code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) snake_case__ : Dict = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) snake_case__ : List[Any] = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) snake_case__ : Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) snake_case__ : List[str] = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) snake_case__ : Dict = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) snake_case__ : Dict = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) snake_case__ : Any = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) snake_case__ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) snake_case__ : List[Any] = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) snake_case__ : Union[str, Any] = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) snake_case__ : Union[str, Any] = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) snake_case__ : Optional[Any] = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) snake_case__ : Union[str, Any] = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) snake_case__ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) snake_case__ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) snake_case__ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) snake_case__ : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) snake_case__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) snake_case__ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) snake_case__ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) snake_case__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) snake_case__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) snake_case__ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) snake_case__ : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : Any = FLAX_MODEL_MAPPING snake_case__ : Dict = auto_class_update(FlaxAutoModel) class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : List[str] = FLAX_MODEL_FOR_PRETRAINING_MAPPING snake_case__ : Optional[int] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : List[str] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING snake_case__ : List[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : Any = FLAX_MODEL_FOR_MASKED_LM_MAPPING snake_case__ : int = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : Optional[int] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case__ : List[Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case__ : Any = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : Tuple = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING snake_case__ : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : List[str] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case__ : Tuple = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING snake_case__ : Optional[Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING snake_case__ : Any = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : List[Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING snake_case__ : Any = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : List[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING snake_case__ : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class _A ( _BaseAutoModelClass ): '''simple docstring''' _snake_case : Tuple = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING snake_case__ : str = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
655
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : List[Any] = { """Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""", # See all Marian models at https://huggingface.co/models?filter=marian } class _A ( _lowercase ): '''simple docstring''' _snake_case : Tuple = """marian""" _snake_case : int = ["""past_key_values"""] _snake_case : Any = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowerCamelCase : Dict=58_101 , lowerCamelCase : Any=None , lowerCamelCase : Optional[Any]=1_024 , lowerCamelCase : Tuple=12 , lowerCamelCase : Dict=4_096 , lowerCamelCase : Optional[int]=16 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[int]=4_096 , lowerCamelCase : Any=16 , lowerCamelCase : Any=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Union[str, Any]="gelu" , lowerCamelCase : Any=1_024 , lowerCamelCase : Dict=0.1 , lowerCamelCase : List[Any]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : Dict=0.02 , lowerCamelCase : Any=58_100 , lowerCamelCase : Optional[int]=False , lowerCamelCase : Union[str, Any]=58_100 , lowerCamelCase : Dict=0 , lowerCamelCase : Union[str, Any]=0 , lowerCamelCase : Union[str, Any]=True , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = vocab_size __lowercase = decoder_vocab_size or vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , is_encoder_decoder=lowerCamelCase , decoder_start_token_id=lowerCamelCase , forced_eos_token_id=lowerCamelCase , **lowerCamelCase , ) class _A ( _lowercase ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def _snake_case ( self : Union[str, Any] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __lowercase = {0: "batch"} __lowercase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __lowercase = {0: "batch", 1: "decoder_sequence"} __lowercase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowerCamelCase ): __lowercase = {0: "batch", 2: "past_sequence + sequence"} __lowercase = {0: "batch", 2: "past_sequence + sequence"} else: __lowercase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def _snake_case ( self : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowerCamelCase , self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowerCamelCase ): __lowercase = {0: "batch", 2: "past_sequence + sequence"} __lowercase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _snake_case ( self : int , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowerCamelCase , **lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __lowercase , __lowercase = common_inputs["input_ids"].shape __lowercase = common_inputs["decoder_input_ids"].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(lowerCamelCase , lowerCamelCase )] , dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowerCamelCase , lowerCamelCase ) __lowercase = max(lowerCamelCase , lowerCamelCase ) - min_num_layers __lowercase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(lowerCamelCase , lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) ) return common_inputs def _snake_case ( self : Optional[Any] , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __lowercase , __lowercase = common_inputs["input_ids"].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs["attention_mask"].dtype __lowercase = torch.cat( [common_inputs["attention_mask"], torch.ones(lowerCamelCase , lowerCamelCase , dtype=lowerCamelCase )] , dim=1 ) __lowercase = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(lowerCamelCase ) ] return common_inputs def _snake_case ( self : Optional[Any] , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase = compute_effective_axis_dimension( lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowerCamelCase ) __lowercase = compute_effective_axis_dimension( lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowerCamelCase , return_tensors=lowerCamelCase ) ) return common_inputs def _snake_case ( self : List[str] , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) else: __lowercase = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) return common_inputs def _snake_case ( self : str , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : Tuple ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = super(lowerCamelCase , self )._flatten_past_key_values_( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) @property def _snake_case ( self : Dict ): '''simple docstring''' return 1e-4
655
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging snake_case__ : Dict = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' _snake_case : Tuple = ["""input_features""", """attention_mask"""] def __init__( self : Any , lowerCamelCase : List[str]=80 , lowerCamelCase : Optional[int]=16_000 , lowerCamelCase : List[str]=80 , lowerCamelCase : Dict=0.0 , lowerCamelCase : int=True , lowerCamelCase : List[Any]=True , lowerCamelCase : Dict=True , **lowerCamelCase : List[str] , ): '''simple docstring''' super().__init__(feature_size=lowerCamelCase , sampling_rate=lowerCamelCase , padding_value=lowerCamelCase , **lowerCamelCase ) __lowercase = num_mel_bins __lowercase = do_ceptral_normalize __lowercase = normalize_means __lowercase = normalize_vars __lowercase = True def _snake_case ( self : Any , lowerCamelCase : np.ndarray , ): '''simple docstring''' __lowercase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __lowercase = torch.from_numpy(lowerCamelCase ).unsqueeze(0 ) __lowercase = ta_kaldi.fbank(lowerCamelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _snake_case ( lowerCamelCase : np.ndarray , lowerCamelCase : int , lowerCamelCase : Optional[bool] = True , lowerCamelCase : Optional[bool] = True , lowerCamelCase : float = 0.0 , ): '''simple docstring''' if normalize_means: __lowercase = x[:input_length].mean(axis=0 ) __lowercase = np.subtract(lowerCamelCase , lowerCamelCase ) if normalize_vars: __lowercase = x[:input_length].std(axis=0 ) __lowercase = np.divide(lowerCamelCase , lowerCamelCase ) if input_length < x.shape[0]: __lowercase = padding_value # make sure array is in float32 __lowercase = x.astype(np.floataa ) return x def _snake_case ( self : Union[str, Any] , lowerCamelCase : List[np.ndarray] , lowerCamelCase : Optional[np.ndarray] = None ): '''simple docstring''' __lowercase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCamelCase , lowerCamelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowerCamelCase , lowerCamelCase ) ] def __call__( self : Dict , lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase : Union[bool, str, PaddingStrategy] = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : bool = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , **lowerCamelCase : Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __lowercase = isinstance(lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __lowercase = is_batched_numpy or ( isinstance(lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase = [np.asarray(lowerCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase , np.ndarray ): __lowercase = np.asarray(lowerCamelCase , dtype=np.floataa ) elif isinstance(lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase = [raw_speech] # extract fbank features __lowercase = [self._extract_fbank_features(lowerCamelCase ) for waveform in raw_speech] # convert into correct format for padding __lowercase = BatchFeature({"input_features": features} ) __lowercase = self.pad( lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , truncation=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , **lowerCamelCase , ) # make sure list is in array format __lowercase = padded_inputs.get("input_features" ) if isinstance(input_features[0] , lowerCamelCase ): __lowercase = [np.asarray(lowerCamelCase , dtype=np.floataa ) for feature in input_features] __lowercase = padded_inputs.get("attention_mask" ) if attention_mask is not None: __lowercase = [np.asarray(lowerCamelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __lowercase = ( np.array(lowerCamelCase , dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase , max_length=lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __lowercase = self.normalize( padded_inputs["input_features"] , attention_mask=lowerCamelCase ) if return_tensors is not None: __lowercase = padded_inputs.convert_to_tensors(lowerCamelCase ) return padded_inputs
655
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) __lowercase = emb.weight.data return lin_layer def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" ) __lowercase = Namespace(**checkpoint["cfg"]["model"] ) __lowercase = checkpoint["model"] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) __lowercase = state_dict["decoder.embed_tokens.weight"].shape[0] __lowercase = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} __lowercase = XGLMConfig( vocab_size=_SCREAMING_SNAKE_CASE , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) __lowercase = XGLMForCausalLM(_SCREAMING_SNAKE_CASE ) __lowercase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) print(_SCREAMING_SNAKE_CASE ) __lowercase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") snake_case__ : int = parser.parse_args() snake_case__ : str = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
655
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ : Optional[int] = logging.getLogger(__name__) @dataclass(frozen=_lowercase ) class _A : '''simple docstring''' _snake_case : str _snake_case : str _snake_case : Optional[str] = None _snake_case : Optional[str] = None _snake_case : Optional[str] = None @dataclass(frozen=_lowercase ) class _A : '''simple docstring''' _snake_case : List[int] _snake_case : Optional[List[int]] = None _snake_case : Optional[List[int]] = None _snake_case : Optional[Union[int, float]] = None _snake_case : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class _A ( _lowercase ): '''simple docstring''' _snake_case : List[InputFeatures] def __init__( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : str , lowerCamelCase : Optional[int] = None , lowerCamelCase : Dict=False , lowerCamelCase : bool = False , ): '''simple docstring''' __lowercase = hans_processors[task]() __lowercase = os.path.join( lowerCamelCase , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(lowerCamelCase ) , lowerCamelCase , ) , ) __lowercase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + ".lock" with FileLock(lowerCamelCase ): if os.path.exists(lowerCamelCase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __lowercase = torch.load(lowerCamelCase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __lowercase = ( processor.get_dev_examples(lowerCamelCase ) if evaluate else processor.get_train_examples(lowerCamelCase ) ) logger.info("Training examples: %s" , len(lowerCamelCase ) ) __lowercase = hans_convert_examples_to_features(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) logger.info("Saving features into cached file %s" , lowerCamelCase ) torch.save(self.features , lowerCamelCase ) def __len__( self : str ): '''simple docstring''' return len(self.features ) def __getitem__( self : Tuple , lowerCamelCase : Dict ): '''simple docstring''' return self.features[i] def _snake_case ( self : Tuple ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _A : '''simple docstring''' _snake_case : List[InputFeatures] def __init__( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : str , lowerCamelCase : Optional[int] = 128 , lowerCamelCase : Tuple=False , lowerCamelCase : bool = False , ): '''simple docstring''' __lowercase = hans_processors[task]() __lowercase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list __lowercase = processor.get_dev_examples(lowerCamelCase ) if evaluate else processor.get_train_examples(lowerCamelCase ) __lowercase = hans_convert_examples_to_features(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10_000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __lowercase = tf.data.Dataset.from_generator( lowerCamelCase , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _snake_case ( self : Dict ): '''simple docstring''' return self.dataset def __len__( self : List[str] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Optional[int] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.features[i] def _snake_case ( self : List[Any] ): '''simple docstring''' return self.label_list class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] , lowerCamelCase : Tuple ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(lowerCamelCase , "heuristics_train_set.txt" ) ) , "train" ) def _snake_case ( self : Any , lowerCamelCase : Tuple ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(lowerCamelCase , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _snake_case ( self : Tuple ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def _snake_case ( self : Tuple , lowerCamelCase : int , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = [] for i, line in enumerate(lowerCamelCase ): if i == 0: continue __lowercase = "%s-%s" % (set_type, line[0]) __lowercase = line[5] __lowercase = line[6] __lowercase = line[7][2:] if line[7].startswith("ex" ) else line[7] __lowercase = line[0] examples.append(InputExample(guid=lowerCamelCase , text_a=lowerCamelCase , text_b=lowerCamelCase , label=lowerCamelCase , pairID=lowerCamelCase ) ) return examples def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): __lowercase = {label: i for i, label in enumerate(_SCREAMING_SNAKE_CASE )} __lowercase = [] for ex_index, example in tqdm.tqdm(enumerate(_SCREAMING_SNAKE_CASE ) , desc="convert examples to features" ): if ex_index % 1_0_0_0_0 == 0: logger.info("Writing example %d" % (ex_index) ) __lowercase = tokenizer( example.text_a , example.text_b , add_special_tokens=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="max_length" , truncation=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , ) __lowercase = label_map[example.label] if example.label in label_map else 0 __lowercase = int(example.pairID ) features.append(InputFeatures(**_SCREAMING_SNAKE_CASE , label=_SCREAMING_SNAKE_CASE , pairID=_SCREAMING_SNAKE_CASE ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features snake_case__ : Dict = { """hans""": 3, } snake_case__ : Tuple = { """hans""": HansProcessor, }
655
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE ): if any(not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(_SCREAMING_SNAKE_CASE ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_SCREAMING_SNAKE_CASE , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
655
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version snake_case__ : List[str] = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") snake_case__ : Optional[Any] = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization snake_case__ : Optional[int] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } snake_case__ : List[Any] = sorted(arg_to_scheduler.keys()) snake_case__ : str = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class _A ( pl.LightningModule ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : argparse.Namespace , lowerCamelCase : List[Any]=None , lowerCamelCase : str="base" , lowerCamelCase : int=None , lowerCamelCase : List[Any]=None , lowerCamelCase : Optional[Any]=None , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowerCamelCase ) __lowercase = 0 __lowercase = Path(self.hparams.output_dir ) __lowercase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __lowercase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=lowerCamelCase , **lowerCamelCase , ) else: __lowercase = config __lowercase = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , lowerCamelCase , lowerCamelCase ): assert hasattr(self.config , lowerCamelCase ), f"""model config doesn't have a `{p}` attribute""" setattr(self.config , lowerCamelCase , getattr(self.hparams , lowerCamelCase ) ) if tokenizer is None: __lowercase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowerCamelCase , ) else: __lowercase = tokenizer __lowercase = MODEL_MODES[mode] if model is None: __lowercase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowerCamelCase , ) else: __lowercase = model def _snake_case ( self : List[str] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = self.model_type.from_pretrained(*lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = arg_to_scheduler[self.hparams.lr_scheduler] __lowercase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __lowercase = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.model __lowercase = ["bias", "LayerNorm.weight"] __lowercase = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: __lowercase = Adafactor( lowerCamelCase , lr=self.hparams.learning_rate , scale_parameter=lowerCamelCase , relative_step=lowerCamelCase ) else: __lowercase = AdamW( lowerCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __lowercase = optimizer __lowercase = self.get_lr_scheduler() return [optimizer], [scheduler] def _snake_case ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any ): '''simple docstring''' return self.validation_step(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Tuple , lowerCamelCase : Any ): '''simple docstring''' return self.validation_end(lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __lowercase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any] ): '''simple docstring''' if stage == "test": __lowercase = len(self.test_dataloader().dataset ) else: __lowercase = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=lowerCamelCase ) __lowercase = len(self.train_dataloader().dataset ) def _snake_case ( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : bool = False ): '''simple docstring''' raise NotImplementedError("You must implement this for your task" ) def _snake_case ( self : List[Any] ): '''simple docstring''' return self.train_loader def _snake_case ( self : List[Any] ): '''simple docstring''' return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=lowerCamelCase ) def _snake_case ( self : List[str] ): '''simple docstring''' return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=lowerCamelCase ) def _snake_case ( self : Optional[Any] , lowerCamelCase : Any ): '''simple docstring''' return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( lowerCamelCase , list(filter(lowerCamelCase , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def _snake_case ( self : Optional[int] , lowerCamelCase : Dict[str, Any] ): '''simple docstring''' __lowercase = self.output_dir.joinpath("best_tfmr" ) __lowercase = self.step_count self.model.save_pretrained(lowerCamelCase ) self.tokenizer.save_pretrained(lowerCamelCase ) @staticmethod def _snake_case ( lowerCamelCase : Any , lowerCamelCase : List[str] ): '''simple docstring''' parser.add_argument( "--model_name_or_path" , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=lowerCamelCase , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=lowerCamelCase , type=lowerCamelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(lowerCamelCase ).parent / "test_run" / "cache" ) , type=lowerCamelCase , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=lowerCamelCase , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=lowerCamelCase , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=lowerCamelCase , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=lowerCamelCase , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5e-5 , type=lowerCamelCase , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=lowerCamelCase , metavar=lowerCamelCase , type=lowerCamelCase , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=lowerCamelCase , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=lowerCamelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=lowerCamelCase , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=lowerCamelCase , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=lowerCamelCase ) parser.add_argument("--train_batch_size" , default=32 , type=lowerCamelCase ) parser.add_argument("--eval_batch_size" , default=32 , type=lowerCamelCase ) parser.add_argument("--adafactor" , action="store_true" ) class _A ( pl.Callback ): '''simple docstring''' def _snake_case ( self : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _A ( pl.Callback ): '''simple docstring''' def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowerCamelCase ) class _A ( pl.Callback ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Tuple , lowerCamelCase : List[str] ): '''simple docstring''' __lowercase = trainer.lr_schedulers[0]["scheduler"] __lowercase = {f"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : pl.Trainer , lowerCamelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info("***** Validation results *****" ) __lowercase = trainer.callback_metrics # Log results for key in sorted(lowerCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(lowerCamelCase , str(metrics[key] ) ) ) def _snake_case ( self : List[str] , lowerCamelCase : pl.Trainer , lowerCamelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info("***** Test results *****" ) __lowercase = trainer.callback_metrics # Log and save results to file __lowercase = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(lowerCamelCase , "w" ) as writer: for key in sorted(lowerCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(lowerCamelCase , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(lowerCamelCase , str(metrics[key] ) ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir" , default=str(Path(_SCREAMING_SNAKE_CASE ).parent / "test_run" / "model_checkpoints" ) , type=_SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=_SCREAMING_SNAKE_CASE , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=_SCREAMING_SNAKE_CASE ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=_SCREAMING_SNAKE_CASE , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=_SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=_SCREAMING_SNAKE_CASE , default=4_2 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(_SCREAMING_SNAKE_CASE ).parent / "test_run" / "dummy-train-data" ) , type=_SCREAMING_SNAKE_CASE , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[] , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): pl.seed_everything(args.seed ) # init model __lowercase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) # add custom checkpoints if checkpoint_callback is None: __lowercase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_SCREAMING_SNAKE_CASE ) if logging_callback is None: __lowercase = LoggingCallback() __lowercase = {} if args.fpaa: __lowercase = 1_6 if args.gpus > 1: __lowercase = "auto" __lowercase = "ddp" __lowercase = args.accumulate_grad_batches __lowercase = None __lowercase = "auto" __lowercase = pl.Trainer.from_argparse_args( _SCREAMING_SNAKE_CASE , weights_summary=_SCREAMING_SNAKE_CASE , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_SCREAMING_SNAKE_CASE , val_check_interval=1 , num_sanity_val_steps=2 , **_SCREAMING_SNAKE_CASE , ) if args.do_train: trainer.fit(_SCREAMING_SNAKE_CASE ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
655
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : Any ): '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , "width_multiplier" ) ) class _A : '''simple docstring''' def __init__( self : int , lowerCamelCase : str , lowerCamelCase : List[str]=13 , lowerCamelCase : Optional[int]=64 , lowerCamelCase : List[str]=2 , lowerCamelCase : int=3 , lowerCamelCase : List[str]="swish" , lowerCamelCase : Dict=3 , lowerCamelCase : Any=32 , lowerCamelCase : Any=0.1 , lowerCamelCase : Optional[int]=0.02 , lowerCamelCase : Any=True , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=10 , lowerCamelCase : List[Any]=None , lowerCamelCase : Optional[int]=0.25 , lowerCamelCase : Dict=0.0 , lowerCamelCase : str=0.0 , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = make_divisible(512 * width_multiplier , divisor=8 ) __lowercase = hidden_act __lowercase = conv_kernel_size __lowercase = output_stride __lowercase = classifier_dropout_prob __lowercase = use_labels __lowercase = is_training __lowercase = num_labels __lowercase = initializer_range __lowercase = scope __lowercase = width_multiplier __lowercase = ffn_dropout __lowercase = attn_dropout def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def _snake_case ( self : str ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _snake_case ( self : Dict , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : Any ): '''simple docstring''' __lowercase = MobileViTVaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self : int , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileViTVaForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileViTVaForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _A ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _snake_case : Dict = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case : Any = False _snake_case : int = False _snake_case : Optional[Any] = False _snake_case : Any = False def _snake_case ( self : int ): '''simple docstring''' __lowercase = MobileViTVaModelTester(self ) __lowercase = MobileViTVaConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def _snake_case ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def _snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def _snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def _snake_case ( self : str ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def _snake_case ( self : Tuple ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : int ): '''simple docstring''' pass def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Dict ): __lowercase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __lowercase = outputs.hidden_states __lowercase = 5 self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowercase = 2 for i in range(len(lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) @slow def _snake_case ( self : Any ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MobileViTVaModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def snake_case_ ( ): __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Optional[int] ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __lowercase = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __lowercase = model.to(lowerCamelCase ) __lowercase = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits # verify the logits __lowercase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCamelCase ) __lowercase = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __lowercase = model.to(lowerCamelCase ) __lowercase = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits.detach().cpu() __lowercase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase , target_sizes=[(50, 60)] ) __lowercase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCamelCase ) __lowercase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) __lowercase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCamelCase )
655
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor snake_case__ : Optional[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , *lowerCamelCase : int , **lowerCamelCase : int ): '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
655
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = analyze_text(_SCREAMING_SNAKE_CASE ) __lowercase = list(" " + ascii_lowercase ) # what is our total sum of probabilities. __lowercase = sum(single_char_strings.values() ) # one length string __lowercase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __lowercase = single_char_strings[ch] __lowercase = my_str / all_sum my_fir_sum += prob * math.loga(_SCREAMING_SNAKE_CASE ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string __lowercase = sum(two_char_strings.values() ) __lowercase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __lowercase = cha + cha if sequence in two_char_strings: __lowercase = two_char_strings[sequence] __lowercase = int(_SCREAMING_SNAKE_CASE ) / all_sum my_sec_sum += prob * math.loga(_SCREAMING_SNAKE_CASE ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = Counter() # type: ignore __lowercase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def snake_case_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
655
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
1
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py snake_case__ : int = """.""" # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) snake_case__ : List[Any] = [ """Assert""", """AssignVariableOp""", """EmptyTensorList""", """MergeV2Checkpoints""", """ReadVariableOp""", """ResourceGather""", """RestoreV2""", """SaveV2""", """ShardedFilename""", """StatefulPartitionedCall""", """StaticRegexFullMatch""", """VarHandleOp""", ] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = SavedModel() __lowercase = [] with open(os.path.join(_SCREAMING_SNAKE_CASE , "utils" , "tf_ops" , "onnx.json" ) ) as f: __lowercase = json.load(_SCREAMING_SNAKE_CASE )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_SCREAMING_SNAKE_CASE )] ) with open(_SCREAMING_SNAKE_CASE , "rb" ) as f: saved_model.ParseFromString(f.read() ) __lowercase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowercase = sorted(_SCREAMING_SNAKE_CASE ) __lowercase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_SCREAMING_SNAKE_CASE ) if strict and len(_SCREAMING_SNAKE_CASE ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(_SCREAMING_SNAKE_CASE ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*_SCREAMING_SNAKE_CASE , sep="\n" ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""") parser.add_argument( """--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested.""" ) parser.add_argument( """--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model.""" ) parser.add_argument( """--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)""" ) snake_case__ : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
655
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
1
import operator as op def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [] __lowercase = lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int(x / y ) # noqa: E731 integer division operation __lowercase = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(1_2 ) , "Stack" , sep=" | " ) print("-" * (3_0 + len(_SCREAMING_SNAKE_CASE )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_SCREAMING_SNAKE_CASE ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(1_2 ) , ",".join(_SCREAMING_SNAKE_CASE ) , sep=" | " ) else: __lowercase = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(1_2 ) , ",".join(_SCREAMING_SNAKE_CASE ) , sep=" | " ) __lowercase = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(1_2 ) , ",".join(_SCREAMING_SNAKE_CASE ) , sep=" | " ) stack.append( str(opr[x](int(_SCREAMING_SNAKE_CASE ) , int(_SCREAMING_SNAKE_CASE ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(1_2 ) , ",".join(_SCREAMING_SNAKE_CASE ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
655
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers snake_case__ : List[Any] = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
655
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Any = logging.get_logger(__name__) set_seed(7_70) snake_case__ : Tuple = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } snake_case__ : Optional[int] = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } snake_case__ : int = os.path.dirname(os.path.abspath(__file__)) snake_case__ : List[str] = os.path.join(os.path.expanduser("""~"""), """.cache""") snake_case__ : List[Any] = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = model_type if use_small: key += "_small" return os.path.join(_SCREAMING_SNAKE_CASE , REMOTE_MODEL_PATHS[key]["file_name"] ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) hf_hub_download(repo_id=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , local_dir=_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="text" ): if model_type == "text": __lowercase = BarkSemanticModel __lowercase = BarkSemanticConfig __lowercase = BarkSemanticGenerationConfig elif model_type == "coarse": __lowercase = BarkCoarseModel __lowercase = BarkCoarseConfig __lowercase = BarkCoarseGenerationConfig elif model_type == "fine": __lowercase = BarkFineModel __lowercase = BarkFineConfig __lowercase = BarkFineGenerationConfig else: raise NotImplementedError() __lowercase = F"""{model_type}_small""" if use_small else model_type __lowercase = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(_SCREAMING_SNAKE_CASE ): logger.info(F"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["repo_id"] , model_info["file_name"] ) __lowercase = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) # this is a hack __lowercase = checkpoint["model_args"] if "input_vocab_size" not in model_args: __lowercase = model_args["vocab_size"] __lowercase = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __lowercase = model_args.pop("n_head" ) __lowercase = model_args.pop("n_embd" ) __lowercase = model_args.pop("n_layer" ) __lowercase = ConfigClass(**checkpoint["model_args"] ) __lowercase = ModelClass(config=_SCREAMING_SNAKE_CASE ) __lowercase = GenerationConfigClass() __lowercase = model_generation_config __lowercase = checkpoint["model"] # fixup checkpoint __lowercase = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(_SCREAMING_SNAKE_CASE ): # replace part of the key with corresponding layer name in HF implementation __lowercase = k[len(_SCREAMING_SNAKE_CASE ) :] for old_layer_name in new_layer_name_dict: __lowercase = new_k.replace(_SCREAMING_SNAKE_CASE , new_layer_name_dict[old_layer_name] ) __lowercase = state_dict.pop(_SCREAMING_SNAKE_CASE ) __lowercase = set(state_dict.keys() ) - set(model.state_dict().keys() ) __lowercase = {k for k in extra_keys if not k.endswith(".attn.bias" )} __lowercase = set(model.state_dict().keys() ) - set(state_dict.keys() ) __lowercase = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F"""extra keys found: {extra_keys}""" ) if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F"""missing keys: {missing_keys}""" ) model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) __lowercase = model.num_parameters(exclude_embeddings=_SCREAMING_SNAKE_CASE ) __lowercase = checkpoint["best_val_loss"].item() logger.info(F"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(_SCREAMING_SNAKE_CASE , 3 )} loss""" ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) del checkpoint, state_dict return model def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __lowercase = "cpu" # do conversion on cpu __lowercase = _get_ckpt_path(_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) __lowercase = _load_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model_type=_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) # load bark initial model __lowercase = _bark_load_model(_SCREAMING_SNAKE_CASE , "cpu" , model_type=_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) if model_type == "text": __lowercase = bark_model["model"] if model.num_parameters(exclude_embeddings=_SCREAMING_SNAKE_CASE ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model __lowercase = 5 __lowercase = 1_0 if model_type in ["text", "coarse"]: __lowercase = torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) __lowercase = bark_model(_SCREAMING_SNAKE_CASE )[0] __lowercase = model(_SCREAMING_SNAKE_CASE ) # take last logits __lowercase = output_new_model_total.logits[:, [-1], :] else: __lowercase = 3 __lowercase = 8 __lowercase = torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __lowercase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = bark_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): __lowercase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = BarkSemanticConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) ) __lowercase = BarkCoarseConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) ) __lowercase = BarkFineConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) ) __lowercase = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) __lowercase = BarkSemanticModel.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowercase = BarkCoarseModel.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowercase = BarkFineModel.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowercase = EncodecModel.from_pretrained("facebook/encodec_24khz" ) __lowercase = BarkConfig.from_sub_model_configs( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __lowercase = BarkModel(_SCREAMING_SNAKE_CASE ) __lowercase = semantic __lowercase = coarseAcoustic __lowercase = fineAcoustic __lowercase = codec __lowercase = bark_generation_config Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) bark.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id=_SCREAMING_SNAKE_CASE , push_to_hub=_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") snake_case__ : int = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
655
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
1
from __future__ import annotations from PIL import Image # Define glider example snake_case__ : List[str] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ : Optional[int] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __lowercase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_SCREAMING_SNAKE_CASE ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_SCREAMING_SNAKE_CASE ) - 1: neighbour_count += cells[i + 1][j] if i < len(_SCREAMING_SNAKE_CASE ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __lowercase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_SCREAMING_SNAKE_CASE ) return next_generation def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [] for _ in range(_SCREAMING_SNAKE_CASE ): # Create output image __lowercase = Image.new("RGB" , (len(cells[0] ), len(_SCREAMING_SNAKE_CASE )) ) __lowercase = img.load() # Save cells to image for x in range(len(_SCREAMING_SNAKE_CASE ) ): for y in range(len(cells[0] ) ): __lowercase = 2_5_5 - cells[y][x] * 2_5_5 __lowercase = (colour, colour, colour) # Save image images.append(_SCREAMING_SNAKE_CASE ) __lowercase = new_generation(_SCREAMING_SNAKE_CASE ) return images if __name__ == "__main__": snake_case__ : Optional[Any] = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
655
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
1
import numpy as np def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1E-1_2 , _SCREAMING_SNAKE_CASE = 1_0_0 , ): assert np.shape(_SCREAMING_SNAKE_CASE )[0] == np.shape(_SCREAMING_SNAKE_CASE )[1] # Ensure proper dimensionality. assert np.shape(_SCREAMING_SNAKE_CASE )[0] == np.shape(_SCREAMING_SNAKE_CASE )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_SCREAMING_SNAKE_CASE ) == np.iscomplexobj(_SCREAMING_SNAKE_CASE ) __lowercase = np.iscomplexobj(_SCREAMING_SNAKE_CASE ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_SCREAMING_SNAKE_CASE , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowercase = False __lowercase = 0 __lowercase = 0 __lowercase = 1E1_2 while not convergence: # Multiple matrix by the vector. __lowercase = np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Normalize the resulting output vector. __lowercase = w / np.linalg.norm(_SCREAMING_SNAKE_CASE ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowercase = vector.conj().T if is_complex else vector.T __lowercase = np.dot(_SCREAMING_SNAKE_CASE , np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Check convergence. __lowercase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowercase = True __lowercase = lambda_ if is_complex: __lowercase = np.real(lambda_ ) return lambda_, vector def snake_case_ ( ): __lowercase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] ) __lowercase = np.array([4_1, 4, 2_0] ) __lowercase = real_input_matrix.astype(np.complexaaa ) __lowercase = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowercase = np.array([4_1, 4, 2_0] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __lowercase = real_input_matrix __lowercase = real_vector elif problem_type == "complex": __lowercase = complex_input_matrix __lowercase = complex_vector # Our implementation. __lowercase , __lowercase = power_iteration(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowercase , __lowercase = np.linalg.eigh(_SCREAMING_SNAKE_CASE ) # Last eigenvalue is the maximum one. __lowercase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowercase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_SCREAMING_SNAKE_CASE ) - np.abs(_SCREAMING_SNAKE_CASE ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
655
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
1
snake_case__ : Union[str, Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Make sure the supplied data is a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_SCREAMING_SNAKE_CASE ) __lowercase = "".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) __lowercase = len(_SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later __lowercase = b"=" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6) else: __lowercase = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = ( "argument should be a bytes-like object or ASCII string, " F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: __lowercase = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) __lowercase = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __lowercase = encoded_data[:-padding] __lowercase = "".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __lowercase = "".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) __lowercase = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
655
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": snake_case__ : Optional[Any] = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") snake_case__ : Optional[Any] = F'''https://www.google.com/search?q={query}&num=100''' snake_case__ : str = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: snake_case__ : str = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: snake_case__ : Any = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
655
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : List[str] = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } snake_case__ : Dict = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' _snake_case : Optional[Any] = """mask2former""" _snake_case : Union[str, Any] = ["""swin"""] _snake_case : Union[str, Any] = {"""hidden_size""": """hidden_dim"""} def __init__( self : Tuple , lowerCamelCase : Optional[Dict] = None , lowerCamelCase : int = 256 , lowerCamelCase : int = 256 , lowerCamelCase : int = 256 , lowerCamelCase : int = 1_024 , lowerCamelCase : str = "relu" , lowerCamelCase : int = 6 , lowerCamelCase : int = 10 , lowerCamelCase : int = 8 , lowerCamelCase : float = 0.0 , lowerCamelCase : int = 2_048 , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : int = 4 , lowerCamelCase : int = 255 , lowerCamelCase : int = 100 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 2.0 , lowerCamelCase : float = 5.0 , lowerCamelCase : float = 5.0 , lowerCamelCase : int = 12_544 , lowerCamelCase : float = 3.0 , lowerCamelCase : float = 0.75 , lowerCamelCase : float = 0.02 , lowerCamelCase : float = 1.0 , lowerCamelCase : bool = True , lowerCamelCase : List[int] = [4, 8, 16, 32] , lowerCamelCase : bool = None , **lowerCamelCase : List[Any] , ): '''simple docstring''' if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) __lowercase = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.pop("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**lowerCamelCase ) @classmethod def _snake_case ( cls : Optional[int] , lowerCamelCase : PretrainedConfig , **lowerCamelCase : List[Any] ): '''simple docstring''' return cls( backbone_config=lowerCamelCase , **lowerCamelCase , ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
655
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _A ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Dict=3 , lowerCamelCase : Dict=18 , lowerCamelCase : Dict=30 , lowerCamelCase : Optional[Any]=400 , lowerCamelCase : Dict=True , lowerCamelCase : Any=None , lowerCamelCase : Optional[Any]=True , lowerCamelCase : str=None , lowerCamelCase : Any=True , lowerCamelCase : int=[0.5, 0.5, 0.5] , lowerCamelCase : Dict=[0.5, 0.5, 0.5] , ): '''simple docstring''' __lowercase = size if size is not None else {"shortest_edge": 18} __lowercase = crop_size if crop_size is not None else {"height": 18, "width": 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std def _snake_case ( self : Dict ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Optional[int] = LevitImageProcessor if is_vision_available() else None def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = LevitImageProcessingTester(self ) @property def _snake_case ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' pass def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
655
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
1
from collections import defaultdict from math import ceil, sqrt def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0_0_0_0 , _SCREAMING_SNAKE_CASE = 1_0 ): __lowercase = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __lowercase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __lowercase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(F'''{solution() = }''')
655
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
655
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return round(float(moles / volume ) * nfactor ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
655
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
1
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency snake_case__ : List[Any] = { """E""": 1_2.7_0, """T""": 9.0_6, """A""": 8.1_7, """O""": 7.5_1, """I""": 6.9_7, """N""": 6.7_5, """S""": 6.3_3, """H""": 6.0_9, """R""": 5.9_9, """D""": 4.2_5, """L""": 4.0_3, """C""": 2.7_8, """U""": 2.7_6, """M""": 2.4_1, """W""": 2.3_6, """F""": 2.2_3, """G""": 2.0_2, """Y""": 1.9_7, """P""": 1.9_3, """B""": 1.2_9, """V""": 0.9_8, """K""": 0.7_7, """J""": 0.1_5, """X""": 0.1_5, """Q""": 0.1_0, """Z""": 0.0_7, } snake_case__ : str = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" snake_case__ : Optional[int] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def snake_case_ ( _SCREAMING_SNAKE_CASE ): return x[0] def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = get_letter_count(_SCREAMING_SNAKE_CASE ) __lowercase = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_SCREAMING_SNAKE_CASE ) __lowercase = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_SCREAMING_SNAKE_CASE ) __lowercase = "".join(freq_to_letter[freq] ) __lowercase = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_SCREAMING_SNAKE_CASE , reverse=_SCREAMING_SNAKE_CASE ) __lowercase = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = get_frequency_order(_SCREAMING_SNAKE_CASE ) __lowercase = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
655
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Dict = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys snake_case__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
1
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
655
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _A : '''simple docstring''' _snake_case : torch.Tensor # [batch_size x 3] _snake_case : torch.Tensor # [batch_size x 3] _snake_case : torch.Tensor # [batch_size x 3] _snake_case : torch.Tensor # [batch_size x 3] _snake_case : int _snake_case : int _snake_case : float _snake_case : float _snake_case : Tuple[int] def _snake_case ( self : List[str] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _snake_case ( self : Any ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = torch.arange(self.height * self.width ) __lowercase = torch.stack( [ pixel_indices % self.width, torch.div(lowerCamelCase , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def _snake_case ( self : Any ): '''simple docstring''' __lowercase , *__lowercase = self.shape __lowercase = int(np.prod(lowerCamelCase ) ) __lowercase = self.get_image_coords() __lowercase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __lowercase = self.get_camera_rays(lowerCamelCase ) __lowercase = rays.view(lowerCamelCase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _snake_case ( self : Optional[int] , lowerCamelCase : torch.Tensor ): '''simple docstring''' __lowercase , *__lowercase , __lowercase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __lowercase = coords.view(lowerCamelCase , -1 , 2 ) __lowercase = self.resolution() __lowercase = self.fov() __lowercase = (flat.float() / (res - 1)) * 2 - 1 __lowercase = fracs * torch.tan(fov / 2 ) __lowercase = fracs.view(lowerCamelCase , -1 , 2 ) __lowercase = ( self.z.view(lowerCamelCase , 1 , 3 ) + self.x.view(lowerCamelCase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowerCamelCase , 1 , 3 ) * fracs[:, :, 1:] ) __lowercase = directions / directions.norm(dim=-1 , keepdim=lowerCamelCase ) __lowercase = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCamelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowerCamelCase , *lowerCamelCase , 2 , 3 ) def _snake_case ( self : Any , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCamelCase , height=lowerCamelCase , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [] __lowercase = [] __lowercase = [] __lowercase = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): __lowercase = np.array([np.sin(_SCREAMING_SNAKE_CASE ), np.cos(_SCREAMING_SNAKE_CASE ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __lowercase = -z * 4 __lowercase = np.array([np.cos(_SCREAMING_SNAKE_CASE ), -np.sin(_SCREAMING_SNAKE_CASE ), 0.0] ) __lowercase = np.cross(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) origins.append(_SCREAMING_SNAKE_CASE ) xs.append(_SCREAMING_SNAKE_CASE ) ys.append(_SCREAMING_SNAKE_CASE ) zs.append(_SCREAMING_SNAKE_CASE ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_SCREAMING_SNAKE_CASE , axis=0 ) ).float() , x=torch.from_numpy(np.stack(_SCREAMING_SNAKE_CASE , axis=0 ) ).float() , y=torch.from_numpy(np.stack(_SCREAMING_SNAKE_CASE , axis=0 ) ).float() , z=torch.from_numpy(np.stack(_SCREAMING_SNAKE_CASE , axis=0 ) ).float() , width=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , x_fov=0.7 , y_fov=0.7 , shape=(1, len(_SCREAMING_SNAKE_CASE )) , )
655
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
1
from __future__ import annotations def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = len(_SCREAMING_SNAKE_CASE ) # We need to create solution object to save path. __lowercase = [[0 for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] __lowercase = run_maze(_SCREAMING_SNAKE_CASE , 0 , 0 , _SCREAMING_SNAKE_CASE ) if solved: print("\n".join(str(_SCREAMING_SNAKE_CASE ) for row in solutions ) ) else: print("No solution exists!" ) return solved def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = len(_SCREAMING_SNAKE_CASE ) # Final check point. if i == j == (size - 1): __lowercase = 1 return True __lowercase = (not i < 0) and (not j < 0) # Check lower bounds __lowercase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowercase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowercase = 1 # check for directions if ( run_maze(_SCREAMING_SNAKE_CASE , i + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or run_maze(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j + 1 , _SCREAMING_SNAKE_CASE ) or run_maze(_SCREAMING_SNAKE_CASE , i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or run_maze(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j - 1 , _SCREAMING_SNAKE_CASE ) ): return True __lowercase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
655
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
1
from sklearn.metrics import recall_score import datasets snake_case__ : Optional[int] = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ snake_case__ : int = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ snake_case__ : int = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Tuple ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int]=None , lowerCamelCase : List[Any]=1 , lowerCamelCase : List[str]="binary" , lowerCamelCase : Tuple=None , lowerCamelCase : Tuple="warn" , ): '''simple docstring''' __lowercase = recall_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase , zero_division=lowerCamelCase , ) return {"recall": float(lowerCamelCase ) if score.size == 1 else score}
655
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = RoCBertTokenizer _snake_case : Optional[Any] = None _snake_case : int = False _snake_case : Optional[int] = True _snake_case : Optional[Any] = filter_non_english def _snake_case ( self : Optional[Any] ): '''simple docstring''' super().setUp() __lowercase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] __lowercase = {} __lowercase = {} for i, value in enumerate(lowerCamelCase ): __lowercase = i __lowercase = i __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(lowerCamelCase , lowerCamelCase , ensure_ascii=lowerCamelCase ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(lowerCamelCase , lowerCamelCase , ensure_ascii=lowerCamelCase ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __lowercase = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(lowerCamelCase , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __lowercase = {} for i, token in enumerate(lowerCamelCase ): __lowercase = i __lowercase = RoCBertWordpieceTokenizer(vocab=lowerCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _snake_case ( self : int ): '''simple docstring''' self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _snake_case ( self : Tuple ): '''simple docstring''' self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _snake_case ( self : Any ): '''simple docstring''' self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: __lowercase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowercase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __lowercase = tokenizer_r.encode_plus( lowerCamelCase , return_attention_mask=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase , ) __lowercase = tokenizer_r.do_lower_case if hasattr(lowerCamelCase , "do_lower_case" ) else False __lowercase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = ["的", "人", "有"] __lowercase = "".join(lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowercase = True __lowercase = self.tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = tokenizer_p.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer_r.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer_r.convert_ids_to_tokens(lowerCamelCase ) __lowercase = tokenizer_p.convert_ids_to_tokens(lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __lowercase = False __lowercase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = self.tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = tokenizer_r.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer_p.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer_r.convert_ids_to_tokens(lowerCamelCase ) __lowercase = tokenizer_p.convert_ids_to_tokens(lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". __lowercase = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCamelCase ) ] self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __lowercase = tokenizer.encode("你好" , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer.encode("你是谁" , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _snake_case ( self : Any ): '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowercase = "你好,你是谁" __lowercase = tokenizer.tokenize(lowerCamelCase ) __lowercase = tokenizer.convert_tokens_to_ids(lowerCamelCase ) __lowercase = tokenizer.convert_tokens_to_shape_ids(lowerCamelCase ) __lowercase = tokenizer.convert_tokens_to_pronunciation_ids(lowerCamelCase ) __lowercase = tokenizer.prepare_for_model( lowerCamelCase , lowerCamelCase , lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = tokenizer.encode_plus(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase )
655
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask snake_case__ : Optional[Any] = logging.getLogger(__name__) class _A ( _lowercase ): '''simple docstring''' _snake_case : str = """token-classification""" def __init__( self : Optional[Any] , lowerCamelCase : Dict ): '''simple docstring''' if type(lowerCamelCase ) == dict: __lowercase = Namespace(**lowerCamelCase ) __lowercase = import_module("tasks" ) try: __lowercase = getattr(lowerCamelCase , hparams.task_type ) __lowercase = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) __lowercase = self.token_classification_task.get_labels(hparams.labels ) __lowercase = CrossEntropyLoss().ignore_index super().__init__(lowerCamelCase , len(self.labels ) , self.mode ) def _snake_case ( self : Union[str, Any] , **lowerCamelCase : str ): '''simple docstring''' return self.model(**lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": __lowercase = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids __lowercase = self(**lowerCamelCase ) __lowercase = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.hparams for mode in ["train", "dev", "test"]: __lowercase = self._feature_file(lowerCamelCase ) if os.path.exists(lowerCamelCase ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowerCamelCase ) __lowercase = torch.load(lowerCamelCase ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __lowercase = self.token_classification_task.read_examples_from_file(args.data_dir , lowerCamelCase ) __lowercase = self.token_classification_task.convert_examples_to_features( lowerCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowerCamelCase , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowerCamelCase ) torch.save(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : bool = False ): '''simple docstring''' __lowercase = self._feature_file(lowerCamelCase ) logger.info("Loading features from cached file %s" , lowerCamelCase ) __lowercase = torch.load(lowerCamelCase ) __lowercase = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __lowercase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __lowercase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __lowercase = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __lowercase = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) , batch_size=lowerCamelCase ) def _snake_case ( self : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ): '''simple docstring''' """Compute validation""" "" __lowercase = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": __lowercase = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids __lowercase = self(**lowerCamelCase ) __lowercase , __lowercase = outputs[:2] __lowercase = logits.detach().cpu().numpy() __lowercase = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self : Tuple , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = torch.stack([x["val_loss"] for x in outputs] ).mean() __lowercase = np.concatenate([x["pred"] for x in outputs] , axis=0 ) __lowercase = np.argmax(lowerCamelCase , axis=2 ) __lowercase = np.concatenate([x["target"] for x in outputs] , axis=0 ) __lowercase = dict(enumerate(self.labels ) ) __lowercase = [[] for _ in range(out_label_ids.shape[0] )] __lowercase = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __lowercase = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowerCamelCase , lowerCamelCase ), "precision": precision_score(lowerCamelCase , lowerCamelCase ), "recall": recall_score(lowerCamelCase , lowerCamelCase ), "f1": fa_score(lowerCamelCase , lowerCamelCase ), } __lowercase = dict(results.items() ) __lowercase = results return ret, preds_list, out_label_list def _snake_case ( self : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase , __lowercase , __lowercase = self._eval_end(lowerCamelCase ) __lowercase = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self : Optional[Any] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase , __lowercase , __lowercase = self._eval_end(lowerCamelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __lowercase = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowerCamelCase , lowerCamelCase ) parser.add_argument( "--task_type" , default="NER" , type=lowerCamelCase , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=128 , type=lowerCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowerCamelCase , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowerCamelCase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) snake_case__ : int = NERTransformer.add_model_specific_args(parser, os.getcwd()) snake_case__ : int = parser.parse_args() snake_case__ : Dict = NERTransformer(args) snake_case__ : List[Any] = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 snake_case__ : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) snake_case__ : Dict = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
655
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
1
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer snake_case__ : Union[str, Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = """AutoTokenizer""" _snake_case : List[Any] = ["""tokenizer"""] _snake_case : Optional[Any] = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self : Tuple , lowerCamelCase : List[str] , lowerCamelCase : str=None ): '''simple docstring''' super().__init__(lowerCamelCase ) __lowercase = speaker_embeddings @classmethod def _snake_case ( cls : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : List[Any]="speaker_embeddings_path.json" , **lowerCamelCase : Union[str, Any] ): '''simple docstring''' if speaker_embeddings_dict_path is not None: __lowercase = get_file_from_repo( lowerCamelCase , lowerCamelCase , subfolder=kwargs.pop("subfolder" , lowerCamelCase ) , cache_dir=kwargs.pop("cache_dir" , lowerCamelCase ) , force_download=kwargs.pop("force_download" , lowerCamelCase ) , proxies=kwargs.pop("proxies" , lowerCamelCase ) , resume_download=kwargs.pop("resume_download" , lowerCamelCase ) , local_files_only=kwargs.pop("local_files_only" , lowerCamelCase ) , use_auth_token=kwargs.pop("use_auth_token" , lowerCamelCase ) , revision=kwargs.pop("revision" , lowerCamelCase ) , ) if speaker_embeddings_path is None: logger.warning( f"""`{os.path.join(lowerCamelCase , lowerCamelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) __lowercase = None else: with open(lowerCamelCase ) as speaker_embeddings_json: __lowercase = json.load(lowerCamelCase ) else: __lowercase = None __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase , **lowerCamelCase ) return cls(tokenizer=lowerCamelCase , speaker_embeddings=lowerCamelCase ) def _snake_case ( self : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : str="speaker_embeddings_path.json" , lowerCamelCase : Optional[int]="speaker_embeddings" , lowerCamelCase : bool = False , **lowerCamelCase : Optional[int] , ): '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCamelCase , lowerCamelCase , "v2" ) , exist_ok=lowerCamelCase ) __lowercase = {} __lowercase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": __lowercase = self._load_voice_preset(lowerCamelCase ) __lowercase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , lowerCamelCase , f"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=lowerCamelCase , ) __lowercase = os.path.join(lowerCamelCase , f"""{prompt_key}_{key}.npy""" ) __lowercase = tmp_dict with open(os.path.join(lowerCamelCase , lowerCamelCase ) , "w" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) super().save_pretrained(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Any , lowerCamelCase : str = None , **lowerCamelCase : str ): '''simple docstring''' __lowercase = self.speaker_embeddings[voice_preset] __lowercase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) __lowercase = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , lowerCamelCase ) , cache_dir=kwargs.pop("cache_dir" , lowerCamelCase ) , force_download=kwargs.pop("force_download" , lowerCamelCase ) , proxies=kwargs.pop("proxies" , lowerCamelCase ) , resume_download=kwargs.pop("resume_download" , lowerCamelCase ) , local_files_only=kwargs.pop("local_files_only" , lowerCamelCase ) , use_auth_token=kwargs.pop("use_auth_token" , lowerCamelCase ) , revision=kwargs.pop("revision" , lowerCamelCase ) , ) if path is None: raise ValueError( f"""`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) __lowercase = np.load(lowerCamelCase ) return voice_preset_dict def _snake_case ( self : Dict , lowerCamelCase : Optional[dict] = None ): '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self : Optional[Any] , lowerCamelCase : int=None , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[Any]="pt" , lowerCamelCase : Optional[int]=256 , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=True , lowerCamelCase : str=False , **lowerCamelCase : Tuple , ): '''simple docstring''' if voice_preset is not None and not isinstance(lowerCamelCase , lowerCamelCase ): if ( isinstance(lowerCamelCase , lowerCamelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): __lowercase = self._load_voice_preset(lowerCamelCase ) else: if isinstance(lowerCamelCase , lowerCamelCase ) and not voice_preset.endswith(".npz" ): __lowercase = voice_preset + ".npz" __lowercase = np.load(lowerCamelCase ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCamelCase , **lowerCamelCase ) __lowercase = BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase ) __lowercase = self.tokenizer( lowerCamelCase , return_tensors=lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , return_attention_mask=lowerCamelCase , return_token_type_ids=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) if voice_preset is not None: __lowercase = voice_preset return encoded_text
655
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever snake_case__ : List[Any] = logging.getLogger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : str , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple=None ): '''simple docstring''' super().__init__( lowerCamelCase , question_encoder_tokenizer=lowerCamelCase , generator_tokenizer=lowerCamelCase , index=lowerCamelCase , init_retrieval=lowerCamelCase , ) __lowercase = None def _snake_case ( self : Optional[Any] , lowerCamelCase : int ): '''simple docstring''' logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually __lowercase = self._infer_socket_ifname() # avoid clash with the NCCL port __lowercase = str(distributed_port + 1 ) __lowercase = dist.new_group(ranks=lowerCamelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _snake_case ( self : Dict ): '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def _snake_case ( self : int , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[Any]=torch.floataa ): '''simple docstring''' __lowercase = torch.empty(lowerCamelCase , dtype=lowerCamelCase ) dist.scatter(lowerCamelCase , src=0 , scatter_list=lowerCamelCase , group=self.process_group ) return target_tensor def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __lowercase = next((addr for addr in addrs if addr.startswith("e" )) , lowerCamelCase ) return ifname def _snake_case ( self : List[str] , lowerCamelCase : np.ndarray , lowerCamelCase : int ): '''simple docstring''' if not dist.is_initialized(): __lowercase , __lowercase = self._main_retrieve(lowerCamelCase , lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase ) # distributed training __lowercase = dist.get_world_size(group=self.process_group ) # gather logic __lowercase = None if self._is_main(): __lowercase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCamelCase )] dist.gather(torch.tensor(lowerCamelCase ) , dst=0 , gather_list=lowerCamelCase , group=self.process_group ) # scatter logic __lowercase = question_hidden_states.shape[0] __lowercase = [] __lowercase = [] if self._is_main(): assert len(lowerCamelCase ) == world_size __lowercase , __lowercase = self._main_retrieve(torch.cat(lowerCamelCase ).numpy() , lowerCamelCase ) __lowercase , __lowercase = torch.tensor(lowerCamelCase ), torch.tensor(lowerCamelCase ) __lowercase = self._chunk_tensor(lowerCamelCase , lowerCamelCase ) __lowercase = self._chunk_tensor(lowerCamelCase , lowerCamelCase ) __lowercase = self._scattered(lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) __lowercase = self._scattered(lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCamelCase )
655
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def snake_case_ ( _SCREAMING_SNAKE_CASE="" ): __lowercase = tempfile.mkdtemp() return os.path.join(_SCREAMING_SNAKE_CASE , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch.rand(12 , dtype=torch.floataa ) - 0.5 __lowercase = AgentAudio(lowerCamelCase ) __lowercase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCamelCase ) ) # Ensure that the file contains the same value as the original tensor __lowercase , __lowercase = sf.read(lowerCamelCase ) self.assertTrue(torch.allclose(lowerCamelCase , torch.tensor(lowerCamelCase ) , atol=1e-4 ) ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = torch.rand(12 , dtype=torch.floataa ) - 0.5 __lowercase = get_new_path(suffix=".wav" ) sf.write(lowerCamelCase , lowerCamelCase , 16_000 ) __lowercase = AgentAudio(lowerCamelCase ) self.assertTrue(torch.allclose(lowerCamelCase , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , lowerCamelCase ) @require_vision @require_torch class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): '''simple docstring''' __lowercase = torch.randint(0 , 256 , (64, 64, 3) ) __lowercase = AgentImage(lowerCamelCase ) __lowercase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase ) ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" __lowercase = Image.open(lowerCamelCase ) __lowercase = AgentImage(lowerCamelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase ) ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" __lowercase = Image.open(lowerCamelCase ) __lowercase = AgentImage(lowerCamelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase ) ) class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "Hey!" __lowercase = AgentText(lowerCamelCase ) self.assertEqual(lowerCamelCase , agent_type.to_string() ) self.assertEqual(lowerCamelCase , agent_type.to_raw() ) self.assertEqual(lowerCamelCase , lowerCamelCase )
655
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return 1 if input_a == input_a else 0 def snake_case_ ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
655
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
1
from __future__ import annotations snake_case__ : Tuple = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): __lowercase = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the reference grid __lowercase = 1 __lowercase = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the action grid __lowercase = init[0] __lowercase = init[1] __lowercase = 0 __lowercase = g + heuristic[x][y] # cost from starting cell to destination cell __lowercase = [[f, g, x, y]] __lowercase = False # flag that is set when search is complete __lowercase = False # flag set if we can't find expand while not found and not resign: if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __lowercase = cell.pop() __lowercase = next_cell[2] __lowercase = next_cell[3] __lowercase = next_cell[1] if x == goal[0] and y == goal[1]: __lowercase = True else: for i in range(len(_SCREAMING_SNAKE_CASE ) ): # to try out different valid actions __lowercase = x + DIRECTIONS[i][0] __lowercase = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __lowercase = g + cost __lowercase = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __lowercase = 1 __lowercase = i __lowercase = [] __lowercase = goal[0] __lowercase = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __lowercase = x - DIRECTIONS[action[x][y]][0] __lowercase = y - DIRECTIONS[action[x][y]][1] __lowercase = xa __lowercase = ya invpath.append([x, y] ) __lowercase = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): path.append(invpath[len(_SCREAMING_SNAKE_CASE ) - 1 - i] ) return path, action if __name__ == "__main__": snake_case__ : List[str] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] snake_case__ : Optional[int] = [0, 0] # all coordinates are given in format [y,x] snake_case__ : Union[str, Any] = [len(grid) - 1, len(grid[0]) - 1] snake_case__ : Dict = 1 # the cost map which pushes the path closer to the goal snake_case__ : Tuple = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): snake_case__ : Optional[int] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map snake_case__ : List[Any] = 99 snake_case__ , snake_case__ : Union[str, Any] = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
655
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline snake_case__ : int = argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") snake_case__ : str = parser.parse_args() snake_case__ : int = """cpu""" snake_case__ : Optional[int] = """a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings""" snake_case__ : Union[str, Any] = """path-to-your-trained-model""" snake_case__ : str = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: snake_case__ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) snake_case__ : Union[str, Any] = pipe.to(device) # to channels last snake_case__ : Any = pipe.unet.to(memory_format=torch.channels_last) snake_case__ : Any = pipe.vae.to(memory_format=torch.channels_last) snake_case__ : int = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: snake_case__ : List[str] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex snake_case__ : List[Any] = torch.randn(2, 4, 64, 64) snake_case__ : Optional[int] = torch.rand(1) * 9_99 snake_case__ : str = torch.randn(2, 77, 7_68) snake_case__ : List[Any] = (sample, timestep, encoder_hidden_status) try: snake_case__ : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: snake_case__ : Optional[int] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) snake_case__ : Dict = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) snake_case__ : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: snake_case__ : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute snake_case__ : Dict = 6_66 snake_case__ : List[str] = torch.Generator(device).manual_seed(seed) snake_case__ : int = {"""generator""": generator} if args.steps is not None: snake_case__ : Optional[int] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): snake_case__ : Tuple = pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
655
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Optional[int] = """bit""" _snake_case : Dict = ["""preactivation""", """bottleneck"""] _snake_case : Any = ["""SAME""", """VALID"""] def __init__( self : int , lowerCamelCase : Any=3 , lowerCamelCase : Dict=64 , lowerCamelCase : List[Any]=[256, 512, 1_024, 2_048] , lowerCamelCase : Dict=[3, 4, 6, 3] , lowerCamelCase : Tuple="preactivation" , lowerCamelCase : Tuple="relu" , lowerCamelCase : Tuple=None , lowerCamelCase : Dict=32 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Dict=False , lowerCamelCase : Union[str, Any]=32 , lowerCamelCase : List[Any]=1 , lowerCamelCase : List[Any]=None , lowerCamelCase : Dict=None , **lowerCamelCase : List[str] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowercase = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) __lowercase = num_channels __lowercase = embedding_size __lowercase = hidden_sizes __lowercase = depths __lowercase = layer_type __lowercase = hidden_act __lowercase = global_padding __lowercase = num_groups __lowercase = drop_path_rate __lowercase = embedding_dynamic_padding __lowercase = output_stride __lowercase = width_factor __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
1
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _A ( enum.Enum ): '''simple docstring''' _snake_case : str = 0 _snake_case : Any = 1 _snake_case : Optional[Any] = 2 @add_end_docstrings(_lowercase ) class _A ( _lowercase ): '''simple docstring''' _snake_case : Optional[Any] = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self : List[str] , *lowerCamelCase : List[str] , **lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__(*lowerCamelCase , **lowerCamelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowercase = None if self.model.config.prefix is not None: __lowercase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowercase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowercase , __lowercase , __lowercase = self._sanitize_parameters(prefix=lowerCamelCase , **self._forward_params ) __lowercase = {**self._preprocess_params, **preprocess_params} __lowercase = {**self._forward_params, **forward_params} def _snake_case ( self : Any , lowerCamelCase : Optional[int]=None , lowerCamelCase : Any=None , lowerCamelCase : Optional[int]=None , lowerCamelCase : List[str]=None , lowerCamelCase : int=None , lowerCamelCase : Any=None , lowerCamelCase : List[str]=None , lowerCamelCase : Union[str, Any]=None , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = {} if prefix is not None: __lowercase = prefix if prefix: __lowercase = self.tokenizer( lowerCamelCase , padding=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors=self.framework ) __lowercase = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" " [None, 'hole']" ) __lowercase = handle_long_generation preprocess_params.update(lowerCamelCase ) __lowercase = generate_kwargs __lowercase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) __lowercase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) __lowercase = ReturnType.TENSORS if return_type is not None: __lowercase = return_type if clean_up_tokenization_spaces is not None: __lowercase = clean_up_tokenization_spaces if stop_sequence is not None: __lowercase = self.tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) if len(lowerCamelCase ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) __lowercase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _snake_case ( self : int , *lowerCamelCase : Optional[int] , **lowerCamelCase : Union[str, Any] ): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*lowerCamelCase , **lowerCamelCase ) def __call__( self : Tuple , lowerCamelCase : Union[str, Any] , **lowerCamelCase : str ): '''simple docstring''' return super().__call__(lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Dict="" , lowerCamelCase : List[Any]=None , **lowerCamelCase : List[str] ): '''simple docstring''' __lowercase = self.tokenizer( prefix + prompt_text , padding=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors=self.framework ) __lowercase = prompt_text if handle_long_generation == "hole": __lowercase = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: __lowercase = generate_kwargs["max_new_tokens"] else: __lowercase = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: __lowercase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) __lowercase = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: __lowercase = inputs["attention_mask"][:, -keep_length:] return inputs def _snake_case ( self : Union[str, Any] , lowerCamelCase : Optional[int] , **lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = model_inputs["input_ids"] __lowercase = model_inputs.get("attention_mask" , lowerCamelCase ) # Allow empty prompts if input_ids.shape[1] == 0: __lowercase = None __lowercase = None __lowercase = 1 else: __lowercase = input_ids.shape[0] __lowercase = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowercase = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: __lowercase = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: __lowercase = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowercase = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowercase = self.model.generate(input_ids=lowerCamelCase , attention_mask=lowerCamelCase , **lowerCamelCase ) __lowercase = generated_sequence.shape[0] if self.framework == "pt": __lowercase = generated_sequence.reshape(lowerCamelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __lowercase = tf.reshape(lowerCamelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _snake_case ( self : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[int]=ReturnType.FULL_TEXT , lowerCamelCase : List[str]=True ): '''simple docstring''' __lowercase = model_outputs["generated_sequence"][0] __lowercase = model_outputs["input_ids"] __lowercase = model_outputs["prompt_text"] __lowercase = generated_sequence.numpy().tolist() __lowercase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowercase = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowercase = self.tokenizer.decode( lowerCamelCase , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowercase = 0 else: __lowercase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase , ) ) if return_type == ReturnType.FULL_TEXT: __lowercase = prompt_text + text[prompt_length:] else: __lowercase = text[prompt_length:] __lowercase = {"generated_text": all_text} records.append(lowerCamelCase ) return records
655
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated snake_case__ : Optional[int] = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ snake_case__ : str = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_SCREAMING_SNAKE_CASE )[0] @deprecated(_SCREAMING_SNAKE_CASE , "Please use tf.data to implement this functionality." ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): print("Extracting" , f.name ) with gzip.GzipFile(fileobj=_SCREAMING_SNAKE_CASE ) as bytestream: __lowercase = _readaa(_SCREAMING_SNAKE_CASE ) if magic != 2_0_5_1: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) __lowercase = _readaa(_SCREAMING_SNAKE_CASE ) __lowercase = _readaa(_SCREAMING_SNAKE_CASE ) __lowercase = _readaa(_SCREAMING_SNAKE_CASE ) __lowercase = bytestream.read(rows * cols * num_images ) __lowercase = numpy.frombuffer(_SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) __lowercase = data.reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1 ) return data @deprecated(_SCREAMING_SNAKE_CASE , "Please use tf.one_hot on tensors." ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = labels_dense.shape[0] __lowercase = numpy.arange(_SCREAMING_SNAKE_CASE ) * num_classes __lowercase = numpy.zeros((num_labels, num_classes) ) __lowercase = 1 return labels_one_hot @deprecated(_SCREAMING_SNAKE_CASE , "Please use tf.data to implement this functionality." ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1_0 ): print("Extracting" , f.name ) with gzip.GzipFile(fileobj=_SCREAMING_SNAKE_CASE ) as bytestream: __lowercase = _readaa(_SCREAMING_SNAKE_CASE ) if magic != 2_0_4_9: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) __lowercase = _readaa(_SCREAMING_SNAKE_CASE ) __lowercase = bytestream.read(_SCREAMING_SNAKE_CASE ) __lowercase = numpy.frombuffer(_SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return labels class _A : '''simple docstring''' @deprecated( lowerCamelCase , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any]=False , lowerCamelCase : str=False , lowerCamelCase : str=dtypes.floataa , lowerCamelCase : Optional[int]=True , lowerCamelCase : int=None , ): '''simple docstring''' __lowercase , __lowercase = random_seed.get_seed(lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowercase = dtypes.as_dtype(lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: __lowercase = 10_000 __lowercase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" __lowercase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowercase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowercase = images.astype(numpy.floataa ) __lowercase = numpy.multiply(lowerCamelCase , 1.0 / 255.0 ) __lowercase = images __lowercase = labels __lowercase = 0 __lowercase = 0 @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return self._images @property def _snake_case ( self : List[str] ): '''simple docstring''' return self._labels @property def _snake_case ( self : Tuple ): '''simple docstring''' return self._num_examples @property def _snake_case ( self : List[str] ): '''simple docstring''' return self._epochs_completed def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=True ): '''simple docstring''' if fake_data: __lowercase = [1] * 784 __lowercase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowerCamelCase )], [fake_label for _ in range(lowerCamelCase )], ) __lowercase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowercase = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) __lowercase = self.images[perma] __lowercase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowercase = self._num_examples - start __lowercase = self._images[start : self._num_examples] __lowercase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowercase = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) __lowercase = self.images[perm] __lowercase = self.labels[perm] # Start next epoch __lowercase = 0 __lowercase = batch_size - rest_num_examples __lowercase = self._index_in_epoch __lowercase = self._images[start:end] __lowercase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowercase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_SCREAMING_SNAKE_CASE , "Please write your own downloading logic." ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not gfile.Exists(_SCREAMING_SNAKE_CASE ): gfile.MakeDirs(_SCREAMING_SNAKE_CASE ) __lowercase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not gfile.Exists(_SCREAMING_SNAKE_CASE ): urllib.request.urlretrieve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # noqa: S310 with gfile.GFile(_SCREAMING_SNAKE_CASE ) as f: __lowercase = f.size() print("Successfully downloaded" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "bytes." ) return filepath @deprecated( _SCREAMING_SNAKE_CASE , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=dtypes.floataa , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=5_0_0_0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , seed=_SCREAMING_SNAKE_CASE ) __lowercase = fake() __lowercase = fake() __lowercase = fake() return _Datasets(train=_SCREAMING_SNAKE_CASE , validation=_SCREAMING_SNAKE_CASE , test=_SCREAMING_SNAKE_CASE ) if not source_url: # empty string check __lowercase = DEFAULT_SOURCE_URL __lowercase = "train-images-idx3-ubyte.gz" __lowercase = "train-labels-idx1-ubyte.gz" __lowercase = "t10k-images-idx3-ubyte.gz" __lowercase = "t10k-labels-idx1-ubyte.gz" __lowercase = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + train_images_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , "rb" ) as f: __lowercase = _extract_images(_SCREAMING_SNAKE_CASE ) __lowercase = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + train_labels_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , "rb" ) as f: __lowercase = _extract_labels(_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE ) __lowercase = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + test_images_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , "rb" ) as f: __lowercase = _extract_images(_SCREAMING_SNAKE_CASE ) __lowercase = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + test_labels_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , "rb" ) as f: __lowercase = _extract_labels(_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE ) if not 0 <= validation_size <= len(_SCREAMING_SNAKE_CASE ): __lowercase = ( "Validation size should be between 0 and " F"""{len(_SCREAMING_SNAKE_CASE )}. Received: {validation_size}.""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) __lowercase = train_images[:validation_size] __lowercase = train_labels[:validation_size] __lowercase = train_images[validation_size:] __lowercase = train_labels[validation_size:] __lowercase = {"dtype": dtype, "reshape": reshape, "seed": seed} __lowercase = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowercase = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowercase = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return _Datasets(train=_SCREAMING_SNAKE_CASE , validation=_SCREAMING_SNAKE_CASE , test=_SCREAMING_SNAKE_CASE )
655
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
1
from __future__ import annotations from functools import lru_cache from math import ceil snake_case__ : Dict = 1_00 snake_case__ : Tuple = set(range(3, NUM_PRIMES, 2)) primes.add(2) snake_case__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __lowercase = set() __lowercase = 42 __lowercase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def snake_case_ ( _SCREAMING_SNAKE_CASE = 5_0_0_0 ): for number_to_partition in range(1 , _SCREAMING_SNAKE_CASE ): if len(partition(_SCREAMING_SNAKE_CASE ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
655
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
655
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 1.5 __lowercase = int(factor * num_class_images ) __lowercase = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=_SCREAMING_SNAKE_CASE ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: __lowercase = client.query(text=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1E4: break else: __lowercase = int(factor * num_images ) __lowercase = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) __lowercase = 0 __lowercase = 0 __lowercase = tqdm(desc="downloading real regularization images" , total=_SCREAMING_SNAKE_CASE ) with open(F"""{class_data_dir}/caption.txt""" , "w" ) as fa, open(F"""{class_data_dir}/urls.txt""" , "w" ) as fa, open( F"""{class_data_dir}/images.txt""" , "w" ) as fa: while total < num_class_images: __lowercase = class_images[count] count += 1 try: __lowercase = requests.get(images["url"] ) if img.status_code == 2_0_0: __lowercase = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case_ ( ): __lowercase = argparse.ArgumentParser("" , add_help=_SCREAMING_SNAKE_CASE ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument("--class_data_dir" , help="path to save images" , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument("--num_class_images" , help="number of images to download" , default=2_0_0 , type=_SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": snake_case__ : Dict = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
655
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE = 2_0_0 ): __lowercase = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] __lowercase = [0] * (pence + 1) __lowercase = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_SCREAMING_SNAKE_CASE , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
655
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = ["""image_processor""", """tokenizer"""] _snake_case : Dict = """BlipImageProcessor""" _snake_case : Tuple = """AutoTokenizer""" def __init__( self : int , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = False super().__init__(lowerCamelCase , lowerCamelCase ) __lowercase = self.image_processor def __call__( self : Optional[int] , lowerCamelCase : ImageInput = None , lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase : bool = True , lowerCamelCase : Union[bool, str, PaddingStrategy] = False , lowerCamelCase : Union[bool, str, TruncationStrategy] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : int = 0 , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[str, TensorType]] = None , **lowerCamelCase : List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __lowercase = self.tokenizer __lowercase = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) return text_encoding # add pixel_values __lowercase = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase ) if text is not None: __lowercase = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) else: __lowercase = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def _snake_case ( self : Union[str, Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Optional[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _snake_case ( self : Any ): '''simple docstring''' __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
655
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration snake_case__ : List[str] = pytest.mark.integration snake_case__ : int = {"""comet"""} snake_case__ : Optional[int] = importlib.util.find_spec("""fairseq""") is not None snake_case__ : List[Any] = {"""code_eval"""} snake_case__ : str = os.name == """nt""" snake_case__ : Dict = {"""bertscore""", """frugalscore""", """perplexity"""} snake_case__ : int = importlib.util.find_spec("""transformers""") is not None def snake_case_ ( _SCREAMING_SNAKE_CASE ): @wraps(_SCREAMING_SNAKE_CASE ) def wrapper(self , _SCREAMING_SNAKE_CASE ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , _SCREAMING_SNAKE_CASE ) return wrapper def snake_case_ ( _SCREAMING_SNAKE_CASE ): @wraps(_SCREAMING_SNAKE_CASE ) def wrapper(self , _SCREAMING_SNAKE_CASE ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , _SCREAMING_SNAKE_CASE ) return wrapper def snake_case_ ( _SCREAMING_SNAKE_CASE ): @wraps(_SCREAMING_SNAKE_CASE ) def wrapper(self , _SCREAMING_SNAKE_CASE ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , _SCREAMING_SNAKE_CASE ) return wrapper def snake_case_ ( ): __lowercase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _lowercase , _lowercase , _lowercase ) @local class _A ( parameterized.TestCase ): '''simple docstring''' _snake_case : Optional[Any] = {} _snake_case : List[Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def _snake_case ( self : str , lowerCamelCase : Any ): '''simple docstring''' __lowercase = "[...]" __lowercase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , lowerCamelCase ) ).module_path ) __lowercase = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCamelCase ) # check parameters __lowercase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCamelCase , metric_module.__name__ ): with self.use_local_metrics(): try: __lowercase = doctest.testmod(lowerCamelCase , verbose=lowerCamelCase , raise_on_error=lowerCamelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _snake_case ( self : List[str] , lowerCamelCase : List[str] ): '''simple docstring''' __lowercase = "[...]" __lowercase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , lowerCamelCase ) ).module_path ) # run doctest with self.use_local_metrics(): __lowercase = doctest.testmod(lowerCamelCase , verbose=lowerCamelCase , raise_on_error=lowerCamelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _snake_case ( self : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] ): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCamelCase ): yield else: yield @contextmanager def _snake_case ( self : List[Any] ): '''simple docstring''' def load_local_metric(lowerCamelCase : Optional[int] , *lowerCamelCase : Any , **lowerCamelCase : Dict ): return load_metric(os.path.join("metrics" , lowerCamelCase ) , *lowerCamelCase , **lowerCamelCase ) with patch("datasets.load_metric" ) as mock_load_metric: __lowercase = load_local_metric yield @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : Optional[Any] ): '''simple docstring''' def wrapper(lowerCamelCase : Union[str, Any] ): __lowercase = contextmanager(lowerCamelCase ) __lowercase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : Any , lowerCamelCase : int ): '''simple docstring''' assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: __lowercase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): import torch def bert_cos_score_idf(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_SCREAMING_SNAKE_CASE ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: __lowercase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): def load_from_checkpoint(_SCREAMING_SNAKE_CASE ): class _A : '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Any , *lowerCamelCase : List[str] , **lowerCamelCase : List[str] ): '''simple docstring''' assert len(lowerCamelCase ) == 2 __lowercase = [0.19, 0.92] return scores, sum(lowerCamelCase ) / len(lowerCamelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: __lowercase = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: __lowercase = load_from_checkpoint yield def snake_case_ ( ): __lowercase = load_metric(os.path.join("metrics" , "seqeval" ) ) __lowercase = "ERROR" __lowercase = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(_SCREAMING_SNAKE_CASE ) ): metric.compute(predictions=[] , references=[] , scheme=_SCREAMING_SNAKE_CASE )
655
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch snake_case__ : int = random.Random() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): if rng is None: __lowercase = global_rng __lowercase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _A ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str]=7 , lowerCamelCase : Optional[int]=400 , lowerCamelCase : Union[str, Any]=2_000 , lowerCamelCase : Union[str, Any]=10 , lowerCamelCase : Optional[int]=160 , lowerCamelCase : Union[str, Any]=8 , lowerCamelCase : str=0.0 , lowerCamelCase : Dict=4_000 , lowerCamelCase : Optional[Any]=False , lowerCamelCase : int=True , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = min_seq_length __lowercase = max_seq_length __lowercase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase = padding_value __lowercase = sampling_rate __lowercase = return_attention_mask __lowercase = do_normalize __lowercase = feature_size __lowercase = chunk_length __lowercase = hop_length def _snake_case ( self : str ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _snake_case ( self : Union[str, Any] , lowerCamelCase : int=False , lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' def _flatten(lowerCamelCase : Any ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: __lowercase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowercase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowercase = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = WhisperFeatureExtractor if is_speech_available() else None def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = WhisperFeatureExtractionTester(self ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = feat_extract_first.save_pretrained(lowerCamelCase )[0] check_json_file_has_correct_format(lowerCamelCase ) __lowercase = self.feature_extraction_class.from_pretrained(lowerCamelCase ) __lowercase = feat_extract_first.to_dict() __lowercase = feat_extract_second.to_dict() __lowercase = feat_extract_first.mel_filters __lowercase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = os.path.join(lowerCamelCase , "feat_extract.json" ) feat_extract_first.to_json_file(lowerCamelCase ) __lowercase = self.feature_extraction_class.from_json_file(lowerCamelCase ) __lowercase = feat_extract_first.to_dict() __lowercase = feat_extract_second.to_dict() __lowercase = feat_extract_first.mel_filters __lowercase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __lowercase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size __lowercase = feature_extractor(lowerCamelCase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __lowercase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features __lowercase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) # Test batched __lowercase = feature_extractor(lowerCamelCase , return_tensors="np" ).input_features __lowercase = feature_extractor(lowerCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowercase = [floats_list((1, x) )[0] for x in (800, 800, 800)] __lowercase = np.asarray(lowerCamelCase ) __lowercase = feature_extractor(lowerCamelCase , return_tensors="np" ).input_features __lowercase = feature_extractor(lowerCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) # Test truncation required __lowercase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __lowercase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] __lowercase = [x[: feature_extractor.n_samples] for x in speech_inputs] __lowercase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs_truncated] __lowercase = feature_extractor(lowerCamelCase , return_tensors="np" ).input_features __lowercase = feature_extractor(lowerCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) def _snake_case ( self : List[Any] ): '''simple docstring''' import torch __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = np.random.rand(100 , 32 ).astype(np.floataa ) __lowercase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowercase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __lowercase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __lowercase = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __lowercase = self._load_datasamples(1 ) __lowercase = WhisperFeatureExtractor() __lowercase = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCamelCase , atol=1e-4 ) ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = self._load_datasamples(1 )[0] __lowercase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue __lowercase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCamelCase )[0] self.assertTrue(np.all(np.mean(lowerCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase ) - 1 ) < 1e-3 ) )
655
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
1
import os import sys import unittest snake_case__ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path snake_case__ : Optional[int] = os.path.join(git_repo_path, """src""", """transformers""") snake_case__ : Tuple = """ {0} = None """ snake_case__ : List[str] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ snake_case__ : Dict = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ): '''simple docstring''' __lowercase = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(lowerCamelCase ) __lowercase = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(lowerCamelCase , "tokenizers" ) __lowercase = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(lowerCamelCase , "tensorflow_text" ) __lowercase = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(lowerCamelCase , "sentencepiece_and_tokenizers" ) __lowercase = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(lowerCamelCase , "sentencepiece_and_tensorflow_text" ) __lowercase = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(lowerCamelCase , "sentencepiece_and_tokenizers_and_vision" ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , lowerCamelCase ) self.assertIn("tensorflow_text" , lowerCamelCase ) self.assertIn("sentencepiece_and_tokenizers" , lowerCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertModel" , objects["tf"] ) self.assertIn("FlaxBertModel" , objects["flax"] ) self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertTokenizer" , objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer" , objects["sentencepiece_and_tokenizers"] ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(lowerCamelCase , "\nCONSTANT = None\n" ) __lowercase = create_dummy_object("function" , "'torch'" ) self.assertEqual( lowerCamelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) __lowercase = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n" __lowercase = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" __lowercase = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , lowerCamelCase )
655
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Input list must be a non empty list" ) if len(_SCREAMING_SNAKE_CASE ) == 1: return True __lowercase = series[1] - series[0] for index in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Input list must be a non empty list" ) __lowercase = 0 for val in series: answer += val return answer / len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
655
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
1
from __future__ import annotations class _A : '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : str=None ): '''simple docstring''' __lowercase = data __lowercase = None def __repr__( self : Union[str, Any] ): '''simple docstring''' __lowercase = [] __lowercase = self while temp: string_rep.append(f"""{temp.data}""" ) __lowercase = temp.next return "->".join(lowerCamelCase ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not elements_list: raise Exception("The Elements List is empty" ) __lowercase = __lowercase = Node(elements_list[0] ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): __lowercase = Node(elements_list[i] ) __lowercase = current.next return head def snake_case_ ( _SCREAMING_SNAKE_CASE ): if head_node is not None and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def snake_case_ ( ): from doctest import testmod testmod() __lowercase = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] ) print("Linked List:" ) print(_SCREAMING_SNAKE_CASE ) print("Elements in Reverse:" ) print_reverse(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
655
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
1
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker snake_case__ : int = """CompVis/stable-diffusion-v1-1""" snake_case__ : Dict = """CompVis/stable-diffusion-v1-2""" snake_case__ : Dict = """CompVis/stable-diffusion-v1-3""" snake_case__ : Optional[Any] = """CompVis/stable-diffusion-v1-4""" class _A ( _lowercase ): '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : AutoencoderKL , lowerCamelCase : CLIPTextModel , lowerCamelCase : CLIPTokenizer , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase : StableDiffusionSafetyChecker , lowerCamelCase : CLIPImageProcessor , lowerCamelCase : bool = True , ): '''simple docstring''' super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(lowerCamelCase ) __lowercase = StableDiffusionPipeline.from_pretrained(lowerCamelCase ) __lowercase = StableDiffusionPipeline.from_pretrained(lowerCamelCase ) __lowercase = StableDiffusionPipeline( vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , requires_safety_checker=lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return {k: getattr(self , lowerCamelCase ) for k in self.config.keys() if not k.startswith("_" )} def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def _snake_case ( self : Union[str, Any] , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Tuple , ): '''simple docstring''' return self.pipea( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) @torch.no_grad() def _snake_case ( self : int , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Any , ): '''simple docstring''' return self.pipea( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) @torch.no_grad() def _snake_case ( self : List[Any] , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' return self.pipea( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) @torch.no_grad() def _snake_case ( self : Any , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' return self.pipea( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) @torch.no_grad() def _snake_case ( self : Optional[Any] , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
655
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case__ : Optional[Any] = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ["""LayoutLMv3FeatureExtractor"""] snake_case__ : List[str] = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys snake_case__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() # edges = list of graph's edges __lowercase = get_edges(_SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __lowercase , __lowercase = edges.pop() chosen_vertices.add(_SCREAMING_SNAKE_CASE ) chosen_vertices.add(_SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_SCREAMING_SNAKE_CASE ) return chosen_vertices def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
655
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter snake_case__ : List[str] = """Create a default config file for Accelerate with only a few flags set.""" def snake_case_ ( _SCREAMING_SNAKE_CASE="no" , _SCREAMING_SNAKE_CASE = default_json_config_file , _SCREAMING_SNAKE_CASE = False ): __lowercase = Path(_SCREAMING_SNAKE_CASE ) path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False __lowercase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) __lowercase = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): __lowercase = torch.cuda.device_count() __lowercase = num_gpus __lowercase = False if num_gpus > 1: __lowercase = "MULTI_GPU" else: __lowercase = "NO" elif is_xpu_available() and use_xpu: __lowercase = torch.xpu.device_count() __lowercase = num_xpus __lowercase = False if num_xpus > 1: __lowercase = "MULTI_XPU" else: __lowercase = "NO" elif is_npu_available(): __lowercase = torch.npu.device_count() __lowercase = num_npus __lowercase = False if num_npus > 1: __lowercase = "MULTI_NPU" else: __lowercase = "NO" else: __lowercase = 0 __lowercase = True __lowercase = 1 __lowercase = "NO" __lowercase = ClusterConfig(**_SCREAMING_SNAKE_CASE ) config.to_json_file(_SCREAMING_SNAKE_CASE ) return path def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = parser.add_parser("default" , parents=_SCREAMING_SNAKE_CASE , help=_SCREAMING_SNAKE_CASE , formatter_class=_SCREAMING_SNAKE_CASE ) parser.add_argument( "--config_file" , default=_SCREAMING_SNAKE_CASE , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=_SCREAMING_SNAKE_CASE , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
655
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
1
import baseaa def snake_case_ ( _SCREAMING_SNAKE_CASE ): return baseaa.baaencode(string.encode("utf-8" ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): return baseaa.baadecode(_SCREAMING_SNAKE_CASE ).decode("utf-8" ) if __name__ == "__main__": snake_case__ : int = """Hello World!""" snake_case__ : Union[str, Any] = baseaa_encode(test) print(encoded) snake_case__ : Optional[Any] = baseaa_decode(encoded) print(decoded)
655
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case_ ( _SCREAMING_SNAKE_CASE ): if is_torch_version("<" , "2.0.0" ) or not hasattr(_SCREAMING_SNAKE_CASE , "_dynamo" ): return False return isinstance(_SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True ): __lowercase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowercase = is_compiled_module(_SCREAMING_SNAKE_CASE ) if is_compiled: __lowercase = model __lowercase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = model.module if not keep_fpaa_wrapper: __lowercase = getattr(_SCREAMING_SNAKE_CASE , "forward" ) __lowercase = model.__dict__.pop("_original_forward" , _SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(_SCREAMING_SNAKE_CASE , "__wrapped__" ): __lowercase = forward.__wrapped__ if forward == original_forward: break __lowercase = forward if getattr(_SCREAMING_SNAKE_CASE , "_converted_to_transformer_engine" , _SCREAMING_SNAKE_CASE ): convert_model(_SCREAMING_SNAKE_CASE , to_transformer_engine=_SCREAMING_SNAKE_CASE ) if is_compiled: __lowercase = model __lowercase = compiled_model return model def snake_case_ ( ): PartialState().wait_for_everyone() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if PartialState().distributed_type == DistributedType.TPU: xm.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @contextmanager def snake_case_ ( **_SCREAMING_SNAKE_CASE ): for key, value in kwargs.items(): __lowercase = str(_SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not hasattr(_SCREAMING_SNAKE_CASE , "__qualname__" ) and not hasattr(_SCREAMING_SNAKE_CASE , "__name__" ): __lowercase = getattr(_SCREAMING_SNAKE_CASE , "__class__" , _SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , "__qualname__" ): return obj.__qualname__ if hasattr(_SCREAMING_SNAKE_CASE , "__name__" ): return obj.__name__ return str(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key, value in source.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = destination.setdefault(_SCREAMING_SNAKE_CASE , {} ) merge_dicts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase = value return destination def snake_case_ ( _SCREAMING_SNAKE_CASE = None ): if port is None: __lowercase = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
655
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
1
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
1
from pathlib import Path import fire from tqdm import tqdm def snake_case_ ( _SCREAMING_SNAKE_CASE="ro" , _SCREAMING_SNAKE_CASE="en" , _SCREAMING_SNAKE_CASE="wmt16" , _SCREAMING_SNAKE_CASE=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) __lowercase = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) __lowercase = datasets.load_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if save_dir is None: __lowercase = F"""{dataset}-{pair}""" __lowercase = Path(_SCREAMING_SNAKE_CASE ) save_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets __lowercase = "val" if split == "validation" else split __lowercase = save_dir.joinpath(F"""{fn}.source""" ) __lowercase = save_dir.joinpath(F"""{fn}.target""" ) __lowercase = src_path.open("w+" ) __lowercase = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __lowercase = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
655
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
1
import os import jsonlines import numpy as np from tqdm import tqdm snake_case__ : Dict = 20_48 snake_case__ : str = 40_96 snake_case__ : List[str] = 42 snake_case__ : Dict = os.environ.pop("""PROCESS_TRAIN""", """false""") snake_case__ : Optional[Any] = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def snake_case_ ( _SCREAMING_SNAKE_CASE ): def choose_first(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) == 1: __lowercase = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __lowercase = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a __lowercase = {"id": example["id"]} __lowercase = example["annotations"] __lowercase = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: __lowercase = ["yes"] if 1 in yes_no_answer else ["no"] __lowercase = __lowercase = [] __lowercase = __lowercase = [] __lowercase = ["<cls>"] else: __lowercase = ["short"] __lowercase = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available __lowercase = ["long"] __lowercase = choose_first(annotation["long_answer"] , is_long_answer=_SCREAMING_SNAKE_CASE ) __lowercase = [] answer.update(_SCREAMING_SNAKE_CASE ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: __lowercase = True else: __lowercase = False __lowercase = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , _SCREAMING_SNAKE_CASE ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = _get_single_answer(_SCREAMING_SNAKE_CASE ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __lowercase = example["document"]["tokens"] __lowercase = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(_SCREAMING_SNAKE_CASE ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __lowercase = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __lowercase = example["document"]["tokens"] __lowercase = answer["start_token"] __lowercase = answer["end_token"] __lowercase = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __lowercase = " ".join(context[start_token:end_token] ) # checking above code if assertion: __lowercase = doc["is_html"][answer["start_token"] : answer["end_token"]] __lowercase = doc["token"][answer["start_token"] : answer["end_token"]] __lowercase = " ".join([old[i] for i in range(len(_SCREAMING_SNAKE_CASE ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , _SCREAMING_SNAKE_CASE , end="\n" ) print("Old:" , _SCREAMING_SNAKE_CASE , end="\n\n" ) return { "context": " ".join(_SCREAMING_SNAKE_CASE ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2_0_4_8 , _SCREAMING_SNAKE_CASE=4_0_9_6 , _SCREAMING_SNAKE_CASE=True ): # overlap will be of doc_stride - q_len __lowercase = get_context_and_ans(_SCREAMING_SNAKE_CASE , assertion=_SCREAMING_SNAKE_CASE ) __lowercase = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __lowercase = tokenizer(example["question"]["text"] , out["context"] ).input_ids __lowercase = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __lowercase = [] __lowercase = [] __lowercase = input_ids[:q_len] __lowercase = range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) , max_length - doc_stride ) for i in doc_start_indices: __lowercase = i + max_length - q_len __lowercase = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(_SCREAMING_SNAKE_CASE ), "end_token": [-1_0_0] * len(_SCREAMING_SNAKE_CASE ), "category": category, }, } __lowercase = out["context"].split() __lowercase = splitted_context[answer["end_token"]] __lowercase = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=_SCREAMING_SNAKE_CASE , ).input_ids ) __lowercase = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __lowercase = len(tokenizer(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __lowercase = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive __lowercase = answer["start_token"] __lowercase = answer["end_token"] if assertion: __lowercase = tokenizer.decode(_SCREAMING_SNAKE_CASE ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , _SCREAMING_SNAKE_CASE , end="\n\n" ) if len(_SCREAMING_SNAKE_CASE ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __lowercase = input_ids[:q_len] __lowercase = range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) , max_length - doc_stride ) __lowercase = [] __lowercase = [] __lowercase = [] __lowercase = [] # null, yes, no, long, short for i in doc_start_indices: __lowercase = i + max_length - q_len __lowercase = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __lowercase = start_token - i + q_len __lowercase = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: __lowercase = -1_0_0 __lowercase = -1_0_0 answers_category.append("null" ) __lowercase = inputs[-1][start_token : end_token + 1] answers_start_token.append(_SCREAMING_SNAKE_CASE ) answers_end_token.append(_SCREAMING_SNAKE_CASE ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(_SCREAMING_SNAKE_CASE ) ) print("Old:" , tokenizer.decode(_SCREAMING_SNAKE_CASE ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2_0_4_8 , _SCREAMING_SNAKE_CASE=4_0_9_6 , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_strided_contexts_and_ans( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , doc_stride=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , assertion=_SCREAMING_SNAKE_CASE , ) return example def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with jsonlines.open(_SCREAMING_SNAKE_CASE , "a" ) as writer: for example in tqdm(_SCREAMING_SNAKE_CASE , total=len(_SCREAMING_SNAKE_CASE ) , desc="Saving samples ... " ): __lowercase = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer snake_case__ : Union[str, Any] = load_dataset("""natural_questions""") snake_case__ : Union[str, Any] = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") snake_case__ : List[Any] = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] snake_case__ : List[str] = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } snake_case__ : str = data.map(prepare_inputs, fn_kwargs=fn_kwargs) snake_case__ : Dict = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) snake_case__ : str = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
655
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
1
from collections.abc import Generator from math import sin def snake_case_ ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != 3_2: raise ValueError("Input must be of length 32" ) __lowercase = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case_ ( _SCREAMING_SNAKE_CASE ): if i < 0: raise ValueError("Input must be non-negative" ) __lowercase = format(_SCREAMING_SNAKE_CASE , "08x" )[-8:] __lowercase = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = b"" for char in message: bit_string += format(_SCREAMING_SNAKE_CASE , "08b" ).encode("utf-8" ) __lowercase = format(len(_SCREAMING_SNAKE_CASE ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_SCREAMING_SNAKE_CASE ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def snake_case_ ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) % 5_1_2 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(_SCREAMING_SNAKE_CASE ) , 5_1_2 ): __lowercase = bit_string[pos : pos + 5_1_2] __lowercase = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def snake_case_ ( _SCREAMING_SNAKE_CASE ): if i < 0: raise ValueError("Input must be non-negative" ) __lowercase = format(_SCREAMING_SNAKE_CASE , "032b" ) __lowercase = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(_SCREAMING_SNAKE_CASE , 2 ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return (a + b) % 2**3_2 def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = preprocess(_SCREAMING_SNAKE_CASE ) __lowercase = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __lowercase = 0x6_7_4_5_2_3_0_1 __lowercase = 0xe_f_c_d_a_b_8_9 __lowercase = 0x9_8_b_a_d_c_f_e __lowercase = 0x1_0_3_2_5_4_7_6 __lowercase = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_SCREAMING_SNAKE_CASE ): __lowercase = aa __lowercase = ba __lowercase = ca __lowercase = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowercase = d ^ (b & (c ^ d)) __lowercase = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowercase = c ^ (d & (b ^ c)) __lowercase = (5 * i + 1) % 1_6 elif i <= 4_7: __lowercase = b ^ c ^ d __lowercase = (3 * i + 5) % 1_6 else: __lowercase = c ^ (b | not_aa(_SCREAMING_SNAKE_CASE )) __lowercase = (7 * i) % 1_6 __lowercase = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __lowercase = d __lowercase = c __lowercase = b __lowercase = sum_aa(_SCREAMING_SNAKE_CASE , left_rotate_aa(_SCREAMING_SNAKE_CASE , shift_amounts[i] ) ) # Add hashed chunk to running total __lowercase = sum_aa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = sum_aa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = sum_aa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = sum_aa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = reformat_hex(_SCREAMING_SNAKE_CASE ) + reformat_hex(_SCREAMING_SNAKE_CASE ) + reformat_hex(_SCREAMING_SNAKE_CASE ) + reformat_hex(_SCREAMING_SNAKE_CASE ) return digest if __name__ == "__main__": import doctest doctest.testmod()
655
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _A ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : List[Any] = IFImgaImgSuperResolutionPipeline _snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} _snake_case : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) _snake_case : Any = PipelineTesterMixin.required_optional_params - {"""latents"""} def _snake_case ( self : Optional[Any] ): '''simple docstring''' return self._get_superresolution_dummy_components() def _snake_case ( self : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : str=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self : Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _snake_case ( self : Dict ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self : List[str] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self : int ): '''simple docstring''' self._test_save_load_local() def _snake_case ( self : Dict ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
655
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
1
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
1
from math import sqrt def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" __lowercase = True # 0 and 1 are none primes. if number <= 1: __lowercase = False for divisor in range(2 , int(round(sqrt(_SCREAMING_SNAKE_CASE ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowercase = False break # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'status' must been from type bool" return status def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowercase = list(range(2 , n + 1 ) ) __lowercase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowercase = 0 # filters actual prime numbers. __lowercase = [x for x in begin_list if x != 0] # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" __lowercase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_SCREAMING_SNAKE_CASE ): ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0" __lowercase = [] # this list will be returns of the function. # potential prime number factors. __lowercase = 2 __lowercase = number if number == 0 or number == 1: ans.append(_SCREAMING_SNAKE_CASE ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_SCREAMING_SNAKE_CASE ): while quotient != 1: if is_prime(_SCREAMING_SNAKE_CASE ) and (quotient % factor == 0): ans.append(_SCREAMING_SNAKE_CASE ) quotient /= factor else: factor += 1 else: ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(_SCREAMING_SNAKE_CASE ) __lowercase = max(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(_SCREAMING_SNAKE_CASE ) __lowercase = min(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 == 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 == 0 def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 != 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 != 0 def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(_SCREAMING_SNAKE_CASE ) ), "'number' must been an int, even and > 2" __lowercase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowercase = get_prime_numbers(_SCREAMING_SNAKE_CASE ) __lowercase = len(_SCREAMING_SNAKE_CASE ) # run variable for while-loops. __lowercase = 0 __lowercase = None # exit variable. for break up the loops __lowercase = True while i < len_pn and loop: __lowercase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowercase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (len(_SCREAMING_SNAKE_CASE ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowercase = 0 while numbera != 0: __lowercase = numbera % numbera __lowercase = numbera __lowercase = rest # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowercase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowercase = prime_factorization(_SCREAMING_SNAKE_CASE ) __lowercase = prime_factorization(_SCREAMING_SNAKE_CASE ) elif numbera == 1 or numbera == 1: __lowercase = [] __lowercase = [] __lowercase = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowercase = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) __lowercase = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): ans *= n else: __lowercase = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): ans *= n done.append(_SCREAMING_SNAKE_CASE ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowercase = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): ans *= n done.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int" __lowercase = 0 __lowercase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): ans += 1 # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and is_prime( _SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int" return ans def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert ( is_prime(_SCREAMING_SNAKE_CASE ) and is_prime(_SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowercase = p_number_a + 1 # jump to the next number __lowercase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): number += 1 while number < p_number_a: ans.append(_SCREAMING_SNAKE_CASE ) number += 1 # fetch the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): number += 1 # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ans[0] != p_number_a and ans[len(_SCREAMING_SNAKE_CASE ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1" __lowercase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert ans[0] == 1 and ans[len(_SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)" return ans def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number > 1 ), "'number' must been an int and >= 1" __lowercase = get_divisors(_SCREAMING_SNAKE_CASE ) # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (divisors[0] == 1) and (divisors[len(_SCREAMING_SNAKE_CASE ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowercase = gcd(abs(_SCREAMING_SNAKE_CASE ) , abs(_SCREAMING_SNAKE_CASE ) ) # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0" __lowercase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def snake_case_ ( _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0" __lowercase = 0 __lowercase = 1 __lowercase = 1 # this will be return for _ in range(n - 1 ): __lowercase = ans ans += fiba __lowercase = tmp return ans
655
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(1_00, 0.2_5) = }''') print(F'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
655
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
1
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record snake_case__ : List[Any] = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ snake_case__ : Optional[int] = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ snake_case__ : Optional[int] = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return float((preds == labels).mean() ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="binary" ): __lowercase = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = {} for id_pred, label in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" __lowercase = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __lowercase = [(pred, label)] __lowercase , __lowercase = [], [] for question, preds_labels in question_map.items(): __lowercase , __lowercase = zip(*_SCREAMING_SNAKE_CASE ) __lowercase = fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average="macro" ) fas.append(_SCREAMING_SNAKE_CASE ) __lowercase = int(sum(pred == label for pred, label in preds_labels ) == len(_SCREAMING_SNAKE_CASE ) ) ems.append(_SCREAMING_SNAKE_CASE ) __lowercase = float(sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) ) __lowercase = sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) __lowercase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Tuple ): '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def _snake_case ( self : Tuple ): '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict ): '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase , lowerCamelCase )} elif self.config_name == "cb": return acc_and_fa(lowerCamelCase , lowerCamelCase , fa_avg="macro" ) elif self.config_name == "record": __lowercase = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] __lowercase = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(lowerCamelCase , lowerCamelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(lowerCamelCase , lowerCamelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowerCamelCase , lowerCamelCase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
655
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : int = LayoutLMTokenizer _snake_case : List[str] = LayoutLMTokenizerFast _snake_case : List[str] = True _snake_case : Tuple = True def _snake_case ( self : Optional[int] ): '''simple docstring''' super().setUp() __lowercase = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _snake_case ( self : Dict , **lowerCamelCase : Union[str, Any] ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def _snake_case ( self : Dict , lowerCamelCase : Any ): '''simple docstring''' __lowercase = "UNwant\u00E9d,running" __lowercase = "unwanted, running" return input_text, output_text def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self : Dict ): '''simple docstring''' pass
655
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _A : '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : List[Any]=2 , lowerCamelCase : Optional[Any]=32 , lowerCamelCase : Union[str, Any]=16 , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Optional[int]=True , lowerCamelCase : Dict=32 , lowerCamelCase : Any=4 , lowerCamelCase : List[Any]=[0, 1, 2, 3] , lowerCamelCase : Union[str, Any]=4 , lowerCamelCase : Dict=37 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Dict=0.02 , lowerCamelCase : str=3 , lowerCamelCase : int=[1, 384, 24, 24] , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Union[str, Any]=None , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = backbone_out_indices __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = num_labels __lowercase = backbone_featmap_shape __lowercase = scope __lowercase = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=lowerCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def _snake_case ( self : Tuple , lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = DPTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ): '''simple docstring''' __lowercase = self.num_labels __lowercase = DPTForDepthEstimation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _snake_case ( self : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : List[str] ): '''simple docstring''' __lowercase = self.num_labels __lowercase = DPTForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _A ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Tuple = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _snake_case : Dict = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case : Tuple = False _snake_case : Tuple = False _snake_case : List[Any] = False def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = DPTModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def _snake_case ( self : Optional[int] ): '''simple docstring''' pass def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def _snake_case ( self : int ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) def _snake_case ( self : Dict ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True if model_class in get_values(lowerCamelCase ): continue __lowercase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) __lowercase = model(**lowerCamelCase ).loss loss.backward() def _snake_case ( self : int ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = False __lowercase = True if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue __lowercase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) __lowercase = model(**lowerCamelCase ).loss loss.backward() def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: __lowercase = model_class(config=lowerCamelCase ) # Skip the check for the backbone __lowercase = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __lowercase = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : Tuple ): '''simple docstring''' pass @slow def _snake_case ( self : Dict ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __lowercase = DPTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = "add" with self.assertRaises(lowerCamelCase ): __lowercase = DPTForDepthEstimation(lowerCamelCase ) def snake_case_ ( ): __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __lowercase = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(lowerCamelCase ) __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.predicted_depth # verify the predicted depth __lowercase = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , lowerCamelCase ) __lowercase = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , lowerCamelCase , atol=1e-4 ) )
655
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() snake_case__ : List[Any] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __lowercase = BitConfig( conv_layer=_SCREAMING_SNAKE_CASE , num_labels=1_0_0_0 , idalabel=_SCREAMING_SNAKE_CASE , labelaid=_SCREAMING_SNAKE_CASE , ) return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "stem.conv" in name: __lowercase = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: __lowercase = name.replace("blocks" , "layers" ) if "head.fc" in name: __lowercase = name.replace("head.fc" , "classifier.1" ) if name.startswith("norm" ): __lowercase = "bit." + name if "bit" not in name and "classifier" not in name: __lowercase = "bit.encoder." + name return name def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_config(_SCREAMING_SNAKE_CASE ) # load original model from timm __lowercase = create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model __lowercase = timm_model.state_dict() for key in state_dict.copy().keys(): __lowercase = state_dict.pop(_SCREAMING_SNAKE_CASE ) __lowercase = val.squeeze() if "head" in key else val # load HuggingFace model __lowercase = BitForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # create image processor __lowercase = create_transform(**resolve_data_config({} , model=_SCREAMING_SNAKE_CASE ) ) __lowercase = transform.transforms __lowercase = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } __lowercase = BitImageProcessor( do_resize=_SCREAMING_SNAKE_CASE , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_SCREAMING_SNAKE_CASE , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_SCREAMING_SNAKE_CASE , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __lowercase = prepare_img() __lowercase = transform(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) __lowercase = processor(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # verify logits with torch.no_grad(): __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits print("Logits:" , logits[0, :3] ) print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] ) __lowercase = timm_model(_SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(F"""ybelkada/{model_name}""" ) processor.push_to_hub(F"""ybelkada/{model_name}""" ) if __name__ == "__main__": snake_case__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) snake_case__ : Tuple = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
655
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
1
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Union[str, Any] = """▁""" snake_case__ : Dict = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} snake_case__ : Optional[Any] = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } snake_case__ : Any = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } snake_case__ : Union[str, Any] = { """ernie-m-base""": 5_14, """ernie-m-large""": 5_14, } snake_case__ : Optional[int] = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = ["input_ids"] _snake_case : Union[str, Any] = VOCAB_FILES_NAMES _snake_case : Dict = PRETRAINED_INIT_CONFIGURATION _snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[str] = RESOURCE_FILES_NAMES def __init__( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : List[str]=None , lowerCamelCase : int=False , lowerCamelCase : List[Any]="utf8" , lowerCamelCase : Optional[int]="[UNK]" , lowerCamelCase : List[str]="[SEP]" , lowerCamelCase : int="[PAD]" , lowerCamelCase : List[str]="[CLS]" , lowerCamelCase : Optional[Any]="[MASK]" , lowerCamelCase : Optional[Dict[str, Any]] = None , **lowerCamelCase : List[str] , ): '''simple docstring''' __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , vocab_file=lowerCamelCase , encoding=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) __lowercase = do_lower_case __lowercase = sentencepiece_model_ckpt __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __lowercase = self.load_vocab(filepath=lowerCamelCase ) else: __lowercase = {self.sp_model.id_to_piece(lowerCamelCase ): id for id in range(self.sp_model.get_piece_size() )} __lowercase = {v: k for k, v in self.vocab.items()} def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' if text is None: return None __lowercase = self.tokenize(lowerCamelCase ) __lowercase , __lowercase = "", [] for i, ch in enumerate(lowerCamelCase ): if ch in self.SP_CHAR_MAPPING: __lowercase = self.SP_CHAR_MAPPING.get(lowerCamelCase ) else: __lowercase = unicodedata.normalize("NFKC" , lowerCamelCase ) if self.is_whitespace(lowerCamelCase ): continue normalized_text += ch char_mapping.extend([i] * len(lowerCamelCase ) ) __lowercase , __lowercase , __lowercase = normalized_text, [], 0 if self.do_lower_case: __lowercase = text.lower() for token in split_tokens: if token[:1] == "▁": __lowercase = token[1:] __lowercase = text[offset:].index(lowerCamelCase ) + offset __lowercase = start + len(lowerCamelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __lowercase = end return token_mapping @property def _snake_case ( self : Any ): '''simple docstring''' return len(self.vocab ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Optional[int] ): '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _snake_case ( self : int , lowerCamelCase : List[str] ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(lowerCamelCase , lowerCamelCase ) for c in text) ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : int=False , lowerCamelCase : Tuple=64 , lowerCamelCase : Optional[int]=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get("enable_sampling" ) is True: __lowercase = True if self.sp_model_kwargs.get("alpha" ) is not None: __lowercase = self.sp_model_kwargs.get("alpha" ) if self.sp_model_kwargs.get("nbest_size" ) is not None: __lowercase = self.sp_model_kwargs.get("nbest_size" ) if not enable_sampling: __lowercase = self.sp_model.EncodeAsPieces(lowerCamelCase ) else: __lowercase = self.sp_model.SampleEncodeAsPieces(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = [] for pi, piece in enumerate(lowerCamelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(lowerCamelCase ) and pi != 0: new_pieces.append(lowerCamelCase ) continue else: continue __lowercase = 0 for i, chunk in enumerate(lowerCamelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(lowerCamelCase ) or self.is_punct(lowerCamelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(lowerCamelCase ) __lowercase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __lowercase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __lowercase = i if len(lowerCamelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _snake_case ( self : Any , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ).replace(lowerCamelCase , " " ).strip() return out_string def _snake_case ( self : Union[str, Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = self.convert_ids_to_tokens(lowerCamelCase ) __lowercase = "".join(lowerCamelCase ).replace(lowerCamelCase , " " ).strip() return out_string def _snake_case ( self : Tuple , lowerCamelCase : List[str] ): '''simple docstring''' return self.vocab.get(lowerCamelCase , self.vocab.get(self.unk_token ) ) def _snake_case ( self : List[Any] , lowerCamelCase : List[Any] ): '''simple docstring''' return self.reverse_vocab.get(lowerCamelCase , self.unk_token ) def _snake_case ( self : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : List[str]=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _snake_case ( self : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : str=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _snake_case ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int=None , lowerCamelCase : List[str]=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : Union[str, Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(lowerCamelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(lowerCamelCase ) + 1) + [1] * (len(lowerCamelCase ) + 3) def _snake_case ( self : Any , lowerCamelCase : int ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def _snake_case ( self : List[str] , lowerCamelCase : Any ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _snake_case ( self : List[str] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def _snake_case ( self : Optional[int] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(lowerCamelCase ) == 1: __lowercase = unicodedata.category(lowerCamelCase ) if cat == "Zs": return True return False def _snake_case ( self : Optional[Any] , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = {} with io.open(lowerCamelCase , "r" , encoding="utf-8" ) as f: for index, line in enumerate(lowerCamelCase ): __lowercase = line.rstrip("\n" ) __lowercase = int(lowerCamelCase ) return token_to_idx def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' __lowercase = 0 if os.path.isdir(lowerCamelCase ): __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: __lowercase = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) __lowercase = token_index writer.write(token + "\n" ) index += 1 __lowercase = os.path.join(lowerCamelCase , "sentencepiece.bpe.model" ) with open(lowerCamelCase , "wb" ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (vocab_file,)
655
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
1
from __future__ import annotations def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = position __lowercase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __lowercase = [] for position in positions: __lowercase , __lowercase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_SCREAMING_SNAKE_CASE ) return permissible_positions def snake_case_ ( _SCREAMING_SNAKE_CASE ): return not any(elem == 0 for row in board for elem in row ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if is_complete(_SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): __lowercase , __lowercase = position if board[y][x] == 0: __lowercase = curr + 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , curr + 1 ): return True __lowercase = 0 return False def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [[0 for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): __lowercase = 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board __lowercase = 0 __lowercase = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
655
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
1
snake_case__ : Optional[int] = """Alexander Joslin""" import operator as op from .stack import Stack def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} __lowercase = Stack() __lowercase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 __lowercase = operator_stack.peek() operator_stack.pop() __lowercase = operand_stack.peek() operand_stack.pop() __lowercase = operand_stack.peek() operand_stack.pop() __lowercase = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": snake_case__ : Union[str, Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
655
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] __lowercase = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(_SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase = position % (lowest * 2) # puts it in bounds __lowercase = min(_SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_SCREAMING_SNAKE_CASE ) __lowercase = ["".join(_SCREAMING_SNAKE_CASE ) for row in temp_grid] __lowercase = "".join(_SCREAMING_SNAKE_CASE ) return output_string def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [] __lowercase = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string __lowercase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] # generates template for position in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = position % (lowest * 2) # puts it in bounds __lowercase = min(_SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) __lowercase = 0 for row in temp_grid: # fills in the characters __lowercase = input_string[counter : counter + len(_SCREAMING_SNAKE_CASE )] grid.append(list(_SCREAMING_SNAKE_CASE ) ) counter += len(_SCREAMING_SNAKE_CASE ) __lowercase = "" # reads as zigzag for position in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = position % (lowest * 2) # puts it in bounds __lowercase = min(_SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = {} for key_guess in range(1 , len(_SCREAMING_SNAKE_CASE ) ): # tries every key __lowercase = decrypt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
655
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
1
import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1_0_0_0 ): if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __lowercase = n - 1 __lowercase = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __lowercase = 0 while count < prec: __lowercase = random.randint(2 , n - 1 ) __lowercase = bin_exp_mod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if b != 1: __lowercase = True for _ in range(_SCREAMING_SNAKE_CASE ): if b == n - 1: __lowercase = False break __lowercase = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": snake_case__ : Dict = abs(int(input("""Enter bound : """).strip())) print("""Here's the list of primes:""") print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
655
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = os.path.join(args.tf_model_dir , "parameters.json" ) __lowercase = json.loads(open(_SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): __lowercase = args.output + ".pt" __lowercase = OrderedDict() with tf.device("/CPU:0" ): __lowercase = tf.train.load_checkpoint(args.tf_model_dir ) __lowercase = reader.get_variable_to_shape_map() for key_name in shapes.keys(): __lowercase = reader.get_tensor(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): __lowercase = int(key_name[9] ) elif key_name.startswith("pasts/out" ): __lowercase = 8 __lowercase = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time __lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.startswith("model/moe" ): __lowercase = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): __lowercase = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player __lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith("/softmlp/kernel" ): __lowercase = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player __lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): __lowercase = key_name[-9:-7] for i in range(1_6 ): __lowercase = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) __lowercase = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.startswith("model/mlp" ): __lowercase = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): __lowercase = "model.blocks.%d.feed_forward.mlp.wi.weight" % player __lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith("/p1/bias" ): __lowercase = "model.blocks.%d.feed_forward.mlp.wi.bias" % player __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith("/p2/kernel" ): __lowercase = "model.blocks.%d.feed_forward.mlp.wo.weight" % player __lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith("/p2/bias" ): __lowercase = "model.blocks.%d.feed_forward.mlp.wo.bias" % player __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.startswith("model/ln" ): __lowercase = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): __lowercase = "model.blocks.%d.feed_forward.norm.bias" % player __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith("/g" ): __lowercase = "model.blocks.%d.feed_forward.norm.weight" % player __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.startswith("model/att" ): __lowercase = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): __lowercase = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum __lowercase = state[:, 0, :, :] __lowercase = state[:, 1, :, :] __lowercase = state[:, 2, :, :] __lowercase = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __lowercase = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __lowercase = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __lowercase = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) __lowercase = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) __lowercase = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith("/o/kernel" ): __lowercase = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player __lowercase = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.startswith("model/an" ): __lowercase = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): __lowercase = "model.blocks.%d.self_attn.norm.bias" % player __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith("/g" ): __lowercase = "model.blocks.%d.self_attn.norm.weight" % player __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): __lowercase = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] __lowercase = "model.%s.weight" % nlayer __lowercase = vnp.copy() # same in embedded __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) if key_name.startswith("model/wte" ): __lowercase = "lm_head.weight" __lowercase = vnp.copy() # same in embedded __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.startswith("model/wob" ): __lowercase = "final_logits_bias" __lowercase = vnp.copy() # same in embedded __lowercase = state.reshape((1, -1) ) __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": __lowercase = "model.last_project.weight" __lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": __lowercase = "model.last_project.bias" __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ) torch.save(_SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") snake_case__ : Dict = parser.parse_args() convert_tf_gptsan_to_pt(args)
655
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = [[0] * n for i in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): __lowercase = y_points[i] for i in range(2 , _SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
655
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case__ : Dict = logging.getLogger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return (preds == labels).mean() @dataclass class _A : '''simple docstring''' _snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _A : '''simple docstring''' _snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _snake_case : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) _snake_case : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _snake_case : bool = field( default=_lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) try: __lowercase = processors[data_args.task_name]() __lowercase = processor.get_labels() __lowercase = len(_SCREAMING_SNAKE_CASE ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_SCREAMING_SNAKE_CASE , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets __lowercase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __lowercase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_SCREAMING_SNAKE_CASE ) -> Dict: __lowercase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , p.label_ids )} # Data collator __lowercase = DataCollatorWithPadding(_SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __lowercase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowercase = trainer.evaluate() __lowercase = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(_SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) writer.write("%s = %s\n" % (key, value) ) results.update(_SCREAMING_SNAKE_CASE ) return results def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
1
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput snake_case__ : str = """scheduler_config.json""" class _A ( _lowercase ): '''simple docstring''' _snake_case : Union[str, Any] = 1 _snake_case : int = 2 _snake_case : Optional[int] = 3 _snake_case : Optional[int] = 4 _snake_case : int = 5 @dataclass class _A ( _lowercase ): '''simple docstring''' _snake_case : jnp.ndarray class _A : '''simple docstring''' _snake_case : Optional[int] = SCHEDULER_CONFIG_NAME _snake_case : Dict = ["""dtype"""] _snake_case : Dict = [] _snake_case : Union[str, Any] = True @classmethod def _snake_case ( cls : Dict , lowerCamelCase : Dict[str, Any] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : Optional[Any]=False , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' __lowercase , __lowercase = cls.load_config( pretrained_model_name_or_path=lowerCamelCase , subfolder=lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase , ) __lowercase , __lowercase = cls.from_config(lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase ) if hasattr(lowerCamelCase , "create_state" ) and getattr(lowerCamelCase , "has_state" , lowerCamelCase ): __lowercase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def _snake_case ( self : List[str] , lowerCamelCase : Union[str, os.PathLike] , lowerCamelCase : bool = False , **lowerCamelCase : List[str] ): '''simple docstring''' self.save_config(save_directory=lowerCamelCase , push_to_hub=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : int ): '''simple docstring''' return self._get_compatibles() @classmethod def _snake_case ( cls : Union[str, Any] ): '''simple docstring''' __lowercase = list(set([cls.__name__] + cls._compatibles ) ) __lowercase = importlib.import_module(__name__.split("." )[0] ) __lowercase = [ getattr(lowerCamelCase , lowerCamelCase ) for c in compatible_classes_str if hasattr(lowerCamelCase , lowerCamelCase ) ] return compatible_classes def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert len(_SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_SCREAMING_SNAKE_CASE ) - x.ndim) ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.9_9_9 , _SCREAMING_SNAKE_CASE=jnp.floataa ): def alpha_bar(_SCREAMING_SNAKE_CASE ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowercase = [] for i in range(_SCREAMING_SNAKE_CASE ): __lowercase = i / num_diffusion_timesteps __lowercase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_SCREAMING_SNAKE_CASE ) / alpha_bar(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return jnp.array(_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class _A : '''simple docstring''' _snake_case : jnp.ndarray _snake_case : jnp.ndarray _snake_case : jnp.ndarray @classmethod def _snake_case ( cls : str , lowerCamelCase : Any ): '''simple docstring''' __lowercase = scheduler.config if config.trained_betas is not None: __lowercase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowercase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) __lowercase = 1.0 - betas __lowercase = jnp.cumprod(lowerCamelCase , axis=0 ) return cls( alphas=lowerCamelCase , betas=lowerCamelCase , alphas_cumprod=lowerCamelCase , ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = state.alphas_cumprod __lowercase = alphas_cumprod[timesteps] ** 0.5 __lowercase = sqrt_alpha_prod.flatten() __lowercase = broadcast_to_shape_from_left(_SCREAMING_SNAKE_CASE , original_samples.shape ) __lowercase = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowercase = sqrt_one_minus_alpha_prod.flatten() __lowercase = broadcast_to_shape_from_left(_SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = get_sqrt_alpha_prod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = get_sqrt_alpha_prod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
655
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
1
from collections import deque class _A : '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = process_name # process name __lowercase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __lowercase = arrival_time __lowercase = burst_time # remaining burst time __lowercase = 0 # total time of the process wait in ready queue __lowercase = 0 # time from arrival time to completion time class _A : '''simple docstring''' def __init__( self : Any , lowerCamelCase : int , lowerCamelCase : list[int] , lowerCamelCase : deque[Process] , lowerCamelCase : int , ): '''simple docstring''' __lowercase = number_of_queues # time slice of queues that round robin algorithm applied __lowercase = time_slices # unfinished process is in this ready_queue __lowercase = queue # current time __lowercase = current_time # finished process is in this sequence queue __lowercase = deque() def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _snake_case ( self : Any , lowerCamelCase : list[Process] ): '''simple docstring''' __lowercase = [] for i in range(len(lowerCamelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _snake_case ( self : Optional[int] , lowerCamelCase : list[Process] ): '''simple docstring''' __lowercase = [] for i in range(len(lowerCamelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[Process] ): '''simple docstring''' __lowercase = [] for i in range(len(lowerCamelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def _snake_case ( self : str , lowerCamelCase : deque[Process] ): '''simple docstring''' return [q.burst_time for q in queue] def _snake_case ( self : int , lowerCamelCase : Process ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _snake_case ( self : List[Any] , lowerCamelCase : deque[Process] ): '''simple docstring''' __lowercase = deque() # sequence deque of finished process while len(lowerCamelCase ) != 0: __lowercase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(lowerCamelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __lowercase = 0 # set the process's turnaround time because it is finished __lowercase = self.current_time - cp.arrival_time # set the completion time __lowercase = self.current_time # add the process to queue that has finished queue finished.append(lowerCamelCase ) self.finish_queue.extend(lowerCamelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _snake_case ( self : str , lowerCamelCase : deque[Process] , lowerCamelCase : int ): '''simple docstring''' __lowercase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(lowerCamelCase ) ): __lowercase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(lowerCamelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __lowercase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(lowerCamelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __lowercase = 0 # set the finish time __lowercase = self.current_time # update the process' turnaround time because it is finished __lowercase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(lowerCamelCase ) self.finish_queue.extend(lowerCamelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): __lowercase , __lowercase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest snake_case__ : List[Any] = Process("""P1""", 0, 53) snake_case__ : List[str] = Process("""P2""", 0, 17) snake_case__ : List[Any] = Process("""P3""", 0, 68) snake_case__ : Union[str, Any] = Process("""P4""", 0, 24) snake_case__ : Union[str, Any] = 3 snake_case__ : Union[str, Any] = [17, 25] snake_case__ : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) snake_case__ : Optional[Any] = Process("""P1""", 0, 53) snake_case__ : Dict = Process("""P2""", 0, 17) snake_case__ : Dict = Process("""P3""", 0, 68) snake_case__ : int = Process("""P4""", 0, 24) snake_case__ : Union[str, Any] = 3 snake_case__ : Optional[Any] = [17, 25] snake_case__ : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) snake_case__ : List[str] = MLFQ(number_of_queues, time_slices, queue, 0) snake_case__ : List[Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
655
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
1
from __future__ import annotations snake_case__ : Optional[int] = 8.9_8_8e9 # units = N * m^s * C^-2 def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if distance < 0: raise ValueError("Distance cannot be negative" ) if force == 0: __lowercase = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __lowercase = abs(_SCREAMING_SNAKE_CASE ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __lowercase = abs(_SCREAMING_SNAKE_CASE ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __lowercase = (COULOMBS_CONSTANT * charge_product / abs(_SCREAMING_SNAKE_CASE )) ** 0.5 return {"distance": distance} raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
655
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
1
from __future__ import annotations import time snake_case__ : Tuple = list[tuple[int, int]] snake_case__ : Optional[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case__ : Any = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _A : '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Node | None ): '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = parent class _A : '''simple docstring''' def __init__( self : int , lowerCamelCase : tuple[int, int] , lowerCamelCase : tuple[int, int] ): '''simple docstring''' __lowercase = Node(start[1] , start[0] , goal[1] , goal[0] , lowerCamelCase ) __lowercase = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCamelCase ) __lowercase = [self.start] __lowercase = False def _snake_case ( self : Optional[int] ): '''simple docstring''' while self.node_queue: __lowercase = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __lowercase = True return self.retrace_path(lowerCamelCase ) __lowercase = self.get_successors(lowerCamelCase ) for node in successors: self.node_queue.append(lowerCamelCase ) if not self.reached: return [self.start.pos] return None def _snake_case ( self : Dict , lowerCamelCase : Node ): '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowerCamelCase , lowerCamelCase , self.target.pos_y , self.target.pos_x , lowerCamelCase ) ) return successors def _snake_case ( self : Any , lowerCamelCase : Node | None ): '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class _A : '''simple docstring''' def __init__( self : Any , lowerCamelCase : Any , lowerCamelCase : str ): '''simple docstring''' __lowercase = BreadthFirstSearch(lowerCamelCase , lowerCamelCase ) __lowercase = BreadthFirstSearch(lowerCamelCase , lowerCamelCase ) __lowercase = False def _snake_case ( self : Any ): '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __lowercase = self.fwd_bfs.node_queue.pop(0 ) __lowercase = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __lowercase = True return self.retrace_bidirectional_path( lowerCamelCase , lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_bfs: self.fwd_bfs.get_successors(lowerCamelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(lowerCamelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowerCamelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _snake_case ( self : int , lowerCamelCase : Node , lowerCamelCase : Node ): '''simple docstring''' __lowercase = self.fwd_bfs.retrace_path(lowerCamelCase ) __lowercase = self.bwd_bfs.retrace_path(lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() snake_case__ : Dict = (0, 0) snake_case__ : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case__ : Any = time.time() snake_case__ : str = BreadthFirstSearch(init, goal) snake_case__ : int = bfs.search() snake_case__ : List[str] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) snake_case__ : List[Any] = time.time() snake_case__ : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) snake_case__ : Union[str, Any] = bd_bfs.search() snake_case__ : Union[str, Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
655
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Any = ConsistencyModelPipeline _snake_case : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _snake_case : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _snake_case : str = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def _snake_case ( self : Optional[Any] , lowerCamelCase : List[str]=False ): '''simple docstring''' if class_cond: __lowercase = self.dummy_cond_unet else: __lowercase = self.dummy_uncond_unet # Default to CM multistep sampler __lowercase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowercase = { "unet": unet, "scheduler": scheduler, } return components def _snake_case ( self : Tuple , lowerCamelCase : Dict , lowerCamelCase : Optional[int]=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = ConsistencyModelPipeline(**lowerCamelCase ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase ).images assert image.shape == (1, 32, 32, 3) __lowercase = image[0, -3:, -3:, -1] __lowercase = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components(class_cond=lowerCamelCase ) __lowercase = ConsistencyModelPipeline(**lowerCamelCase ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = 0 __lowercase = pipe(**lowerCamelCase ).images assert image.shape == (1, 32, 32, 3) __lowercase = image[0, -3:, -3:, -1] __lowercase = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = ConsistencyModelPipeline(**lowerCamelCase ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = 1 __lowercase = None __lowercase = pipe(**lowerCamelCase ).images assert image.shape == (1, 32, 32, 3) __lowercase = image[0, -3:, -3:, -1] __lowercase = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components(class_cond=lowerCamelCase ) __lowercase = ConsistencyModelPipeline(**lowerCamelCase ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = 1 __lowercase = None __lowercase = 0 __lowercase = pipe(**lowerCamelCase ).images assert image.shape == (1, 32, 32, 3) __lowercase = image[0, -3:, -3:, -1] __lowercase = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : str , lowerCamelCase : Tuple=0 , lowerCamelCase : List[str]=False , lowerCamelCase : Tuple="cpu" , lowerCamelCase : Optional[Any]=torch.floataa , lowerCamelCase : Optional[int]=(1, 3, 64, 64) ): '''simple docstring''' __lowercase = torch.manual_seed(lowerCamelCase ) __lowercase = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: __lowercase = self.get_fixed_latents(seed=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase , shape=lowerCamelCase ) __lowercase = latents return inputs def _snake_case ( self : Tuple , lowerCamelCase : Tuple=0 , lowerCamelCase : Dict="cpu" , lowerCamelCase : Optional[int]=torch.floataa , lowerCamelCase : Dict=(1, 3, 64, 64) ): '''simple docstring''' if type(lowerCamelCase ) == str: __lowercase = torch.device(lowerCamelCase ) __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase ) return latents def _snake_case ( self : int ): '''simple docstring''' __lowercase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __lowercase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowercase = ConsistencyModelPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) pipe.to(torch_device=lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_inputs() __lowercase = pipe(**lowerCamelCase ).images assert image.shape == (1, 64, 64, 3) __lowercase = image[0, -3:, -3:, -1] __lowercase = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case ( self : int ): '''simple docstring''' __lowercase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __lowercase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowercase = ConsistencyModelPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) pipe.to(torch_device=lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_inputs() __lowercase = 1 __lowercase = None __lowercase = pipe(**lowerCamelCase ).images assert image.shape == (1, 64, 64, 3) __lowercase = image[0, -3:, -3:, -1] __lowercase = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __lowercase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowercase = ConsistencyModelPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) pipe.to(torch_device=lowerCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_inputs(get_fixed_latents=lowerCamelCase , device=lowerCamelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase , enable_math=lowerCamelCase , enable_mem_efficient=lowerCamelCase ): __lowercase = pipe(**lowerCamelCase ).images assert image.shape == (1, 64, 64, 3) __lowercase = image[0, -3:, -3:, -1] __lowercase = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __lowercase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowercase = ConsistencyModelPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) pipe.to(torch_device=lowerCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_inputs(get_fixed_latents=lowerCamelCase , device=lowerCamelCase ) __lowercase = 1 __lowercase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase , enable_math=lowerCamelCase , enable_mem_efficient=lowerCamelCase ): __lowercase = pipe(**lowerCamelCase ).images assert image.shape == (1, 64, 64, 3) __lowercase = image[0, -3:, -3:, -1] __lowercase = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
655
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = { """configuration_blenderbot""": [ """BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotConfig""", """BlenderbotOnnxConfig""", ], """tokenization_blenderbot""": ["""BlenderbotTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = ["""BlenderbotTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = [ """BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotForCausalLM""", """BlenderbotForConditionalGeneration""", """BlenderbotModel""", """BlenderbotPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ """TFBlenderbotForConditionalGeneration""", """TFBlenderbotModel""", """TFBlenderbotPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ """FlaxBlenderbotForConditionalGeneration""", """FlaxBlenderbotModel""", """FlaxBlenderbotPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case__ : Optional[int] = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ["""OwlViTFeatureExtractor"""] snake_case__ : List[Any] = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys snake_case__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
1
def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0 ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or n < 0: raise ValueError("Invalid input" ) __lowercase = 1_0**n __lowercase = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , _SCREAMING_SNAKE_CASE )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(10) = }''')
655
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
1
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
1
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
1
snake_case__ : List[str] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Return True if there is node that has not iterated. __lowercase = [False] * len(_SCREAMING_SNAKE_CASE ) __lowercase = [s] __lowercase = True while queue: __lowercase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_SCREAMING_SNAKE_CASE ) __lowercase = True __lowercase = u return visited[t] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [-1] * (len(_SCREAMING_SNAKE_CASE )) __lowercase = 0 __lowercase = [] __lowercase = [i[:] for i in graph] # Record original cut, copy. while bfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = float("Inf" ) __lowercase = sink while s != source: # Find the minimum value in select path __lowercase = min(_SCREAMING_SNAKE_CASE , graph[parent[s]][s] ) __lowercase = parent[s] max_flow += path_flow __lowercase = sink while v != source: __lowercase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowercase = parent[v] for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
655
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="pt" ): __lowercase = {"add_prefix_space": True} if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not line.startswith(" " ) else {} __lowercase = padding_side return tokenizer( [line] , max_length=_SCREAMING_SNAKE_CASE , padding="max_length" if pad_to_max_length else None , truncation=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , ): __lowercase = input_ids.ne(_SCREAMING_SNAKE_CASE ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _A ( _lowercase ): '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : int="train" , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=None , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[Any]="" , ): '''simple docstring''' super().__init__() __lowercase = Path(lowerCamelCase ).joinpath(type_path + ".source" ) __lowercase = Path(lowerCamelCase ).joinpath(type_path + ".target" ) __lowercase = self.get_char_lens(self.src_file ) __lowercase = max_source_length __lowercase = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" __lowercase = tokenizer __lowercase = prefix if n_obs is not None: __lowercase = self.src_lens[:n_obs] __lowercase = src_lang __lowercase = tgt_lang def __len__( self : Dict ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = index + 1 # linecache starts at 1 __lowercase = self.prefix + linecache.getline(str(self.src_file ) , lowerCamelCase ).rstrip("\n" ) __lowercase = linecache.getline(str(self.tgt_file ) , lowerCamelCase ).rstrip("\n" ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __lowercase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer ) __lowercase = self.tokenizer.generator if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer __lowercase = encode_line(lowerCamelCase , lowerCamelCase , self.max_source_length , "right" ) __lowercase = encode_line(lowerCamelCase , lowerCamelCase , self.max_target_length , "right" ) __lowercase = source_inputs["input_ids"].squeeze() __lowercase = target_inputs["input_ids"].squeeze() __lowercase = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _snake_case ( lowerCamelCase : Union[str, Any] ): '''simple docstring''' return [len(lowerCamelCase ) for x in Path(lowerCamelCase ).open().readlines()] def _snake_case ( self : Optional[int] , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = torch.stack([x["input_ids"] for x in batch] ) __lowercase = torch.stack([x["attention_mask"] for x in batch] ) __lowercase = torch.stack([x["decoder_input_ids"] for x in batch] ) __lowercase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer.pad_token_id ) __lowercase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer.pad_token_id ) __lowercase = trim_batch(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = trim_batch(lowerCamelCase , lowerCamelCase , attention_mask=lowerCamelCase ) __lowercase = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch snake_case__ : List[Any] = getLogger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): return list(itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = get_git_info() save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , "git_log.json" ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=4 , **_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , "w" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE ) as f: return json.load(_SCREAMING_SNAKE_CASE ) def snake_case_ ( ): __lowercase = git.Repo(search_parent_directories=_SCREAMING_SNAKE_CASE ) __lowercase = { "repo_id": str(_SCREAMING_SNAKE_CASE ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return list(map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as f: return pickle.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): def remove_articles(_SCREAMING_SNAKE_CASE ): return re.sub(R"\b(a|an|the)\b" , " " , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE ): __lowercase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = normalize_answer(_SCREAMING_SNAKE_CASE ).split() __lowercase = normalize_answer(_SCREAMING_SNAKE_CASE ).split() __lowercase = Counter(_SCREAMING_SNAKE_CASE ) & Counter(_SCREAMING_SNAKE_CASE ) __lowercase = sum(common.values() ) if num_same == 0: return 0 __lowercase = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) __lowercase = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) __lowercase = (2 * precision * recall) / (precision + recall) return fa def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 for hypo, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): em += exact_match_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: em /= len(_SCREAMING_SNAKE_CASE ) return {"em": em} def snake_case_ ( _SCREAMING_SNAKE_CASE ): return model_prefix.startswith("rag" ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __lowercase = "dropout_rate" for p in extra_params: if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not hasattr(_SCREAMING_SNAKE_CASE , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_SCREAMING_SNAKE_CASE ) ) delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue __lowercase = p if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else equivalent_param[p] setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return hparams, config
655
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): __lowercase = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert("RGB" ) return image def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = dct.pop(_SCREAMING_SNAKE_CASE ) __lowercase = val def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __lowercase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) __lowercase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict __lowercase = torch.cat((q_bias, torch.zeros_like(_SCREAMING_SNAKE_CASE , requires_grad=_SCREAMING_SNAKE_CASE ), v_bias) ) __lowercase = qkv_bias def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = 3_6_4 if "coco" in model_name else 2_2_4 __lowercase = InstructBlipVisionConfig(image_size=_SCREAMING_SNAKE_CASE ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __lowercase = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __lowercase = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __lowercase = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: __lowercase = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __lowercase = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() __lowercase = InstructBlipConfig(vision_config=_SCREAMING_SNAKE_CASE , text_config=_SCREAMING_SNAKE_CASE , qformer_config=_SCREAMING_SNAKE_CASE ) return config, image_size @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ): __lowercase = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: __lowercase = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __lowercase = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) __lowercase , __lowercase = get_blipa_config(_SCREAMING_SNAKE_CASE ) __lowercase = InstructBlipForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval() __lowercase = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } __lowercase , __lowercase = model_name_to_original[model_name] # load original model print("Loading original model..." ) __lowercase = "cuda:1" if torch.cuda.is_available() else "cpu" __lowercase = "cuda:2" if torch.cuda.is_available() else "cpu" __lowercase , __lowercase , __lowercase = load_model_and_preprocess( name=_SCREAMING_SNAKE_CASE , model_type=_SCREAMING_SNAKE_CASE , is_eval=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) original_model.eval() print("Done!" ) # update state dict keys __lowercase = original_model.state_dict() __lowercase = create_rename_keys(_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __lowercase = state_dict.pop(_SCREAMING_SNAKE_CASE ) if key.startswith("Qformer.bert" ): __lowercase = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: __lowercase = key.replace("self" , "attention" ) if "llm_proj" in key: __lowercase = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: __lowercase = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): __lowercase = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): __lowercase = key.replace("t5" , "language" ) __lowercase = val # read in qv biases read_in_q_v_bias(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) __lowercase = load_demo_image() __lowercase = "What is unusual about this image?" # create processor __lowercase = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE ) __lowercase = InstructBlipProcessor( image_processor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE , ) __lowercase = processor(images=_SCREAMING_SNAKE_CASE , text=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # make sure processor creates exact same pixel values __lowercase = vis_processors["eval"](_SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(_SCREAMING_SNAKE_CASE ) __lowercase = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , _SCREAMING_SNAKE_CASE ) original_model.to(_SCREAMING_SNAKE_CASE ) hf_model.to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): if "vicuna" in model_name: __lowercase = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits __lowercase = hf_model(**_SCREAMING_SNAKE_CASE ).logits else: __lowercase = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits __lowercase = tokenizer("\n" , return_tensors="pt" ).input_ids.to(_SCREAMING_SNAKE_CASE ) __lowercase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 ) __lowercase = hf_model(**_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __lowercase = 1E-4 if "vicuna" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) print("Looks ok!" ) print("Generating with original model..." ) __lowercase = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) __lowercase = hf_model.generate( **_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __lowercase = 2 print("Original generation:" , _SCREAMING_SNAKE_CASE ) __lowercase = processor.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) __lowercase = [text.strip() for text in output_text] print("HF generation:" , _SCREAMING_SNAKE_CASE ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: processor.push_to_hub(F"""Salesforce/{model_name}""" ) hf_model.push_to_hub(F"""Salesforce/{model_name}""" ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() snake_case__ : Tuple = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) snake_case__ : Dict = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
655
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", "stage2.cls_token") ) return token def snake_case_ ( ): __lowercase = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "imagenet-1k-id2label.json" __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = num_labels __lowercase = json.load(open(cached_download(hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = __lowercase = CvtConfig(num_labels=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid=_SCREAMING_SNAKE_CASE ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": __lowercase = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": __lowercase = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __lowercase = [2, 2, 2_0] __lowercase = [3, 1_2, 1_6] __lowercase = [1_9_2, 7_6_8, 1_0_2_4] __lowercase = CvtForImageClassification(_SCREAMING_SNAKE_CASE ) __lowercase = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) __lowercase = image_size __lowercase = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) __lowercase = OrderedDict() __lowercase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __lowercase = list_of_state_dict + cls_token(_SCREAMING_SNAKE_CASE ) __lowercase = list_of_state_dict + embeddings(_SCREAMING_SNAKE_CASE ) for cnt in range(config.depth[idx] ): __lowercase = list_of_state_dict + attention(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = list_of_state_dict + final() for gg in list_of_state_dict: print(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_84, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : List[str] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
655
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
1
import math def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = int(math.floor(math.sqrt(_SCREAMING_SNAKE_CASE ) ) ) __lowercase = 0 while arr[min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - 1] < x: __lowercase = step step += int(math.floor(math.sqrt(_SCREAMING_SNAKE_CASE ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowercase = prev + 1 if prev == min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": snake_case__ : List[Any] = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ : Dict = [int(item) for item in user_input.split(""",""")] snake_case__ : str = int(input("""Enter the number to be searched:\n""")) snake_case__ : int = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(F'''Number {x} is at index {res}''')
655
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _A ( _lowercase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : int=13 , lowerCamelCase : Any=7 , lowerCamelCase : Dict=True , lowerCamelCase : Tuple=True , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[int]=False , lowerCamelCase : Tuple=False , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=2 , lowerCamelCase : Optional[Any]=99 , lowerCamelCase : Tuple=0 , lowerCamelCase : Optional[int]=32 , lowerCamelCase : Tuple=5 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Any=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : List[Any]=512 , lowerCamelCase : Any=12 , lowerCamelCase : Dict=2 , lowerCamelCase : str=0.02 , lowerCamelCase : Tuple=3 , lowerCamelCase : str=4 , lowerCamelCase : Optional[Any]="last" , lowerCamelCase : int=None , lowerCamelCase : List[Any]=None , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_lengths __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = gelu_activation __lowercase = sinusoidal_embeddings __lowercase = causal __lowercase = asm __lowercase = n_langs __lowercase = vocab_size __lowercase = n_special __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = summary_type __lowercase = use_proj __lowercase = scope def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_input_lengths: __lowercase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , 2 ).float() __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self : int ): '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = FlaubertModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase , lengths=lowerCamelCase , langs=lowerCamelCase ) __lowercase = model(lowerCamelCase , langs=lowerCamelCase ) __lowercase = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Any , lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , ): '''simple docstring''' __lowercase = FlaubertWithLMHeadModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Any , ): '''simple docstring''' __lowercase = FlaubertForQuestionAnsweringSimple(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) __lowercase = model(lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : Dict , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Tuple , ): '''simple docstring''' __lowercase = FlaubertForQuestionAnswering(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) __lowercase = model( lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , cls_index=lowerCamelCase , is_impossible=lowerCamelCase , p_mask=lowerCamelCase , ) __lowercase = model( lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , cls_index=lowerCamelCase , is_impossible=lowerCamelCase , ) ((__lowercase) , ) = result_with_labels.to_tuple() __lowercase = model(lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase ) ((__lowercase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self : List[str] , lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , ): '''simple docstring''' __lowercase = FlaubertForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) __lowercase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , ): '''simple docstring''' __lowercase = self.num_labels __lowercase = FlaubertForTokenClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , ): '''simple docstring''' __lowercase = self.num_choices __lowercase = FlaubertForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _A ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _snake_case : Any = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self : List[str] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : Dict ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any]=False ): '''simple docstring''' __lowercase = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) return inputs_dict def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = FlaubertModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase , emb_dim=37 ) def _snake_case ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowerCamelCase ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCamelCase ) @slow def _snake_case ( self : int ): '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = FlaubertModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @slow @require_torch_gpu def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowerCamelCase ) __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) __lowercase = torch.jit.trace( lowerCamelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCamelCase , os.path.join(lowerCamelCase , "traced_model.pt" ) ) __lowercase = torch.jit.load(os.path.join(lowerCamelCase , "traced_model.pt" ) , map_location=lowerCamelCase ) loaded(inputs_dict["input_ids"].to(lowerCamelCase ) , inputs_dict["attention_mask"].to(lowerCamelCase ) ) @require_torch class _A ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) __lowercase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): __lowercase = model(lowerCamelCase )[0] __lowercase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowerCamelCase ) __lowercase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase , atol=1e-4 ) )
655
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
1
snake_case__ : str = {"""a""": ["""c""", """b"""], """b""": ["""d""", """e"""], """c""": [], """d""": [], """e""": []} snake_case__ : List[str] = ["""a""", """b""", """c""", """d""", """e"""] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = start # add current to visited visited.append(_SCREAMING_SNAKE_CASE ) __lowercase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowercase = topological_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(_SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __lowercase = topological_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": snake_case__ : Optional[int] = topological_sort("""a""", [], []) print(sort)
655
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
1