ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __lowercase = parent_dict.get(str(_SCREAMING_SNAKE_CASE ) , ["N/A"] ) parents_per_chain.append(_SCREAMING_SNAKE_CASE ) else: parents_per_chain.append(list(prot.parents ) ) else: __lowercase = [["N/A"]] def make_parent_line(_SCREAMING_SNAKE_CASE ) -> str: return F"""PARENT {' '.join(_SCREAMING_SNAKE_CASE )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __lowercase = 0 for i, l in enumerate(_SCREAMING_SNAKE_CASE ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_SCREAMING_SNAKE_CASE ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_SCREAMING_SNAKE_CASE ): __lowercase = parents_per_chain[chain_counter] else: __lowercase = ["N/A"] out_pdb_lines.append(make_parent_line(_SCREAMING_SNAKE_CASE ) ) return "\n".join(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = residue_constants.restypes + ["X"] def res_atoa(_SCREAMING_SNAKE_CASE ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) __lowercase = residue_constants.atom_types __lowercase = [] __lowercase = prot.atom_mask __lowercase = prot.aatype __lowercase = prot.atom_positions __lowercase = prot.residue_index.astype(np.intaa ) __lowercase = prot.b_factors __lowercase = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) __lowercase = get_pdb_headers(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: pdb_lines.extend(_SCREAMING_SNAKE_CASE ) __lowercase = aatype.shape[0] __lowercase = 1 __lowercase = 0 __lowercase = string.ascii_uppercase __lowercase = None # Add all atom sites. for i in range(_SCREAMING_SNAKE_CASE ): __lowercase = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_SCREAMING_SNAKE_CASE , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __lowercase = "ATOM" __lowercase = atom_name if len(_SCREAMING_SNAKE_CASE ) == 4 else F""" {atom_name}""" __lowercase = "" __lowercase = "" __lowercase = 1.0_0 __lowercase = atom_name[0] # Protein supports only C, N, O, S, this works. __lowercase = "" __lowercase = "A" if chain_index is not None: __lowercase = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __lowercase = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(_SCREAMING_SNAKE_CASE ) atom_index += 1 __lowercase = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __lowercase = True __lowercase = chain_index[i + 1] if should_terminate: # Close the chain. __lowercase = "TER" __lowercase = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(_SCREAMING_SNAKE_CASE ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=_SCREAMING_SNAKE_CASE , remark=_SCREAMING_SNAKE_CASE , parents=_SCREAMING_SNAKE_CASE , parents_chain_index=_SCREAMING_SNAKE_CASE , )
655
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy snake_case__ : Dict = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : float , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = feature_size __lowercase = sampling_rate __lowercase = padding_value __lowercase = kwargs.pop("padding_side" , "right" ) __lowercase = kwargs.pop("return_attention_mask" , lowerCamelCase ) super().__init__(**lowerCamelCase ) def _snake_case ( self : Any , lowerCamelCase : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , lowerCamelCase : Union[bool, str, PaddingStrategy] = True , lowerCamelCase : Optional[int] = None , lowerCamelCase : bool = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(lowerCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __lowercase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" f""" to this method that includes {self.model_input_names[0]}, but you provided""" f""" {list(processed_features.keys() )}""" ) __lowercase = processed_features[self.model_input_names[0]] __lowercase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCamelCase ) == 0: if return_attention_mask: __lowercase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __lowercase = required_input[0] if isinstance(lowerCamelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __lowercase = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCamelCase ): __lowercase = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCamelCase ): __lowercase = "tf" elif is_torch_tensor(lowerCamelCase ): __lowercase = "pt" elif isinstance(lowerCamelCase , (int, float, list, tuple, np.ndarray) ): __lowercase = "np" else: raise ValueError( f"""type of {first_element} unknown: {type(lowerCamelCase )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __lowercase = to_numpy(lowerCamelCase ) else: __lowercase = [to_numpy(lowerCamelCase ) for v in value] # Convert padding_strategy in PaddingStrategy __lowercase = self._get_padding_strategies(padding=lowerCamelCase , max_length=lowerCamelCase ) __lowercase = processed_features[self.model_input_names[0]] __lowercase = len(lowerCamelCase ) if not all(len(lowerCamelCase ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) __lowercase = [] for i in range(lowerCamelCase ): __lowercase = {k: v[i] for k, v in processed_features.items()} # truncation __lowercase = self._truncate( lowerCamelCase , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , truncation=lowerCamelCase , ) truncated_inputs.append(lowerCamelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __lowercase = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __lowercase = PaddingStrategy.MAX_LENGTH __lowercase = {} for i in range(lowerCamelCase ): # padding __lowercase = self._pad( truncated_inputs[i] , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) for key, value in outputs.items(): if key not in batch_outputs: __lowercase = [] if value.dtype is np.dtype(np.floataa ): __lowercase = value.astype(np.floataa ) batch_outputs[key].append(lowerCamelCase ) return BatchFeature(lowerCamelCase , tensor_type=lowerCamelCase ) def _snake_case ( self : Optional[int] , lowerCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __lowercase = len(lowerCamelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowercase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCamelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __lowercase = np.ones(len(lowerCamelCase ) , dtype=np.intaa ) if needs_to_be_padded: __lowercase = max_length - len(lowerCamelCase ) if self.padding_side == "right": if return_attention_mask: __lowercase = np.pad( processed_features["attention_mask"] , (0, difference) ) __lowercase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __lowercase = np.pad( lowerCamelCase , lowerCamelCase , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __lowercase = np.pad( processed_features["attention_mask"] , (difference, 0) ) __lowercase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __lowercase = np.pad( lowerCamelCase , lowerCamelCase , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def _snake_case ( self : int , lowerCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) __lowercase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowercase = len(lowerCamelCase ) > max_length if needs_to_be_truncated: __lowercase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __lowercase = processed_features["attention_mask"][:max_length] return processed_features def _snake_case ( self : List[str] , lowerCamelCase : Tuple=False , lowerCamelCase : str=None ): '''simple docstring''' if padding is not False: if padding is True: __lowercase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = PaddingStrategy(lowerCamelCase ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = padding else: __lowercase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
655
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ : Union[str, Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ : List[str] = [0, 25, 50] snake_case__ : Optional[int] = [25, 50, 75] snake_case__ : int = fuzz.membership.trimf(X, abca) snake_case__ : Dict = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ : List[str] = np.ones(75) snake_case__ : Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ : Tuple = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ : Any = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ : Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ : int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ : List[Any] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ : Optional[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ : Any = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
655
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
1
from __future__ import annotations def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if nth_term == "": return [""] __lowercase = int(_SCREAMING_SNAKE_CASE ) __lowercase = int(_SCREAMING_SNAKE_CASE ) __lowercase = [] for temp in range(int(_SCREAMING_SNAKE_CASE ) ): series.append(F"""1 / {pow(temp + 1 , int(_SCREAMING_SNAKE_CASE ) )}""" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : List[Any] = int(input("""Enter the last number (nth term) of the P-Series""")) snake_case__ : Tuple = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
655
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel snake_case__ : Any = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class _A ( unittest.TestCase ): '''simple docstring''' @classmethod def _snake_case ( cls : List[str] ): '''simple docstring''' __lowercase = TOKEN HfFolder.save_token(lowerCamelCase ) @classmethod def _snake_case ( cls : Tuple ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __lowercase = FlaxBertModel(lowerCamelCase ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) __lowercase = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) __lowercase = flatten_dict(unfreeze(model.params ) ) __lowercase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __lowercase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase , repo_id="test-model-flax" , push_to_hub=lowerCamelCase , use_auth_token=self._token ) __lowercase = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) __lowercase = flatten_dict(unfreeze(model.params ) ) __lowercase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __lowercase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase , 1e-3 , msg=f"""{key} not identical""" ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __lowercase = FlaxBertModel(lowerCamelCase ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) __lowercase = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) __lowercase = flatten_dict(unfreeze(model.params ) ) __lowercase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __lowercase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCamelCase , repo_id="valid_org/test-model-flax-org" , push_to_hub=lowerCamelCase , use_auth_token=self._token ) __lowercase = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) __lowercase = flatten_dict(unfreeze(model.params ) ) __lowercase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __lowercase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase , 1e-3 , msg=f"""{key} not identical""" ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = True __lowercase = flatten_dict(modela.params ) __lowercase = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: __lowercase = False return models_are_equal @require_flax class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) __lowercase = FlaxBertModel(lowerCamelCase ) __lowercase = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase , lowerCamelCase ) ) with self.assertRaises(lowerCamelCase ): __lowercase = FlaxBertModel.from_pretrained(lowerCamelCase ) __lowercase = FlaxBertModel.from_pretrained(lowerCamelCase , subfolder=lowerCamelCase ) self.assertTrue(check_models_equal(lowerCamelCase , lowerCamelCase ) ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) __lowercase = FlaxBertModel(lowerCamelCase ) __lowercase = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase , lowerCamelCase ) , max_shard_size="10KB" ) with self.assertRaises(lowerCamelCase ): __lowercase = FlaxBertModel.from_pretrained(lowerCamelCase ) __lowercase = FlaxBertModel.from_pretrained(lowerCamelCase , subfolder=lowerCamelCase ) self.assertTrue(check_models_equal(lowerCamelCase , lowerCamelCase ) ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = "bert" __lowercase = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(lowerCamelCase ): __lowercase = FlaxBertModel.from_pretrained(lowerCamelCase ) __lowercase = FlaxBertModel.from_pretrained(lowerCamelCase , subfolder=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = "bert" __lowercase = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(lowerCamelCase ): __lowercase = FlaxBertModel.from_pretrained(lowerCamelCase ) __lowercase = FlaxBertModel.from_pretrained(lowerCamelCase , subfolder=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase )
655
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case__ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class _A ( _lowercase ): '''simple docstring''' def __init__( self : int , *lowerCamelCase : Any , **lowerCamelCase : Dict ): '''simple docstring''' super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , "vision" ) self.check_model_type(lowerCamelCase ) def __call__( self : Optional[Any] , lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase : Any ): '''simple docstring''' return super().__call__(lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Union[str, Any] , **lowerCamelCase : Any ): '''simple docstring''' return {}, {}, {} def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = load_image(lowerCamelCase ) __lowercase = image.size __lowercase = self.image_processor(images=lowerCamelCase , return_tensors=self.framework ) return model_inputs def _snake_case ( self : int , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = self.model(**lowerCamelCase ) return model_outputs def _snake_case ( self : int , lowerCamelCase : Any ): '''simple docstring''' __lowercase = model_outputs.predicted_depth __lowercase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=lowerCamelCase ) __lowercase = prediction.squeeze().cpu().numpy() __lowercase = (output * 255 / np.max(lowerCamelCase )).astype("uint8" ) __lowercase = Image.fromarray(lowerCamelCase ) __lowercase = {} __lowercase = predicted_depth __lowercase = depth return output_dict
655
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(_SCREAMING_SNAKE_CASE ) * abs(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
655
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
1
from __future__ import annotations snake_case__ : Any = """#""" class _A : '''simple docstring''' def __init__( self : str ): '''simple docstring''' __lowercase = {} def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = self._trie for char in text: if char not in trie: __lowercase = {} __lowercase = trie[char] __lowercase = True def _snake_case ( self : str , lowerCamelCase : str ): '''simple docstring''' __lowercase = self._trie for char in prefix: if char in trie: __lowercase = trie[char] else: return [] return self._elements(lowerCamelCase ) def _snake_case ( self : Optional[Any] , lowerCamelCase : dict ): '''simple docstring''' __lowercase = [] for c, v in d.items(): __lowercase = [" "] if c == END else [(c + s) for s in self._elements(lowerCamelCase )] result.extend(lowerCamelCase ) return tuple(lowerCamelCase ) snake_case__ : str = Trie() snake_case__ : Any = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = trie.find_word(_SCREAMING_SNAKE_CASE ) return tuple(string + word for word in suffixes ) def snake_case_ ( ): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
655
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : str = MobileBertTokenizer _snake_case : Dict = MobileBertTokenizerFast _snake_case : Optional[int] = True _snake_case : str = True _snake_case : Union[str, Any] = filter_non_english _snake_case : Optional[int] = """google/mobilebert-uncased""" def _snake_case ( self : Tuple ): '''simple docstring''' super().setUp() __lowercase = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __lowercase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _snake_case ( self : Union[str, Any] , lowerCamelCase : Any ): '''simple docstring''' __lowercase = "UNwant\u00E9d,running" __lowercase = "unwanted, running" return input_text, output_text def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [9, 6, 7, 12, 10, 11] ) def _snake_case ( self : List[str] ): '''simple docstring''' if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = "UNwant\u00E9d,running" __lowercase = tokenizer.tokenize(lowerCamelCase ) __lowercase = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __lowercase = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(lowerCamelCase ) __lowercase = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) # With lower casing __lowercase = self.get_tokenizer(do_lower_case=lowerCamelCase ) __lowercase = self.get_rust_tokenizer(do_lower_case=lowerCamelCase ) __lowercase = "UNwant\u00E9d,running" __lowercase = tokenizer.tokenize(lowerCamelCase ) __lowercase = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __lowercase = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(lowerCamelCase ) __lowercase = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=lowerCamelCase , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __lowercase = {} for i, token in enumerate(lowerCamelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=lowerCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _snake_case ( self : List[str] ): '''simple docstring''' self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _snake_case ( self : Any ): '''simple docstring''' self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) __lowercase = tokenizer.encode("sequence builders" , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _snake_case ( self : Tuple ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowercase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __lowercase = tokenizer_r.encode_plus( lowerCamelCase , return_attention_mask=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase , ) __lowercase = tokenizer_r.do_lower_case if hasattr(lowerCamelCase , "do_lower_case" ) else False __lowercase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = ["的", "人", "有"] __lowercase = "".join(lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowercase = True __lowercase = self.tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = tokenizer_p.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer_r.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer_r.convert_ids_to_tokens(lowerCamelCase ) __lowercase = tokenizer_p.convert_ids_to_tokens(lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __lowercase = False __lowercase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = self.tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = tokenizer_r.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer_p.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer_r.convert_ids_to_tokens(lowerCamelCase ) __lowercase = tokenizer_p.convert_ids_to_tokens(lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". __lowercase = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCamelCase ) ] self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase )
655
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin snake_case__ : int = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class _A ( unittest.TestCase , _lowercase ): '''simple docstring''' def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_tool("text-question-answering" ) self.tool.setup() __lowercase = load_tool("text-question-answering" , remote=lowerCamelCase ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.tool(lowerCamelCase , "What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase , "launched the BigScience Research Workshop" ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.remote_tool(lowerCamelCase , "What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase , "launched the BigScience Research Workshop" ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.tool(text=lowerCamelCase , question="What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase , "launched the BigScience Research Workshop" ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.remote_tool(text=lowerCamelCase , question="What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase , "launched the BigScience Research Workshop" )
655
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
1
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) snake_case__ : List[Any] = _symbol_database.Default() snake_case__ : List[Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) snake_case__ : int = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: snake_case__ : Dict = None snake_case__ : List[Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" snake_case__ : Any = 45 snake_case__ : Any = 15_81 snake_case__ : Any = 15_17 snake_case__ : Tuple = 15_70 snake_case__ : Dict = 15_84 snake_case__ : Any = 17_93 snake_case__ : Union[str, Any] = 17_95 snake_case__ : Dict = 19_16 snake_case__ : Any = 18_64 snake_case__ : Union[str, Any] = 19_05 snake_case__ : Optional[int] = 19_19 snake_case__ : Union[str, Any] = 24_29 snake_case__ : List[str] = 22_08 snake_case__ : Dict = 24_18 snake_case__ : Any = 23_23 snake_case__ : Optional[int] = 24_07 # @@protoc_insertion_point(module_scope)
655
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class _A ( _lowercase ): '''simple docstring''' _snake_case : Optional[int] = """git_vision_model""" def __init__( self : str , lowerCamelCase : Dict=768 , lowerCamelCase : List[str]=3_072 , lowerCamelCase : List[Any]=12 , lowerCamelCase : List[str]=12 , lowerCamelCase : str=3 , lowerCamelCase : Optional[int]=224 , lowerCamelCase : Optional[Any]=16 , lowerCamelCase : Dict="quick_gelu" , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : int=0.0 , lowerCamelCase : int=0.02 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = num_channels __lowercase = patch_size __lowercase = image_size __lowercase = initializer_range __lowercase = attention_dropout __lowercase = layer_norm_eps __lowercase = hidden_act @classmethod def _snake_case ( cls : Optional[Any] , lowerCamelCase : Union[str, os.PathLike] , **lowerCamelCase : Union[str, Any] ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(lowerCamelCase , **lowerCamelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": __lowercase = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase , **lowerCamelCase ) class _A ( _lowercase ): '''simple docstring''' _snake_case : Optional[int] = """git""" def __init__( self : List[str] , lowerCamelCase : List[Any]=None , lowerCamelCase : int=30_522 , lowerCamelCase : List[str]=768 , lowerCamelCase : Optional[Any]=6 , lowerCamelCase : Any=12 , lowerCamelCase : Union[str, Any]=3_072 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : Dict=0.1 , lowerCamelCase : int=0.1 , lowerCamelCase : List[str]=1_024 , lowerCamelCase : Optional[int]=0.02 , lowerCamelCase : Any=1e-12 , lowerCamelCase : Any=0 , lowerCamelCase : Optional[int]="absolute" , lowerCamelCase : str=True , lowerCamelCase : Optional[int]=False , lowerCamelCase : Tuple=101 , lowerCamelCase : Union[str, Any]=102 , lowerCamelCase : List[Any]=None , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , pad_token_id=lowerCamelCase , **lowerCamelCase ) if vision_config is None: __lowercase = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) __lowercase = GitVisionConfig(**lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = tie_word_embeddings __lowercase = num_image_with_embedding __lowercase = bos_token_id __lowercase = eos_token_id def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output
655
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
1
from ..utils import DummyObject, requires_backends class _A ( metaclass=_lowercase ): '''simple docstring''' _snake_case : Any = ["""onnx"""] def __init__( self : Union[str, Any] , *lowerCamelCase : Optional[int] , **lowerCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["onnx"] ) @classmethod def _snake_case ( cls : Optional[int] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : str ): '''simple docstring''' requires_backends(cls , ["onnx"] ) @classmethod def _snake_case ( cls : int , *lowerCamelCase : int , **lowerCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["onnx"] )
655
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : Any ): '''simple docstring''' __lowercase = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) __lowercase = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase = model(lowerCamelCase )["last_hidden_state"] __lowercase = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , lowerCamelCase ) # compare the actual values for a slice. __lowercase = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
655
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case__ : Tuple = logging.getLogger(__name__) snake_case__ : Any = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) snake_case__ : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _A : '''simple docstring''' _snake_case : Optional[str] = field( default=_lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_lowercase )} , ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _A : '''simple docstring''' _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """The input training data file (a text file)."""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) _snake_case : bool = field( default=_lowercase , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) _snake_case : bool = field( default=_lowercase , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) _snake_case : bool = field(default=_lowercase , metadata={"""help""": """Whether ot not to use whole word mask."""} ) _snake_case : float = field( default=0.1_5 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) _snake_case : float = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) _snake_case : int = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) _snake_case : int = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) _snake_case : bool = field( default=_lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ): def _dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=_SCREAMING_SNAKE_CASE , file_path=_SCREAMING_SNAKE_CASE , block_size=args.block_size , ref_path=_SCREAMING_SNAKE_CASE , ) return LineByLineTextDataset(tokenizer=_SCREAMING_SNAKE_CASE , file_path=_SCREAMING_SNAKE_CASE , block_size=args.block_size ) else: return TextDataset( tokenizer=_SCREAMING_SNAKE_CASE , file_path=_SCREAMING_SNAKE_CASE , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_SCREAMING_SNAKE_CASE , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_SCREAMING_SNAKE_CASE ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) __lowercase = AutoModelWithLMHead.from_config(_SCREAMING_SNAKE_CASE ) model.resize_token_embeddings(len(_SCREAMING_SNAKE_CASE ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , evaluate=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=_SCREAMING_SNAKE_CASE , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=_SCREAMING_SNAKE_CASE , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=_SCREAMING_SNAKE_CASE , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , prediction_loss_only=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_SCREAMING_SNAKE_CASE ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["eval_loss"] ) __lowercase = {"perplexity": perplexity} __lowercase = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(_SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(_SCREAMING_SNAKE_CASE ) return results def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : List[str] = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = ["""PoolFormerFeatureExtractor"""] snake_case__ : Optional[int] = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys snake_case__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
655
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case__ : List[Any] = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=8 ): __lowercase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowercase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _A ( _lowercase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : DDPMScheduler , lowerCamelCase : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=lowerCamelCase , scheduler=lowerCamelCase , movq=lowerCamelCase , ) __lowercase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): '''simple docstring''' if latents is None: __lowercase = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) __lowercase = latents.to(lowerCamelCase ) __lowercase = latents * scheduler.init_noise_sigma return latents def _snake_case ( self : List[Any] , lowerCamelCase : List[Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) __lowercase = torch.device(f"""cuda:{gpu_id}""" ) __lowercase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Tuple , lowerCamelCase : Any=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) __lowercase = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowercase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowercase , __lowercase = cpu_offload_with_hook(lowerCamelCase , lowerCamelCase , prev_module_hook=lowerCamelCase ) # We'll offload the last model manually. __lowercase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self : List[Any] ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase ) def __call__( self : Any , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 100 , lowerCamelCase : float = 4.0 , lowerCamelCase : int = 1 , lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , ): '''simple docstring''' __lowercase = self._execution_device __lowercase = guidance_scale > 1.0 if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = torch.cat(lowerCamelCase , dim=0 ) __lowercase = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = torch.cat(lowerCamelCase , dim=0 ) if do_classifier_free_guidance: __lowercase = image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __lowercase = negative_image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __lowercase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase ) self.scheduler.set_timesteps(lowerCamelCase , device=lowerCamelCase ) __lowercase = self.scheduler.timesteps __lowercase = self.unet.config.in_channels __lowercase , __lowercase = downscale_height_and_width(lowerCamelCase , lowerCamelCase , self.movq_scale_factor ) # create initial latent __lowercase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCamelCase , lowerCamelCase , lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = {"image_embeds": image_embeds} __lowercase = self.unet( sample=lowerCamelCase , timestep=lowerCamelCase , encoder_hidden_states=lowerCamelCase , added_cond_kwargs=lowerCamelCase , return_dict=lowerCamelCase , )[0] if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 ) __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase , __lowercase = variance_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowercase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step( lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase , )[0] # post-processing __lowercase = self.movq.decode(lowerCamelCase , force_not_quantize=lowerCamelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: __lowercase = image * 0.5 + 0.5 __lowercase = image.clamp(0 , 1 ) __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
655
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _A ( _lowercase ): '''simple docstring''' _snake_case : Union[str, Any] = """naver-clova-ix/donut-base-finetuned-docvqa""" _snake_case : List[Any] = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) _snake_case : Tuple = """document_qa""" _snake_case : Tuple = AutoProcessor _snake_case : int = VisionEncoderDecoderModel _snake_case : Dict = ["""image""", """text"""] _snake_case : Any = ["""text"""] def __init__( self : Tuple , *lowerCamelCase : int , **lowerCamelCase : Union[str, Any] ): '''simple docstring''' if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : List[Any] , lowerCamelCase : "Image" , lowerCamelCase : str ): '''simple docstring''' __lowercase = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" __lowercase = task_prompt.replace("{user_input}" , lowerCamelCase ) __lowercase = self.pre_processor.tokenizer( lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="pt" ).input_ids __lowercase = self.pre_processor(lowerCamelCase , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case ( self : List[str] , lowerCamelCase : int ): '''simple docstring''' return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=lowerCamelCase , ).sequences def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = self.pre_processor.batch_decode(lowerCamelCase )[0] __lowercase = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) __lowercase = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) __lowercase = re.sub(R"<.*?>" , "" , lowerCamelCase , count=1 ).strip() # remove first task start token __lowercase = self.pre_processor.tokenajson(lowerCamelCase ) return sequence["answer"]
655
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = len(set_a.intersection(_SCREAMING_SNAKE_CASE ) ) if alternative_union: __lowercase = len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE ) else: __lowercase = len(set_a.union(_SCREAMING_SNAKE_CASE ) ) return intersection / union if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): __lowercase = [element for element in set_a if element in set_b] if alternative_union: __lowercase = len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) / union else: __lowercase = set_a + [element for element in set_b if element not in set_a] return len(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) return None if __name__ == "__main__": snake_case__ : Dict = {"""a""", """b""", """c""", """d""", """e"""} snake_case__ : Any = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
655
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Optional[int] = logging.get_logger(__name__) snake_case__ : Optional[Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """gptsan-japanese""" _snake_case : int = [ """past_key_values""", ] _snake_case : str = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCamelCase : Optional[int]=36_000 , lowerCamelCase : Optional[Any]=1_280 , lowerCamelCase : Dict=1_024 , lowerCamelCase : Optional[int]=8_192 , lowerCamelCase : Union[str, Any]=4_096 , lowerCamelCase : List[Any]=128 , lowerCamelCase : int=10 , lowerCamelCase : Union[str, Any]=0 , lowerCamelCase : Optional[int]=16 , lowerCamelCase : Union[str, Any]=16 , lowerCamelCase : Any=128 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : List[str]=1e-5 , lowerCamelCase : Optional[Any]=False , lowerCamelCase : int=0.0 , lowerCamelCase : str="float32" , lowerCamelCase : Optional[int]=False , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=0.002 , lowerCamelCase : int=False , lowerCamelCase : List[Any]=True , lowerCamelCase : str=35_998 , lowerCamelCase : Dict=35_995 , lowerCamelCase : str=35_999 , **lowerCamelCase : int , ): '''simple docstring''' __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = d_ff __lowercase = d_ext __lowercase = d_spout __lowercase = num_switch_layers __lowercase = num_ext_layers __lowercase = num_switch_layers + num_ext_layers __lowercase = num_heads __lowercase = num_experts __lowercase = expert_capacity __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = router_bias __lowercase = router_jitter_noise __lowercase = router_dtype __lowercase = router_ignore_padding_tokens __lowercase = output_hidden_states __lowercase = output_attentions __lowercase = initializer_factor __lowercase = output_router_logits __lowercase = use_cache super().__init__( separator_token_id=lowerCamelCase , pad_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , )
655
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Dict , lowerCamelCase : int = 128 , lowerCamelCase : int = 256 , lowerCamelCase : float = 2000.0 , lowerCamelCase : int = 768 , lowerCamelCase : int = 12 , lowerCamelCase : int = 12 , lowerCamelCase : int = 64 , lowerCamelCase : int = 2_048 , lowerCamelCase : float = 0.1 , ): '''simple docstring''' super().__init__() __lowercase = nn.Sequential( nn.Linear(lowerCamelCase , d_model * 4 , bias=lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCamelCase ) , nn.SiLU() , ) __lowercase = nn.Embedding(lowerCamelCase , lowerCamelCase ) __lowercase = False __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) __lowercase = nn.Dropout(p=lowerCamelCase ) __lowercase = nn.ModuleList() for lyr_num in range(lowerCamelCase ): # FiLM conditional T5 decoder __lowercase = DecoderLayer(d_model=lowerCamelCase , d_kv=lowerCamelCase , num_heads=lowerCamelCase , d_ff=lowerCamelCase , dropout_rate=lowerCamelCase ) self.decoders.append(lowerCamelCase ) __lowercase = TaLayerNorm(lowerCamelCase ) __lowercase = nn.Dropout(p=lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase , __lowercase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowercase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __lowercase = self.conditioning_emb(lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowercase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowercase = torch.broadcast_to( torch.arange(lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __lowercase = self.position_encoding(lowerCamelCase ) __lowercase = self.continuous_inputs_projection(lowerCamelCase ) inputs += position_encodings __lowercase = self.dropout(lowerCamelCase ) # decoder: No padding present. __lowercase = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowercase = [(x, self.encoder_decoder_mask(lowerCamelCase , lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowercase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __lowercase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __lowercase = lyr( lowerCamelCase , conditioning_emb=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , )[0] __lowercase = self.decoder_norm(lowerCamelCase ) __lowercase = self.post_dropout(lowerCamelCase ) __lowercase = self.spec_out(lowerCamelCase ) return spec_out class _A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : str , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=1e-6 ): '''simple docstring''' super().__init__() __lowercase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCamelCase , d_kv=lowerCamelCase , num_heads=lowerCamelCase , dropout_rate=lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCamelCase , d_kv=lowerCamelCase , num_heads=lowerCamelCase , dropout_rate=lowerCamelCase , layer_norm_epsilon=lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCamelCase , d_ff=lowerCamelCase , dropout_rate=lowerCamelCase , layer_norm_epsilon=lowerCamelCase ) ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any=None , lowerCamelCase : List[str]=None , lowerCamelCase : List[Any]=None , lowerCamelCase : int=None , lowerCamelCase : List[str]=None , ): '''simple docstring''' __lowercase = self.layer[0]( lowerCamelCase , conditioning_emb=lowerCamelCase , attention_mask=lowerCamelCase , ) if encoder_hidden_states is not None: __lowercase = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) __lowercase = self.layer[1]( lowerCamelCase , key_value_states=lowerCamelCase , attention_mask=lowerCamelCase , ) # Apply Film Conditional Feed Forward layer __lowercase = self.layer[-1](lowerCamelCase , lowerCamelCase ) return (hidden_states,) class _A ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : int ): '''simple docstring''' super().__init__() __lowercase = TaLayerNorm(lowerCamelCase ) __lowercase = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCamelCase ) __lowercase = Attention(query_dim=lowerCamelCase , heads=lowerCamelCase , dim_head=lowerCamelCase , out_bias=lowerCamelCase , scale_qk=lowerCamelCase ) __lowercase = nn.Dropout(lowerCamelCase ) def _snake_case ( self : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : List[str]=None , lowerCamelCase : Optional[Any]=None , ): '''simple docstring''' __lowercase = self.layer_norm(lowerCamelCase ) if conditioning_emb is not None: __lowercase = self.FiLMLayer(lowerCamelCase , lowerCamelCase ) # Self-attention block __lowercase = self.attention(lowerCamelCase ) __lowercase = hidden_states + self.dropout(lowerCamelCase ) return hidden_states class _A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : Any ): '''simple docstring''' super().__init__() __lowercase = Attention(query_dim=lowerCamelCase , heads=lowerCamelCase , dim_head=lowerCamelCase , out_bias=lowerCamelCase , scale_qk=lowerCamelCase ) __lowercase = TaLayerNorm(lowerCamelCase , eps=lowerCamelCase ) __lowercase = nn.Dropout(lowerCamelCase ) def _snake_case ( self : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict=None , lowerCamelCase : str=None , ): '''simple docstring''' __lowercase = self.layer_norm(lowerCamelCase ) __lowercase = self.attention( lowerCamelCase , encoder_hidden_states=lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) __lowercase = hidden_states + self.dropout(lowerCamelCase ) return layer_output class _A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Dict ): '''simple docstring''' super().__init__() __lowercase = TaDenseGatedActDense(d_model=lowerCamelCase , d_ff=lowerCamelCase , dropout_rate=lowerCamelCase ) __lowercase = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCamelCase ) __lowercase = TaLayerNorm(lowerCamelCase , eps=lowerCamelCase ) __lowercase = nn.Dropout(lowerCamelCase ) def _snake_case ( self : str , lowerCamelCase : Tuple , lowerCamelCase : Dict=None ): '''simple docstring''' __lowercase = self.layer_norm(lowerCamelCase ) if conditioning_emb is not None: __lowercase = self.film(lowerCamelCase , lowerCamelCase ) __lowercase = self.DenseReluDense(lowerCamelCase ) __lowercase = hidden_states + self.dropout(lowerCamelCase ) return hidden_states class _A ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__() __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) __lowercase = nn.Dropout(lowerCamelCase ) __lowercase = NewGELUActivation() def _snake_case ( self : Optional[int] , lowerCamelCase : Any ): '''simple docstring''' __lowercase = self.act(self.wi_a(lowerCamelCase ) ) __lowercase = self.wi_a(lowerCamelCase ) __lowercase = hidden_gelu * hidden_linear __lowercase = self.dropout(lowerCamelCase ) __lowercase = self.wo(lowerCamelCase ) return hidden_states class _A ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowerCamelCase : str , lowerCamelCase : Optional[int]=1e-6 ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.ones(lowerCamelCase ) ) __lowercase = eps def _snake_case ( self : Dict , lowerCamelCase : str ): '''simple docstring''' __lowercase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCamelCase ) __lowercase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowercase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _A ( nn.Module ): '''simple docstring''' def _snake_case ( self : List[str] , lowerCamelCase : torch.Tensor ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(lowerCamelCase , 3.0 )) )) class _A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__() __lowercase = nn.Linear(lowerCamelCase , out_features * 2 , bias=lowerCamelCase ) def _snake_case ( self : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = self.scale_bias(lowerCamelCase ) __lowercase , __lowercase = torch.chunk(lowerCamelCase , 2 , -1 ) __lowercase = x * (1 + scale) + shift return x
655
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = SMALL_MODEL_IDENTIFIER __lowercase = "pt" __lowercase = "tf" def _snake_case ( self : Union[str, Any] , lowerCamelCase : Any ): '''simple docstring''' __lowercase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowerCamelCase ) def _snake_case ( self : int , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCamelCase ) model_tf.save_pretrained(lowerCamelCase ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = "mock_framework" # Framework provided - return whatever the user provides __lowercase = FeaturesManager.determine_framework(self.test_model , lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCamelCase ) __lowercase = FeaturesManager.determine_framework(lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCamelCase ) __lowercase = FeaturesManager.determine_framework(lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Dict ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCamelCase ) __lowercase = FeaturesManager.determine_framework(lowerCamelCase ) self.assertEqual(lowerCamelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCamelCase ) __lowercase = FeaturesManager.determine_framework(lowerCamelCase ) self.assertEqual(lowerCamelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowerCamelCase ): __lowercase = FeaturesManager.determine_framework(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = MagicMock(return_value=lowerCamelCase ) with patch("transformers.onnx.features.is_tf_available" , lowerCamelCase ): __lowercase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCamelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __lowercase = MagicMock(return_value=lowerCamelCase ) with patch("transformers.onnx.features.is_torch_available" , lowerCamelCase ): __lowercase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCamelCase , self.framework_tf ) # Both in environment -> use PyTorch __lowercase = MagicMock(return_value=lowerCamelCase ) __lowercase = MagicMock(return_value=lowerCamelCase ) with patch("transformers.onnx.features.is_tf_available" , lowerCamelCase ), patch( "transformers.onnx.features.is_torch_available" , lowerCamelCase ): __lowercase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCamelCase , self.framework_pt ) # Both not in environment -> raise error __lowercase = MagicMock(return_value=lowerCamelCase ) __lowercase = MagicMock(return_value=lowerCamelCase ) with patch("transformers.onnx.features.is_tf_available" , lowerCamelCase ), patch( "transformers.onnx.features.is_torch_available" , lowerCamelCase ): with self.assertRaises(lowerCamelCase ): __lowercase = FeaturesManager.determine_framework(self.test_model )
655
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets snake_case__ : Dict = datasets.logging.get_logger(__name__) snake_case__ : Union[str, Any] = """\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ snake_case__ : str = """\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ snake_case__ : List[str] = """ BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ snake_case__ : Dict = { """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def _snake_case ( self : List[Any] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." ) __lowercase = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: __lowercase = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __lowercase = self.config_name.upper() else: raise KeyError( f"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" ) # download the model checkpoint specified by self.config_name and set up the scorer __lowercase = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) __lowercase = score.BleurtScorer(os.path.join(lowerCamelCase , lowerCamelCase ) ) def _snake_case ( self : int , lowerCamelCase : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = self.scorer.score(references=lowerCamelCase , candidates=lowerCamelCase ) return {"scores": scores}
655
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor snake_case__ : Tuple = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : str ): '''simple docstring''' warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
655
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = list(_SCREAMING_SNAKE_CASE ) __lowercase = list(_SCREAMING_SNAKE_CASE ) __lowercase = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count += 1 __lowercase = "_" if count > 1: return False else: return "".join(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [] while True: __lowercase = ["$"] * len(_SCREAMING_SNAKE_CASE ) __lowercase = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): __lowercase = compare_string(binary[i] , binary[j] ) if k is False: __lowercase = "*" __lowercase = "*" temp.append("X" ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_SCREAMING_SNAKE_CASE ) == 0: return pi __lowercase = list(set(_SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [] for minterm in minterms: __lowercase = "" for _ in range(_SCREAMING_SNAKE_CASE ): __lowercase = str(minterm % 2 ) + string minterm //= 2 temp.append(_SCREAMING_SNAKE_CASE ) return temp def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = list(_SCREAMING_SNAKE_CASE ) __lowercase = list(_SCREAMING_SNAKE_CASE ) __lowercase = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [] __lowercase = [0] * len(_SCREAMING_SNAKE_CASE ) for i in range(len(chart[0] ) ): __lowercase = 0 __lowercase = -1 for j in range(len(_SCREAMING_SNAKE_CASE ) ): if chart[j][i] == 1: count += 1 __lowercase = j if count == 1: __lowercase = 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = 0 temp.append(prime_implicants[i] ) while True: __lowercase = 0 __lowercase = -1 __lowercase = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = chart[i].count(1 ) if count_n > max_n: __lowercase = count_n __lowercase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = 0 def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [[0 for x in range(len(_SCREAMING_SNAKE_CASE ) )] for x in range(len(_SCREAMING_SNAKE_CASE ) )] for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = prime_implicants[i].count("_" ) for j in range(len(_SCREAMING_SNAKE_CASE ) ): if is_for_table(prime_implicants[i] , binary[j] , _SCREAMING_SNAKE_CASE ): __lowercase = 1 return chart def snake_case_ ( ): __lowercase = int(input("Enter the no. of variables\n" ) ) __lowercase = [ float(_SCREAMING_SNAKE_CASE ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] __lowercase = decimal_to_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = check(_SCREAMING_SNAKE_CASE ) print("Prime Implicants are:" ) print(_SCREAMING_SNAKE_CASE ) __lowercase = prime_implicant_chart(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = selection(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print("Essential Prime Implicants are:" ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
655
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
1
import numpy as np import datasets snake_case__ : Union[str, Any] = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ snake_case__ : List[Any] = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ snake_case__ : Any = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __lowercase = X - np.mean(lowerCamelCase ) __lowercase = np.cov(reference_distribution.T ) try: __lowercase = np.linalg.inv(lowerCamelCase ) except np.linalg.LinAlgError: __lowercase = np.linalg.pinv(lowerCamelCase ) __lowercase = np.dot(lowerCamelCase , lowerCamelCase ) __lowercase = np.dot(lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
655
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """unispeech""" def __init__( self : Any , lowerCamelCase : List[str]=32 , lowerCamelCase : Optional[int]=768 , lowerCamelCase : int=12 , lowerCamelCase : int=12 , lowerCamelCase : Dict=3_072 , lowerCamelCase : Any="gelu" , lowerCamelCase : List[str]=0.1 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : int=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Any=0.1 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : Any=0.02 , lowerCamelCase : Dict=1e-5 , lowerCamelCase : Optional[Any]="group" , lowerCamelCase : str="gelu" , lowerCamelCase : Optional[int]=(512, 512, 512, 512, 512, 512, 512) , lowerCamelCase : Dict=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase : Optional[int]=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase : Any=False , lowerCamelCase : Dict=128 , lowerCamelCase : Optional[Any]=16 , lowerCamelCase : Any=False , lowerCamelCase : List[str]=True , lowerCamelCase : List[str]=0.05 , lowerCamelCase : Tuple=10 , lowerCamelCase : int=2 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : List[str]=10 , lowerCamelCase : Union[str, Any]=0 , lowerCamelCase : Dict=320 , lowerCamelCase : Tuple=2 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : str=100 , lowerCamelCase : List[str]=256 , lowerCamelCase : List[Any]=256 , lowerCamelCase : str=0.1 , lowerCamelCase : Union[str, Any]="mean" , lowerCamelCase : List[Any]=False , lowerCamelCase : List[str]=False , lowerCamelCase : int=256 , lowerCamelCase : Any=80 , lowerCamelCase : Optional[Any]=0 , lowerCamelCase : int=1 , lowerCamelCase : Any=2 , lowerCamelCase : Optional[Any]=0.5 , **lowerCamelCase : Tuple , ): '''simple docstring''' super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(lowerCamelCase ) __lowercase = list(lowerCamelCase ) __lowercase = list(lowerCamelCase ) __lowercase = conv_bias __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = num_ctc_classes __lowercase = vocab_size __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum __lowercase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length __lowercase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = feat_quantizer_dropout __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # pretraining loss __lowercase = replace_prob @property def _snake_case ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
655
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: snake_case__ : Optional[int] = None snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case__ : List[Any] = { """vocab_file""": { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/spiece.model""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/spiece.model""", }, """tokenizer_file""": { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """google/fnet-base""": 5_12, """google/fnet-large""": 5_12, } snake_case__ : Optional[int] = """▁""" class _A ( _lowercase ): '''simple docstring''' _snake_case : int = VOCAB_FILES_NAMES _snake_case : Dict = PRETRAINED_VOCAB_FILES_MAP _snake_case : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : int = ["""input_ids""", """token_type_ids"""] _snake_case : List[Any] = FNetTokenizer def __init__( self : Optional[int] , lowerCamelCase : str=None , lowerCamelCase : str=None , lowerCamelCase : List[Any]=False , lowerCamelCase : int=True , lowerCamelCase : List[Any]=True , lowerCamelCase : Dict="<unk>" , lowerCamelCase : Tuple="[SEP]" , lowerCamelCase : List[Any]="<pad>" , lowerCamelCase : Optional[Any]="[CLS]" , lowerCamelCase : Union[str, Any]="[MASK]" , **lowerCamelCase : int , ): '''simple docstring''' __lowercase = ( AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase , normalized=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token ) super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , remove_space=lowerCamelCase , keep_accents=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , **lowerCamelCase , ) __lowercase = do_lower_case __lowercase = remove_space __lowercase = keep_accents __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def _snake_case ( self : List[str] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
655
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _A ( _lowercase ): '''simple docstring''' _snake_case : "DiagonalGaussianDistribution" class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Optional[Any] = True @register_to_config def __init__( self : List[str] , lowerCamelCase : int = 3 , lowerCamelCase : int = 3 , lowerCamelCase : Tuple[str] = ("DownEncoderBlock2D",) , lowerCamelCase : Tuple[str] = ("UpDecoderBlock2D",) , lowerCamelCase : Tuple[int] = (64,) , lowerCamelCase : int = 1 , lowerCamelCase : str = "silu" , lowerCamelCase : int = 4 , lowerCamelCase : int = 32 , lowerCamelCase : int = 32 , lowerCamelCase : float = 0.1_8215 , ): '''simple docstring''' super().__init__() # pass init params to Encoder __lowercase = Encoder( in_channels=lowerCamelCase , out_channels=lowerCamelCase , down_block_types=lowerCamelCase , block_out_channels=lowerCamelCase , layers_per_block=lowerCamelCase , act_fn=lowerCamelCase , norm_num_groups=lowerCamelCase , double_z=lowerCamelCase , ) # pass init params to Decoder __lowercase = Decoder( in_channels=lowerCamelCase , out_channels=lowerCamelCase , up_block_types=lowerCamelCase , block_out_channels=lowerCamelCase , layers_per_block=lowerCamelCase , norm_num_groups=lowerCamelCase , act_fn=lowerCamelCase , ) __lowercase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowercase = nn.Convad(lowerCamelCase , lowerCamelCase , 1 ) __lowercase = False __lowercase = False # only relevant if vae tiling is enabled __lowercase = self.config.sample_size __lowercase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowercase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowercase = 0.25 def _snake_case ( self : Any , lowerCamelCase : int , lowerCamelCase : Dict=False ): '''simple docstring''' if isinstance(lowerCamelCase , (Encoder, Decoder) ): __lowercase = value def _snake_case ( self : Tuple , lowerCamelCase : bool = True ): '''simple docstring''' __lowercase = use_tiling def _snake_case ( self : Any ): '''simple docstring''' self.enable_tiling(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = True def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = {} def fn_recursive_add_processors(lowerCamelCase : str , lowerCamelCase : torch.nn.Module , lowerCamelCase : Dict[str, AttentionProcessor] ): if hasattr(lowerCamelCase , "set_processor" ): __lowercase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase , lowerCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return processors def _snake_case ( self : str , lowerCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' __lowercase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase , lowerCamelCase ) and len(lowerCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase : str , lowerCamelCase : torch.nn.Module , lowerCamelCase : Any ): if hasattr(lowerCamelCase , "set_processor" ): if not isinstance(lowerCamelCase , lowerCamelCase ): module.set_processor(lowerCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase , lowerCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _snake_case ( self : Tuple , lowerCamelCase : torch.FloatTensor , lowerCamelCase : bool = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowerCamelCase , return_dict=lowerCamelCase ) if self.use_slicing and x.shape[0] > 1: __lowercase = [self.encoder(lowerCamelCase ) for x_slice in x.split(1 )] __lowercase = torch.cat(lowerCamelCase ) else: __lowercase = self.encoder(lowerCamelCase ) __lowercase = self.quant_conv(lowerCamelCase ) __lowercase = DiagonalGaussianDistribution(lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCamelCase ) def _snake_case ( self : str , lowerCamelCase : torch.FloatTensor , lowerCamelCase : bool = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowerCamelCase , return_dict=lowerCamelCase ) __lowercase = self.post_quant_conv(lowerCamelCase ) __lowercase = self.decoder(lowerCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase ) @apply_forward_hook def _snake_case ( self : Optional[Any] , lowerCamelCase : torch.FloatTensor , lowerCamelCase : bool = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: __lowercase = [self._decode(lowerCamelCase ).sample for z_slice in z.split(1 )] __lowercase = torch.cat(lowerCamelCase ) else: __lowercase = self._decode(lowerCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowerCamelCase ) def _snake_case ( self : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = min(a.shape[2] , b.shape[2] , lowerCamelCase ) for y in range(lowerCamelCase ): __lowercase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _snake_case ( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = min(a.shape[3] , b.shape[3] , lowerCamelCase ) for x in range(lowerCamelCase ): __lowercase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _snake_case ( self : List[Any] , lowerCamelCase : torch.FloatTensor , lowerCamelCase : bool = True ): '''simple docstring''' __lowercase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowercase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowercase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowercase = [] for i in range(0 , x.shape[2] , lowerCamelCase ): __lowercase = [] for j in range(0 , x.shape[3] , lowerCamelCase ): __lowercase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowercase = self.encoder(lowerCamelCase ) __lowercase = self.quant_conv(lowerCamelCase ) row.append(lowerCamelCase ) rows.append(lowerCamelCase ) __lowercase = [] for i, row in enumerate(lowerCamelCase ): __lowercase = [] for j, tile in enumerate(lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowercase = self.blend_v(rows[i - 1][j] , lowerCamelCase , lowerCamelCase ) if j > 0: __lowercase = self.blend_h(row[j - 1] , lowerCamelCase , lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCamelCase , dim=3 ) ) __lowercase = torch.cat(lowerCamelCase , dim=2 ) __lowercase = DiagonalGaussianDistribution(lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCamelCase ) def _snake_case ( self : Dict , lowerCamelCase : torch.FloatTensor , lowerCamelCase : bool = True ): '''simple docstring''' __lowercase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowercase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowercase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowercase = [] for i in range(0 , z.shape[2] , lowerCamelCase ): __lowercase = [] for j in range(0 , z.shape[3] , lowerCamelCase ): __lowercase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowercase = self.post_quant_conv(lowerCamelCase ) __lowercase = self.decoder(lowerCamelCase ) row.append(lowerCamelCase ) rows.append(lowerCamelCase ) __lowercase = [] for i, row in enumerate(lowerCamelCase ): __lowercase = [] for j, tile in enumerate(lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowercase = self.blend_v(rows[i - 1][j] , lowerCamelCase , lowerCamelCase ) if j > 0: __lowercase = self.blend_h(row[j - 1] , lowerCamelCase , lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCamelCase , dim=3 ) ) __lowercase = torch.cat(lowerCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase ) def _snake_case ( self : Dict , lowerCamelCase : torch.FloatTensor , lowerCamelCase : bool = False , lowerCamelCase : bool = True , lowerCamelCase : Optional[torch.Generator] = None , ): '''simple docstring''' __lowercase = sample __lowercase = self.encode(lowerCamelCase ).latent_dist if sample_posterior: __lowercase = posterior.sample(generator=lowerCamelCase ) else: __lowercase = posterior.mode() __lowercase = self.decode(lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase )
655
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
1
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor snake_case__ : Optional[int] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[Any] , *lowerCamelCase : Any , **lowerCamelCase : Optional[Any] ): '''simple docstring''' warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
655
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler snake_case__ : Optional[Any] = 16 snake_case__ : Tuple = 32 def snake_case_ ( _SCREAMING_SNAKE_CASE ): return int(x / 2**2_0 ) class _A : '''simple docstring''' def __enter__( self : Union[str, Any] ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowercase = torch.cuda.memory_allocated() return self def __exit__( self : Optional[int] , *lowerCamelCase : Any ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() __lowercase = torch.cuda.memory_allocated() __lowercase = torch.cuda.max_memory_allocated() __lowercase = bamb(self.end - self.begin ) __lowercase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1_6 , _SCREAMING_SNAKE_CASE = "bert-base-cased" , _SCREAMING_SNAKE_CASE = 3_2_0 , _SCREAMING_SNAKE_CASE = 1_6_0 , ): __lowercase = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowercase = load_dataset( "glue" , "mrpc" , split={"train": F"""train[:{n_train}]""", "validation": F"""validation[:{n_val}]"""} ) def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=_SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="max_length" , max_length=1_2_8 , return_tensors="pt" ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets["train"] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) __lowercase = DataLoader( tokenized_datasets["validation"] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Initialize accelerator __lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config["lr"] __lowercase = int(config["num_epochs"] ) __lowercase = int(config["seed"] ) __lowercase = int(config["batch_size"] ) __lowercase = args.model_name_or_path set_seed(_SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) # Instantiate optimizer __lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: __lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: __lowercase = 1 __lowercase = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , ) else: __lowercase = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over __lowercase = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase = 0 # Now we train the model __lowercase = {} for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowercase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( ): __lowercase = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=_SCREAMING_SNAKE_CASE , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( "--output_dir" , type=_SCREAMING_SNAKE_CASE , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=_SCREAMING_SNAKE_CASE , default=3_2_0 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=_SCREAMING_SNAKE_CASE , default=1_6_0 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=_SCREAMING_SNAKE_CASE , default=1 , help="Number of train epochs." , ) __lowercase = parser.parse_args() __lowercase = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 4_2, "batch_size": 1_6} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
655
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
1
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class _A : '''simple docstring''' _snake_case : str = field( metadata={"""help""": """The output directory where the model will be written."""} , ) _snake_case : str = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) _snake_case : str = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def snake_case_ ( ): __lowercase = HfArgumentParser((ModelArguments,) ) ((__lowercase) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: __lowercase = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: __lowercase = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: __lowercase = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: __lowercase = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed __lowercase = True __lowercase = True __lowercase = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=_SCREAMING_SNAKE_CASE , decoder_config=_SCREAMING_SNAKE_CASE , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens __lowercase = decoder_config.decoder_start_token_id __lowercase = decoder_config.pad_token_id if decoder_start_token_id is None: __lowercase = decoder_config.bos_token_id if pad_token_id is None: __lowercase = decoder_config.eos_token_id # This is necessary to make Flax's generate() work __lowercase = decoder_config.eos_token_id __lowercase = decoder_start_token_id __lowercase = pad_token_id __lowercase = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) __lowercase = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) __lowercase = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
655
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel snake_case__ : Tuple = logging.getLogger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # save results if os.path.exists(_SCREAMING_SNAKE_CASE ): if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) ) and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) ): os.remove(os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) ) if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , "pytorch_model.bin" ) ): os.remove(os.path.join(_SCREAMING_SNAKE_CASE , "pytorch_model.bin" ) ) else: os.makedirs(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = 2 if unlogit: __lowercase = torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = p * torch.log(_SCREAMING_SNAKE_CASE ) __lowercase = 0 return -plogp.sum(dim=-1 ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): logger.info("lv, h >\t" + "\t".join(F"""{x + 1}""" for x in range(len(_SCREAMING_SNAKE_CASE ) ) ) ) for row in range(len(_SCREAMING_SNAKE_CASE ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ): __lowercase , __lowercase = model.config.num_hidden_layers, model.config.num_attention_heads __lowercase = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) __lowercase = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) if head_mask is None: __lowercase = torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) head_mask.requires_grad_(requires_grad=_SCREAMING_SNAKE_CASE ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __lowercase = None __lowercase = 0.0 __lowercase = 0.0 for step, inputs in enumerate(tqdm(_SCREAMING_SNAKE_CASE , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): __lowercase = tuple(t.to(args.device ) for t in inputs ) ((__lowercase) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __lowercase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __lowercase , __lowercase , __lowercase = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase = entropy(attn.detach() , _SCREAMING_SNAKE_CASE ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_SCREAMING_SNAKE_CASE ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __lowercase = 2 __lowercase = torch.pow(torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-2_0 if not args.dont_normalize_global_importance: __lowercase = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) logger.info("Head ranked by importance scores" ) __lowercase = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __lowercase = torch.arange( head_importance.numel() , device=args.device ) __lowercase = head_ranks.view_as(_SCREAMING_SNAKE_CASE ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) return attn_entropy, head_importance, total_loss def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase , __lowercase = compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE ) __lowercase = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , _SCREAMING_SNAKE_CASE , original_score * args.masking_threshold ) __lowercase = torch.ones_like(_SCREAMING_SNAKE_CASE ) __lowercase = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __lowercase = original_score while current_score >= original_score * args.masking_threshold: __lowercase = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __lowercase = float("Inf" ) __lowercase = head_importance.view(-1 ).sort()[1] if len(_SCREAMING_SNAKE_CASE ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads __lowercase = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) __lowercase = new_head_mask.view(-1 ) __lowercase = 0.0 __lowercase = new_head_mask.view_as(_SCREAMING_SNAKE_CASE ) __lowercase = new_head_mask.clone().detach() print_ad_tensor(_SCREAMING_SNAKE_CASE ) # Compute metric and head importance again __lowercase , __lowercase , __lowercase = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) __lowercase = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , _SCREAMING_SNAKE_CASE , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info("Final head mask" ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = datetime.now() __lowercase , __lowercase , __lowercase = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) __lowercase = 1 / loss __lowercase = datetime.now() - before_time __lowercase = sum(p.numel() for p in model.parameters() ) __lowercase = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_SCREAMING_SNAKE_CASE ) ) } for k, v in heads_to_prune.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [ v, ] assert sum(len(_SCREAMING_SNAKE_CASE ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_SCREAMING_SNAKE_CASE ) __lowercase = sum(p.numel() for p in model.parameters() ) __lowercase = datetime.now() __lowercase , __lowercase , __lowercase = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , actually_pruned=_SCREAMING_SNAKE_CASE , ) __lowercase = 1 / loss __lowercase = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , pruned_num_params / original_num_params * 1_0_0 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 1_0_0 ) save_model(_SCREAMING_SNAKE_CASE , args.output_dir ) def snake_case_ ( ): __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=_SCREAMING_SNAKE_CASE , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=_SCREAMING_SNAKE_CASE , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=_SCREAMING_SNAKE_CASE , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=_SCREAMING_SNAKE_CASE , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=_SCREAMING_SNAKE_CASE , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=_SCREAMING_SNAKE_CASE , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=1_2_8 , type=_SCREAMING_SNAKE_CASE , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=_SCREAMING_SNAKE_CASE , help="Batch size." ) parser.add_argument("--seed" , type=_SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--local_rank" , type=_SCREAMING_SNAKE_CASE , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=_SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=_SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) __lowercase = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __lowercase = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) __lowercase = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __lowercase = torch.device("cuda" , args.local_rank ) __lowercase = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __lowercase = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __lowercase = nn.parallel.DistributedDataParallel( _SCREAMING_SNAKE_CASE , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_SCREAMING_SNAKE_CASE ) elif args.n_gpu > 1: __lowercase = nn.DataParallel(_SCREAMING_SNAKE_CASE ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE ) torch.save(_SCREAMING_SNAKE_CASE , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , _SCREAMING_SNAKE_CASE ) # Prepare dataset __lowercase = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __lowercase = (torch.from_numpy(_SCREAMING_SNAKE_CASE ),) __lowercase = TensorDataset(*_SCREAMING_SNAKE_CASE ) __lowercase = RandomSampler(_SCREAMING_SNAKE_CASE ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __lowercase = mask_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) prune_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
655
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1E-1_2 ): __lowercase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T __lowercase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T return jnp.matmul(_SCREAMING_SNAKE_CASE , norm_emb_a.T ) class _A ( nn.Module ): '''simple docstring''' _snake_case : CLIPConfig _snake_case : jnp.dtype = jnp.floataa def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = FlaxCLIPVisionModule(self.config.vision_config ) __lowercase = nn.Dense(self.config.projection_dim , use_bias=lowerCamelCase , dtype=self.dtype ) __lowercase = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __lowercase = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __lowercase = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) __lowercase = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = self.vision_model(lowerCamelCase )[1] __lowercase = self.visual_projection(lowerCamelCase ) __lowercase = jax_cosine_distance(lowerCamelCase , self.special_care_embeds ) __lowercase = jax_cosine_distance(lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __lowercase = 0.0 __lowercase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __lowercase = jnp.round(lowerCamelCase , 3 ) __lowercase = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCamelCase ) # Use a lower threshold if an image has any special care concept __lowercase = is_special_care * 0.01 __lowercase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __lowercase = jnp.round(lowerCamelCase , 3 ) __lowercase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _A ( _lowercase ): '''simple docstring''' _snake_case : str = CLIPConfig _snake_case : Optional[int] = """clip_input""" _snake_case : Optional[Any] = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Tuple , lowerCamelCase : CLIPConfig , lowerCamelCase : Optional[Tuple] = None , lowerCamelCase : int = 0 , lowerCamelCase : jnp.dtype = jnp.floataa , lowerCamelCase : bool = True , **lowerCamelCase : List[Any] , ): '''simple docstring''' if input_shape is None: __lowercase = (1, 224, 224, 3) __lowercase = self.module_class(config=lowerCamelCase , dtype=lowerCamelCase , **lowerCamelCase ) super().__init__(lowerCamelCase , lowerCamelCase , input_shape=lowerCamelCase , seed=lowerCamelCase , dtype=lowerCamelCase , _do_init=_do_init ) def _snake_case ( self : List[Any] , lowerCamelCase : jax.random.KeyArray , lowerCamelCase : Tuple , lowerCamelCase : FrozenDict = None ): '''simple docstring''' __lowercase = jax.random.normal(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = jax.random.split(lowerCamelCase ) __lowercase = {"params": params_rng, "dropout": dropout_rng} __lowercase = self.module.init(lowerCamelCase , lowerCamelCase )["params"] return random_params def __call__( self : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : dict = None , ): '''simple docstring''' __lowercase = jnp.transpose(lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
655
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
1
import numpy as np def snake_case_ ( _SCREAMING_SNAKE_CASE ): return 1 / (1 + np.exp(-vector )) def snake_case_ ( _SCREAMING_SNAKE_CASE ): return vector * sigmoid(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
655
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
1
import json import sys def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: __lowercase = json.load(_SCREAMING_SNAKE_CASE ) __lowercase = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ): __lowercase = results[benchmark_name] __lowercase = benchmark_name.split("/" )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) __lowercase = "| metric |" __lowercase = "|--------|" __lowercase = "| new / old (diff) |" for metric_name in sorted(_SCREAMING_SNAKE_CASE ): __lowercase = benchmark_res[metric_name] __lowercase = metric_vals["new"] __lowercase = metric_vals.get("old" , _SCREAMING_SNAKE_CASE ) __lowercase = metric_vals.get("diff" , _SCREAMING_SNAKE_CASE ) __lowercase = F""" {new_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>" ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.writelines("\n".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": snake_case__ : List[str] = sys.argv[1] snake_case__ : Optional[Any] = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
655
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case__ : int = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): def get_masked_lm_array(_SCREAMING_SNAKE_CASE ): __lowercase = F"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __lowercase = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if "kernel" in name: __lowercase = array.transpose() return torch.from_numpy(_SCREAMING_SNAKE_CASE ) def get_encoder_array(_SCREAMING_SNAKE_CASE ): __lowercase = F"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __lowercase = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if "kernel" in name: __lowercase = array.transpose() return torch.from_numpy(_SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = F"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __lowercase = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if "kernel" in name: __lowercase = array.transpose() return torch.from_numpy(_SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = F"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __lowercase = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = array.reshape(_SCREAMING_SNAKE_CASE ) if "kernel" in name: __lowercase = array.transpose() return torch.from_numpy(_SCREAMING_SNAKE_CASE ) print(F"""Loading model based on config from {config_path}...""" ) __lowercase = BertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) __lowercase = BertForMaskedLM(_SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __lowercase = model.bert.encoder.layer[layer_index] # Self-attention __lowercase = layer.attention.self __lowercase = get_encoder_attention_layer_array( _SCREAMING_SNAKE_CASE , "_query_dense/kernel" , self_attn.query.weight.data.shape ) __lowercase = get_encoder_attention_layer_array( _SCREAMING_SNAKE_CASE , "_query_dense/bias" , self_attn.query.bias.data.shape ) __lowercase = get_encoder_attention_layer_array( _SCREAMING_SNAKE_CASE , "_key_dense/kernel" , self_attn.key.weight.data.shape ) __lowercase = get_encoder_attention_layer_array( _SCREAMING_SNAKE_CASE , "_key_dense/bias" , self_attn.key.bias.data.shape ) __lowercase = get_encoder_attention_layer_array( _SCREAMING_SNAKE_CASE , "_value_dense/kernel" , self_attn.value.weight.data.shape ) __lowercase = get_encoder_attention_layer_array( _SCREAMING_SNAKE_CASE , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output __lowercase = layer.attention.output __lowercase = get_encoder_attention_layer_array( _SCREAMING_SNAKE_CASE , "_output_dense/kernel" , self_output.dense.weight.data.shape ) __lowercase = get_encoder_attention_layer_array( _SCREAMING_SNAKE_CASE , "_output_dense/bias" , self_output.dense.bias.data.shape ) __lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_attention_layer_norm/gamma" ) __lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_attention_layer_norm/beta" ) # Intermediate __lowercase = layer.intermediate __lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_intermediate_dense/kernel" ) __lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_intermediate_dense/bias" ) # Output __lowercase = layer.output __lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_output_dense/kernel" ) __lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_output_dense/bias" ) __lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_output_layer_norm/gamma" ) __lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_output_layer_norm/beta" ) # Embeddings __lowercase = get_encoder_array("_position_embedding_layer/embeddings" ) __lowercase = get_encoder_array("_type_embedding_layer/embeddings" ) __lowercase = get_encoder_array("_embedding_norm_layer/gamma" ) __lowercase = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head __lowercase = model.cls.predictions.transform __lowercase = get_masked_lm_array("dense/kernel" ) __lowercase = get_masked_lm_array("dense/bias" ) __lowercase = get_masked_lm_array("layer_norm/gamma" ) __lowercase = get_masked_lm_array("layer_norm/beta" ) __lowercase = get_masked_lm_array("embedding_table" ) # Pooling __lowercase = BertPooler(config=_SCREAMING_SNAKE_CASE ) __lowercase = get_encoder_array("_pooler_layer/kernel" ) __lowercase = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(_SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) __lowercase = BertForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) snake_case__ : Any = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
655
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _A ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any]=7 , lowerCamelCase : List[str]=3 , lowerCamelCase : Union[str, Any]=30 , lowerCamelCase : Optional[int]=400 , lowerCamelCase : Dict=True , lowerCamelCase : str=None , lowerCamelCase : List[Any]=True , lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , lowerCamelCase : Optional[Any]=[0.5, 0.5, 0.5] , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Any=1 / 255 , lowerCamelCase : str=True , ): '''simple docstring''' __lowercase = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_pad def _snake_case ( self : str ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _snake_case ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str=False ): '''simple docstring''' if not batched: __lowercase = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): __lowercase , __lowercase = image.size else: __lowercase , __lowercase = image.shape[1], image.shape[2] if w < h: __lowercase = int(self.size["shortest_edge"] * h / w ) __lowercase = self.size["shortest_edge"] elif w > h: __lowercase = self.size["shortest_edge"] __lowercase = int(self.size["shortest_edge"] * w / h ) else: __lowercase = self.size["shortest_edge"] __lowercase = self.size["shortest_edge"] else: __lowercase = [] for image in image_inputs: __lowercase , __lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] __lowercase = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Tuple = DetaImageProcessor if is_vision_available() else None def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = DetaImageProcessingTester(self ) @property def _snake_case ( self : str ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_pad" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def _snake_case ( self : List[str] ): '''simple docstring''' pass def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) __lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self : Any ): '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __lowercase = json.loads(f.read() ) __lowercase = {"image_id": 39_769, "annotations": target} # encode them __lowercase = DetaImageProcessor() __lowercase = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="pt" ) # verify pixel values __lowercase = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) __lowercase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1e-4 ) ) # verify area __lowercase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes __lowercase = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) __lowercase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1e-3 ) ) # verify image_id __lowercase = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd __lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels __lowercase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify orig_size __lowercase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size __lowercase = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) ) @slow def _snake_case ( self : Any ): '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __lowercase = json.loads(f.read() ) __lowercase = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} __lowercase = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __lowercase = DetaImageProcessor(format="coco_panoptic" ) __lowercase = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="pt" ) # verify pixel values __lowercase = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) __lowercase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1e-4 ) ) # verify area __lowercase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes __lowercase = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) __lowercase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1e-3 ) ) # verify image_id __lowercase = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd __lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels __lowercase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify masks __lowercase = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase ) # verify orig_size __lowercase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size __lowercase = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) )
655
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0 ): __lowercase = 1 __lowercase = 2 for i in range(2 , max_n + 1 ): __lowercase = pre_numerator __lowercase = 2 * i // 3 if i % 3 == 0 else 1 __lowercase = cur_numerator __lowercase = e_cont * pre_numerator + temp return sum_digits(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'''{solution() = }''')
655
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
1
from typing import TYPE_CHECKING from ...utils import _LazyModule snake_case__ : str = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def snake_case_ ( ): __lowercase = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) __lowercase = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) DownloadCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) EnvironmentCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) RunCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) ServeCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) UserCommands.register_subcommand(_SCREAMING_SNAKE_CASE ) AddNewModelCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) AddNewModelLikeCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) LfsCommands.register_subcommand(_SCREAMING_SNAKE_CASE ) PTtoTFCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , "func" ): parser.print_help() exit(1 ) # Run __lowercase = args.func(_SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
655
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , "num_attention_heads" ) ) class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : str=13 , lowerCamelCase : Union[str, Any]=32 , lowerCamelCase : Any=2 , lowerCamelCase : int=3 , lowerCamelCase : Optional[int]=640 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : List[str]="silu" , lowerCamelCase : Any=3 , lowerCamelCase : List[Any]=32 , lowerCamelCase : int=0.1 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : int=True , lowerCamelCase : int=True , lowerCamelCase : int=10 , lowerCamelCase : str=None , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = last_hidden_size __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = conv_kernel_size __lowercase = output_stride __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = classifier_dropout_prob __lowercase = use_labels __lowercase = is_training __lowercase = num_labels __lowercase = initializer_range __lowercase = scope def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def _snake_case ( self : Optional[Any] ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = MobileViTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileViTForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ): '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileViTForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _A ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Optional[Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _snake_case : str = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case : Any = False _snake_case : int = False _snake_case : Tuple = False _snake_case : str = False def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = MobileViTModelTester(self ) __lowercase = MobileViTConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def _snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def _snake_case ( self : Any ): '''simple docstring''' pass @unittest.skip(reason="MobileViT does not output attentions" ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' pass def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : Optional[int] ): '''simple docstring''' pass def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Any ): __lowercase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __lowercase = outputs.hidden_states __lowercase = 5 self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowercase = 2 for i in range(len(lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MobileViTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def snake_case_ ( ): __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[Any] ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def _snake_case ( self : Any ): '''simple docstring''' __lowercase = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __lowercase = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = model.to(lowerCamelCase ) __lowercase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits # verify the logits __lowercase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCamelCase ) __lowercase = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def _snake_case ( self : str ): '''simple docstring''' __lowercase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = model.to(lowerCamelCase ) __lowercase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits.detach().cpu() __lowercase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase , target_sizes=[(50, 60)] ) __lowercase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCamelCase ) __lowercase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) __lowercase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCamelCase )
655
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = 0 def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = Path(lowerCamelCase ) / "preprocessor_config.json" __lowercase = Path(lowerCamelCase ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(lowerCamelCase , "w" ) , ) json.dump({"model_type": "clip"} , open(lowerCamelCase , "w" ) ) __lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = Path(lowerCamelCase ) / "preprocessor_config.json" __lowercase = Path(lowerCamelCase ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(lowerCamelCase , "w" ) , ) json.dump({"model_type": "clip"} , open(lowerCamelCase , "w" ) ) __lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = CLIPConfig() # Create a dummy config file with image_proceesor_type __lowercase = Path(lowerCamelCase ) / "preprocessor_config.json" __lowercase = Path(lowerCamelCase ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(lowerCamelCase , "w" ) , ) json.dump({"model_type": "clip"} , open(lowerCamelCase , "w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase ).to_dict() config_dict.pop("image_processor_type" ) __lowercase = CLIPImageProcessor(**lowerCamelCase ) # save in new folder model_config.save_pretrained(lowerCamelCase ) config.save_pretrained(lowerCamelCase ) __lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase ) # make sure private variable is not incorrectly saved __lowercase = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = Path(lowerCamelCase ) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(lowerCamelCase , "w" ) , ) __lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase , "clip-base is not a local folder and is not a valid model identifier" ): __lowercase = AutoImageProcessor.from_pretrained("clip-base" ) def _snake_case ( self : List[Any] ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase , revision="aaaaaa" ) def _snake_case ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): __lowercase = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' with self.assertRaises(lowerCamelCase ): __lowercase = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase ): __lowercase = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCamelCase ) __lowercase = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase ) __lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase , trust_remote_code=lowerCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" ) def _snake_case ( self : List[Any] ): '''simple docstring''' try: AutoConfig.register("custom" , lowerCamelCase ) AutoImageProcessor.register(lowerCamelCase , lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase ): AutoImageProcessor.register(lowerCamelCase , lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = Path(lowerCamelCase ) / "preprocessor_config.json" __lowercase = Path(lowerCamelCase ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(lowerCamelCase , "w" ) , ) json.dump({"model_type": "clip"} , open(lowerCamelCase , "w" ) ) __lowercase = CustomImageProcessor.from_pretrained(lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase ) __lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self : Optional[int] ): '''simple docstring''' class _A ( _lowercase ): '''simple docstring''' _snake_case : Union[str, Any] = True try: AutoConfig.register("custom" , lowerCamelCase ) AutoImageProcessor.register(lowerCamelCase , lowerCamelCase ) # If remote code is not set, the default is to use local __lowercase = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __lowercase = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __lowercase = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(not hasattr(lowerCamelCase , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
655
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Tuple = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) snake_case__ : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _A : '''simple docstring''' _snake_case : str = field( default=_lowercase , metadata={"""help""": """Model type selected in the list: """ + """, """.join(_lowercase )} ) _snake_case : str = field( default=_lowercase , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) _snake_case : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _snake_case : int = field( default=128 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) _snake_case : int = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) _snake_case : int = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) _snake_case : bool = field( default=_lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) _snake_case : bool = field( default=_lowercase , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) _snake_case : float = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _snake_case : int = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _snake_case : int = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) _snake_case : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _A ( _lowercase ): '''simple docstring''' _snake_case : Union[str, Any] = """train""" _snake_case : str = """dev""" class _A ( _lowercase ): '''simple docstring''' _snake_case : SquadDataTrainingArguments _snake_case : List[SquadFeatures] _snake_case : Split _snake_case : bool def __init__( self : Optional[Any] , lowerCamelCase : SquadDataTrainingArguments , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : Optional[int] = None , lowerCamelCase : Union[str, Split] = Split.train , lowerCamelCase : Optional[bool] = False , lowerCamelCase : Optional[str] = None , lowerCamelCase : Optional[str] = "pt" , ): '''simple docstring''' __lowercase = args __lowercase = is_language_sensitive __lowercase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCamelCase , lowerCamelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) __lowercase = mode # Load data features from cache or dataset file __lowercase = "v2" if args.version_2_with_negative else "v1" __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + ".lock" with FileLock(lowerCamelCase ): if os.path.exists(lowerCamelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowercase = self.old_features["features"] __lowercase = self.old_features.get("dataset" , lowerCamelCase ) __lowercase = self.old_features.get("examples" , lowerCamelCase ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" " future run" ) else: if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) __lowercase , __lowercase = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowerCamelCase , ) __lowercase = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , lowerCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Any , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = self.features[i] __lowercase = torch.tensor(feature.input_ids , dtype=torch.long ) __lowercase = torch.tensor(feature.attention_mask , dtype=torch.long ) __lowercase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __lowercase = torch.tensor(feature.cls_index , dtype=torch.long ) __lowercase = torch.tensor(feature.p_mask , dtype=torch.float ) __lowercase = torch.tensor(feature.is_impossible , dtype=torch.float ) __lowercase = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowercase = torch.tensor(feature.start_position , dtype=torch.long ) __lowercase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
655
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _A ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : int=13 , lowerCamelCase : str=7 , lowerCamelCase : Optional[Any]=True , lowerCamelCase : List[Any]=True , lowerCamelCase : str=True , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Tuple=99 , lowerCamelCase : Tuple=32 , lowerCamelCase : Optional[int]=5 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : Dict=37 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : str=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Optional[Any]=512 , lowerCamelCase : Optional[int]=16 , lowerCamelCase : List[str]=2 , lowerCamelCase : int=0.02 , lowerCamelCase : Optional[int]=4 , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = True _snake_case : str = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = FlaxRoFormerModelTester(self ) @slow def _snake_case ( self : str ): '''simple docstring''' for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=lowerCamelCase ) __lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase ) @require_flax class _A ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) __lowercase = jnp.array([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(lowerCamelCase )[0] __lowercase = 50_000 __lowercase = (1, 6, vocab_size) self.assertEqual(output.shape , lowerCamelCase ) __lowercase = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowerCamelCase , atol=1e-4 ) )
655
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case__ : Any = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = BartphoTokenizer _snake_case : Tuple = False _snake_case : int = True def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().setUp() __lowercase = ["▁This", "▁is", "▁a", "▁t", "est"] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {"unk_token": "<unk>"} __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __lowercase = BartphoTokenizer(lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Tuple , **lowerCamelCase : List[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = "This is a là test" __lowercase = "This is a<unk><unk> test" return input_text, output_text def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = BartphoTokenizer(lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) __lowercase = "This is a là test" __lowercase = "▁This ▁is ▁a ▁l à ▁t est".split() __lowercase = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase )
655
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
1
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : Union[str, Any] = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ): if attention_mask is None: __lowercase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __lowercase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __lowercase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _A : '''simple docstring''' def __init__( self : Dict , lowerCamelCase : Any , lowerCamelCase : List[Any]=13 , lowerCamelCase : Tuple=7 , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Optional[int]=99 , lowerCamelCase : Any=16 , lowerCamelCase : Optional[Any]=2 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : Any=4 , lowerCamelCase : Optional[Any]="gelu" , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[int]=32 , lowerCamelCase : Tuple=2 , lowerCamelCase : List[Any]=1 , lowerCamelCase : Tuple=0 , lowerCamelCase : Optional[Any]=0.02 , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = initializer_range def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __lowercase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __lowercase = shift_tokens_right(lowerCamelCase , 1 , 2 ) __lowercase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase , ) __lowercase = prepare_blenderbot_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return config, inputs_dict def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase , __lowercase = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self : int , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = 20 __lowercase = model_class_name(lowerCamelCase ) __lowercase = model.encode(inputs_dict["input_ids"] ) __lowercase , __lowercase = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __lowercase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase ) __lowercase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __lowercase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) __lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __lowercase = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase , ) __lowercase = model.decode(lowerCamelCase , lowerCamelCase ) __lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _snake_case ( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : str ): '''simple docstring''' __lowercase = 20 __lowercase = model_class_name(lowerCamelCase ) __lowercase = model.encode(inputs_dict["input_ids"] ) __lowercase , __lowercase = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __lowercase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowercase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase ) __lowercase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) __lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __lowercase = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) __lowercase = model.decode(lowerCamelCase , lowerCamelCase , decoder_attention_mask=lowerCamelCase ) __lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _A ( unittest.TestCase ): '''simple docstring''' _snake_case : Optional[Any] = 99 def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __lowercase = input_ids.shape[0] __lowercase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase , __lowercase , __lowercase = self._get_config_and_data() __lowercase = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase ) __lowercase = lm_model(input_ids=lowerCamelCase ) __lowercase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __lowercase = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase ) __lowercase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __lowercase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __lowercase = lm_model(input_ids=lowerCamelCase , decoder_input_ids=lowerCamelCase ) __lowercase = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __lowercase = shift_tokens_right(lowerCamelCase , 1 , 2 ) __lowercase = np.equal(lowerCamelCase , 1 ).astype(np.floataa ).sum() __lowercase = np.equal(lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _A ( _lowercase , unittest.TestCase , _lowercase ): '''simple docstring''' _snake_case : Union[str, Any] = True _snake_case : Tuple = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _snake_case : Tuple = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = FlaxBlenderbotSmallModelTester(self ) def _snake_case ( self : str ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) __lowercase = model_class(lowerCamelCase ) @jax.jit def encode_jitted(lowerCamelCase : Optional[int] , lowerCamelCase : List[Any]=None , **lowerCamelCase : Optional[Any] ): return model.encode(input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) with self.subTest("JIT Enabled" ): __lowercase = encode_jitted(**lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = encode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = model_class(lowerCamelCase ) __lowercase = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __lowercase = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple ): return model.decode( decoder_input_ids=lowerCamelCase , decoder_attention_mask=lowerCamelCase , encoder_outputs=lowerCamelCase , ) with self.subTest("JIT Enabled" ): __lowercase = decode_jitted(**lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = decode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _snake_case ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __lowercase = np.ones((1, 1) ) * model.config.eos_token_id __lowercase = model(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase )
655
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
1
from ....configuration_utils import PretrainedConfig from ....utils import logging snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : int = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : str = """van""" def __init__( self : Optional[Any] , lowerCamelCase : Tuple=224 , lowerCamelCase : str=3 , lowerCamelCase : int=[7, 3, 3, 3] , lowerCamelCase : str=[4, 2, 2, 2] , lowerCamelCase : List[Any]=[64, 128, 320, 512] , lowerCamelCase : int=[3, 3, 12, 3] , lowerCamelCase : str=[8, 8, 4, 4] , lowerCamelCase : Optional[Any]="gelu" , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : int=1e-6 , lowerCamelCase : int=1e-2 , lowerCamelCase : Any=0.0 , lowerCamelCase : Optional[int]=0.0 , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = num_channels __lowercase = patch_sizes __lowercase = strides __lowercase = hidden_sizes __lowercase = depths __lowercase = mlp_ratios __lowercase = hidden_act __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = layer_scale_init_value __lowercase = drop_path_rate __lowercase = dropout_rate
655
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( _lowercase ): '''simple docstring''' _snake_case : Optional[int] = ["""image_processor""", """tokenizer"""] _snake_case : Tuple = """CLIPImageProcessor""" _snake_case : Dict = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[Any] , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[Any]=None , **lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) __lowercase = kwargs.pop("feature_extractor" ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : Dict , lowerCamelCase : Dict=None , lowerCamelCase : Tuple=None , lowerCamelCase : Any=None , **lowerCamelCase : Any ): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __lowercase = self.tokenizer(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if images is not None: __lowercase = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def _snake_case ( self : List[str] , *lowerCamelCase : Tuple , **lowerCamelCase : str ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Any , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : List[Any] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self : str ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase , ) return self.image_processor_class @property def _snake_case ( self : Optional[int] ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase , ) return self.image_processor
655
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
1
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters snake_case__ : Optional[Any] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): # Recurse if needed if "." in tensor_name: __lowercase = tensor_name.split("." ) for split in splits[:-1]: __lowercase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) __lowercase = new_module __lowercase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) __lowercase = tensor_name in module._buffers __lowercase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) __lowercase = False __lowercase = False if is_buffer or not is_bitsandbytes_available(): __lowercase = False __lowercase = False else: __lowercase = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) __lowercase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: __lowercase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: __lowercase = old_value.to(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): __lowercase = value.to("cpu" ) if value.dtype == torch.inta: __lowercase = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _SCREAMING_SNAKE_CASE ) and fpaa_statistics is None: __lowercase = new_value.T __lowercase = old_value.__dict__ if is_abit: __lowercase = bnb.nn.IntaParams(_SCREAMING_SNAKE_CASE , requires_grad=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) elif is_abit: __lowercase = bnb.nn.Paramsabit(_SCREAMING_SNAKE_CASE , requires_grad=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) __lowercase = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(_SCREAMING_SNAKE_CASE ) ) else: if value is None: __lowercase = old_value.to(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): __lowercase = value.to(_SCREAMING_SNAKE_CASE ) else: __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) if is_buffer: __lowercase = new_value else: __lowercase = nn.Parameter(_SCREAMING_SNAKE_CASE , requires_grad=old_value.requires_grad ) __lowercase = new_value def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ): for name, module in model.named_children(): if current_key_name is None: __lowercase = [] current_key_name.append(_SCREAMING_SNAKE_CASE ) if (isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) or isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(_SCREAMING_SNAKE_CASE ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = module.weight.shape else: __lowercase = module.in_features __lowercase = module.out_features if quantization_config.quantization_method() == "llm_int8": __lowercase = bnb.nn.LinearabitLt( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) __lowercase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: __lowercase = bnb.nn.Linearabit( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) __lowercase = True # Store the module class in case we need to transpose the weight later __lowercase = type(_SCREAMING_SNAKE_CASE ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_SCREAMING_SNAKE_CASE ) if len(list(module.children() ) ) > 0: __lowercase , __lowercase = _replace_with_bnb_linear( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_been_replaced=_SCREAMING_SNAKE_CASE , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): __lowercase = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert __lowercase , __lowercase = _replace_with_bnb_linear( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def snake_case_ ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , _SCREAMING_SNAKE_CASE , ) return replace_with_bnb_linear(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def snake_case_ ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , _SCREAMING_SNAKE_CASE , ) return set_module_quantized_tensor_to_device(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() __lowercase = find_tied_parameters(_SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __lowercase = sum(_SCREAMING_SNAKE_CASE , [] ) __lowercase = len(_SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model __lowercase = not hasattr(_SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __lowercase = list(model.named_children() ) __lowercase = [list_modules[-1][0]] # add last module together with tied weights __lowercase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) __lowercase = list(set(_SCREAMING_SNAKE_CASE ) ) + list(_SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys __lowercase = [".weight", ".bias"] __lowercase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __lowercase = name.replace(_SCREAMING_SNAKE_CASE , "" ) filtered_module_names.append(_SCREAMING_SNAKE_CASE ) return filtered_module_names
655
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE ): if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError("Input value must be a 'int' type" ) return bin(_SCREAMING_SNAKE_CASE ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
655
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
1
import sys snake_case__ : Optional[int] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = 1 for digit in s: product *= int(_SCREAMING_SNAKE_CASE ) return product def snake_case_ ( _SCREAMING_SNAKE_CASE = N ): __lowercase = -sys.maxsize - 1 __lowercase = n[:1_3] __lowercase = 1_3 while cur_index < len(_SCREAMING_SNAKE_CASE ) - 1_3: if int(n[cur_index] ) >= int(substr[0] ): __lowercase = substr[1:] + n[cur_index] cur_index += 1 else: __lowercase = max(_SCREAMING_SNAKE_CASE , str_eval(_SCREAMING_SNAKE_CASE ) ) __lowercase = n[cur_index : cur_index + 1_3] cur_index += 1_3 return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
655
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
1