code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
snake_case__ : Optional[Any] = ["""small""", """medium""", """large"""]
snake_case__ : List[str] = """lm_head.decoder.weight"""
snake_case__ : Union[str, Any] = """lm_head.weight"""
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
__lowercase = torch.load(__SCREAMING_SNAKE_CASE )
__lowercase = d.pop(__SCREAMING_SNAKE_CASE )
os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE )
torch.save(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
snake_case__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("""--dialogpt_path""", default=""".""", type=str)
snake_case__ : List[Any] = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
snake_case__ : List[Any] = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''')
snake_case__ : Optional[int] = F'''./DialoGPT-{MODEL}'''
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 704 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : Dict = StableUnCLIPImgaImgPipeline
_snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
_snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_snake_case : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
_snake_case : int = frozenset([] )
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = 32
__lowercase = embedder_hidden_size
# image encoding components
__lowercase = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
__lowercase = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
__lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase )
__lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
__lowercase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , )
torch.manual_seed(0 )
__lowercase = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , )
torch.manual_seed(0 )
__lowercase = AutoencoderKL()
__lowercase = {
# image encoding components
"feature_extractor": feature_extractor,
"image_encoder": image_encoder.eval(),
# image noising components
"image_normalizer": image_normalizer.eval(),
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder.eval(),
"unet": unet.eval(),
"scheduler": scheduler,
"vae": vae.eval(),
}
return components
def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ):
'''simple docstring'''
if str(lowerCamelCase ).startswith("mps" ):
__lowercase = torch.manual_seed(lowerCamelCase )
else:
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
__lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
if pil_image:
__lowercase = input_image * 0.5 + 0.5
__lowercase = input_image.clamp(0 , 1 )
__lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase )
__lowercase = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
inputs.update({"image_embeds": None} )
__lowercase = sd_pipe(**lowerCamelCase ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = torch_device in ["cpu", "mps"]
self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _snake_case ( self : str ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" )
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = torch.Generator(device="cpu" ).manual_seed(0 )
__lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" )
__lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" )
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = torch.Generator(device="cpu" ).manual_seed(0 )
__lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" )
__lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = pipe(
lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , )
__lowercase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 655 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
snake_case__ : str = logging.get_logger(__name__)
snake_case__ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
snake_case__ : List[str] = {
"vocab_file": {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt",
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt",
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt",
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt",
"bert-base-multilingual-uncased": (
"https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt"
),
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt",
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt",
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt",
"bert-large-uncased-whole-word-masking": (
"https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt"
),
"bert-large-cased-whole-word-masking": (
"https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt"
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"
),
"bert-base-cased-finetuned-mrpc": (
"https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt"
),
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt",
"bert-base-german-dbmdz-uncased": (
"https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt"
),
"TurkuNLP/bert-base-finnish-cased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt"
),
"TurkuNLP/bert-base-finnish-uncased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt"
),
"wietsedv/bert-base-dutch-cased": (
"https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json",
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json",
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json",
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json",
"bert-base-multilingual-uncased": (
"https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json"
),
"bert-base-multilingual-cased": (
"https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json"
),
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json",
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json",
"bert-large-uncased-whole-word-masking": (
"https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json"
),
"bert-large-cased-whole-word-masking": (
"https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json"
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"
),
"bert-base-cased-finetuned-mrpc": (
"https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json"
),
"bert-base-german-dbmdz-cased": (
"https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json"
),
"bert-base-german-dbmdz-uncased": (
"https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json"
),
"TurkuNLP/bert-base-finnish-cased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json"
),
"TurkuNLP/bert-base-finnish-uncased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json"
),
"wietsedv/bert-base-dutch-cased": (
"https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json"
),
},
}
snake_case__ : str = {
"bert-base-uncased": 5_12,
"bert-large-uncased": 5_12,
"bert-base-cased": 5_12,
"bert-large-cased": 5_12,
"bert-base-multilingual-uncased": 5_12,
"bert-base-multilingual-cased": 5_12,
"bert-base-chinese": 5_12,
"bert-base-german-cased": 5_12,
"bert-large-uncased-whole-word-masking": 5_12,
"bert-large-cased-whole-word-masking": 5_12,
"bert-large-uncased-whole-word-masking-finetuned-squad": 5_12,
"bert-large-cased-whole-word-masking-finetuned-squad": 5_12,
"bert-base-cased-finetuned-mrpc": 5_12,
"bert-base-german-dbmdz-cased": 5_12,
"bert-base-german-dbmdz-uncased": 5_12,
"TurkuNLP/bert-base-finnish-cased-v1": 5_12,
"TurkuNLP/bert-base-finnish-uncased-v1": 5_12,
"wietsedv/bert-base-dutch-cased": 5_12,
}
snake_case__ : Union[str, Any] = {
"bert-base-uncased": {"do_lower_case": True},
"bert-large-uncased": {"do_lower_case": True},
"bert-base-cased": {"do_lower_case": False},
"bert-large-cased": {"do_lower_case": False},
"bert-base-multilingual-uncased": {"do_lower_case": True},
"bert-base-multilingual-cased": {"do_lower_case": False},
"bert-base-chinese": {"do_lower_case": False},
"bert-base-german-cased": {"do_lower_case": False},
"bert-large-uncased-whole-word-masking": {"do_lower_case": True},
"bert-large-cased-whole-word-masking": {"do_lower_case": False},
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
"bert-base-german-dbmdz-cased": {"do_lower_case": False},
"bert-base-german-dbmdz-uncased": {"do_lower_case": True},
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False},
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True},
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False},
}
class _A ( _UpperCAmelCase ):
'''simple docstring'''
_snake_case : Tuple = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[Any] = PRETRAINED_INIT_CONFIGURATION
_snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Tuple = BertTokenizer
def __init__( self : List[str] , lowerCamelCase : int=None , lowerCamelCase : Tuple=None , lowerCamelCase : str=True , lowerCamelCase : Union[str, Any]="[UNK]" , lowerCamelCase : int="[SEP]" , lowerCamelCase : Dict="[PAD]" , lowerCamelCase : List[str]="[CLS]" , lowerCamelCase : Dict="[MASK]" , lowerCamelCase : Optional[int]=True , lowerCamelCase : List[Any]=None , **lowerCamelCase : str , ):
'''simple docstring'''
super().__init__(
A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , )
__lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , A_ ) != do_lower_case
or normalizer_state.get("strip_accents" , A_ ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , A_ ) != tokenize_chinese_chars
):
__lowercase = getattr(A_ , normalizer_state.pop("type" ) )
__lowercase = do_lower_case
__lowercase = strip_accents
__lowercase = tokenize_chinese_chars
__lowercase = normalizer_class(**A_ )
__lowercase = do_lower_case
def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : Dict=None ):
'''simple docstring'''
__lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _snake_case ( self : List[str] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _snake_case ( self : Dict , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
__lowercase = self._tokenizer.model.save(A_ , name=A_ )
return tuple(A_ )
| 705 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class _A ( _lowercase , _lowercase ):
'''simple docstring'''
@register_to_config
def __init__( self : Optional[Any] , *,
lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__()
__lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) )
# parameters for additional clip time embeddings
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
# parameters for encoder hidden states
__lowercase = clip_extra_context_tokens
__lowercase = nn.Linear(
lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim )
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
__lowercase = nn.LayerNorm(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ):
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
__lowercase = image_embeddings.shape[0]
__lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
__lowercase = classifier_free_guidance_embeddings.expand(
lowerCamelCase , -1 )
__lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
__lowercase = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
__lowercase = self.embedding_proj(lowerCamelCase )
__lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase )
__lowercase = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
__lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase )
__lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens )
__lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 )
__lowercase = self.encoder_hidden_states_proj(lowerCamelCase )
__lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase )
__lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 655 | 0 |
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
snake_case__ : Tuple = random.Random()
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ):
if rng is None:
__lowercase = global_rng
__lowercase = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class _A ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple=7 , lowerCamelCase : Union[str, Any]=400 , lowerCamelCase : Optional[int]=2_000 , lowerCamelCase : Union[str, Any]=1 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : Union[str, Any]=16_000 , lowerCamelCase : Any=True , lowerCamelCase : str=True , ):
'''simple docstring'''
__lowercase = parent
__lowercase = batch_size
__lowercase = min_seq_length
__lowercase = max_seq_length
__lowercase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__lowercase = feature_size
__lowercase = padding_value
__lowercase = sampling_rate
__lowercase = return_attention_mask
__lowercase = do_normalize
def _snake_case ( self : List[Any] ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def _snake_case ( self : Optional[int] , lowerCamelCase : List[str]=False , lowerCamelCase : Union[str, Any]=False ):
'''simple docstring'''
def _flatten(lowerCamelCase : Optional[Any] ):
return list(itertools.chain(*lowerCamelCase ) )
if equal_length:
__lowercase = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
__lowercase = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
__lowercase = [np.asarray(lowerCamelCase ) for x in speech_inputs]
return speech_inputs
class _A ( __lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : List[Any] = WavaVecaFeatureExtractor
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = WavaVecaFeatureExtractionTester(self )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
self.assertTrue(np.all(np.mean(lowerCamelCase , axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(lowerCamelCase , axis=0 ) - 1 ) < 1e-3 ) )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
__lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowercase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs]
# Test not batched input
__lowercase = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values
__lowercase = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values
self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) )
# Test batched
__lowercase = feat_extract(lowerCamelCase , return_tensors="np" ).input_values
__lowercase = feat_extract(lowerCamelCase , return_tensors="np" ).input_values
for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ):
self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
__lowercase = [floats_list((1, x) )[0] for x in (800, 800, 800)]
__lowercase = np.asarray(lowerCamelCase )
__lowercase = feat_extract(lowerCamelCase , return_tensors="np" ).input_values
__lowercase = feat_extract(lowerCamelCase , return_tensors="np" ).input_values
for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ):
self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowercase = ["longest", "max_length", "do_not_pad"]
__lowercase = [None, 1_600, None]
for max_length, padding in zip(lowerCamelCase , lowerCamelCase ):
__lowercase = feat_extract(lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , return_tensors="np" )
__lowercase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowercase = range(800 , 1_400 , 200 )
__lowercase = [floats_list((1, x) )[0] for x in lengths]
__lowercase = ["longest", "max_length", "do_not_pad"]
__lowercase = [None, 1_600, None]
for max_length, padding in zip(lowerCamelCase , lowerCamelCase ):
__lowercase = feat_extract(lowerCamelCase , max_length=lowerCamelCase , padding=lowerCamelCase )
__lowercase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowercase = feat_extract(
lowerCamelCase , truncation=lowerCamelCase , max_length=1_000 , padding="max_length" , return_tensors="np" )
__lowercase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowercase = feat_extract(
lowerCamelCase , truncation=lowerCamelCase , max_length=1_000 , padding="longest" , return_tensors="np" )
__lowercase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
__lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowercase = feat_extract(
lowerCamelCase , truncation=lowerCamelCase , max_length=2_000 , padding="longest" , return_tensors="np" )
__lowercase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
@require_torch
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
import torch
__lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowercase = np.random.rand(100 ).astype(np.floataa )
__lowercase = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__lowercase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
__lowercase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def _snake_case ( self : Any ):
'''simple docstring'''
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
__lowercase = WavaVecaConfig.from_pretrained(lowerCamelCase )
__lowercase = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
| 706 |
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
snake_case__ : Union[str, Any] = TypeVar("""T""")
snake_case__ : Optional[int] = TypeVar("""U""")
class _A ( Generic[T, U] ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ):
'''simple docstring'''
__lowercase = key
__lowercase = val
__lowercase = None
__lowercase = None
def __repr__( self : Any ):
'''simple docstring'''
return (
f"""Node: key: {self.key}, val: {self.val}, """
f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}"""
)
class _A ( Generic[T, U] ):
'''simple docstring'''
def __init__( self : Dict ):
'''simple docstring'''
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
__lowercase , __lowercase = self.rear, self.head
def __repr__( self : Optional[Any] ):
'''simple docstring'''
__lowercase = ["DoubleLinkedList"]
__lowercase = self.head
while node.next is not None:
rep.append(str(lowerCamelCase ) )
__lowercase = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
__lowercase = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
__lowercase = node
__lowercase = previous
__lowercase = node
__lowercase = self.rear
def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
if node.prev is None or node.next is None:
return None
__lowercase = node.next
__lowercase = node.prev
__lowercase = None
__lowercase = None
return node
class _A ( Generic[T, U] ):
'''simple docstring'''
_snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self : List[Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = DoubleLinkedList()
__lowercase = capacity
__lowercase = 0
__lowercase = 0
__lowercase = 0
__lowercase = {}
def __repr__( self : Optional[Any] ):
'''simple docstring'''
return (
f"""CacheInfo(hits={self.hits}, misses={self.miss}, """
f"""capacity={self.capacity}, current size={self.num_keys})"""
)
def __contains__( self : Dict , lowerCamelCase : T ):
'''simple docstring'''
return key in self.cache
def _snake_case ( self : List[Any] , lowerCamelCase : T ):
'''simple docstring'''
if key in self.cache:
self.hits += 1
__lowercase = self.cache[key]
__lowercase = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowerCamelCase )
return node.val
self.miss += 1
return None
def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ):
'''simple docstring'''
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
__lowercase = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowerCamelCase ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
__lowercase = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
__lowercase = value
self.list.add(lowerCamelCase )
@classmethod
def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ):
'''simple docstring'''
def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowerCamelCase : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
__lowercase = LRUCache(lowerCamelCase )
__lowercase = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
__lowercase = func(*lowerCamelCase )
cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
__lowercase = str(bin(_SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b"
__lowercase = str(bin(_SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b"
__lowercase = max(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1" ) )
for char_a, char_b in zip(a_binary.zfill(_SCREAMING_SNAKE_CASE ) , b_binary.zfill(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 707 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
snake_case__ : Optional[Any] = logging.getLogger()
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = "\n".join(_SCREAMING_SNAKE_CASE )
Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random"""
snake_case__ : int = """sshleifer/bart-tiny-random"""
snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart"""
snake_case__ : List[str] = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class _A ( _lowercase ):
'''simple docstring'''
def _snake_case ( self : str , lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
__lowercase = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
__lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
_dump_articles(lowerCamelCase , lowerCamelCase )
__lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" )
__lowercase = "translation_en_to_de" if model == T5_TINY else "summarization"
__lowercase = f"""
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
""".split()
with patch.object(lowerCamelCase , "argv" , lowerCamelCase ):
run_generate()
assert Path(lowerCamelCase ).exists()
# os.remove(Path(output_file_name))
def _snake_case ( self : Dict ):
'''simple docstring'''
self.run_eval_tester(lowerCamelCase )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
self.run_eval_tester(lowerCamelCase )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
__lowercase = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
__lowercase = {
"en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
"de": [
"Maschinelles Lernen ist großartig, oder?",
"Ich esse gerne Bananen",
"Morgen ist wieder ein toller Tag!",
],
}
__lowercase = Path(self.get_auto_remove_tmp_dir() )
__lowercase = str(tmp_dir / "scores.json" )
__lowercase = str(tmp_dir / "val.target" )
_dump_articles(lowerCamelCase , text["en"] )
_dump_articles(lowerCamelCase , text["de"] )
__lowercase = "translation_en_to_de" if model == T5_TINY else "summarization"
__lowercase = f"""
run_eval_search.py
{model}
{str(lowerCamelCase )}
{str(lowerCamelCase )}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
""".split()
testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] )
with patch.object(lowerCamelCase , "argv" , lowerCamelCase ):
with CaptureStdout() as cs:
run_search()
__lowercase = [" num_beams | length_penalty", model, "Best score args"]
__lowercase = ["Info"]
if "translation" in task:
expected_strings.append("bleu" )
else:
expected_strings.extend(lowerCamelCase )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(lowerCamelCase ).exists()
os.remove(Path(lowerCamelCase ) )
| 655 | 0 |
from heapq import heappop, heappush
import numpy as np
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ):
__lowercase = grid.shape
__lowercase = [-1, 1, 0, 0]
__lowercase = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
__lowercase = [(0, source)], set()
__lowercase = np.full((rows, cols) , np.inf )
__lowercase = 0
__lowercase = np.empty((rows, cols) , dtype=_SCREAMING_SNAKE_CASE )
__lowercase = None
while queue:
(__lowercase) = heappop(_SCREAMING_SNAKE_CASE )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
__lowercase = []
while (x, y) != source:
path.append((x, y) )
__lowercase = predecessors[x, y]
path.append(_SCREAMING_SNAKE_CASE ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
__lowercase = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
__lowercase = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(_SCREAMING_SNAKE_CASE , (dist + 1, (nx, ny)) )
__lowercase = dist + 1
__lowercase = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 708 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _A :
'''simple docstring'''
_snake_case : int
_snake_case : TreeNode | None = None
_snake_case : TreeNode | None = None
snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""")
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if root is None:
return 0
# Validation
def count_nodes(_SCREAMING_SNAKE_CASE ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(_SCREAMING_SNAKE_CASE ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ):
raise ValueError("The nodes number should be same as the number of coins" )
# Main calculation
def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowercase , __lowercase = get_distrib(node.left )
__lowercase , __lowercase = get_distrib(node.right )
__lowercase = 1 - left_distrib_excess
__lowercase = 1 - right_distrib_excess
__lowercase = (
left_distrib_moves
+ right_distrib_moves
+ abs(_SCREAMING_SNAKE_CASE )
+ abs(_SCREAMING_SNAKE_CASE )
)
__lowercase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return get_distrib(_SCREAMING_SNAKE_CASE )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = 3_8_4
__lowercase = 7
if "tiny" in model_name:
__lowercase = 9_6
__lowercase = (2, 2, 6, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif "small" in model_name:
__lowercase = 9_6
__lowercase = (2, 2, 1_8, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif "base" in model_name:
__lowercase = 1_2_8
__lowercase = (2, 2, 1_8, 2)
__lowercase = (4, 8, 1_6, 3_2)
__lowercase = 1_2
__lowercase = 5_1_2
elif "large" in model_name:
__lowercase = 1_9_2
__lowercase = (2, 2, 1_8, 2)
__lowercase = (6, 1_2, 2_4, 4_8)
__lowercase = 1_2
__lowercase = 7_6_8
# set label information
__lowercase = 1_5_0
__lowercase = 'huggingface/label-files'
__lowercase = 'ade20k-id2label.json'
__lowercase = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) )
__lowercase = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = SwinConfig(
embed_dim=lowerCAmelCase__ , depths=lowerCAmelCase__ , num_heads=lowerCAmelCase__ , window_size=lowerCAmelCase__ , out_features=["stage1", "stage2", "stage3", "stage4"] , )
__lowercase = UperNetConfig(
backbone_config=lowerCAmelCase__ , auxiliary_in_channels=lowerCAmelCase__ , num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , )
return config
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = []
# fmt: off
# stem
rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") )
rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = dct.pop(lowerCAmelCase__ )
__lowercase = val
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
__lowercase = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
__lowercase = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" )
__lowercase = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
__lowercase = in_proj_weight[:dim, :]
__lowercase = in_proj_bias[: dim]
__lowercase = in_proj_weight[
dim : dim * 2, :
]
__lowercase = in_proj_bias[
dim : dim * 2
]
__lowercase = in_proj_weight[
-dim :, :
]
__lowercase = in_proj_bias[-dim :]
# fmt: on
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = x.shape
__lowercase = x.reshape(lowerCAmelCase__ , 4 , in_channel // 4 )
__lowercase = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCAmelCase__ , lowerCAmelCase__ )
return x
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = x.shape
__lowercase = x.reshape(lowerCAmelCase__ , in_channel // 4 , 4 )
__lowercase = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCAmelCase__ , lowerCAmelCase__ )
return x
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = x.shape[0]
__lowercase = x.reshape(4 , in_channel // 4 )
__lowercase = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCAmelCase__ )
return x
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = x.shape[0]
__lowercase = x.reshape(in_channel // 4 , 4 )
__lowercase = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCAmelCase__ )
return x
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = {
'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth',
'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth',
'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth',
'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth',
}
__lowercase = model_name_to_url[model_name]
__lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="cpu" , file_name=lowerCAmelCase__ )[
'state_dict'
]
for name, param in state_dict.items():
print(lowerCAmelCase__ , param.shape )
__lowercase = get_upernet_config(lowerCAmelCase__ )
__lowercase = UperNetForSemanticSegmentation(lowerCAmelCase__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__lowercase = state_dict.pop(lowerCAmelCase__ )
if "bn" in key:
__lowercase = key.replace("bn" , "batch_norm" )
__lowercase = val
# rename keys
__lowercase = create_rename_keys(lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_q_k_v(lowerCAmelCase__ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
__lowercase = reverse_correct_unfold_reduction_order(lowerCAmelCase__ )
if "norm" in key:
__lowercase = reverse_correct_unfold_norm_order(lowerCAmelCase__ )
model.load_state_dict(lowerCAmelCase__ )
# verify on image
__lowercase = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
__lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
__lowercase = SegformerImageProcessor()
__lowercase = processor(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
with torch.no_grad():
__lowercase = model(lowerCAmelCase__ )
__lowercase = outputs.logits
print(logits.shape )
print("First values of logits:" , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
__lowercase = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] )
elif model_name == "upernet-swin-small":
__lowercase = torch.tensor(
[[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] )
elif model_name == "upernet-swin-base":
__lowercase = torch.tensor(
[[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] )
elif model_name == "upernet-swin-large":
__lowercase = torch.tensor(
[[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] )
print("Logits:" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=1E-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowerCAmelCase__ )
print(F"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print(F"""Pushing model and processor for {model_name} to hub""" )
model.push_to_hub(F"""openmmlab/{model_name}""" )
processor.push_to_hub(F"""openmmlab/{model_name}""" )
if __name__ == "__main__":
snake_case__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-swin-tiny""",
type=str,
choices=[F'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]],
help="""Name of the Swin + UperNet model you\'d like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
snake_case__ : Any = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 709 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = SwinvaConfig()
__lowercase = swinva_name.split("_" )
__lowercase = name_split[1]
if "to" in name_split[3]:
__lowercase = int(name_split[3][-3:] )
else:
__lowercase = int(name_split[3] )
if "to" in name_split[2]:
__lowercase = int(name_split[2][-2:] )
else:
__lowercase = int(name_split[2][6:] )
if model_size == "tiny":
__lowercase = 9_6
__lowercase = (2, 2, 6, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif model_size == "small":
__lowercase = 9_6
__lowercase = (2, 2, 1_8, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif model_size == "base":
__lowercase = 1_2_8
__lowercase = (2, 2, 1_8, 2)
__lowercase = (4, 8, 1_6, 3_2)
else:
__lowercase = 1_9_2
__lowercase = (2, 2, 1_8, 2)
__lowercase = (6, 1_2, 2_4, 4_8)
if "to" in swinva_name:
__lowercase = (1_2, 1_2, 1_2, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
__lowercase = 2_1_8_4_1
__lowercase = "huggingface/label-files"
__lowercase = "imagenet-22k-id2label.json"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
else:
__lowercase = 1_0_0_0
__lowercase = "huggingface/label-files"
__lowercase = "imagenet-1k-id2label.json"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = img_size
__lowercase = num_classes
__lowercase = embed_dim
__lowercase = depths
__lowercase = num_heads
__lowercase = window_size
return config
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if "patch_embed.proj" in name:
__lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "patch_embed.norm" in name:
__lowercase = name.replace("patch_embed.norm" , "embeddings.norm" )
if "layers" in name:
__lowercase = "encoder." + name
if "attn.proj" in name:
__lowercase = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
__lowercase = name.replace("attn" , "attention.self" )
if "norm1" in name:
__lowercase = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
__lowercase = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
__lowercase = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
__lowercase = name.replace("mlp.fc2" , "output.dense" )
if "q_bias" in name:
__lowercase = name.replace("q_bias" , "query.bias" )
if "k_bias" in name:
__lowercase = name.replace("k_bias" , "key.bias" )
if "v_bias" in name:
__lowercase = name.replace("v_bias" , "value.bias" )
if "cpb_mlp" in name:
__lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" )
if name == "norm.weight":
__lowercase = "layernorm.weight"
if name == "norm.bias":
__lowercase = "layernorm.bias"
if "head" in name:
__lowercase = name.replace("head" , "classifier" )
else:
__lowercase = "swinv2." + name
return name
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for key in orig_state_dict.copy().keys():
__lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "mask" in key:
continue
elif "qkv" in key:
__lowercase = key.split("." )
__lowercase = int(key_split[1] )
__lowercase = int(key_split[3] )
__lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__lowercase = val[:dim, :]
__lowercase = val[dim : dim * 2, :]
__lowercase = val[-dim:, :]
else:
__lowercase = val[:dim]
__lowercase = val[
dim : dim * 2
]
__lowercase = val[-dim:]
else:
__lowercase = val
return orig_state_dict
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE )
timm_model.eval()
__lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE )
__lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE )
model.eval()
__lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE )
__lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg"
__lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) )
__lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
__lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" )
__lowercase = timm_model(inputs["pixel_values"] )
__lowercase = model(**_SCREAMING_SNAKE_CASE ).logits
assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 )
print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
model.push_to_hub(
repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , )
if __name__ == "__main__":
snake_case__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swinv2_name""",
default="""swinv2_tiny_patch4_window8_256""",
type=str,
help="""Name of the Swinv2 timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
snake_case__ : str = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 655 | 0 |
'''simple docstring'''
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class _A ( a__ ):
'''simple docstring'''
_snake_case : int = 0
_snake_case : bool = False
_snake_case : float = 3.0
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} )
self.assertDictEqual(MockClass(a=2 , b=lowerCamelCase_ ).to_kwargs() , {"a": 2, "b": True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} )
@require_cuda
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = GradScalerKwargs(init_scale=1_024 , growth_factor=2 )
AcceleratorState._reset_state()
__lowercase = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__lowercase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1_024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2_000 )
self.assertEqual(scaler._enabled , lowerCamelCase_ )
@require_multi_gpu
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy() )
if __name__ == "__main__":
snake_case__ : List[str] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
snake_case__ : Any = Accelerator(kwargs_handlers=[ddp_scaler])
snake_case__ : Optional[Any] = torch.nn.Linear(1_00, 2_00)
snake_case__ : Optional[Any] = accelerator.prepare(model)
# Check the values changed in kwargs
snake_case__ : str = """"""
snake_case__ : List[Any] = model.bucket_bytes_cap // (10_24 * 10_24)
if observed_bucket_cap_map != 15:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 710 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
snake_case__ : List[str] = logging.get_logger(__name__)
snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
snake_case__ : Optional[Any] = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
snake_case__ : List[str] = {
"""allenai/led-base-16384""": 1_63_84,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def snake_case_ ( ):
__lowercase = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
__lowercase = bs[:]
__lowercase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_SCREAMING_SNAKE_CASE )
cs.append(2**8 + n )
n += 1
__lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs]
return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = set()
__lowercase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowercase = char
return pairs
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[str] = VOCAB_FILES_NAMES
_snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""]
def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token
super().__init__(
errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , )
with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__lowercase = json.load(lowerCamelCase )
__lowercase = {v: k for k, v in self.encoder.items()}
__lowercase = errors # how to handle errors in decoding
__lowercase = bytes_to_unicode()
__lowercase = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase , encoding="utf-8" ) as merges_handle:
__lowercase = merges_handle.read().split("\n" )[1:-1]
__lowercase = [tuple(merge.split() ) for merge in bpe_merges]
__lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) )
__lowercase = {}
__lowercase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return len(self.encoder )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : List[Any] , lowerCamelCase : str ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
__lowercase = tuple(lowerCamelCase )
__lowercase = get_pairs(lowerCamelCase )
if not pairs:
return token
while True:
__lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__lowercase , __lowercase = bigram
__lowercase = []
__lowercase = 0
while i < len(lowerCamelCase ):
try:
__lowercase = word.index(lowerCamelCase , lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__lowercase = j
if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowercase = tuple(lowerCamelCase )
__lowercase = new_word
if len(lowerCamelCase ) == 1:
break
else:
__lowercase = get_pairs(lowerCamelCase )
__lowercase = " ".join(lowerCamelCase )
__lowercase = word
return word
def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ):
'''simple docstring'''
__lowercase = []
for token in re.findall(self.pat , lowerCamelCase ):
__lowercase = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : str , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.decoder.get(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = "".join(lowerCamelCase )
__lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(lowerCamelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__lowercase = os.path.join(
lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" )
__lowercase = 0
with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
__lowercase = token_index
writer.write(" ".join(lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowercase = [self.cls_token_id]
__lowercase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase )) + [1]
return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1]
def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ):
'''simple docstring'''
__lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()):
__lowercase = " " + text
return (text, kwargs)
def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
__lowercase = super()._pad(
encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
__lowercase = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
__lowercase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
__lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase )
if needs_to_be_padded:
__lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
__lowercase = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
__lowercase = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 655 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
snake_case__ : str = {
"""configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""],
"""tokenization_tapas""": ["""TapasTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[Any] = [
"""TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TapasForMaskedLM""",
"""TapasForQuestionAnswering""",
"""TapasForSequenceClassification""",
"""TapasModel""",
"""TapasPreTrainedModel""",
"""load_tf_weights_in_tapas""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Tuple = [
"""TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFTapasForMaskedLM""",
"""TFTapasForQuestionAnswering""",
"""TFTapasForSequenceClassification""",
"""TFTapasModel""",
"""TFTapasPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig
from .tokenization_tapas import TapasTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tapas import (
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasPreTrainedModel,
load_tf_weights_in_tapas,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_tapas import (
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
TFTapasPreTrainedModel,
)
else:
import sys
snake_case__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 711 |
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ):
raise ValueError("The length of profit and weight must be same." )
if max_weight <= 0:
raise ValueError("max_weight must greater than zero." )
if any(p < 0 for p in profit ):
raise ValueError("Profit can not be negative." )
if any(w < 0 for w in weight ):
raise ValueError("Weight can not be negative." )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
__lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
# Creating a copy of the list and sorting profit/weight in ascending order
__lowercase = sorted(_SCREAMING_SNAKE_CASE )
# declaring useful variables
__lowercase = len(_SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
__lowercase = sorted_profit_by_weight[length - i - 1]
__lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE )
__lowercase = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
"""Input profits, weights, and then max_weight (all positive ints) separated by """
"""spaces."""
)
snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()]
snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()]
snake_case__ : Optional[Any] = int(input("""Max weight allowed: """))
# Function Call
calc_profit(profit, weight, max_weight)
| 655 | 0 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
snake_case__ : str = logging.get_logger(__name__)
snake_case__ : Optional[Any] = {"vocab_file": "spiece.model"}
snake_case__ : str = {
"vocab_file": {
"albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model",
"albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model",
"albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model",
"albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model",
"albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model",
"albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model",
"albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model",
"albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model",
}
}
snake_case__ : Optional[Any] = {
"albert-base-v1": 5_12,
"albert-large-v1": 5_12,
"albert-xlarge-v1": 5_12,
"albert-xxlarge-v1": 5_12,
"albert-base-v2": 5_12,
"albert-large-v2": 5_12,
"albert-xlarge-v2": 5_12,
"albert-xxlarge-v2": 5_12,
}
snake_case__ : Union[str, Any] = "▁"
class _A ( __UpperCAmelCase ):
'''simple docstring'''
_snake_case : Any = VOCAB_FILES_NAMES
_snake_case : int = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple=True , lowerCamelCase : List[str]=True , lowerCamelCase : Union[str, Any]=False , lowerCamelCase : str="[CLS]" , lowerCamelCase : int="[SEP]" , lowerCamelCase : Dict="<unk>" , lowerCamelCase : Dict="[SEP]" , lowerCamelCase : Any="<pad>" , lowerCamelCase : Optional[int]="[CLS]" , lowerCamelCase : Any="[MASK]" , lowerCamelCase : Optional[Dict[str, Any]] = None , **lowerCamelCase : str , ):
'''simple docstring'''
__lowercase = (
AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ , normalized=lowerCAmelCase_ )
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ )
else mask_token
)
__lowercase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , )
__lowercase = do_lower_case
__lowercase = remove_space
__lowercase = keep_accents
__lowercase = vocab_file
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase_ )
@property
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
return len(self.sp_model )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Tuple ):
'''simple docstring'''
__lowercase = self.__dict__.copy()
__lowercase = None
return state
def __setstate__( self : Optional[Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__lowercase = {}
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case ( self : Optional[int] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
if self.remove_space:
__lowercase = " ".join(inputs.strip().split() )
else:
__lowercase = inputs
__lowercase = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
__lowercase = unicodedata.normalize("NFKD" , lowerCAmelCase_ )
__lowercase = "".join([c for c in outputs if not unicodedata.combining(lowerCAmelCase_ )] )
if self.do_lower_case:
__lowercase = outputs.lower()
return outputs
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = self.preprocess_text(lowerCAmelCase_ )
__lowercase = self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ )
__lowercase = []
for piece in pieces:
if len(lowerCAmelCase_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
__lowercase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase_ , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
__lowercase = cur_pieces[1:]
else:
__lowercase = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(lowerCAmelCase_ )
else:
new_pieces.append(lowerCAmelCase_ )
return new_pieces
def _snake_case ( self : List[Any] , lowerCamelCase : int ):
'''simple docstring'''
return self.sp_model.PieceToId(lowerCAmelCase_ )
def _snake_case ( self : Dict , lowerCamelCase : Dict ):
'''simple docstring'''
return self.sp_model.IdToPiece(lowerCAmelCase_ )
def _snake_case ( self : Optional[int] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = []
__lowercase = ""
__lowercase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase_ ) + token
__lowercase = True
__lowercase = []
else:
current_sub_tokens.append(lowerCAmelCase_ )
__lowercase = False
out_string += self.sp_model.decode(lowerCAmelCase_ )
return out_string.strip()
def _snake_case ( self : Dict , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1]
return [1] + ([0] * len(lowerCAmelCase_ )) + [1]
def _snake_case ( self : List[str] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _snake_case ( self : Dict , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase_ , "wb" ) as fi:
__lowercase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase_ )
return (out_vocab_file,)
| 712 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = """openai/whisper-base"""
_snake_case : Union[str, Any] = (
"""This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """
"""transcribed text."""
)
_snake_case : Any = """transcriber"""
_snake_case : Any = WhisperProcessor
_snake_case : Optional[int] = WhisperForConditionalGeneration
_snake_case : str = ["""audio"""]
_snake_case : Optional[int] = ["""text"""]
def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features
def _snake_case ( self : str , lowerCamelCase : List[Any] ):
'''simple docstring'''
return self.model.generate(inputs=lowerCamelCase )
def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
| 655 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
snake_case__ : Optional[Any] = logging.get_logger(__name__)
class _A ( _UpperCamelCase ):
'''simple docstring'''
_snake_case : Optional[int] = ["""pixel_values"""]
def __init__( self : str , lowerCamelCase : Tuple = True , lowerCamelCase : List[str] = None , lowerCamelCase : Tuple = None , lowerCamelCase : Optional[Any] = PILImageResampling.BILINEAR , lowerCamelCase : Union[str, Any] = True , lowerCamelCase : str = 1 / 255 , lowerCamelCase : Optional[Any] = True , lowerCamelCase : int = None , lowerCamelCase : List[str] = None , **lowerCamelCase : str , ):
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'''shortest_edge''': 384}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
# Default value set here for backwards compatibility where the value in config is None
__lowercase = crop_pct if crop_pct is not None else 224 / 256
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _snake_case ( self : int , lowerCamelCase : str , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Optional[int] = PILImageResampling.BICUBIC , lowerCamelCase : Union[str, Any] = None , **lowerCamelCase : Any , ):
'''simple docstring'''
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(f"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" )
__lowercase = size['''shortest_edge''']
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
__lowercase = int(shortest_edge / crop_pct )
__lowercase = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _snake_case ( self : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] = None , **lowerCamelCase : int , ):
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _snake_case ( self : Dict , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Dict = None , **lowerCamelCase : List[str] , ):
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def _snake_case ( self : int , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] = None , lowerCamelCase : Tuple = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : str = None , lowerCamelCase : Any = None , lowerCamelCase : Optional[Any] = None , lowerCamelCase : Dict = None , lowerCamelCase : Optional[Any] = None , lowerCamelCase : List[str] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : Union[str, Any] = ChannelDimension.FIRST , **lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = crop_pct if crop_pct is not None else self.crop_pct
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = {'''pixel_values''': images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 713 |
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class _A :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , )
torch.manual_seed(0 )
__lowercase = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _snake_case ( self : Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , )
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , )
torch.manual_seed(0 )
__lowercase = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = inputs["prompt"]
__lowercase = inputs["generator"]
__lowercase = inputs["num_inference_steps"]
__lowercase = inputs["output_type"]
if "image" in inputs:
__lowercase = inputs["image"]
else:
__lowercase = None
if "mask_image" in inputs:
__lowercase = inputs["mask_image"]
else:
__lowercase = None
if "original_image" in inputs:
__lowercase = inputs["original_image"]
else:
__lowercase = None
__lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase )
# inputs with prompt converted to embeddings
__lowercase = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
__lowercase = image
if mask_image is not None:
__lowercase = mask_image
if original_image is not None:
__lowercase = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase )
__lowercase = pipe(**lowerCamelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(lowerCamelCase )
__lowercase = self.pipeline_class.from_pretrained(lowerCamelCase )
pipe_loaded.to(lowerCamelCase )
pipe_loaded.set_progress_bar_config(disable=lowerCamelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = inputs["generator"]
__lowercase = inputs["num_inference_steps"]
__lowercase = inputs["output_type"]
# inputs with prompt converted to embeddings
__lowercase = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
__lowercase = image
if mask_image is not None:
__lowercase = mask_image
if original_image is not None:
__lowercase = original_image
__lowercase = pipe_loaded(**lowerCamelCase )[0]
__lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max()
self.assertLess(lowerCamelCase , 1e-4 )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = pipe(**lowerCamelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(lowerCamelCase )
__lowercase = self.pipeline_class.from_pretrained(lowerCamelCase )
pipe_loaded.to(lowerCamelCase )
pipe_loaded.set_progress_bar_config(disable=lowerCamelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = pipe_loaded(**lowerCamelCase )[0]
__lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max()
self.assertLess(lowerCamelCase , 1e-4 )
| 655 | 0 |
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
snake_case__ : Optional[int] = logging.getLogger(__name__)
class _A ( _a ):
'''simple docstring'''
def __init__( self : int , lowerCamelCase : Optional[Any]=-1 ):
'''simple docstring'''
__lowercase = label_idx
def _snake_case ( self : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] ):
'''simple docstring'''
if isinstance(_A , _A ):
__lowercase = mode.value
__lowercase = os.path.join(_A , f"""{mode}.txt""" )
__lowercase = 1
__lowercase = []
with open(_A , encoding="utf-8" ) as f:
__lowercase = []
__lowercase = []
for line in f:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=_A , labels=_A ) )
guid_index += 1
__lowercase = []
__lowercase = []
else:
__lowercase = line.split(" " )
words.append(splits[0] )
if len(_A ) > 1:
labels.append(splits[self.label_idx].replace("\n" , "" ) )
else:
# Examples could have no label for mode = "test"
labels.append("O" )
if words:
examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=_A , labels=_A ) )
return examples
def _snake_case ( self : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Any ):
'''simple docstring'''
__lowercase = 0
for line in test_input_reader:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
writer.write(_A )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
__lowercase = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n"
writer.write(_A )
else:
logger.warning("Maximum sequence length exceeded: No prediction for \'%s\'." , line.split()[0] )
def _snake_case ( self : Optional[int] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
if path:
with open(_A , "r" ) as f:
__lowercase = f.read().splitlines()
if "O" not in labels:
__lowercase = ["O"] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class _A ( _a ):
'''simple docstring'''
def __init__( self : Optional[int] ):
'''simple docstring'''
super().__init__(label_idx=-2 )
def _snake_case ( self : str , lowerCamelCase : str ):
'''simple docstring'''
if path:
with open(_A , "r" ) as f:
__lowercase = f.read().splitlines()
if "O" not in labels:
__lowercase = ["O"] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class _A ( _a ):
'''simple docstring'''
def _snake_case ( self : str , lowerCamelCase : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
if isinstance(_A , _A ):
__lowercase = mode.value
__lowercase = os.path.join(_A , f"""{mode}.txt""" )
__lowercase = 1
__lowercase = []
with open(_A , encoding="utf-8" ) as f:
for sentence in parse_incr(_A ):
__lowercase = []
__lowercase = []
for token in sentence:
words.append(token["form"] )
labels.append(token["upos"] )
assert len(_A ) == len(_A )
if words:
examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=_A , labels=_A ) )
guid_index += 1
return examples
def _snake_case ( self : Dict , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : Any ):
'''simple docstring'''
__lowercase = 0
for sentence in parse_incr(_A ):
__lowercase = preds_list[example_id]
__lowercase = ""
for token in sentence:
out += f"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """
out += "\n"
writer.write(_A )
example_id += 1
def _snake_case ( self : int , lowerCamelCase : int ):
'''simple docstring'''
if path:
with open(_A , "r" ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 714 |
import numpy as np
snake_case__ : Tuple = [
["""a""", """b""", """c""", """d""", """e"""],
["""f""", """g""", """h""", """i""", """k"""],
["""l""", """m""", """n""", """o""", """p"""],
["""q""", """r""", """s""", """t""", """u"""],
["""v""", """w""", """x""", """y""", """z"""],
]
class _A :
'''simple docstring'''
def __init__( self : Dict ):
'''simple docstring'''
__lowercase = np.array(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase , __lowercase = np.where(letter == self.SQUARE )
__lowercase = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = self.SQUARE[indexa - 1, indexa - 1]
return letter
def _snake_case ( self : int , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = message.lower()
__lowercase = message.replace(" " , "" )
__lowercase = message.replace("j" , "i" )
__lowercase = np.empty((2, len(lowerCamelCase )) )
for letter_index in range(len(lowerCamelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape(2 * len(lowerCamelCase ) )
__lowercase = ""
for numbers_index in range(len(lowerCamelCase ) ):
__lowercase = int(second_step[numbers_index * 2] )
__lowercase = int(second_step[(numbers_index * 2) + 1] )
__lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__lowercase = encoded_message + letter
return encoded_message
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = message.lower()
message.replace(" " , "" )
__lowercase = np.empty(2 * len(lowerCamelCase ) )
for letter_index in range(len(lowerCamelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape((2, len(lowerCamelCase )) )
__lowercase = ""
for numbers_index in range(len(lowerCamelCase ) ):
__lowercase = int(second_step[0, numbers_index] )
__lowercase = int(second_step[1, numbers_index] )
__lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__lowercase = decoded_message + letter
return decoded_message
| 655 | 0 |
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class _A ( _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : str = WavaVecaPhonemeCTCTokenizer
_snake_case : List[str] = False
def _snake_case ( self : str ):
'''simple docstring'''
super().setUp()
__lowercase = (
"<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː "
"ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː "
"ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 "
"oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ "
"pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ "
"yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ "
"əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ "
"ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ "
"ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ "
"uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ "
"ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ "
"ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ "
"ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4"
).split(" " )
__lowercase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) )
__lowercase = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + "\n" )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=20 , lowerCamelCase : List[Any]=5 ):
'''simple docstring'''
__lowercase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__UpperCamelCase )) for i in range(len(__UpperCamelCase ) )]
__lowercase = list(filter(lambda lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__UpperCamelCase ) , __UpperCamelCase ) )
if max_length is not None and len(__UpperCamelCase ) > max_length:
__lowercase = toks[:max_length]
if min_length is not None and len(__UpperCamelCase ) < min_length and len(__UpperCamelCase ) > 0:
while len(__UpperCamelCase ) < min_length:
__lowercase = toks + toks
# toks_str = [t[1] for t in toks]
__lowercase = [t[0] for t in toks]
# Ensure consistency
__lowercase = tokenizer.decode(__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase )
if " " not in output_txt and len(__UpperCamelCase ) > 1:
__lowercase = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__UpperCamelCase )
+ " "
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__UpperCamelCase )
)
if with_prefix_space:
__lowercase = " " + output_txt
__lowercase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
return output_txt, output_ids
def _snake_case ( self : str , **lowerCamelCase : str ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
# check adding a single token
tokenizer.add_tokens("xxx" )
__lowercase = tokenizer("m xxx ɪ" , do_phonemize=__UpperCamelCase ).input_ids
self.assertEqual(__UpperCamelCase , [13, 392, 17] ) # xxx should be last token
tokenizer.add_tokens(["aaa", "bbb", "ccc"] )
__lowercase = tokenizer("m aaa ɪ ccc" , do_phonemize=__UpperCamelCase ).input_ids
self.assertEqual(__UpperCamelCase , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa
__lowercase = tokenizer("maɪ c" , do_phonemize=__UpperCamelCase ).input_ids
self.assertEqual(__UpperCamelCase , [3, 200] ) # mai should be <unk> (=3)
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
__lowercase = "Hello how are you"
__lowercase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" )
self.assertEqual(__UpperCamelCase , "h ə l oʊ h aʊ ɑːɹ j uː" )
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
__lowercase = "Hello how are you"
__lowercase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" )
self.assertEqual(tokenizer(__UpperCamelCase ).input_ids , tokenizer(__UpperCamelCase , do_phonemize=__UpperCamelCase ).input_ids )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
__lowercase = "Hello how are you"
__lowercase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" )
__lowercase = tokenizer.decode(tokenizer(__UpperCamelCase ).input_ids )
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
__lowercase = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
__lowercase = tokenizer.decode(sample_ids[0] )
__lowercase = tokenizer.batch_decode(__UpperCamelCase )
self.assertEqual(__UpperCamelCase , batch_tokens[0] )
self.assertEqual(__UpperCamelCase , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" )
tokenizer.add_tokens("|" )
__lowercase = "Hello how are you"
__lowercase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" )
self.assertEqual(__UpperCamelCase , "h ə l oʊ | h aʊ | ɑːɹ | j uː |" )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" )
tokenizer.add_tokens("|" )
__lowercase = "Hello how are you"
__lowercase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" )
self.assertEqual(tokenizer(__UpperCamelCase ).input_ids , tokenizer(__UpperCamelCase , do_phonemize=__UpperCamelCase ).input_ids )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" )
tokenizer.add_tokens("|" )
# fmt: off
__lowercase = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
__lowercase = tokenizer.decode(sample_ids[0] )
__lowercase = tokenizer.batch_decode(__UpperCamelCase )
self.assertEqual(__UpperCamelCase , batch_tokens[0] )
self.assertEqual(__UpperCamelCase , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] )
# decode with no word_del_token filter
__lowercase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__UpperCamelCase )
__lowercase = tokenizer.batch_decode(__UpperCamelCase , filter_word_delimiter_token=__UpperCamelCase )
self.assertEqual(__UpperCamelCase , batch_tokens[0] )
self.assertEqual(__UpperCamelCase , ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"] )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" )
tokenizer.add_tokens("|" )
__lowercase = "Hello how are you"
__lowercase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" )
__lowercase = tokenizer.decode(tokenizer(__UpperCamelCase ).input_ids , filter_word_delimiter_token=__UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" )
tokenizer.add_tokens("|" )
__lowercase = "Hello how are you"
__lowercase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" )
__lowercase = tokenizer.decode(tokenizer(__UpperCamelCase ).input_ids , filter_word_delimiter_token=__UpperCamelCase )
self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |" )] ).strip() , __UpperCamelCase )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token=__UpperCamelCase )
__lowercase = "Hello how are you"
__lowercase = tokenizer(__UpperCamelCase , phonemizer_lang="en-us" ).input_ids
__lowercase = tokenizer(__UpperCamelCase , phonemizer_lang="fr-fr" ).input_ids
self.assertNotEqual(__UpperCamelCase , __UpperCamelCase )
__lowercase = tokenizer.decode(__UpperCamelCase )
__lowercase = tokenizer.decode(__UpperCamelCase )
self.assertEqual(__UpperCamelCase , "h ə l oʊ h aʊ ɑːɹ j uː" )
self.assertEqual(__UpperCamelCase , "ɛ l o h aʊ a ʁ j u" )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
__lowercase = "Hello how Are you"
__lowercase = "hello how are you"
__lowercase = tokenizer(__UpperCamelCase ).input_ids
__lowercase = tokenizer(__UpperCamelCase ).input_ids
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
tokenizer.add_tokens(["!", "?"] )
tokenizer.add_special_tokens({"cls_token": "$$$"} )
# fmt: off
__lowercase = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394],
]
# fmt: on
__lowercase = tokenizer.batch_decode(__UpperCamelCase )
self.assertEqual(__UpperCamelCase , ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"] )
@staticmethod
def _snake_case ( lowerCamelCase : str , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = [d[key] for d in offsets]
return retrieved_list
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = self.get_tokenizer(word_delimiter_token="|" )
tokenizer.add_tokens("|" )
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
__lowercase = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
__lowercase = tokenizer.decode(__UpperCamelCase , output_char_offsets=__UpperCamelCase , filter_word_delimiter_token=__UpperCamelCase )
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys() ) , 2 )
self.assertTrue("text" in outputs )
self.assertTrue("char_offsets" in outputs )
self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) )
# check that order of chars is correct and identical for both outputs
self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"] , "char" ) ) , outputs.text )
self.assertListEqual(
self.get_from_offsets(outputs["char_offsets"] , "char" ) , ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"] )
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs["char_offsets"] , "start_offset" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] )
self.assertListEqual(
self.get_from_offsets(outputs["char_offsets"] , "end_offset" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = self.get_tokenizer(word_delimiter_token="|" )
def check_list_tuples_equal(lowerCamelCase : int , lowerCamelCase : int ):
self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) )
self.assertTrue(isinstance(outputs_list[0] , __UpperCamelCase ) )
# transform list to ModelOutput
__lowercase = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]} )
self.assertListEqual(outputs_batch["text"] , outputs_batch_a["text"] )
def recursive_check(lowerCamelCase : Dict , lowerCamelCase : Optional[Any] ):
if isinstance(__UpperCamelCase , __UpperCamelCase ):
[recursive_check(__UpperCamelCase , __UpperCamelCase ) for la, la in zip(__UpperCamelCase , __UpperCamelCase )]
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch["char_offsets"] , outputs_batch_a["char_offsets"] )
# fmt: off
__lowercase = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
__lowercase = tokenizer.batch_decode(__UpperCamelCase , output_char_offsets=__UpperCamelCase )
__lowercase = [tokenizer.decode(__UpperCamelCase , output_char_offsets=__UpperCamelCase ) for ids in sample_ids]
check_list_tuples_equal(__UpperCamelCase , __UpperCamelCase )
@unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes" )
def _snake_case ( self : str ):
'''simple docstring'''
pass
@unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes" )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
pass
@unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency" )
def _snake_case ( self : Dict ):
'''simple docstring'''
pass
@unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing" )
def _snake_case ( self : int ):
'''simple docstring'''
pass
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = self.get_tokenizers(do_lower_case=__UpperCamelCase )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
__lowercase = tokenizer.vocab_size
__lowercase = len(__UpperCamelCase )
self.assertNotEqual(__UpperCamelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
__lowercase = ["aaaaa bbbbbb", "cccccccccdddddddd"]
__lowercase = tokenizer.add_tokens(__UpperCamelCase )
__lowercase = tokenizer.vocab_size
__lowercase = len(__UpperCamelCase )
self.assertNotEqual(__UpperCamelCase , 0 )
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
self.assertEqual(__UpperCamelCase , len(__UpperCamelCase ) )
self.assertEqual(__UpperCamelCase , all_size + len(__UpperCamelCase ) )
__lowercase = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__UpperCamelCase )
self.assertGreaterEqual(len(__UpperCamelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
__lowercase = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
__lowercase = tokenizer.add_special_tokens(__UpperCamelCase )
__lowercase = tokenizer.vocab_size
__lowercase = len(__UpperCamelCase )
self.assertNotEqual(__UpperCamelCase , 0 )
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
self.assertEqual(__UpperCamelCase , len(__UpperCamelCase ) )
self.assertEqual(__UpperCamelCase , all_size_a + len(__UpperCamelCase ) )
__lowercase = tokenizer.encode(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__UpperCamelCase )
self.assertGreaterEqual(len(__UpperCamelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
@unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." )
def _snake_case ( self : List[str] ):
'''simple docstring'''
pass
@unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
pass
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = self.get_tokenizers(fast=__UpperCamelCase , do_lower_case=__UpperCamelCase )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
__lowercase = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"]
__lowercase = tokenizer.convert_tokens_to_string(__UpperCamelCase )
self.assertIsInstance(output["text"] , __UpperCamelCase )
| 715 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class _A ( ctypes.Structure ):
'''simple docstring'''
_snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def snake_case_ ( ):
if os.name == "nt":
__lowercase = CursorInfo()
__lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
__lowercase = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("\033[?25l" )
sys.stdout.flush()
def snake_case_ ( ):
if os.name == "nt":
__lowercase = CursorInfo()
__lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
__lowercase = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("\033[?25h" )
sys.stdout.flush()
@contextmanager
def snake_case_ ( ):
try:
hide_cursor()
yield
finally:
show_cursor()
| 655 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class _A ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : Dict=7 , lowerCamelCase : Tuple=3 , lowerCamelCase : Dict=18 , lowerCamelCase : Any=30 , lowerCamelCase : List[Any]=400 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[Any]=True , lowerCamelCase : List[str]=None , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]=[0.4814_5466, 0.457_8275, 0.4082_1073] , lowerCamelCase : List[Any]=[0.2686_2954, 0.2613_0258, 0.2757_7711] , lowerCamelCase : str=True , ):
'''simple docstring'''
__lowercase = size if size is not None else {"height": 224, "width": 224}
__lowercase = crop_size if crop_size is not None else {"height": 18, "width": 18}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = do_center_crop
__lowercase = crop_size
__lowercase = do_normalize
__lowercase = image_mean
__lowercase = image_std
__lowercase = do_convert_rgb
def _snake_case ( self : Tuple ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def _snake_case ( self : int , lowerCamelCase : int=False , lowerCamelCase : Dict=False , lowerCamelCase : Any=False ):
'''simple docstring'''
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
__lowercase = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) )
else:
__lowercase = []
for i in range(self.batch_size ):
__lowercase , __lowercase = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 )
image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
__lowercase = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
if torchify:
__lowercase = [torch.from_numpy(lowerCamelCase ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class _A ( _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : int = ChineseCLIPImageProcessor if is_vision_available() else None
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = ChineseCLIPImageProcessingTester(self , do_center_crop=lowerCamelCase )
@property
def _snake_case ( self : List[Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) )
self.assertTrue(hasattr(lowerCamelCase , "size" ) )
self.assertTrue(hasattr(lowerCamelCase , "do_center_crop" ) )
self.assertTrue(hasattr(lowerCamelCase , "center_crop" ) )
self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) )
self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) )
self.assertTrue(hasattr(lowerCamelCase , "image_std" ) )
self.assertTrue(hasattr(lowerCamelCase , "do_convert_rgb" ) )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 224, "width": 224} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
def _snake_case ( self : List[str] ):
'''simple docstring'''
pass
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
__lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase , numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
__lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase , torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
__lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
@require_torch
@require_vision
class _A ( _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : str = ChineseCLIPImageProcessor if is_vision_available() else None
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=lowerCamelCase )
__lowercase = 3
@property
def _snake_case ( self : Any ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) )
self.assertTrue(hasattr(lowerCamelCase , "size" ) )
self.assertTrue(hasattr(lowerCamelCase , "do_center_crop" ) )
self.assertTrue(hasattr(lowerCamelCase , "center_crop" ) )
self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) )
self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) )
self.assertTrue(hasattr(lowerCamelCase , "image_std" ) )
self.assertTrue(hasattr(lowerCamelCase , "do_convert_rgb" ) )
def _snake_case ( self : Dict ):
'''simple docstring'''
pass
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
__lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 716 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
snake_case__ : List[str] = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[Any] = """yolos"""
def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = qkv_bias
__lowercase = num_detection_tokens
__lowercase = use_mid_position_embeddings
__lowercase = auxiliary_loss
# Hungarian matcher
__lowercase = class_cost
__lowercase = bbox_cost
__lowercase = giou_cost
# Loss coefficients
__lowercase = bbox_loss_coefficient
__lowercase = giou_loss_coefficient
__lowercase = eos_coefficient
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = version.parse("""1.11""" )
@property
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : str ):
'''simple docstring'''
return 1e-4
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return 12
| 655 | 0 |
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if length <= 0 or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError("Length must be a positive integer." )
return [n * (2 * n - 1) for n in range(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 717 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
snake_case__ : Optional[int] = logging.get_logger(__name__)
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 )
if "_quant" in model_name:
raise ValueError("Quantized models are not supported." )
__lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE )
if matches:
__lowercase = float(matches[1] )
__lowercase = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
__lowercase = 1_0_0_1
__lowercase = "imagenet-1k-id2label.json"
__lowercase = "huggingface/label-files"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()}
__lowercase = "background"
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ ( ):
__lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg"
__lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
__lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE )
# Load 🤗 model
__lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
__lowercase = MobileNetVaImageProcessor(
crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , )
__lowercase = image_processor(images=prepare_img() , return_tensors="pt" )
__lowercase = model(**_SCREAMING_SNAKE_CASE )
__lowercase = outputs.logits
assert logits.shape == (1, 1_0_0_1)
if model_name == "mobilenet_v1_1.0_224":
__lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] )
elif model_name == "mobilenet_v1_0.75_192":
__lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] )
else:
__lowercase = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
print("Pushing to the hub..." )
__lowercase = "google/" + model_name
image_processor.push_to_hub(_SCREAMING_SNAKE_CASE )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
snake_case__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""mobilenet_v1_1.0_224""",
type=str,
help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""",
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
snake_case__ : Dict = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 655 | 0 |
import math
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(_SCREAMING_SNAKE_CASE )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError("This should never happen" )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
snake_case__ : Optional[int] = "Enter the base and the power separated by a comma: "
snake_case__ : str = map(int, input(prompt).split(""","""))
snake_case__ : Dict = map(int, input(prompt).split(""","""))
# We find the log of each number, using the function res(), which takes two
# arguments.
snake_case__ : Optional[int] = res(xa, ya)
snake_case__ : List[str] = res(xa, ya)
# We check for the largest number
if resa > resa:
print("""Largest number is""", xa, """^""", ya)
elif resa > resa:
print("""Largest number is""", xa, """^""", ya)
else:
print("""Both are equal""")
| 718 |
from __future__ import annotations
from typing import Any
class _A :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
self.m_edges.append([u_node, v_node, weight] )
def _snake_case ( self : List[Any] , lowerCamelCase : int ):
'''simple docstring'''
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(lowerCamelCase )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(lowerCamelCase )
component_size[u_node] += component_size[v_node]
self.set_component(lowerCamelCase )
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase , __lowercase , __lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(lowerCamelCase , lowerCamelCase ):
__lowercase , __lowercase , __lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase )
print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def snake_case_ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class _A :
'''simple docstring'''
_snake_case : Optional[int] = 42
_snake_case : Tuple = 42
class _A :
'''simple docstring'''
def __init__( self : Optional[int] , lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
__lowercase = [[] for _ in range(lowerCamelCase )]
__lowercase = size
def __getitem__( self : Optional[Any] , lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return self._size
def _snake_case ( self : int , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : Any ):
'''simple docstring'''
if weight not in (0, 1):
raise ValueError("Edge weight must be either 0 or 1." )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("Vertex indexes must be in [0; size)." )
self._graph[from_vertex].append(Edge(lowerCamelCase , lowerCamelCase ) )
def _snake_case ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = deque([start_vertex] )
__lowercase = [None] * self.size
__lowercase = 0
while queue:
__lowercase = queue.popleft()
__lowercase = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
__lowercase = current_distance + edge.weight
__lowercase = distances[edge.destination_vertex]
if (
isinstance(lowerCamelCase , lowerCamelCase )
and new_distance >= dest_vertex_distance
):
continue
__lowercase = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("No path from start_vertex to finish_vertex." )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 719 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : List[str] = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 655 | 0 |
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
'''simple docstring'''
@staticmethod
def _snake_case ( *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class _A ( unittest.TestCase ):
'''simple docstring'''
_snake_case : Union[str, Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING
def _snake_case ( self : str , lowerCamelCase : str , lowerCamelCase : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = ObjectDetectionPipeline(model=lowerCamelCase , image_processor=lowerCamelCase )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def _snake_case ( self : List[str] , lowerCamelCase : int , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
__lowercase = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 )
self.assertGreater(len(lowerCamelCase ) , 0 )
for detected_object in outputs:
self.assertEqual(
lowerCamelCase , {
"score": ANY(lowerCamelCase ),
"label": ANY(lowerCamelCase ),
"box": {"xmin": ANY(lowerCamelCase ), "ymin": ANY(lowerCamelCase ), "xmax": ANY(lowerCamelCase ), "ymax": ANY(lowerCamelCase )},
} , )
import datasets
__lowercase = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" )
__lowercase = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
# LA
dataset[1]["file"],
# L
dataset[2]["file"],
]
__lowercase = object_detector(lowerCamelCase , threshold=0.0 )
self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) )
for outputs in batch_outputs:
self.assertGreater(len(lowerCamelCase ) , 0 )
for detected_object in outputs:
self.assertEqual(
lowerCamelCase , {
"score": ANY(lowerCamelCase ),
"label": ANY(lowerCamelCase ),
"box": {"xmin": ANY(lowerCamelCase ), "ymin": ANY(lowerCamelCase ), "xmax": ANY(lowerCamelCase ), "ymax": ANY(lowerCamelCase )},
} , )
@require_tf
@unittest.skip("Object detection not implemented in TF" )
def _snake_case ( self : Dict ):
'''simple docstring'''
pass
@require_torch
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
__lowercase = "hf-internal-testing/tiny-detr-mobilenetsv3"
__lowercase = AutoModelForObjectDetection.from_pretrained(lowerCamelCase )
__lowercase = AutoFeatureExtractor.from_pretrained(lowerCamelCase )
__lowercase = ObjectDetectionPipeline(model=lowerCamelCase , feature_extractor=lowerCamelCase )
__lowercase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}},
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}},
] , )
__lowercase = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
[
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}},
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}},
],
[
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}},
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}},
],
] , )
@require_torch
@slow
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = "facebook/detr-resnet-50"
__lowercase = AutoModelForObjectDetection.from_pretrained(lowerCamelCase )
__lowercase = AutoFeatureExtractor.from_pretrained(lowerCamelCase )
__lowercase = ObjectDetectionPipeline(model=lowerCamelCase , feature_extractor=lowerCamelCase )
__lowercase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
] , )
__lowercase = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
] , )
@require_torch
@slow
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = "facebook/detr-resnet-50"
__lowercase = pipeline("object-detection" , model=lowerCamelCase )
__lowercase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
] , )
__lowercase = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
] , )
@require_torch
@slow
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = 0.9985
__lowercase = "facebook/detr-resnet-50"
__lowercase = pipeline("object-detection" , model=lowerCamelCase )
__lowercase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=lowerCamelCase )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
] , )
@require_torch
@require_pytesseract
@slow
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = "Narsil/layoutlmv3-finetuned-funsd"
__lowercase = 0.9993
__lowercase = pipeline("object-detection" , model=lowerCamelCase , threshold=lowerCamelCase )
__lowercase = object_detector(
"https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
{"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}},
{"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}},
] , )
| 720 |
from __future__ import annotations
import bisect
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
if hi < 0:
__lowercase = len(_SCREAMING_SNAKE_CASE )
while lo < hi:
__lowercase = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
__lowercase = mid + 1
else:
__lowercase = mid
return lo
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
if hi < 0:
__lowercase = len(_SCREAMING_SNAKE_CASE )
while lo < hi:
__lowercase = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
__lowercase = mid + 1
else:
__lowercase = mid
return lo
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = 0
__lowercase = len(_SCREAMING_SNAKE_CASE ) - 1
while left <= right:
__lowercase = left + (right - left) // 2
__lowercase = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
__lowercase = midpoint - 1
else:
__lowercase = midpoint + 1
return None
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item:
return index
return None
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if right < left:
return None
__lowercase = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 )
else:
return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip()
snake_case__ : Any = sorted(int(item) for item in user_input.split(""","""))
snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n"""))
snake_case__ : List[Any] = binary_search(collection, target)
if result is None:
print(F'''{target} was not found in {collection}.''')
else:
print(F'''{target} was found at position {result} in {collection}.''')
| 655 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : Optional[int] = StableDiffusionInstructPixaPixPipeline
_snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""}
_snake_case : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
_snake_case : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS
_snake_case : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _snake_case ( self : str ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
__lowercase = PNDMScheduler(skip_prk_steps=lowerCamelCase )
torch.manual_seed(0 )
__lowercase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__lowercase = CLIPTextModel(lowerCamelCase )
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__lowercase = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def _snake_case ( self : str , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int]=0 ):
'''simple docstring'''
__lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
__lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowercase = Image.fromarray(np.uinta(lowerCamelCase ) ).convert("RGB" )
if str(lowerCamelCase ).startswith("mps" ):
__lowercase = torch.manual_seed(lowerCamelCase )
else:
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"image_guidance_scale": 1,
"output_type": "numpy",
}
return inputs
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase )
__lowercase = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = sd_pipe(**lowerCamelCase ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowercase = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase )
__lowercase = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = "french fries"
__lowercase = sd_pipe(**lowerCamelCase , negative_prompt=lowerCamelCase )
__lowercase = output.images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowercase = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase )
__lowercase = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = [inputs["prompt"]] * 2
__lowercase = np.array(inputs["image"] ).astype(np.floataa ) / 255.0
__lowercase = torch.from_numpy(lowerCamelCase ).unsqueeze(0 ).to(lowerCamelCase )
__lowercase = image / 2 + 0.5
__lowercase = image.permute(0 , 3 , 1 , 2 )
__lowercase = image.repeat(2 , 1 , 1 , 1 )
__lowercase = sd_pipe(**lowerCamelCase ).images
__lowercase = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
__lowercase = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = EulerAncestralDiscreteScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" )
__lowercase = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase )
__lowercase = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = sd_pipe(**lowerCamelCase ).images
__lowercase = image[0, -3:, -3:, -1]
__lowercase = [round(lowerCamelCase , 4 ) for x in image_slice.flatten().tolist()]
print(",".join([str(lowerCamelCase ) for x in slice] ) )
assert image.shape == (1, 32, 32, 3)
__lowercase = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case ( self : int ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = self.get_dummy_components()
__lowercase = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase )
__lowercase = VaeImageProcessor(do_resize=lowerCamelCase , do_normalize=lowerCamelCase )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = pipe(**self.get_dummy_inputs_by_type(lowerCamelCase , input_image_type="pt" ) )[0]
__lowercase = components["vae"]
__lowercase = self.get_dummy_inputs_by_type(lowerCamelCase , input_image_type="pt" )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
__lowercase = vae.encode(inputs[image_param] ).latent_dist.mode()
__lowercase = pipe(**lowerCamelCase )[0]
__lowercase = np.abs(out - out_latents_inputs ).max()
self.assertLess(lowerCamelCase , 1e-4 , "passing latents as image input generate different result from passing image" )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Any , lowerCamelCase : List[Any]=0 ):
'''simple docstring'''
__lowercase = torch.manual_seed(lowerCamelCase )
__lowercase = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" )
__lowercase = {
"prompt": "turn him into a cyborg",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"image_guidance_scale": 1.0,
"output_type": "numpy",
}
return inputs
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
__lowercase = self.get_inputs()
__lowercase = pipe(**lowerCamelCase ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__lowercase = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=lowerCamelCase )
__lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
__lowercase = self.get_inputs()
__lowercase = pipe(**lowerCamelCase ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__lowercase = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=lowerCamelCase )
__lowercase = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
__lowercase = self.get_inputs()
__lowercase = pipe(**lowerCamelCase ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__lowercase = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = 0
def callback_fn(lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : torch.FloatTensor ) -> None:
__lowercase = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
__lowercase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
__lowercase = latents[0, -3:, -3:, -1]
__lowercase = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
__lowercase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
__lowercase = latents[0, -3:, -3:, -1]
__lowercase = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
__lowercase = False
__lowercase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=lowerCamelCase , torch_dtype=torch.floataa )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
__lowercase = self.get_inputs()
pipe(**lowerCamelCase , callback=lowerCamelCase , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowercase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=lowerCamelCase , torch_dtype=torch.floataa )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__lowercase = self.get_inputs()
__lowercase = pipe(**lowerCamelCase )
__lowercase = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
__lowercase = inputs["image"].resize((504, 504) )
__lowercase = "timbrooks/instruct-pix2pix"
__lowercase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
lowerCamelCase , safety_checker=lowerCamelCase , )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
__lowercase = pipe(**lowerCamelCase )
__lowercase = output.images[0]
__lowercase = image[255:258, 383:386, -1]
assert image.shape == (504, 504, 3)
__lowercase = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
| 721 |
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
snake_case__ : int = logging.get_logger(__name__)
snake_case__ : Optional[int] = {
"""microsoft/conditional-detr-resnet-50""": (
"""https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json"""
),
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = """conditional_detr"""
_snake_case : Union[str, Any] = ["""past_key_values"""]
_snake_case : Optional[int] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowerCamelCase , lowerCamelCase ):
__lowercase = backbone_config.get("model_type" )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(lowerCamelCase )
__lowercase = use_timm_backbone
__lowercase = backbone_config
__lowercase = num_channels
__lowercase = num_queries
__lowercase = d_model
__lowercase = encoder_ffn_dim
__lowercase = encoder_layers
__lowercase = encoder_attention_heads
__lowercase = decoder_ffn_dim
__lowercase = decoder_layers
__lowercase = decoder_attention_heads
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = activation_function
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = encoder_layers
__lowercase = auxiliary_loss
__lowercase = position_embedding_type
__lowercase = backbone
__lowercase = use_pretrained_backbone
__lowercase = dilation
# Hungarian matcher
__lowercase = class_cost
__lowercase = bbox_cost
__lowercase = giou_cost
# Loss coefficients
__lowercase = mask_loss_coefficient
__lowercase = dice_loss_coefficient
__lowercase = cls_loss_coefficient
__lowercase = bbox_loss_coefficient
__lowercase = giou_loss_coefficient
__lowercase = focal_alpha
super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase )
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def _snake_case ( self : str ):
'''simple docstring'''
return self.d_model
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Any = version.parse("""1.11""" )
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _snake_case ( self : Any ):
'''simple docstring'''
return 1e-5
@property
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
return 12
| 655 | 0 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
snake_case__ : List[str] = """Create a default config file for Accelerate with only a few flags set."""
def snake_case_ ( _SCREAMING_SNAKE_CASE="no" , _SCREAMING_SNAKE_CASE = default_json_config_file , _SCREAMING_SNAKE_CASE = False ):
__lowercase = Path(_SCREAMING_SNAKE_CASE )
path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
if path.exists():
print(
F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" )
return False
__lowercase = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" )
__lowercase = {
"compute_environment": "LOCAL_MACHINE",
"mixed_precision": mixed_precision,
}
if torch.cuda.is_available():
__lowercase = torch.cuda.device_count()
__lowercase = num_gpus
__lowercase = False
if num_gpus > 1:
__lowercase = "MULTI_GPU"
else:
__lowercase = "NO"
elif is_xpu_available() and use_xpu:
__lowercase = torch.xpu.device_count()
__lowercase = num_xpus
__lowercase = False
if num_xpus > 1:
__lowercase = "MULTI_XPU"
else:
__lowercase = "NO"
elif is_npu_available():
__lowercase = torch.npu.device_count()
__lowercase = num_npus
__lowercase = False
if num_npus > 1:
__lowercase = "MULTI_NPU"
else:
__lowercase = "NO"
else:
__lowercase = 0
__lowercase = True
__lowercase = 1
__lowercase = "NO"
__lowercase = ClusterConfig(**_SCREAMING_SNAKE_CASE )
config.to_json_file(_SCREAMING_SNAKE_CASE )
return path
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = parser.add_parser("default" , parents=_SCREAMING_SNAKE_CASE , help=_SCREAMING_SNAKE_CASE , formatter_class=_SCREAMING_SNAKE_CASE )
parser.add_argument(
"--config_file" , default=_SCREAMING_SNAKE_CASE , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , dest="save_location" , )
parser.add_argument(
"--mixed_precision" , choices=["no", "fp16", "bf16"] , type=_SCREAMING_SNAKE_CASE , help="Whether or not to use mixed precision training. "
"Choose between FP16 and BF16 (bfloat16) training. "
"BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , )
parser.set_defaults(func=_SCREAMING_SNAKE_CASE )
return parser
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F"""accelerate configuration saved at {config_file}""" )
| 700 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
snake_case__ : Any = logging.get_logger(__name__)
class _A ( _lowercase , _lowercase ):
'''simple docstring'''
_snake_case : Dict = """maskformer-swin"""
_snake_case : List[str] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = embed_dim
__lowercase = depths
__lowercase = len(lowerCamelCase )
__lowercase = num_heads
__lowercase = window_size
__lowercase = mlp_ratio
__lowercase = qkv_bias
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = drop_path_rate
__lowercase = hidden_act
__lowercase = use_absolute_embeddings
__lowercase = layer_norm_eps
__lowercase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) )
__lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )]
__lowercase , __lowercase = get_aligned_output_features_output_indices(
out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
| 655 | 0 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _A ( _lowercase ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : int=13 , lowerCamelCase : Any=7 , lowerCamelCase : Dict=True , lowerCamelCase : Tuple=True , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[int]=False , lowerCamelCase : Tuple=False , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=2 , lowerCamelCase : Optional[Any]=99 , lowerCamelCase : Tuple=0 , lowerCamelCase : Optional[int]=32 , lowerCamelCase : Tuple=5 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Any=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : List[Any]=512 , lowerCamelCase : Any=12 , lowerCamelCase : Dict=2 , lowerCamelCase : str=0.02 , lowerCamelCase : Tuple=3 , lowerCamelCase : str=4 , lowerCamelCase : Optional[Any]="last" , lowerCamelCase : int=None , lowerCamelCase : List[Any]=None , ):
'''simple docstring'''
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_lengths
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = gelu_activation
__lowercase = sinusoidal_embeddings
__lowercase = causal
__lowercase = asm
__lowercase = n_langs
__lowercase = vocab_size
__lowercase = n_special
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = summary_type
__lowercase = use_proj
__lowercase = scope
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_input_lengths:
__lowercase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , 2 ).float()
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def _snake_case ( self : int ):
'''simple docstring'''
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def _snake_case ( self : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
__lowercase = FlaubertModel(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__lowercase = model(lowerCamelCase , lengths=lowerCamelCase , langs=lowerCamelCase )
__lowercase = model(lowerCamelCase , langs=lowerCamelCase )
__lowercase = model(lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self : Any , lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , ):
'''simple docstring'''
__lowercase = FlaubertWithLMHeadModel(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__lowercase = model(lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Any , ):
'''simple docstring'''
__lowercase = FlaubertForQuestionAnsweringSimple(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__lowercase = model(lowerCamelCase )
__lowercase = model(lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self : Dict , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Tuple , ):
'''simple docstring'''
__lowercase = FlaubertForQuestionAnswering(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__lowercase = model(lowerCamelCase )
__lowercase = model(
lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , cls_index=lowerCamelCase , is_impossible=lowerCamelCase , p_mask=lowerCamelCase , )
__lowercase = model(
lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , cls_index=lowerCamelCase , is_impossible=lowerCamelCase , )
((__lowercase ) , ) = result_with_labels.to_tuple()
__lowercase = model(lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase )
((__lowercase ) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def _snake_case ( self : List[str] , lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , ):
'''simple docstring'''
__lowercase = FlaubertForSequenceClassification(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__lowercase = model(lowerCamelCase )
__lowercase = model(lowerCamelCase , labels=lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , ):
'''simple docstring'''
__lowercase = self.num_labels
__lowercase = FlaubertForTokenClassification(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__lowercase = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , ):
'''simple docstring'''
__lowercase = self.num_choices
__lowercase = FlaubertForMultipleChoice(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = model(
lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"lengths": input_lengths,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class _A ( _lowercase , _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : List[str] = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
_snake_case : Any = (
{
"""feature-extraction""": FlaubertModel,
"""fill-mask""": FlaubertWithLMHeadModel,
"""question-answering""": FlaubertForQuestionAnsweringSimple,
"""text-classification""": FlaubertForSequenceClassification,
"""token-classification""": FlaubertForTokenClassification,
"""zero-shot""": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def _snake_case ( self : List[str] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : Dict ):
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def _snake_case ( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any]=False ):
'''simple docstring'''
__lowercase = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
__lowercase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase )
__lowercase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase )
return inputs_dict
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = FlaubertModelTester(self )
__lowercase = ConfigTester(self , config_class=lowerCamelCase , emb_dim=37 )
def _snake_case ( self : Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*lowerCamelCase )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*lowerCamelCase )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase )
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase )
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*lowerCamelCase )
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCamelCase )
@slow
def _snake_case ( self : int ):
'''simple docstring'''
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = FlaubertModel.from_pretrained(lowerCamelCase )
self.assertIsNotNone(lowerCamelCase )
@slow
@require_torch_gpu
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
__lowercase = True
__lowercase = model_class(config=lowerCamelCase )
__lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase )
__lowercase = torch.jit.trace(
lowerCamelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowerCamelCase , os.path.join(lowerCamelCase , "traced_model.pt" ) )
__lowercase = torch.jit.load(os.path.join(lowerCamelCase , "traced_model.pt" ) , map_location=lowerCamelCase )
loaded(inputs_dict["input_ids"].to(lowerCamelCase ) , inputs_dict["attention_mask"].to(lowerCamelCase ) )
@require_torch
class _A ( unittest.TestCase ):
'''simple docstring'''
@slow
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" )
__lowercase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
with torch.no_grad():
__lowercase = model(lowerCamelCase )[0]
__lowercase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , lowerCamelCase )
__lowercase = torch.tensor(
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase , atol=1e-4 ) )
| 701 |
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("The given input must be positive" )
# get the generated string sequence
__lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
__lowercase = int(sequence[i] , 2 )
return sequence
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__lowercase = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__lowercase = gray_code_sequence_string(bit_count - 1 )
__lowercase = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__lowercase = "0" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__lowercase = "1" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
from collections import defaultdict
from math import ceil, sqrt
def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0_0_0_0 , _SCREAMING_SNAKE_CASE = 1_0 ):
__lowercase = defaultdict(_SCREAMING_SNAKE_CASE )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
__lowercase = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
__lowercase = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 1_0 )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 702 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"""
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ):
model.train()
__lowercase = model(_SCREAMING_SNAKE_CASE )
__lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
set_seed(4_2 )
__lowercase = RegressionModel()
__lowercase = deepcopy(_SCREAMING_SNAKE_CASE )
__lowercase = RegressionDataset(length=8_0 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
model.to(accelerator.device )
if sched:
__lowercase = AdamW(params=model.parameters() , lr=1E-3 )
__lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 )
__lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 )
__lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 )
# Make a copy of `model`
if sched:
__lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
__lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# Test when on a single CPU or GPU that the context manager does nothing
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
# Use a single batch
__lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# Test on distributed setup that context manager behaves properly
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
# Use a single batch
__lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ):
__lowercase = Accelerator(
split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = batch.values()
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
GradientState._reset_state()
def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ):
__lowercase = Accelerator(
split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = batch.values()
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n"""
__lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE ))
if accelerator.num_processes > 1:
check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
GradientState._reset_state()
def snake_case_ ( ):
__lowercase = Accelerator()
__lowercase = RegressionDataset(length=8_0 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
__lowercase = RegressionDataset(length=9_6 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
__lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE )
if iteration < len(_SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE )
if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def snake_case_ ( ):
__lowercase = Accelerator()
__lowercase = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**" )
test_noop_sync(_SCREAMING_SNAKE_CASE )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**" )
test_distributed_sync(_SCREAMING_SNAKE_CASE )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 655 | 0 |
from __future__ import annotations
from typing import Any
class _A ( _lowercase ):
'''simple docstring'''
pass
class _A :
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCamelCase : Any ):
'''simple docstring'''
__lowercase = data
__lowercase = None
def __iter__( self : Optional[int] ):
'''simple docstring'''
__lowercase = self
__lowercase = []
while node:
if node in visited:
raise ContainsLoopError
visited.append(lowerCamelCase )
yield node.data
__lowercase = node.next_node
@property
def _snake_case ( self : List[str] ):
'''simple docstring'''
try:
list(self )
return False
except ContainsLoopError:
return True
if __name__ == "__main__":
snake_case__ : Any = Node(1)
snake_case__ : Dict = Node(2)
snake_case__ : Any = Node(3)
snake_case__ : Any = Node(4)
print(root_node.has_loop) # False
snake_case__ : Optional[Any] = root_node.next_node
print(root_node.has_loop) # True
snake_case__ : List[Any] = Node(5)
snake_case__ : Optional[int] = Node(6)
snake_case__ : Union[str, Any] = Node(5)
snake_case__ : List[str] = Node(6)
print(root_node.has_loop) # False
snake_case__ : List[str] = Node(1)
print(root_node.has_loop) # False
| 703 |
from ....utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
class _A ( _lowercase ):
'''simple docstring'''
def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ):
'''simple docstring'''
__lowercase = config.__dict__
__lowercase = modal_hidden_size
if num_labels:
__lowercase = num_labels
| 655 | 0 |
import json
import sys
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f:
__lowercase = json.load(_SCREAMING_SNAKE_CASE )
__lowercase = ["<details>", "<summary>Show updated benchmarks!</summary>", " "]
for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ):
__lowercase = results[benchmark_name]
__lowercase = benchmark_name.split("/" )[-1]
output_md.append(F"""### Benchmark: {benchmark_file_name}""" )
__lowercase = "| metric |"
__lowercase = "|--------|"
__lowercase = "| new / old (diff) |"
for metric_name in sorted(_SCREAMING_SNAKE_CASE ):
__lowercase = benchmark_res[metric_name]
__lowercase = metric_vals["new"]
__lowercase = metric_vals.get("old" , _SCREAMING_SNAKE_CASE )
__lowercase = metric_vals.get("diff" , _SCREAMING_SNAKE_CASE )
__lowercase = F""" {new_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None"
if old_val is not None:
val_str += F""" / {old_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None"
if dif_val is not None:
val_str += F""" ({dif_val:f})""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append("</details>" )
with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f:
f.writelines("\n".join(_SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
snake_case__ : List[str] = sys.argv[1]
snake_case__ : Optional[Any] = sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 704 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : Dict = StableUnCLIPImgaImgPipeline
_snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
_snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_snake_case : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
_snake_case : int = frozenset([] )
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = 32
__lowercase = embedder_hidden_size
# image encoding components
__lowercase = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
__lowercase = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
__lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase )
__lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
__lowercase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , )
torch.manual_seed(0 )
__lowercase = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , )
torch.manual_seed(0 )
__lowercase = AutoencoderKL()
__lowercase = {
# image encoding components
"feature_extractor": feature_extractor,
"image_encoder": image_encoder.eval(),
# image noising components
"image_normalizer": image_normalizer.eval(),
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder.eval(),
"unet": unet.eval(),
"scheduler": scheduler,
"vae": vae.eval(),
}
return components
def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ):
'''simple docstring'''
if str(lowerCamelCase ).startswith("mps" ):
__lowercase = torch.manual_seed(lowerCamelCase )
else:
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
__lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
if pil_image:
__lowercase = input_image * 0.5 + 0.5
__lowercase = input_image.clamp(0 , 1 )
__lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase )
__lowercase = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
inputs.update({"image_embeds": None} )
__lowercase = sd_pipe(**lowerCamelCase ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = torch_device in ["cpu", "mps"]
self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _snake_case ( self : str ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" )
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = torch.Generator(device="cpu" ).manual_seed(0 )
__lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" )
__lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" )
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = torch.Generator(device="cpu" ).manual_seed(0 )
__lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" )
__lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = pipe(
lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , )
__lowercase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 655 | 0 |
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if mass < 0:
raise ValueError("The mass of a body cannot be negative" )
return 0.5 * mass * abs(_SCREAMING_SNAKE_CASE ) * abs(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 705 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class _A ( _lowercase , _lowercase ):
'''simple docstring'''
@register_to_config
def __init__( self : Optional[Any] , *,
lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__()
__lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) )
# parameters for additional clip time embeddings
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
# parameters for encoder hidden states
__lowercase = clip_extra_context_tokens
__lowercase = nn.Linear(
lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim )
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
__lowercase = nn.LayerNorm(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ):
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
__lowercase = image_embeddings.shape[0]
__lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
__lowercase = classifier_free_guidance_embeddings.expand(
lowerCamelCase , -1 )
__lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
__lowercase = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
__lowercase = self.embedding_proj(lowerCamelCase )
__lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase )
__lowercase = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
__lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase )
__lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens )
__lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 )
__lowercase = self.encoder_hidden_states_proj(lowerCamelCase )
__lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase )
__lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 655 | 0 |
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
snake_case__ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(_lowercase )
class _A ( _lowercase ):
'''simple docstring'''
def __init__( self : Tuple , *lowerCamelCase : Dict , **lowerCamelCase : Dict ):
'''simple docstring'''
super().__init__(*lowerCamelCase , **lowerCamelCase )
requires_backends(self , "decord" )
self.check_model_type(lowerCamelCase )
def _snake_case ( self : int , lowerCamelCase : List[str]=None , lowerCamelCase : Any=None , lowerCamelCase : Any=None ):
'''simple docstring'''
__lowercase = {}
if frame_sampling_rate is not None:
__lowercase = frame_sampling_rate
if num_frames is not None:
__lowercase = num_frames
__lowercase = {}
if top_k is not None:
__lowercase = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : List[str] , lowerCamelCase : Union[str, List[str]] , **lowerCamelCase : Any ):
'''simple docstring'''
return super().__call__(lowerCamelCase , **lowerCamelCase )
def _snake_case ( self : Any , lowerCamelCase : int , lowerCamelCase : Any=None , lowerCamelCase : Tuple=1 ):
'''simple docstring'''
if num_frames is None:
__lowercase = self.model.config.num_frames
if video.startswith("http://" ) or video.startswith("https://" ):
__lowercase = BytesIO(requests.get(lowerCamelCase ).content )
__lowercase = VideoReader(lowerCamelCase )
videoreader.seek(0 )
__lowercase = 0
__lowercase = num_frames * frame_sampling_rate - 1
__lowercase = np.linspace(lowerCamelCase , lowerCamelCase , num=lowerCamelCase , dtype=np.intaa )
__lowercase = videoreader.get_batch(lowerCamelCase ).asnumpy()
__lowercase = list(lowerCamelCase )
__lowercase = self.image_processor(lowerCamelCase , return_tensors=self.framework )
return model_inputs
def _snake_case ( self : int , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = self.model(**lowerCamelCase )
return model_outputs
def _snake_case ( self : int , lowerCamelCase : Any , lowerCamelCase : Any=5 ):
'''simple docstring'''
if top_k > self.model.config.num_labels:
__lowercase = self.model.config.num_labels
if self.framework == "pt":
__lowercase = model_outputs.logits.softmax(-1 )[0]
__lowercase , __lowercase = probs.topk(lowerCamelCase )
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
__lowercase = scores.tolist()
__lowercase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
| 706 |
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
snake_case__ : Union[str, Any] = TypeVar("""T""")
snake_case__ : Optional[int] = TypeVar("""U""")
class _A ( Generic[T, U] ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ):
'''simple docstring'''
__lowercase = key
__lowercase = val
__lowercase = None
__lowercase = None
def __repr__( self : Any ):
'''simple docstring'''
return (
f"""Node: key: {self.key}, val: {self.val}, """
f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}"""
)
class _A ( Generic[T, U] ):
'''simple docstring'''
def __init__( self : Dict ):
'''simple docstring'''
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
__lowercase , __lowercase = self.rear, self.head
def __repr__( self : Optional[Any] ):
'''simple docstring'''
__lowercase = ["DoubleLinkedList"]
__lowercase = self.head
while node.next is not None:
rep.append(str(lowerCamelCase ) )
__lowercase = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
__lowercase = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
__lowercase = node
__lowercase = previous
__lowercase = node
__lowercase = self.rear
def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
if node.prev is None or node.next is None:
return None
__lowercase = node.next
__lowercase = node.prev
__lowercase = None
__lowercase = None
return node
class _A ( Generic[T, U] ):
'''simple docstring'''
_snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self : List[Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = DoubleLinkedList()
__lowercase = capacity
__lowercase = 0
__lowercase = 0
__lowercase = 0
__lowercase = {}
def __repr__( self : Optional[Any] ):
'''simple docstring'''
return (
f"""CacheInfo(hits={self.hits}, misses={self.miss}, """
f"""capacity={self.capacity}, current size={self.num_keys})"""
)
def __contains__( self : Dict , lowerCamelCase : T ):
'''simple docstring'''
return key in self.cache
def _snake_case ( self : List[Any] , lowerCamelCase : T ):
'''simple docstring'''
if key in self.cache:
self.hits += 1
__lowercase = self.cache[key]
__lowercase = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowerCamelCase )
return node.val
self.miss += 1
return None
def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ):
'''simple docstring'''
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
__lowercase = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowerCamelCase ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
__lowercase = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
__lowercase = value
self.list.add(lowerCamelCase )
@classmethod
def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ):
'''simple docstring'''
def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowerCamelCase : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
__lowercase = LRUCache(lowerCamelCase )
__lowercase = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
__lowercase = func(*lowerCamelCase )
cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
'''simple docstring'''
@slow
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
__lowercase = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__lowercase = model(lowerCamelCase )["last_hidden_state"]
__lowercase = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , lowerCamelCase )
# compare the actual values for a slice.
__lowercase = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 707 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
snake_case__ : Optional[Any] = logging.getLogger()
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = "\n".join(_SCREAMING_SNAKE_CASE )
Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random"""
snake_case__ : int = """sshleifer/bart-tiny-random"""
snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart"""
snake_case__ : List[str] = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class _A ( _lowercase ):
'''simple docstring'''
def _snake_case ( self : str , lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
__lowercase = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
__lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
_dump_articles(lowerCamelCase , lowerCamelCase )
__lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" )
__lowercase = "translation_en_to_de" if model == T5_TINY else "summarization"
__lowercase = f"""
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
""".split()
with patch.object(lowerCamelCase , "argv" , lowerCamelCase ):
run_generate()
assert Path(lowerCamelCase ).exists()
# os.remove(Path(output_file_name))
def _snake_case ( self : Dict ):
'''simple docstring'''
self.run_eval_tester(lowerCamelCase )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
self.run_eval_tester(lowerCamelCase )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
__lowercase = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
__lowercase = {
"en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
"de": [
"Maschinelles Lernen ist großartig, oder?",
"Ich esse gerne Bananen",
"Morgen ist wieder ein toller Tag!",
],
}
__lowercase = Path(self.get_auto_remove_tmp_dir() )
__lowercase = str(tmp_dir / "scores.json" )
__lowercase = str(tmp_dir / "val.target" )
_dump_articles(lowerCamelCase , text["en"] )
_dump_articles(lowerCamelCase , text["de"] )
__lowercase = "translation_en_to_de" if model == T5_TINY else "summarization"
__lowercase = f"""
run_eval_search.py
{model}
{str(lowerCamelCase )}
{str(lowerCamelCase )}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
""".split()
testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] )
with patch.object(lowerCamelCase , "argv" , lowerCamelCase ):
with CaptureStdout() as cs:
run_search()
__lowercase = [" num_beams | length_penalty", model, "Best score args"]
__lowercase = ["Info"]
if "translation" in task:
expected_strings.append("bleu" )
else:
expected_strings.extend(lowerCamelCase )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(lowerCamelCase ).exists()
os.remove(Path(lowerCamelCase ) )
| 655 | 0 |
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
snake_case__ : Optional[Any] = logging.get_logger(__name__)
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ):
# Recurse if needed
if "." in tensor_name:
__lowercase = tensor_name.split("." )
for split in splits[:-1]:
__lowercase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if new_module is None:
raise ValueError(F"""{module} has no attribute {split}.""" )
__lowercase = new_module
__lowercase = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" )
__lowercase = tensor_name in module._buffers
__lowercase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None:
raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" )
__lowercase = False
__lowercase = False
if is_buffer or not is_bitsandbytes_available():
__lowercase = False
__lowercase = False
else:
__lowercase = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
__lowercase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
__lowercase = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
__lowercase = old_value.to(_SCREAMING_SNAKE_CASE )
elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
__lowercase = value.to("cpu" )
if value.dtype == torch.inta:
__lowercase = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse(
"0.37.2" )
if not is_abit_serializable:
raise ValueError(
"Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. "
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." )
else:
__lowercase = torch.tensor(_SCREAMING_SNAKE_CASE , device="cpu" )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , _SCREAMING_SNAKE_CASE ) and fpaa_statistics is None:
__lowercase = new_value.T
__lowercase = old_value.__dict__
if is_abit:
__lowercase = bnb.nn.IntaParams(_SCREAMING_SNAKE_CASE , requires_grad=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
elif is_abit:
__lowercase = bnb.nn.Paramsabit(_SCREAMING_SNAKE_CASE , requires_grad=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
__lowercase = new_value
if fpaa_statistics is not None:
setattr(module.weight , "SCB" , fpaa_statistics.to(_SCREAMING_SNAKE_CASE ) )
else:
if value is None:
__lowercase = old_value.to(_SCREAMING_SNAKE_CASE )
elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
__lowercase = value.to(_SCREAMING_SNAKE_CASE )
else:
__lowercase = torch.tensor(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
if is_buffer:
__lowercase = new_value
else:
__lowercase = nn.Parameter(_SCREAMING_SNAKE_CASE , requires_grad=old_value.requires_grad )
__lowercase = new_value
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ):
for name, module in model.named_children():
if current_key_name is None:
__lowercase = []
current_key_name.append(_SCREAMING_SNAKE_CASE )
if (isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) or isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in ".".join(_SCREAMING_SNAKE_CASE ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = module.weight.shape
else:
__lowercase = module.in_features
__lowercase = module.out_features
if quantization_config.quantization_method() == "llm_int8":
__lowercase = bnb.nn.LinearabitLt(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
__lowercase = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
__lowercase = bnb.nn.Linearabit(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
__lowercase = True
# Store the module class in case we need to transpose the weight later
__lowercase = type(_SCREAMING_SNAKE_CASE )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(_SCREAMING_SNAKE_CASE )
if len(list(module.children() ) ) > 0:
__lowercase , __lowercase = _replace_with_bnb_linear(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_been_replaced=_SCREAMING_SNAKE_CASE , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ):
__lowercase = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert
__lowercase , __lowercase = _replace_with_bnb_linear(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if not has_been_replaced:
logger.warning(
"You are loading your model in 8bit or 4bit but no linear modules were found in your model."
" Please double check your model architecture, or submit an issue on github if you think this is"
" a bug." )
return model
def snake_case_ ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
warnings.warn(
"`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , _SCREAMING_SNAKE_CASE , )
return replace_with_bnb_linear(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def snake_case_ ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
warnings.warn(
"`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , _SCREAMING_SNAKE_CASE , )
return set_module_quantized_tensor_to_device(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
__lowercase = find_tied_parameters(_SCREAMING_SNAKE_CASE )
# For compatibility with Accelerate < 0.18
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
__lowercase = sum(_SCREAMING_SNAKE_CASE , [] )
__lowercase = len(_SCREAMING_SNAKE_CASE ) > 0
# Check if it is a base model
__lowercase = not hasattr(_SCREAMING_SNAKE_CASE , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
__lowercase = list(model.named_children() )
__lowercase = [list_modules[-1][0]]
# add last module together with tied weights
__lowercase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE )
__lowercase = list(set(_SCREAMING_SNAKE_CASE ) ) + list(_SCREAMING_SNAKE_CASE )
# remove ".weight" from the keys
__lowercase = [".weight", ".bias"]
__lowercase = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
__lowercase = name.replace(_SCREAMING_SNAKE_CASE , "" )
filtered_module_names.append(_SCREAMING_SNAKE_CASE )
return filtered_module_names
| 708 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _A :
'''simple docstring'''
_snake_case : int
_snake_case : TreeNode | None = None
_snake_case : TreeNode | None = None
snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""")
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if root is None:
return 0
# Validation
def count_nodes(_SCREAMING_SNAKE_CASE ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(_SCREAMING_SNAKE_CASE ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ):
raise ValueError("The nodes number should be same as the number of coins" )
# Main calculation
def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowercase , __lowercase = get_distrib(node.left )
__lowercase , __lowercase = get_distrib(node.right )
__lowercase = 1 - left_distrib_excess
__lowercase = 1 - right_distrib_excess
__lowercase = (
left_distrib_moves
+ right_distrib_moves
+ abs(_SCREAMING_SNAKE_CASE )
+ abs(_SCREAMING_SNAKE_CASE )
)
__lowercase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return get_distrib(_SCREAMING_SNAKE_CASE )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = 0
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" )
self.assertIsInstance(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__lowercase = Path(lowerCamelCase ) / "preprocessor_config.json"
__lowercase = Path(lowerCamelCase ) / "config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(lowerCamelCase , "w" ) , )
json.dump({"model_type": "clip"} , open(lowerCamelCase , "w" ) )
__lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase )
self.assertIsInstance(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Tuple ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__lowercase = Path(lowerCamelCase ) / "preprocessor_config.json"
__lowercase = Path(lowerCamelCase ) / "config.json"
json.dump(
{"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(lowerCamelCase , "w" ) , )
json.dump({"model_type": "clip"} , open(lowerCamelCase , "w" ) )
__lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase )
self.assertIsInstance(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Tuple ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__lowercase = CLIPConfig()
# Create a dummy config file with image_proceesor_type
__lowercase = Path(lowerCamelCase ) / "preprocessor_config.json"
__lowercase = Path(lowerCamelCase ) / "config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(lowerCamelCase , "w" ) , )
json.dump({"model_type": "clip"} , open(lowerCamelCase , "w" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
__lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase ).to_dict()
config_dict.pop("image_processor_type" )
__lowercase = CLIPImageProcessor(**lowerCamelCase )
# save in new folder
model_config.save_pretrained(lowerCamelCase )
config.save_pretrained(lowerCamelCase )
__lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase )
# make sure private variable is not incorrectly saved
__lowercase = json.loads(config.to_json_string() )
self.assertTrue("_processor_class" not in dict_as_saved )
self.assertIsInstance(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : str ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__lowercase = Path(lowerCamelCase ) / "preprocessor_config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(lowerCamelCase , "w" ) , )
__lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase )
self.assertIsInstance(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
lowerCamelCase , "clip-base is not a local folder and is not a valid model identifier" ):
__lowercase = AutoImageProcessor.from_pretrained("clip-base" )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
with self.assertRaisesRegex(
lowerCamelCase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
__lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase , revision="aaaaaa" )
def _snake_case ( self : Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
lowerCamelCase , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ):
__lowercase = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
with self.assertRaises(lowerCamelCase ):
__lowercase = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowerCamelCase ):
__lowercase = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCamelCase )
__lowercase = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCamelCase )
self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(lowerCamelCase )
__lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase , trust_remote_code=lowerCamelCase )
self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
try:
AutoConfig.register("custom" , lowerCamelCase )
AutoImageProcessor.register(lowerCamelCase , lowerCamelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCamelCase ):
AutoImageProcessor.register(lowerCamelCase , lowerCamelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
__lowercase = Path(lowerCamelCase ) / "preprocessor_config.json"
__lowercase = Path(lowerCamelCase ) / "config.json"
json.dump(
{"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(lowerCamelCase , "w" ) , )
json.dump({"model_type": "clip"} , open(lowerCamelCase , "w" ) )
__lowercase = CustomImageProcessor.from_pretrained(lowerCamelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(lowerCamelCase )
__lowercase = AutoImageProcessor.from_pretrained(lowerCamelCase )
self.assertIsInstance(lowerCamelCase , lowerCamelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Union[str, Any] = True
try:
AutoConfig.register("custom" , lowerCamelCase )
AutoImageProcessor.register(lowerCamelCase , lowerCamelCase )
# If remote code is not set, the default is to use local
__lowercase = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" )
self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
__lowercase = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCamelCase )
self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
__lowercase = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCamelCase )
self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" )
self.assertTrue(not hasattr(lowerCamelCase , "is_local" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 709 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = SwinvaConfig()
__lowercase = swinva_name.split("_" )
__lowercase = name_split[1]
if "to" in name_split[3]:
__lowercase = int(name_split[3][-3:] )
else:
__lowercase = int(name_split[3] )
if "to" in name_split[2]:
__lowercase = int(name_split[2][-2:] )
else:
__lowercase = int(name_split[2][6:] )
if model_size == "tiny":
__lowercase = 9_6
__lowercase = (2, 2, 6, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif model_size == "small":
__lowercase = 9_6
__lowercase = (2, 2, 1_8, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif model_size == "base":
__lowercase = 1_2_8
__lowercase = (2, 2, 1_8, 2)
__lowercase = (4, 8, 1_6, 3_2)
else:
__lowercase = 1_9_2
__lowercase = (2, 2, 1_8, 2)
__lowercase = (6, 1_2, 2_4, 4_8)
if "to" in swinva_name:
__lowercase = (1_2, 1_2, 1_2, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
__lowercase = 2_1_8_4_1
__lowercase = "huggingface/label-files"
__lowercase = "imagenet-22k-id2label.json"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
else:
__lowercase = 1_0_0_0
__lowercase = "huggingface/label-files"
__lowercase = "imagenet-1k-id2label.json"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = img_size
__lowercase = num_classes
__lowercase = embed_dim
__lowercase = depths
__lowercase = num_heads
__lowercase = window_size
return config
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if "patch_embed.proj" in name:
__lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "patch_embed.norm" in name:
__lowercase = name.replace("patch_embed.norm" , "embeddings.norm" )
if "layers" in name:
__lowercase = "encoder." + name
if "attn.proj" in name:
__lowercase = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
__lowercase = name.replace("attn" , "attention.self" )
if "norm1" in name:
__lowercase = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
__lowercase = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
__lowercase = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
__lowercase = name.replace("mlp.fc2" , "output.dense" )
if "q_bias" in name:
__lowercase = name.replace("q_bias" , "query.bias" )
if "k_bias" in name:
__lowercase = name.replace("k_bias" , "key.bias" )
if "v_bias" in name:
__lowercase = name.replace("v_bias" , "value.bias" )
if "cpb_mlp" in name:
__lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" )
if name == "norm.weight":
__lowercase = "layernorm.weight"
if name == "norm.bias":
__lowercase = "layernorm.bias"
if "head" in name:
__lowercase = name.replace("head" , "classifier" )
else:
__lowercase = "swinv2." + name
return name
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for key in orig_state_dict.copy().keys():
__lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "mask" in key:
continue
elif "qkv" in key:
__lowercase = key.split("." )
__lowercase = int(key_split[1] )
__lowercase = int(key_split[3] )
__lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__lowercase = val[:dim, :]
__lowercase = val[dim : dim * 2, :]
__lowercase = val[-dim:, :]
else:
__lowercase = val[:dim]
__lowercase = val[
dim : dim * 2
]
__lowercase = val[-dim:]
else:
__lowercase = val
return orig_state_dict
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE )
timm_model.eval()
__lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE )
__lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE )
model.eval()
__lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE )
__lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg"
__lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) )
__lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
__lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" )
__lowercase = timm_model(inputs["pixel_values"] )
__lowercase = model(**_SCREAMING_SNAKE_CASE ).logits
assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 )
print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
model.push_to_hub(
repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , )
if __name__ == "__main__":
snake_case__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swinv2_name""",
default="""swinv2_tiny_patch4_window8_256""",
type=str,
help="""Name of the Swinv2 timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
snake_case__ : str = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 655 | 0 |
'''simple docstring'''
import math
import random
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ):
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
snake_case__ : Optional[Any] = 0.0_2
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = float(2 * (random.randint(1 , 1_0_0 )) - 1 )
for _ in range(_SCREAMING_SNAKE_CASE ):
# Forward propagation
__lowercase = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
__lowercase = (expected / 1_0_0) - layer_a
# Error delta
__lowercase = layer_1_error * sigmoid_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 1_0_0
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case__ : Union[str, Any] = int(input("""Expected value: """))
snake_case__ : Optional[int] = int(input("""Number of propagations: """))
print(forward_propagation(expected, number_propagations))
| 710 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
snake_case__ : List[str] = logging.get_logger(__name__)
snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
snake_case__ : Optional[Any] = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
snake_case__ : List[str] = {
"""allenai/led-base-16384""": 1_63_84,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def snake_case_ ( ):
__lowercase = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
__lowercase = bs[:]
__lowercase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_SCREAMING_SNAKE_CASE )
cs.append(2**8 + n )
n += 1
__lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs]
return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = set()
__lowercase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowercase = char
return pairs
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[str] = VOCAB_FILES_NAMES
_snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""]
def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token
super().__init__(
errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , )
with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__lowercase = json.load(lowerCamelCase )
__lowercase = {v: k for k, v in self.encoder.items()}
__lowercase = errors # how to handle errors in decoding
__lowercase = bytes_to_unicode()
__lowercase = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase , encoding="utf-8" ) as merges_handle:
__lowercase = merges_handle.read().split("\n" )[1:-1]
__lowercase = [tuple(merge.split() ) for merge in bpe_merges]
__lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) )
__lowercase = {}
__lowercase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return len(self.encoder )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : List[Any] , lowerCamelCase : str ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
__lowercase = tuple(lowerCamelCase )
__lowercase = get_pairs(lowerCamelCase )
if not pairs:
return token
while True:
__lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__lowercase , __lowercase = bigram
__lowercase = []
__lowercase = 0
while i < len(lowerCamelCase ):
try:
__lowercase = word.index(lowerCamelCase , lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__lowercase = j
if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowercase = tuple(lowerCamelCase )
__lowercase = new_word
if len(lowerCamelCase ) == 1:
break
else:
__lowercase = get_pairs(lowerCamelCase )
__lowercase = " ".join(lowerCamelCase )
__lowercase = word
return word
def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ):
'''simple docstring'''
__lowercase = []
for token in re.findall(self.pat , lowerCamelCase ):
__lowercase = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : str , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.decoder.get(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = "".join(lowerCamelCase )
__lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(lowerCamelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__lowercase = os.path.join(
lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" )
__lowercase = 0
with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
__lowercase = token_index
writer.write(" ".join(lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowercase = [self.cls_token_id]
__lowercase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase )) + [1]
return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1]
def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ):
'''simple docstring'''
__lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()):
__lowercase = " " + text
return (text, kwargs)
def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
__lowercase = super()._pad(
encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
__lowercase = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
__lowercase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
__lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase )
if needs_to_be_padded:
__lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
__lowercase = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
__lowercase = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 655 | 0 |
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
def get_masked_lm_array(_SCREAMING_SNAKE_CASE ):
__lowercase = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__lowercase = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if "kernel" in name:
__lowercase = array.transpose()
return torch.from_numpy(_SCREAMING_SNAKE_CASE )
def get_encoder_array(_SCREAMING_SNAKE_CASE ):
__lowercase = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__lowercase = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if "kernel" in name:
__lowercase = array.transpose()
return torch.from_numpy(_SCREAMING_SNAKE_CASE )
def get_encoder_layer_array(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__lowercase = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if "kernel" in name:
__lowercase = array.transpose()
return torch.from_numpy(_SCREAMING_SNAKE_CASE )
def get_encoder_attention_layer_array(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__lowercase = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowercase = array.reshape(_SCREAMING_SNAKE_CASE )
if "kernel" in name:
__lowercase = array.transpose()
return torch.from_numpy(_SCREAMING_SNAKE_CASE )
print(f"""Loading model based on config from {config_path}...""" )
__lowercase = BertConfig.from_json_file(_SCREAMING_SNAKE_CASE )
__lowercase = BertForMaskedLM(_SCREAMING_SNAKE_CASE )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__lowercase = model.bert.encoder.layer[layer_index]
# Self-attention
__lowercase = layer.attention.self
__lowercase = get_encoder_attention_layer_array(
_SCREAMING_SNAKE_CASE , "_query_dense/kernel" , self_attn.query.weight.data.shape )
__lowercase = get_encoder_attention_layer_array(
_SCREAMING_SNAKE_CASE , "_query_dense/bias" , self_attn.query.bias.data.shape )
__lowercase = get_encoder_attention_layer_array(
_SCREAMING_SNAKE_CASE , "_key_dense/kernel" , self_attn.key.weight.data.shape )
__lowercase = get_encoder_attention_layer_array(
_SCREAMING_SNAKE_CASE , "_key_dense/bias" , self_attn.key.bias.data.shape )
__lowercase = get_encoder_attention_layer_array(
_SCREAMING_SNAKE_CASE , "_value_dense/kernel" , self_attn.value.weight.data.shape )
__lowercase = get_encoder_attention_layer_array(
_SCREAMING_SNAKE_CASE , "_value_dense/bias" , self_attn.value.bias.data.shape )
# Self-attention Output
__lowercase = layer.attention.output
__lowercase = get_encoder_attention_layer_array(
_SCREAMING_SNAKE_CASE , "_output_dense/kernel" , self_output.dense.weight.data.shape )
__lowercase = get_encoder_attention_layer_array(
_SCREAMING_SNAKE_CASE , "_output_dense/bias" , self_output.dense.bias.data.shape )
__lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_attention_layer_norm/gamma" )
__lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_attention_layer_norm/beta" )
# Intermediate
__lowercase = layer.intermediate
__lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_intermediate_dense/kernel" )
__lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_intermediate_dense/bias" )
# Output
__lowercase = layer.output
__lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_output_dense/kernel" )
__lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_output_dense/bias" )
__lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_output_layer_norm/gamma" )
__lowercase = get_encoder_layer_array(_SCREAMING_SNAKE_CASE , "_output_layer_norm/beta" )
# Embeddings
__lowercase = get_encoder_array("_position_embedding_layer/embeddings" )
__lowercase = get_encoder_array("_type_embedding_layer/embeddings" )
__lowercase = get_encoder_array("_embedding_norm_layer/gamma" )
__lowercase = get_encoder_array("_embedding_norm_layer/beta" )
# LM Head
__lowercase = model.cls.predictions.transform
__lowercase = get_masked_lm_array("dense/kernel" )
__lowercase = get_masked_lm_array("dense/bias" )
__lowercase = get_masked_lm_array("layer_norm/gamma" )
__lowercase = get_masked_lm_array("layer_norm/beta" )
__lowercase = get_masked_lm_array("embedding_table" )
# Pooling
__lowercase = BertPooler(config=_SCREAMING_SNAKE_CASE )
__lowercase = get_encoder_array("_pooler_layer/kernel" )
__lowercase = get_encoder_array("_pooler_layer/bias" )
# Export final model
model.save_pretrained(_SCREAMING_SNAKE_CASE )
# Integration test - should load without any errors ;)
__lowercase = BertForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE )
print(new_model.eval() )
print("Model conversion was done sucessfully!" )
if __name__ == "__main__":
snake_case__ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path."""
)
parser.add_argument(
"""--bert_config_file""",
type=str,
required=True,
help="""The config json file corresponding to the BERT model. This specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""",
type=str,
required=True,
help="""Path to the output PyTorch model.""",
)
snake_case__ : Any = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 711 |
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ):
raise ValueError("The length of profit and weight must be same." )
if max_weight <= 0:
raise ValueError("max_weight must greater than zero." )
if any(p < 0 for p in profit ):
raise ValueError("Profit can not be negative." )
if any(w < 0 for w in weight ):
raise ValueError("Weight can not be negative." )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
__lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
# Creating a copy of the list and sorting profit/weight in ascending order
__lowercase = sorted(_SCREAMING_SNAKE_CASE )
# declaring useful variables
__lowercase = len(_SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
__lowercase = sorted_profit_by_weight[length - i - 1]
__lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE )
__lowercase = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
"""Input profits, weights, and then max_weight (all positive ints) separated by """
"""spaces."""
)
snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()]
snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()]
snake_case__ : Optional[Any] = int(input("""Max weight allowed: """))
# Function Call
calc_profit(profit, weight, max_weight)
| 655 | 0 |
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""")
# TF training parameters
snake_case__ : Dict = False
snake_case__ : Dict = False
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
return TrainCommand(_SCREAMING_SNAKE_CASE )
class _A ( _lowercase ):
'''simple docstring'''
@staticmethod
def _snake_case ( lowerCamelCase : ArgumentParser ):
'''simple docstring'''
__lowercase = parser.add_parser("train" , help="CLI tool to train a model on a task." )
train_parser.add_argument(
"--train_data" , type=lowerCamelCase , required=lowerCamelCase , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , )
train_parser.add_argument(
"--column_label" , type=lowerCamelCase , default=0 , help="Column of the dataset csv file with example labels." )
train_parser.add_argument(
"--column_text" , type=lowerCamelCase , default=1 , help="Column of the dataset csv file with example texts." )
train_parser.add_argument(
"--column_id" , type=lowerCamelCase , default=2 , help="Column of the dataset csv file with example ids." )
train_parser.add_argument(
"--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." )
train_parser.add_argument("--validation_data" , type=lowerCamelCase , default="" , help="path to validation dataset." )
train_parser.add_argument(
"--validation_split" , type=lowerCamelCase , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , )
train_parser.add_argument("--output" , type=lowerCamelCase , default="./" , help="path to saved the trained model." )
train_parser.add_argument(
"--task" , type=lowerCamelCase , default="text_classification" , help="Task to train the model on." )
train_parser.add_argument(
"--model" , type=lowerCamelCase , default="bert-base-uncased" , help="Model's name or path to stored model." )
train_parser.add_argument("--train_batch_size" , type=lowerCamelCase , default=32 , help="Batch size for training." )
train_parser.add_argument("--valid_batch_size" , type=lowerCamelCase , default=64 , help="Batch size for validation." )
train_parser.add_argument("--learning_rate" , type=lowerCamelCase , default=3e-5 , help="Learning rate." )
train_parser.add_argument("--adam_epsilon" , type=lowerCamelCase , default=1e-08 , help="Epsilon for Adam optimizer." )
train_parser.set_defaults(func=lowerCamelCase )
def __init__( self : int , lowerCamelCase : Namespace ):
'''simple docstring'''
__lowercase = logging.get_logger("transformers-cli/training" )
__lowercase = "tf" if is_tf_available() else "torch"
os.makedirs(args.output , exist_ok=lowerCamelCase )
__lowercase = args.output
__lowercase = args.column_label
__lowercase = args.column_text
__lowercase = args.column_id
self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" )
if args.task == "text_classification":
__lowercase = TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f"""Loading dataset from {args.train_data}""" )
__lowercase = Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
__lowercase = None
if args.validation_data:
self.logger.info(f"""Loading validation dataset from {args.validation_data}""" )
__lowercase = Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
__lowercase = args.validation_split
__lowercase = args.train_batch_size
__lowercase = args.valid_batch_size
__lowercase = args.learning_rate
__lowercase = args.adam_epsilon
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
raise NotImplementedError
def _snake_case ( self : int ):
'''simple docstring'''
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 712 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = """openai/whisper-base"""
_snake_case : Union[str, Any] = (
"""This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """
"""transcribed text."""
)
_snake_case : Any = """transcriber"""
_snake_case : Any = WhisperProcessor
_snake_case : Optional[int] = WhisperForConditionalGeneration
_snake_case : str = ["""audio"""]
_snake_case : Optional[int] = ["""text"""]
def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features
def _snake_case ( self : str , lowerCamelCase : List[Any] ):
'''simple docstring'''
return self.model.generate(inputs=lowerCamelCase )
def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
| 655 | 0 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
snake_case__ : Optional[Any] = logging.get_logger(__name__)
snake_case__ : int = {
"""Visual-Attention-Network/van-base""": (
"""https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json"""
),
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : str = """van"""
def __init__( self : Optional[Any] , lowerCamelCase : Tuple=224 , lowerCamelCase : str=3 , lowerCamelCase : int=[7, 3, 3, 3] , lowerCamelCase : str=[4, 2, 2, 2] , lowerCamelCase : List[Any]=[64, 128, 320, 512] , lowerCamelCase : int=[3, 3, 12, 3] , lowerCamelCase : str=[8, 8, 4, 4] , lowerCamelCase : Optional[Any]="gelu" , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : int=1e-6 , lowerCamelCase : int=1e-2 , lowerCamelCase : Any=0.0 , lowerCamelCase : Optional[int]=0.0 , **lowerCamelCase : int , ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
__lowercase = image_size
__lowercase = num_channels
__lowercase = patch_sizes
__lowercase = strides
__lowercase = hidden_sizes
__lowercase = depths
__lowercase = mlp_ratios
__lowercase = hidden_act
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = layer_scale_init_value
__lowercase = drop_path_rate
__lowercase = dropout_rate
| 713 |
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class _A :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , )
torch.manual_seed(0 )
__lowercase = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _snake_case ( self : Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , )
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , )
torch.manual_seed(0 )
__lowercase = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = inputs["prompt"]
__lowercase = inputs["generator"]
__lowercase = inputs["num_inference_steps"]
__lowercase = inputs["output_type"]
if "image" in inputs:
__lowercase = inputs["image"]
else:
__lowercase = None
if "mask_image" in inputs:
__lowercase = inputs["mask_image"]
else:
__lowercase = None
if "original_image" in inputs:
__lowercase = inputs["original_image"]
else:
__lowercase = None
__lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase )
# inputs with prompt converted to embeddings
__lowercase = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
__lowercase = image
if mask_image is not None:
__lowercase = mask_image
if original_image is not None:
__lowercase = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase )
__lowercase = pipe(**lowerCamelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(lowerCamelCase )
__lowercase = self.pipeline_class.from_pretrained(lowerCamelCase )
pipe_loaded.to(lowerCamelCase )
pipe_loaded.set_progress_bar_config(disable=lowerCamelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = inputs["generator"]
__lowercase = inputs["num_inference_steps"]
__lowercase = inputs["output_type"]
# inputs with prompt converted to embeddings
__lowercase = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
__lowercase = image
if mask_image is not None:
__lowercase = mask_image
if original_image is not None:
__lowercase = original_image
__lowercase = pipe_loaded(**lowerCamelCase )[0]
__lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max()
self.assertLess(lowerCamelCase , 1e-4 )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = pipe(**lowerCamelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(lowerCamelCase )
__lowercase = self.pipeline_class.from_pretrained(lowerCamelCase )
pipe_loaded.to(lowerCamelCase )
pipe_loaded.set_progress_bar_config(disable=lowerCamelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = pipe_loaded(**lowerCamelCase )[0]
__lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max()
self.assertLess(lowerCamelCase , 1e-4 )
| 655 | 0 |
import os
import jsonlines
import numpy as np
from tqdm import tqdm
snake_case__ : Dict = 20_48
snake_case__ : str = 40_96
snake_case__ : List[str] = 42
snake_case__ : Dict = os.environ.pop("""PROCESS_TRAIN""", """false""")
snake_case__ : Optional[Any] = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4}
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
def choose_first(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) == 1:
__lowercase = answer[0]
return {k: [answer[k]] for k in answer} if is_long_answer else answer
for a in answer:
if is_long_answer:
__lowercase = {k: [a[k]] for k in a}
if len(a["start_token"] ) > 0:
break
return a
__lowercase = {"id": example["id"]}
__lowercase = example["annotations"]
__lowercase = annotation["yes_no_answer"]
if 0 in yes_no_answer or 1 in yes_no_answer:
__lowercase = ["yes"] if 1 in yes_no_answer else ["no"]
__lowercase = __lowercase = []
__lowercase = __lowercase = []
__lowercase = ["<cls>"]
else:
__lowercase = ["short"]
__lowercase = choose_first(annotation["short_answers"] )
if len(out["start_token"] ) == 0:
# answer will be long if short is not available
__lowercase = ["long"]
__lowercase = choose_first(annotation["long_answer"] , is_long_answer=_SCREAMING_SNAKE_CASE )
__lowercase = []
answer.update(_SCREAMING_SNAKE_CASE )
# disregard some samples
if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]:
__lowercase = True
else:
__lowercase = False
__lowercase = ["start_token", "end_token", "start_byte", "end_byte", "text"]
if not all(isinstance(answer[k] , _SCREAMING_SNAKE_CASE ) for k in cols ):
raise ValueError("Issue in ID" , example["id"] )
return answer
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
__lowercase = _get_single_answer(_SCREAMING_SNAKE_CASE )
# bytes are of no use
del answer["start_byte"]
del answer["end_byte"]
# handle yes_no answers explicitly
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__lowercase = example["document"]["tokens"]
__lowercase = []
for i in range(len(doc["token"] ) ):
if not doc["is_html"][i]:
context.append(doc["token"][i] )
return {
"context": " ".join(_SCREAMING_SNAKE_CASE ),
"answer": {
"start_token": -1_0_0, # ignore index in cross-entropy
"end_token": -1_0_0, # ignore index in cross-entropy
"category": answer["category"],
"span": answer["category"], # extra
},
}
# later, help in removing all no answers
if answer["start_token"] == [-1]:
return {
"context": "None",
"answer": {
"start_token": -1,
"end_token": -1,
"category": "null",
"span": "None", # extra
},
}
# handling normal samples
__lowercase = ["start_token", "end_token"]
answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10
__lowercase = example["document"]["tokens"]
__lowercase = answer["start_token"]
__lowercase = answer["end_token"]
__lowercase = []
for i in range(len(doc["token"] ) ):
if not doc["is_html"][i]:
context.append(doc["token"][i] )
else:
if answer["start_token"] > i:
start_token -= 1
if answer["end_token"] > i:
end_token -= 1
__lowercase = " ".join(context[start_token:end_token] )
# checking above code
if assertion:
__lowercase = doc["is_html"][answer["start_token"] : answer["end_token"]]
__lowercase = doc["token"][answer["start_token"] : answer["end_token"]]
__lowercase = " ".join([old[i] for i in range(len(_SCREAMING_SNAKE_CASE ) ) if not is_html[i]] )
if new != old:
print("ID:" , example["id"] )
print("New:" , _SCREAMING_SNAKE_CASE , end="\n" )
print("Old:" , _SCREAMING_SNAKE_CASE , end="\n\n" )
return {
"context": " ".join(_SCREAMING_SNAKE_CASE ),
"answer": {
"start_token": start_token,
"end_token": end_token - 1, # this makes it inclusive
"category": answer["category"], # either long or short
"span": new, # extra
},
}
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2_0_4_8 , _SCREAMING_SNAKE_CASE=4_0_9_6 , _SCREAMING_SNAKE_CASE=True ):
# overlap will be of doc_stride - q_len
__lowercase = get_context_and_ans(_SCREAMING_SNAKE_CASE , assertion=_SCREAMING_SNAKE_CASE )
__lowercase = out["answer"]
# later, removing these samples
if answer["start_token"] == -1:
return {
"example_id": example["id"],
"input_ids": [[-1]],
"labels": {
"start_token": [-1],
"end_token": [-1],
"category": ["null"],
},
}
__lowercase = tokenizer(example["question"]["text"] , out["context"] ).input_ids
__lowercase = input_ids.index(tokenizer.sep_token_id ) + 1
# return yes/no
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__lowercase = []
__lowercase = []
__lowercase = input_ids[:q_len]
__lowercase = range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) , max_length - doc_stride )
for i in doc_start_indices:
__lowercase = i + max_length - q_len
__lowercase = input_ids[i:end_index]
inputs.append(q_indices + slice )
category.append(answer["category"][0] )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": [-1_0_0] * len(_SCREAMING_SNAKE_CASE ),
"end_token": [-1_0_0] * len(_SCREAMING_SNAKE_CASE ),
"category": category,
},
}
__lowercase = out["context"].split()
__lowercase = splitted_context[answer["end_token"]]
__lowercase = len(
tokenizer(
" ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=_SCREAMING_SNAKE_CASE , ).input_ids )
__lowercase = len(
tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids )
answer["start_token"] += q_len
answer["end_token"] += q_len
# fixing end token
__lowercase = len(tokenizer(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids )
if num_sub_tokens > 1:
answer["end_token"] += num_sub_tokens - 1
__lowercase = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive
__lowercase = answer["start_token"]
__lowercase = answer["end_token"]
if assertion:
__lowercase = tokenizer.decode(_SCREAMING_SNAKE_CASE )
if answer["span"] != new:
print("ISSUE IN TOKENIZATION" )
print("OLD:" , answer["span"] )
print("NEW:" , _SCREAMING_SNAKE_CASE , end="\n\n" )
if len(_SCREAMING_SNAKE_CASE ) <= max_length:
return {
"example_id": example["id"],
"input_ids": [input_ids],
"labels": {
"start_token": [answer["start_token"]],
"end_token": [answer["end_token"]],
"category": answer["category"],
},
}
__lowercase = input_ids[:q_len]
__lowercase = range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) , max_length - doc_stride )
__lowercase = []
__lowercase = []
__lowercase = []
__lowercase = [] # null, yes, no, long, short
for i in doc_start_indices:
__lowercase = i + max_length - q_len
__lowercase = input_ids[i:end_index]
inputs.append(q_indices + slice )
assert len(inputs[-1] ) <= max_length, "Issue in truncating length"
if start_token >= i and end_token <= end_index - 1:
__lowercase = start_token - i + q_len
__lowercase = end_token - i + q_len
answers_category.append(answer["category"][0] ) # ["short"] -> "short"
else:
__lowercase = -1_0_0
__lowercase = -1_0_0
answers_category.append("null" )
__lowercase = inputs[-1][start_token : end_token + 1]
answers_start_token.append(_SCREAMING_SNAKE_CASE )
answers_end_token.append(_SCREAMING_SNAKE_CASE )
if assertion:
if new != old and new != [tokenizer.cls_token_id]:
print("ISSUE in strided for ID:" , example["id"] )
print("New:" , tokenizer.decode(_SCREAMING_SNAKE_CASE ) )
print("Old:" , tokenizer.decode(_SCREAMING_SNAKE_CASE ) , end="\n\n" )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": answers_start_token,
"end_token": answers_end_token,
"category": answers_category,
},
}
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2_0_4_8 , _SCREAMING_SNAKE_CASE=4_0_9_6 , _SCREAMING_SNAKE_CASE=False ):
__lowercase = get_strided_contexts_and_ans(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , doc_stride=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , assertion=_SCREAMING_SNAKE_CASE , )
return example
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
with jsonlines.open(_SCREAMING_SNAKE_CASE , "a" ) as writer:
for example in tqdm(_SCREAMING_SNAKE_CASE , total=len(_SCREAMING_SNAKE_CASE ) , desc="Saving samples ... " ):
__lowercase = example["labels"]
for ids, start, end, cat in zip(
example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ):
if start == -1 and end == -1:
continue # leave waste samples with no answer
if cat == "null" and np.random.rand() < 0.6:
continue # removing 50 % samples
writer.write(
{
"input_ids": ids,
"start_token": start,
"end_token": end,
"category": CATEGORY_MAPPING[cat],
} )
if __name__ == "__main__":
from datasets import load_dataset
from transformers import BigBirdTokenizer
snake_case__ : Union[str, Any] = load_dataset("""natural_questions""")
snake_case__ : Union[str, Any] = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""")
snake_case__ : List[Any] = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""]
snake_case__ : List[str] = {
"""tokenizer""": tokenizer,
"""doc_stride""": DOC_STRIDE,
"""max_length""": MAX_LENGTH,
"""assertion""": False,
}
snake_case__ : str = data.map(prepare_inputs, fn_kwargs=fn_kwargs)
snake_case__ : Dict = data.remove_columns(["""annotations""", """document""", """id""", """question"""])
print(data)
np.random.seed(SEED)
snake_case__ : str = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl"""
save_to_disk(data, file_name=cache_file_name)
| 714 |
import numpy as np
snake_case__ : Tuple = [
["""a""", """b""", """c""", """d""", """e"""],
["""f""", """g""", """h""", """i""", """k"""],
["""l""", """m""", """n""", """o""", """p"""],
["""q""", """r""", """s""", """t""", """u"""],
["""v""", """w""", """x""", """y""", """z"""],
]
class _A :
'''simple docstring'''
def __init__( self : Dict ):
'''simple docstring'''
__lowercase = np.array(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase , __lowercase = np.where(letter == self.SQUARE )
__lowercase = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = self.SQUARE[indexa - 1, indexa - 1]
return letter
def _snake_case ( self : int , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = message.lower()
__lowercase = message.replace(" " , "" )
__lowercase = message.replace("j" , "i" )
__lowercase = np.empty((2, len(lowerCamelCase )) )
for letter_index in range(len(lowerCamelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape(2 * len(lowerCamelCase ) )
__lowercase = ""
for numbers_index in range(len(lowerCamelCase ) ):
__lowercase = int(second_step[numbers_index * 2] )
__lowercase = int(second_step[(numbers_index * 2) + 1] )
__lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__lowercase = encoded_message + letter
return encoded_message
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = message.lower()
message.replace(" " , "" )
__lowercase = np.empty(2 * len(lowerCamelCase ) )
for letter_index in range(len(lowerCamelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape((2, len(lowerCamelCase )) )
__lowercase = ""
for numbers_index in range(len(lowerCamelCase ) ):
__lowercase = int(second_step[0, numbers_index] )
__lowercase = int(second_step[1, numbers_index] )
__lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__lowercase = decoded_message + letter
return decoded_message
| 655 | 0 |
from math import sqrt
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
__lowercase = True
# 0 and 1 are none primes.
if number <= 1:
__lowercase = False
for divisor in range(2 , int(round(sqrt(_SCREAMING_SNAKE_CASE ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__lowercase = False
break
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'status' must been from type bool"
return status
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__lowercase = list(range(2 , n + 1 ) )
__lowercase = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__lowercase = 0
# filters actual prime numbers.
__lowercase = [x for x in begin_list if x != 0]
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2"
__lowercase = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(_SCREAMING_SNAKE_CASE ):
ans.append(_SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0"
__lowercase = [] # this list will be returns of the function.
# potential prime number factors.
__lowercase = 2
__lowercase = number
if number == 0 or number == 1:
ans.append(_SCREAMING_SNAKE_CASE )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(_SCREAMING_SNAKE_CASE ):
while quotient != 1:
if is_prime(_SCREAMING_SNAKE_CASE ) and (quotient % factor == 0):
ans.append(_SCREAMING_SNAKE_CASE )
quotient /= factor
else:
factor += 1
else:
ans.append(_SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowercase = 0
# prime factorization of 'number'
__lowercase = prime_factorization(_SCREAMING_SNAKE_CASE )
__lowercase = max(_SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int"
return ans
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowercase = 0
# prime factorization of 'number'
__lowercase = prime_factorization(_SCREAMING_SNAKE_CASE )
__lowercase = min(_SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int"
return ans
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int"
assert isinstance(number % 2 == 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool"
return number % 2 == 0
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int"
assert isinstance(number % 2 != 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool"
return number % 2 != 0
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(_SCREAMING_SNAKE_CASE )
), "'number' must been an int, even and > 2"
__lowercase = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__lowercase = get_prime_numbers(_SCREAMING_SNAKE_CASE )
__lowercase = len(_SCREAMING_SNAKE_CASE )
# run variable for while-loops.
__lowercase = 0
__lowercase = None
# exit variable. for break up the loops
__lowercase = True
while i < len_pn and loop:
__lowercase = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__lowercase = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and (len(_SCREAMING_SNAKE_CASE ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__lowercase = 0
while numbera != 0:
__lowercase = numbera % numbera
__lowercase = numbera
__lowercase = rest
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__lowercase = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__lowercase = prime_factorization(_SCREAMING_SNAKE_CASE )
__lowercase = prime_factorization(_SCREAMING_SNAKE_CASE )
elif numbera == 1 or numbera == 1:
__lowercase = []
__lowercase = []
__lowercase = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__lowercase = prime_fac_a.count(_SCREAMING_SNAKE_CASE )
__lowercase = prime_fac_a.count(_SCREAMING_SNAKE_CASE )
for _ in range(max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ):
ans *= n
else:
__lowercase = prime_fac_a.count(_SCREAMING_SNAKE_CASE )
for _ in range(_SCREAMING_SNAKE_CASE ):
ans *= n
done.append(_SCREAMING_SNAKE_CASE )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__lowercase = prime_fac_a.count(_SCREAMING_SNAKE_CASE )
for _ in range(_SCREAMING_SNAKE_CASE ):
ans *= n
done.append(_SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int"
__lowercase = 0
__lowercase = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(_SCREAMING_SNAKE_CASE ):
ans += 1
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and is_prime(
_SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int"
return ans
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert (
is_prime(_SCREAMING_SNAKE_CASE ) and is_prime(_SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__lowercase = p_number_a + 1 # jump to the next number
__lowercase = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(_SCREAMING_SNAKE_CASE ):
number += 1
while number < p_number_a:
ans.append(_SCREAMING_SNAKE_CASE )
number += 1
# fetch the next prime number.
while not is_prime(_SCREAMING_SNAKE_CASE ):
number += 1
# precondition
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and ans[0] != p_number_a
and ans[len(_SCREAMING_SNAKE_CASE ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1"
__lowercase = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(_SCREAMING_SNAKE_CASE )
# precondition
assert ans[0] == 1 and ans[len(_SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
number > 1
), "'number' must been an int and >= 1"
__lowercase = get_divisors(_SCREAMING_SNAKE_CASE )
# precondition
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and (divisors[0] == 1)
and (divisors[len(_SCREAMING_SNAKE_CASE ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__lowercase = gcd(abs(_SCREAMING_SNAKE_CASE ) , abs(_SCREAMING_SNAKE_CASE ) )
# precondition
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0"
__lowercase = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0"
__lowercase = 0
__lowercase = 1
__lowercase = 1 # this will be return
for _ in range(n - 1 ):
__lowercase = ans
ans += fiba
__lowercase = tmp
return ans
| 715 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class _A ( ctypes.Structure ):
'''simple docstring'''
_snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def snake_case_ ( ):
if os.name == "nt":
__lowercase = CursorInfo()
__lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
__lowercase = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("\033[?25l" )
sys.stdout.flush()
def snake_case_ ( ):
if os.name == "nt":
__lowercase = CursorInfo()
__lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
__lowercase = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("\033[?25h" )
sys.stdout.flush()
@contextmanager
def snake_case_ ( ):
try:
hide_cursor()
yield
finally:
show_cursor()
| 655 | 0 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1_0_2_4 , _SCREAMING_SNAKE_CASE=1_0_2_4 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE ):
__lowercase = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
__lowercase = SeqaSeqDataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , type_path="train" , **_SCREAMING_SNAKE_CASE )
__lowercase = tok.pad_token_id
def get_lens(_SCREAMING_SNAKE_CASE ):
__lowercase = tqdm(
DataLoader(_SCREAMING_SNAKE_CASE , batch_size=5_1_2 , num_workers=8 , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
__lowercase = []
for batch in dl:
__lowercase = batch["input_ids"].ne(_SCREAMING_SNAKE_CASE ).sum(1 ).tolist()
__lowercase = batch["labels"].ne(_SCREAMING_SNAKE_CASE ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
max_lens.append(max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
else:
max_lens.extend(_SCREAMING_SNAKE_CASE )
return max_lens
__lowercase = get_lens(_SCREAMING_SNAKE_CASE )
__lowercase = SeqaSeqDataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , type_path="val" , **_SCREAMING_SNAKE_CASE )
__lowercase = get_lens(_SCREAMING_SNAKE_CASE )
pickle_save(_SCREAMING_SNAKE_CASE , train_ds.len_file )
pickle_save(_SCREAMING_SNAKE_CASE , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 716 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
snake_case__ : List[str] = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[Any] = """yolos"""
def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = qkv_bias
__lowercase = num_detection_tokens
__lowercase = use_mid_position_embeddings
__lowercase = auxiliary_loss
# Hungarian matcher
__lowercase = class_cost
__lowercase = bbox_cost
__lowercase = giou_cost
# Loss coefficients
__lowercase = bbox_loss_coefficient
__lowercase = giou_loss_coefficient
__lowercase = eos_coefficient
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = version.parse("""1.11""" )
@property
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : str ):
'''simple docstring'''
return 1e-4
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return 12
| 655 | 0 |
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
snake_case__ : Dict = """platform"""
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class _A :
'''simple docstring'''
_snake_case : List[Any] = PegasusConfig
_snake_case : Union[str, Any] = {}
_snake_case : List[Any] = """gelu"""
def __init__( self : str , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any]=13 , lowerCamelCase : List[Any]=7 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Dict=99 , lowerCamelCase : Dict=32 , lowerCamelCase : Union[str, Any]=5 , lowerCamelCase : Any=4 , lowerCamelCase : int=37 , lowerCamelCase : int=0.1 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : Dict=20 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : str=1 , lowerCamelCase : Optional[int]=0 , ):
'''simple docstring'''
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = eos_token_id
__lowercase = pad_token_id
__lowercase = bos_token_id
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__lowercase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__lowercase = np.concatenate([input_ids, eos_tensor] , axis=1 )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__lowercase = prepare_pegasus_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase )
return config, inputs_dict
def _snake_case ( self : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : List[Any] ):
'''simple docstring'''
__lowercase = 20
__lowercase = model_class_name(lowerCamelCase )
__lowercase = model.encode(inputs_dict["input_ids"] )
__lowercase , __lowercase = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
__lowercase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase )
__lowercase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" )
__lowercase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowercase = model.decode(
decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , )
__lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
__lowercase = model.decode(
decoder_input_ids[:, -1:] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase , )
__lowercase = model.decode(lowerCamelCase , lowerCamelCase )
__lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _snake_case ( self : Any , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
__lowercase = 20
__lowercase = model_class_name(lowerCamelCase )
__lowercase = model.encode(inputs_dict["input_ids"] )
__lowercase , __lowercase = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
__lowercase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__lowercase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase )
__lowercase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowercase = model.decode(
decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , )
__lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
__lowercase = model.decode(
decoder_input_ids[:, -1:] , lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase , decoder_position_ids=lowerCamelCase , )
__lowercase = model.decode(lowerCamelCase , lowerCamelCase , decoder_attention_mask=lowerCamelCase )
__lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ):
if attention_mask is None:
__lowercase = np.not_equal(_SCREAMING_SNAKE_CASE , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__lowercase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class _A ( _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : List[Any] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
_snake_case : Tuple = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
_snake_case : Tuple = True
_snake_case : Any = False
_snake_case : Optional[int] = False
_snake_case : int = False
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = FlaxPegasusModelTester(self )
__lowercase = ConfigTester(self , config_class=lowerCamelCase )
def _snake_case ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCamelCase , lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase )
__lowercase = model_class(lowerCamelCase )
@jax.jit
def encode_jitted(lowerCamelCase : int , lowerCamelCase : Optional[Any]=None , **lowerCamelCase : int ):
return model.encode(input_ids=lowerCamelCase , attention_mask=lowerCamelCase )
with self.subTest("JIT Enabled" ):
__lowercase = encode_jitted(**lowerCamelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = encode_jitted(**lowerCamelCase ).to_tuple()
self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) )
for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = model_class(lowerCamelCase )
__lowercase = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] )
__lowercase = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ):
return model.decode(
decoder_input_ids=lowerCamelCase , decoder_attention_mask=lowerCamelCase , encoder_outputs=lowerCamelCase , )
with self.subTest("JIT Enabled" ):
__lowercase = decode_jitted(**lowerCamelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = decode_jitted(**lowerCamelCase ).to_tuple()
self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) )
for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _snake_case ( self : Tuple ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("google/pegasus-large" , from_pt=lowerCamelCase )
__lowercase = np.ones((1, 1) )
__lowercase = model(lowerCamelCase )
self.assertIsNotNone(lowerCamelCase )
@slow
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" )
__lowercase = PegasusTokenizer.from_pretrained("google/pegasus-xsum" )
__lowercase = [
" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.",
" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ",
]
__lowercase = [
"California's largest electricity provider has turned off power to hundreds of thousands of customers.",
"Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.",
]
__lowercase = tokenizer(lowerCamelCase , return_tensors="np" , truncation=lowerCamelCase , max_length=512 , padding=lowerCamelCase )
__lowercase = model.generate(**lowerCamelCase , num_beams=2 ).sequences
__lowercase = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )
assert tgt_text == decoded
| 717 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
snake_case__ : Optional[int] = logging.get_logger(__name__)
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 )
if "_quant" in model_name:
raise ValueError("Quantized models are not supported." )
__lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE )
if matches:
__lowercase = float(matches[1] )
__lowercase = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
__lowercase = 1_0_0_1
__lowercase = "imagenet-1k-id2label.json"
__lowercase = "huggingface/label-files"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()}
__lowercase = "background"
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ ( ):
__lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg"
__lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
__lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE )
# Load 🤗 model
__lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
__lowercase = MobileNetVaImageProcessor(
crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , )
__lowercase = image_processor(images=prepare_img() , return_tensors="pt" )
__lowercase = model(**_SCREAMING_SNAKE_CASE )
__lowercase = outputs.logits
assert logits.shape == (1, 1_0_0_1)
if model_name == "mobilenet_v1_1.0_224":
__lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] )
elif model_name == "mobilenet_v1_0.75_192":
__lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] )
else:
__lowercase = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
print("Pushing to the hub..." )
__lowercase = "google/" + model_name
image_processor.push_to_hub(_SCREAMING_SNAKE_CASE )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
snake_case__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""mobilenet_v1_1.0_224""",
type=str,
help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""",
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
snake_case__ : Dict = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 655 | 0 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : Tuple = logging.get_logger(__name__)
snake_case__ : Optional[int] = {
"""microsoft/unispeech-large-1500h-cv""": (
"""https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"""
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[Any] = """unispeech"""
def __init__( self : Any , lowerCamelCase : List[str]=32 , lowerCamelCase : Optional[int]=768 , lowerCamelCase : int=12 , lowerCamelCase : int=12 , lowerCamelCase : Dict=3_072 , lowerCamelCase : Any="gelu" , lowerCamelCase : List[str]=0.1 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : int=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Any=0.1 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : Any=0.02 , lowerCamelCase : Dict=1e-5 , lowerCamelCase : Optional[Any]="group" , lowerCamelCase : str="gelu" , lowerCamelCase : Optional[int]=(512, 512, 512, 512, 512, 512, 512) , lowerCamelCase : Dict=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase : Optional[int]=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase : Any=False , lowerCamelCase : Dict=128 , lowerCamelCase : Optional[Any]=16 , lowerCamelCase : Any=False , lowerCamelCase : List[str]=True , lowerCamelCase : List[str]=0.05 , lowerCamelCase : Tuple=10 , lowerCamelCase : int=2 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : List[str]=10 , lowerCamelCase : Union[str, Any]=0 , lowerCamelCase : Dict=320 , lowerCamelCase : Tuple=2 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : str=100 , lowerCamelCase : List[str]=256 , lowerCamelCase : List[Any]=256 , lowerCamelCase : str=0.1 , lowerCamelCase : Union[str, Any]="mean" , lowerCamelCase : List[Any]=False , lowerCamelCase : List[str]=False , lowerCamelCase : int=256 , lowerCamelCase : Any=80 , lowerCamelCase : Optional[Any]=0 , lowerCamelCase : int=1 , lowerCamelCase : Any=2 , lowerCamelCase : Optional[Any]=0.5 , **lowerCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase )
__lowercase = hidden_size
__lowercase = feat_extract_norm
__lowercase = feat_extract_activation
__lowercase = list(lowerCamelCase )
__lowercase = list(lowerCamelCase )
__lowercase = list(lowerCamelCase )
__lowercase = conv_bias
__lowercase = num_conv_pos_embeddings
__lowercase = num_conv_pos_embedding_groups
__lowercase = len(self.conv_dim )
__lowercase = num_hidden_layers
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = num_attention_heads
__lowercase = hidden_dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = feat_proj_dropout
__lowercase = final_dropout
__lowercase = layerdrop
__lowercase = layer_norm_eps
__lowercase = initializer_range
__lowercase = num_ctc_classes
__lowercase = vocab_size
__lowercase = do_stable_layer_norm
__lowercase = use_weighted_layer_sum
__lowercase = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowercase = apply_spec_augment
__lowercase = mask_time_prob
__lowercase = mask_time_length
__lowercase = mask_time_min_masks
__lowercase = mask_feature_prob
__lowercase = mask_feature_length
__lowercase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__lowercase = num_codevectors_per_group
__lowercase = num_codevector_groups
__lowercase = contrastive_logits_temperature
__lowercase = feat_quantizer_dropout
__lowercase = num_negatives
__lowercase = codevector_dim
__lowercase = proj_codevector_dim
__lowercase = diversity_loss_weight
# ctc loss
__lowercase = ctc_loss_reduction
__lowercase = ctc_zero_infinity
# pretraining loss
__lowercase = replace_prob
@property
def _snake_case ( self : List[str] ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 718 |
from __future__ import annotations
from typing import Any
class _A :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
self.m_edges.append([u_node, v_node, weight] )
def _snake_case ( self : List[Any] , lowerCamelCase : int ):
'''simple docstring'''
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(lowerCamelCase )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(lowerCamelCase )
component_size[u_node] += component_size[v_node]
self.set_component(lowerCamelCase )
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase , __lowercase , __lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(lowerCamelCase , lowerCamelCase ):
__lowercase , __lowercase , __lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase )
print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def snake_case_ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=_lowercase ):
'''simple docstring'''
_snake_case : Any = ["""onnx"""]
def __init__( self : Union[str, Any] , *lowerCamelCase : Optional[int] , **lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["onnx"] )
@classmethod
def _snake_case ( cls : Optional[int] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : str ):
'''simple docstring'''
requires_backends(cls , ["onnx"] )
@classmethod
def _snake_case ( cls : int , *lowerCamelCase : int , **lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["onnx"] )
| 719 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : List[str] = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 655 | 0 |
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
snake_case__ : str = """scheduler_config.json"""
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Union[str, Any] = 1
_snake_case : int = 2
_snake_case : Optional[int] = 3
_snake_case : Optional[int] = 4
_snake_case : int = 5
@dataclass
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : jnp.ndarray
class _A :
'''simple docstring'''
_snake_case : Optional[int] = SCHEDULER_CONFIG_NAME
_snake_case : Dict = ["""dtype"""]
_snake_case : Dict = []
_snake_case : Union[str, Any] = True
@classmethod
def _snake_case ( cls : Dict , lowerCamelCase : Dict[str, Any] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : Optional[Any]=False , **lowerCamelCase : Union[str, Any] , ):
'''simple docstring'''
__lowercase , __lowercase = cls.load_config(
pretrained_model_name_or_path=lowerCamelCase , subfolder=lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase , )
__lowercase , __lowercase = cls.from_config(lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase )
if hasattr(lowerCamelCase , "create_state" ) and getattr(lowerCamelCase , "has_state" , lowerCamelCase ):
__lowercase = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def _snake_case ( self : List[str] , lowerCamelCase : Union[str, os.PathLike] , lowerCamelCase : bool = False , **lowerCamelCase : List[str] ):
'''simple docstring'''
self.save_config(save_directory=lowerCamelCase , push_to_hub=lowerCamelCase , **lowerCamelCase )
@property
def _snake_case ( self : int ):
'''simple docstring'''
return self._get_compatibles()
@classmethod
def _snake_case ( cls : Union[str, Any] ):
'''simple docstring'''
__lowercase = list(set([cls.__name__] + cls._compatibles ) )
__lowercase = importlib.import_module(__name__.split("." )[0] )
__lowercase = [
getattr(lowerCamelCase , lowerCamelCase ) for c in compatible_classes_str if hasattr(lowerCamelCase , lowerCamelCase )
]
return compatible_classes
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert len(_SCREAMING_SNAKE_CASE ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_SCREAMING_SNAKE_CASE ) - x.ndim) ) , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.9_9_9 , _SCREAMING_SNAKE_CASE=jnp.floataa ):
def alpha_bar(_SCREAMING_SNAKE_CASE ):
return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
__lowercase = []
for i in range(_SCREAMING_SNAKE_CASE ):
__lowercase = i / num_diffusion_timesteps
__lowercase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(_SCREAMING_SNAKE_CASE ) / alpha_bar(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) )
return jnp.array(_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )
@flax.struct.dataclass
class _A :
'''simple docstring'''
_snake_case : jnp.ndarray
_snake_case : jnp.ndarray
_snake_case : jnp.ndarray
@classmethod
def _snake_case ( cls : str , lowerCamelCase : Any ):
'''simple docstring'''
__lowercase = scheduler.config
if config.trained_betas is not None:
__lowercase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
__lowercase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__lowercase = (
jnp.linspace(
config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__lowercase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype )
else:
raise NotImplementedError(
f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" )
__lowercase = 1.0 - betas
__lowercase = jnp.cumprod(lowerCamelCase , axis=0 )
return cls(
alphas=lowerCamelCase , betas=lowerCamelCase , alphas_cumprod=lowerCamelCase , )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = state.alphas_cumprod
__lowercase = alphas_cumprod[timesteps] ** 0.5
__lowercase = sqrt_alpha_prod.flatten()
__lowercase = broadcast_to_shape_from_left(_SCREAMING_SNAKE_CASE , original_samples.shape )
__lowercase = (1 - alphas_cumprod[timesteps]) ** 0.5
__lowercase = sqrt_one_minus_alpha_prod.flatten()
__lowercase = broadcast_to_shape_from_left(_SCREAMING_SNAKE_CASE , original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = get_sqrt_alpha_prod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowercase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = get_sqrt_alpha_prod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowercase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 720 |
from __future__ import annotations
import bisect
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
if hi < 0:
__lowercase = len(_SCREAMING_SNAKE_CASE )
while lo < hi:
__lowercase = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
__lowercase = mid + 1
else:
__lowercase = mid
return lo
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
if hi < 0:
__lowercase = len(_SCREAMING_SNAKE_CASE )
while lo < hi:
__lowercase = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
__lowercase = mid + 1
else:
__lowercase = mid
return lo
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = 0
__lowercase = len(_SCREAMING_SNAKE_CASE ) - 1
while left <= right:
__lowercase = left + (right - left) // 2
__lowercase = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
__lowercase = midpoint - 1
else:
__lowercase = midpoint + 1
return None
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item:
return index
return None
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if right < left:
return None
__lowercase = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 )
else:
return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip()
snake_case__ : Any = sorted(int(item) for item in user_input.split(""","""))
snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n"""))
snake_case__ : List[Any] = binary_search(collection, target)
if result is None:
print(F'''{target} was not found in {collection}.''')
else:
print(F'''{target} was found at position {result} in {collection}.''')
| 655 | 0 |
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .autoencoder_kl import AutoencoderKL
from .controlnet import ControlNetModel
from .dual_transformer_ad import DualTransformeraDModel
from .modeling_utils import ModelMixin
from .prior_transformer import PriorTransformer
from .ta_film_transformer import TaFilmDecoder
from .transformer_ad import TransformeraDModel
from .unet_ad import UNetaDModel
from .unet_ad import UNetaDModel
from .unet_ad_condition import UNetaDConditionModel
from .unet_ad_condition import UNetaDConditionModel
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_ad_condition_flax import FlaxUNetaDConditionModel
from .vae_flax import FlaxAutoencoderKL
| 721 |
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
snake_case__ : int = logging.get_logger(__name__)
snake_case__ : Optional[int] = {
"""microsoft/conditional-detr-resnet-50""": (
"""https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json"""
),
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = """conditional_detr"""
_snake_case : Union[str, Any] = ["""past_key_values"""]
_snake_case : Optional[int] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowerCamelCase , lowerCamelCase ):
__lowercase = backbone_config.get("model_type" )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(lowerCamelCase )
__lowercase = use_timm_backbone
__lowercase = backbone_config
__lowercase = num_channels
__lowercase = num_queries
__lowercase = d_model
__lowercase = encoder_ffn_dim
__lowercase = encoder_layers
__lowercase = encoder_attention_heads
__lowercase = decoder_ffn_dim
__lowercase = decoder_layers
__lowercase = decoder_attention_heads
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = activation_function
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = encoder_layers
__lowercase = auxiliary_loss
__lowercase = position_embedding_type
__lowercase = backbone
__lowercase = use_pretrained_backbone
__lowercase = dilation
# Hungarian matcher
__lowercase = class_cost
__lowercase = bbox_cost
__lowercase = giou_cost
# Loss coefficients
__lowercase = mask_loss_coefficient
__lowercase = dice_loss_coefficient
__lowercase = cls_loss_coefficient
__lowercase = bbox_loss_coefficient
__lowercase = giou_loss_coefficient
__lowercase = focal_alpha
super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase )
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def _snake_case ( self : str ):
'''simple docstring'''
return self.d_model
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Any = version.parse("""1.11""" )
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _snake_case ( self : Any ):
'''simple docstring'''
return 1e-5
@property
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
return 12
| 655 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : Dict = {
"""configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""],
"""tokenization_luke""": ["""LukeTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[str] = [
"""LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LukeForEntityClassification""",
"""LukeForEntityPairClassification""",
"""LukeForEntitySpanClassification""",
"""LukeForMultipleChoice""",
"""LukeForQuestionAnswering""",
"""LukeForSequenceClassification""",
"""LukeForTokenClassification""",
"""LukeForMaskedLM""",
"""LukeModel""",
"""LukePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
snake_case__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 700 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
snake_case__ : Any = logging.get_logger(__name__)
class _A ( _lowercase , _lowercase ):
'''simple docstring'''
_snake_case : Dict = """maskformer-swin"""
_snake_case : List[str] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = embed_dim
__lowercase = depths
__lowercase = len(lowerCamelCase )
__lowercase = num_heads
__lowercase = window_size
__lowercase = mlp_ratio
__lowercase = qkv_bias
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = drop_path_rate
__lowercase = hidden_act
__lowercase = use_absolute_embeddings
__lowercase = layer_norm_eps
__lowercase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) )
__lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )]
__lowercase , __lowercase = get_aligned_output_features_output_indices(
out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
| 655 | 0 |
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = analyze_text(_SCREAMING_SNAKE_CASE )
__lowercase = list(" " + ascii_lowercase )
# what is our total sum of probabilities.
__lowercase = sum(single_char_strings.values() )
# one length string
__lowercase = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
__lowercase = single_char_strings[ch]
__lowercase = my_str / all_sum
my_fir_sum += prob * math.loga(_SCREAMING_SNAKE_CASE ) # entropy formula.
# print entropy
print(F"""{round(-1 * my_fir_sum ):.1f}""" )
# two len string
__lowercase = sum(two_char_strings.values() )
__lowercase = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
__lowercase = cha + cha
if sequence in two_char_strings:
__lowercase = two_char_strings[sequence]
__lowercase = int(_SCREAMING_SNAKE_CASE ) / all_sum
my_sec_sum += prob * math.loga(_SCREAMING_SNAKE_CASE )
# print second entropy
print(F"""{round(-1 * my_sec_sum ):.1f}""" )
# print the difference between them
print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = Counter() # type: ignore
__lowercase = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def snake_case_ ( ):
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 701 |
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("The given input must be positive" )
# get the generated string sequence
__lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
__lowercase = int(sequence[i] , 2 )
return sequence
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__lowercase = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__lowercase = gray_code_sequence_string(bit_count - 1 )
__lowercase = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__lowercase = "0" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__lowercase = "1" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _A ( _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : Any = ConsistencyModelPipeline
_snake_case : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
_snake_case : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
_snake_case : str = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""output_type""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = UNetaDModel.from_pretrained(
"diffusers/consistency-models-test" , subfolder="test_unet" , )
return unet
@property
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = UNetaDModel.from_pretrained(
"diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , )
return unet
def _snake_case ( self : Optional[Any] , lowerCamelCase : List[str]=False ):
'''simple docstring'''
if class_cond:
__lowercase = self.dummy_cond_unet
else:
__lowercase = self.dummy_uncond_unet
# Default to CM multistep sampler
__lowercase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
__lowercase = {
"unet": unet,
"scheduler": scheduler,
}
return components
def _snake_case ( self : Tuple , lowerCamelCase : Dict , lowerCamelCase : Optional[int]=0 ):
'''simple docstring'''
if str(lowerCamelCase ).startswith("mps" ):
__lowercase = torch.manual_seed(lowerCamelCase )
else:
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
__lowercase = {
"batch_size": 1,
"num_inference_steps": None,
"timesteps": [22, 0],
"generator": generator,
"output_type": "np",
}
return inputs
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = ConsistencyModelPipeline(**lowerCamelCase )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = pipe(**lowerCamelCase ).images
assert image.shape == (1, 32, 32, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components(class_cond=lowerCamelCase )
__lowercase = ConsistencyModelPipeline(**lowerCamelCase )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = 0
__lowercase = pipe(**lowerCamelCase ).images
assert image.shape == (1, 32, 32, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = ConsistencyModelPipeline(**lowerCamelCase )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = 1
__lowercase = None
__lowercase = pipe(**lowerCamelCase ).images
assert image.shape == (1, 32, 32, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components(class_cond=lowerCamelCase )
__lowercase = ConsistencyModelPipeline(**lowerCamelCase )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = 1
__lowercase = None
__lowercase = 0
__lowercase = pipe(**lowerCamelCase ).images
assert image.shape == (1, 32, 32, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : str ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : str , lowerCamelCase : Tuple=0 , lowerCamelCase : List[str]=False , lowerCamelCase : Tuple="cpu" , lowerCamelCase : Optional[Any]=torch.floataa , lowerCamelCase : Optional[int]=(1, 3, 64, 64) ):
'''simple docstring'''
__lowercase = torch.manual_seed(lowerCamelCase )
__lowercase = {
"num_inference_steps": None,
"timesteps": [22, 0],
"class_labels": 0,
"generator": generator,
"output_type": "np",
}
if get_fixed_latents:
__lowercase = self.get_fixed_latents(seed=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase , shape=lowerCamelCase )
__lowercase = latents
return inputs
def _snake_case ( self : Tuple , lowerCamelCase : Tuple=0 , lowerCamelCase : Dict="cpu" , lowerCamelCase : Optional[int]=torch.floataa , lowerCamelCase : Dict=(1, 3, 64, 64) ):
'''simple docstring'''
if type(lowerCamelCase ) == str:
__lowercase = torch.device(lowerCamelCase )
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
__lowercase = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase )
return latents
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" )
__lowercase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
__lowercase = ConsistencyModelPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase )
pipe.to(torch_device=lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_inputs()
__lowercase = pipe(**lowerCamelCase ).images
assert image.shape == (1, 64, 64, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" )
__lowercase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
__lowercase = ConsistencyModelPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase )
pipe.to(torch_device=lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_inputs()
__lowercase = 1
__lowercase = None
__lowercase = pipe(**lowerCamelCase ).images
assert image.shape == (1, 64, 64, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
@require_torch_a
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
__lowercase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" )
__lowercase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
__lowercase = ConsistencyModelPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase )
pipe.to(torch_device=lowerCamelCase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_inputs(get_fixed_latents=lowerCamelCase , device=lowerCamelCase )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=lowerCamelCase , enable_math=lowerCamelCase , enable_mem_efficient=lowerCamelCase ):
__lowercase = pipe(**lowerCamelCase ).images
assert image.shape == (1, 64, 64, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@require_torch_a
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" )
__lowercase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
__lowercase = ConsistencyModelPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase )
pipe.to(torch_device=lowerCamelCase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_inputs(get_fixed_latents=lowerCamelCase , device=lowerCamelCase )
__lowercase = 1
__lowercase = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=lowerCamelCase , enable_math=lowerCamelCase , enable_mem_efficient=lowerCamelCase ):
__lowercase = pipe(**lowerCamelCase ).images
assert image.shape == (1, 64, 64, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 702 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"""
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ):
model.train()
__lowercase = model(_SCREAMING_SNAKE_CASE )
__lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
set_seed(4_2 )
__lowercase = RegressionModel()
__lowercase = deepcopy(_SCREAMING_SNAKE_CASE )
__lowercase = RegressionDataset(length=8_0 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
model.to(accelerator.device )
if sched:
__lowercase = AdamW(params=model.parameters() , lr=1E-3 )
__lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 )
__lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 )
__lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 )
# Make a copy of `model`
if sched:
__lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
__lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# Test when on a single CPU or GPU that the context manager does nothing
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
# Use a single batch
__lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# Test on distributed setup that context manager behaves properly
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
# Use a single batch
__lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ):
__lowercase = Accelerator(
split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = batch.values()
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
GradientState._reset_state()
def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ):
__lowercase = Accelerator(
split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = batch.values()
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n"""
__lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE ))
if accelerator.num_processes > 1:
check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
GradientState._reset_state()
def snake_case_ ( ):
__lowercase = Accelerator()
__lowercase = RegressionDataset(length=8_0 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
__lowercase = RegressionDataset(length=9_6 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
__lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE )
if iteration < len(_SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE )
if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def snake_case_ ( ):
__lowercase = Accelerator()
__lowercase = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**" )
test_noop_sync(_SCREAMING_SNAKE_CASE )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**" )
test_distributed_sync(_SCREAMING_SNAKE_CASE )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 655 | 0 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
__lowercase = None
if token is not None:
__lowercase = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""}
__lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
__lowercase = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json()
__lowercase = {}
try:
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
__lowercase = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(_SCREAMING_SNAKE_CASE ):
__lowercase = requests.get(url + F"""&page={i + 2}""" , headers=_SCREAMING_SNAKE_CASE ).json()
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
__lowercase = None
if token is not None:
__lowercase = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""}
__lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
__lowercase = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json()
__lowercase = {}
try:
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
__lowercase = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(_SCREAMING_SNAKE_CASE ):
__lowercase = requests.get(url + F"""&page={i + 2}""" , headers=_SCREAMING_SNAKE_CASE ).json()
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = None
if token is not None:
__lowercase = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""}
__lowercase = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE , allow_redirects=_SCREAMING_SNAKE_CASE )
__lowercase = result.headers["Location"]
__lowercase = requests.get(_SCREAMING_SNAKE_CASE , allow_redirects=_SCREAMING_SNAKE_CASE )
__lowercase = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" )
with open(_SCREAMING_SNAKE_CASE , "wb" ) as fp:
fp.write(response.content )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
__lowercase = []
__lowercase = []
__lowercase = None
with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z:
for filename in z.namelist():
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_SCREAMING_SNAKE_CASE ) as f:
for line in f:
__lowercase = line.decode("UTF-8" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
__lowercase = line[: line.index(": " )]
__lowercase = line[line.index(": " ) + len(": " ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("FAILED " ):
# `test` is the test method that failed
__lowercase = line[len("FAILED " ) :]
failed_tests.append(_SCREAMING_SNAKE_CASE )
elif filename == "job_name.txt":
__lowercase = line
if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_SCREAMING_SNAKE_CASE )} for `errors` """
F"""and {len(_SCREAMING_SNAKE_CASE )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
" problem." )
__lowercase = None
if job_name and job_links:
__lowercase = job_links.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# A list with elements of the form (line of error, error, failed test)
__lowercase = [x + [y] + [job_link] for x, y in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
return result
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
__lowercase = []
__lowercase = [os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for p in os.listdir(_SCREAMING_SNAKE_CASE ) if p.endswith(".zip" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(_SCREAMING_SNAKE_CASE , job_links=_SCREAMING_SNAKE_CASE ) )
return errors
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
__lowercase = Counter()
counter.update([x[1] for x in logs] )
__lowercase = counter.most_common()
__lowercase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
__lowercase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]}
__lowercase = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=_SCREAMING_SNAKE_CASE ) )
return r
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = test.split("::" )[0]
if test.startswith("tests/models/" ):
__lowercase = test.split("/" )[2]
else:
__lowercase = None
return test
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
__lowercase = [(x[0], x[1], get_model(x[2] )) for x in logs]
__lowercase = [x for x in logs if x[2] is not None]
__lowercase = {x[2] for x in logs}
__lowercase = {}
for test in tests:
__lowercase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
__lowercase = counter.most_common()
__lowercase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
__lowercase = sum(error_counts.values() )
if n_errors > 0:
__lowercase = {"count": n_errors, "errors": error_counts}
__lowercase = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=_SCREAMING_SNAKE_CASE ) )
return r
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = "| no. | error | status |"
__lowercase = "|-:|:-|:-|"
__lowercase = [header, sep]
for error in reduced_by_error:
__lowercase = reduced_by_error[error]["count"]
__lowercase = F"""| {count} | {error[:1_0_0]} | |"""
lines.append(_SCREAMING_SNAKE_CASE )
return "\n".join(_SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = "| model | no. of errors | major error | count |"
__lowercase = "|-:|-:|-:|-:|"
__lowercase = [header, sep]
for model in reduced_by_model:
__lowercase = reduced_by_model[model]["count"]
__lowercase , __lowercase = list(reduced_by_model[model]["errors"].items() )[0]
__lowercase = F"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(_SCREAMING_SNAKE_CASE )
return "\n".join(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
snake_case__ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""")
parser.add_argument(
"""--output_dir""",
type=str,
required=True,
help="""Where to store the downloaded artifacts and other result files.""",
)
parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""")
snake_case__ : Union[str, Any] = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
snake_case__ : List[Any] = get_job_links(args.workflow_run_id, token=args.token)
snake_case__ : Optional[int] = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
snake_case__ : Dict = k.find(""" / """)
snake_case__ : Optional[int] = k[index + len(""" / """) :]
snake_case__ : Optional[Any] = v
with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
snake_case__ : str = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
snake_case__ : int = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
snake_case__ : Optional[int] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
snake_case__ : Tuple = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
snake_case__ : Union[str, Any] = reduce_by_error(errors)
snake_case__ : Optional[int] = reduce_by_model(errors)
snake_case__ : Optional[Any] = make_github_table(reduced_by_error)
snake_case__ : Union[str, Any] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp:
fp.write(sa)
| 703 |
from ....utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
class _A ( _lowercase ):
'''simple docstring'''
def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ):
'''simple docstring'''
__lowercase = config.__dict__
__lowercase = modal_hidden_size
if num_labels:
__lowercase = num_labels
| 655 | 0 |
def snake_case_ ( _SCREAMING_SNAKE_CASE ) -> List[Any]:
__lowercase = set()
# edges = list of graph's edges
__lowercase = get_edges(_SCREAMING_SNAKE_CASE )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
__lowercase , __lowercase = edges.pop()
chosen_vertices.add(_SCREAMING_SNAKE_CASE )
chosen_vertices.add(_SCREAMING_SNAKE_CASE )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(_SCREAMING_SNAKE_CASE )
return chosen_vertices
def snake_case_ ( _SCREAMING_SNAKE_CASE ) -> Any:
__lowercase = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 704 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : Dict = StableUnCLIPImgaImgPipeline
_snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
_snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_snake_case : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
_snake_case : int = frozenset([] )
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = 32
__lowercase = embedder_hidden_size
# image encoding components
__lowercase = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
__lowercase = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
__lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase )
__lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
__lowercase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , )
torch.manual_seed(0 )
__lowercase = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , )
torch.manual_seed(0 )
__lowercase = AutoencoderKL()
__lowercase = {
# image encoding components
"feature_extractor": feature_extractor,
"image_encoder": image_encoder.eval(),
# image noising components
"image_normalizer": image_normalizer.eval(),
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder.eval(),
"unet": unet.eval(),
"scheduler": scheduler,
"vae": vae.eval(),
}
return components
def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ):
'''simple docstring'''
if str(lowerCamelCase ).startswith("mps" ):
__lowercase = torch.manual_seed(lowerCamelCase )
else:
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
__lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
if pil_image:
__lowercase = input_image * 0.5 + 0.5
__lowercase = input_image.clamp(0 , 1 )
__lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase )
__lowercase = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
inputs.update({"image_embeds": None} )
__lowercase = sd_pipe(**lowerCamelCase ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = torch_device in ["cpu", "mps"]
self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _snake_case ( self : str ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" )
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = torch.Generator(device="cpu" ).manual_seed(0 )
__lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" )
__lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" )
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = torch.Generator(device="cpu" ).manual_seed(0 )
__lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" )
__lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = pipe(
lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , )
__lowercase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 655 | 0 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class _A ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : int=13 , lowerCamelCase : str=7 , lowerCamelCase : Optional[Any]=True , lowerCamelCase : List[Any]=True , lowerCamelCase : str=True , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Tuple=99 , lowerCamelCase : Tuple=32 , lowerCamelCase : Optional[int]=5 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : Dict=37 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : str=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Optional[Any]=512 , lowerCamelCase : Optional[int]=16 , lowerCamelCase : List[str]=2 , lowerCamelCase : int=0.02 , lowerCamelCase : Optional[int]=4 , ):
'''simple docstring'''
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_attention_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_choices
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_attention_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
__lowercase = self.prepare_config_and_inputs()
__lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs
__lowercase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class _A ( _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : List[str] = True
_snake_case : str = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = FlaxRoFormerModelTester(self )
@slow
def _snake_case ( self : str ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=lowerCamelCase )
__lowercase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase )
@require_flax
class _A ( unittest.TestCase ):
'''simple docstring'''
@slow
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" )
__lowercase = jnp.array([[0, 1, 2, 3, 4, 5]] )
__lowercase = model(lowerCamelCase )[0]
__lowercase = 50_000
__lowercase = (1, 6, vocab_size)
self.assertEqual(output.shape , lowerCamelCase )
__lowercase = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , lowerCamelCase , atol=1e-4 ) )
| 705 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class _A ( _lowercase , _lowercase ):
'''simple docstring'''
@register_to_config
def __init__( self : Optional[Any] , *,
lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__()
__lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) )
# parameters for additional clip time embeddings
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
# parameters for encoder hidden states
__lowercase = clip_extra_context_tokens
__lowercase = nn.Linear(
lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim )
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
__lowercase = nn.LayerNorm(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ):
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
__lowercase = image_embeddings.shape[0]
__lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
__lowercase = classifier_free_guidance_embeddings.expand(
lowerCamelCase , -1 )
__lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
__lowercase = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
__lowercase = self.embedding_proj(lowerCamelCase )
__lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase )
__lowercase = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
__lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase )
__lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens )
__lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 )
__lowercase = self.encoder_hidden_states_proj(lowerCamelCase )
__lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase )
__lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 655 | 0 |
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
snake_case__ : Union[str, Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
snake_case__ : List[str] = [0, 25, 50]
snake_case__ : Optional[int] = [25, 50, 75]
snake_case__ : int = fuzz.membership.trimf(X, abca)
snake_case__ : Dict = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
snake_case__ : List[str] = np.ones(75)
snake_case__ : Any = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
snake_case__ : Tuple = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
snake_case__ : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
snake_case__ : Any = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
snake_case__ : Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
snake_case__ : int = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
snake_case__ : List[Any] = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
snake_case__ : Optional[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
snake_case__ : Any = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title("""Young""")
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title("""Middle aged""")
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title("""union""")
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title("""intersection""")
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title("""complement_a""")
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title("""difference a/b""")
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title("""alg_sum""")
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title("""alg_product""")
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title("""bdd_sum""")
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title("""bdd_difference""")
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 706 |
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
snake_case__ : Union[str, Any] = TypeVar("""T""")
snake_case__ : Optional[int] = TypeVar("""U""")
class _A ( Generic[T, U] ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ):
'''simple docstring'''
__lowercase = key
__lowercase = val
__lowercase = None
__lowercase = None
def __repr__( self : Any ):
'''simple docstring'''
return (
f"""Node: key: {self.key}, val: {self.val}, """
f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}"""
)
class _A ( Generic[T, U] ):
'''simple docstring'''
def __init__( self : Dict ):
'''simple docstring'''
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
__lowercase , __lowercase = self.rear, self.head
def __repr__( self : Optional[Any] ):
'''simple docstring'''
__lowercase = ["DoubleLinkedList"]
__lowercase = self.head
while node.next is not None:
rep.append(str(lowerCamelCase ) )
__lowercase = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
__lowercase = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
__lowercase = node
__lowercase = previous
__lowercase = node
__lowercase = self.rear
def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
if node.prev is None or node.next is None:
return None
__lowercase = node.next
__lowercase = node.prev
__lowercase = None
__lowercase = None
return node
class _A ( Generic[T, U] ):
'''simple docstring'''
_snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self : List[Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = DoubleLinkedList()
__lowercase = capacity
__lowercase = 0
__lowercase = 0
__lowercase = 0
__lowercase = {}
def __repr__( self : Optional[Any] ):
'''simple docstring'''
return (
f"""CacheInfo(hits={self.hits}, misses={self.miss}, """
f"""capacity={self.capacity}, current size={self.num_keys})"""
)
def __contains__( self : Dict , lowerCamelCase : T ):
'''simple docstring'''
return key in self.cache
def _snake_case ( self : List[Any] , lowerCamelCase : T ):
'''simple docstring'''
if key in self.cache:
self.hits += 1
__lowercase = self.cache[key]
__lowercase = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowerCamelCase )
return node.val
self.miss += 1
return None
def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ):
'''simple docstring'''
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
__lowercase = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowerCamelCase ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
__lowercase = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
__lowercase = value
self.list.add(lowerCamelCase )
@classmethod
def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ):
'''simple docstring'''
def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowerCamelCase : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
__lowercase = LRUCache(lowerCamelCase )
__lowercase = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
__lowercase = func(*lowerCamelCase )
cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = len(set_a.intersection(_SCREAMING_SNAKE_CASE ) )
if alternative_union:
__lowercase = len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE )
else:
__lowercase = len(set_a.union(_SCREAMING_SNAKE_CASE ) )
return intersection / union
if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ):
__lowercase = [element for element in set_a if element in set_b]
if alternative_union:
__lowercase = len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE )
return len(_SCREAMING_SNAKE_CASE ) / union
else:
__lowercase = set_a + [element for element in set_b if element not in set_a]
return len(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )
return len(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )
return None
if __name__ == "__main__":
snake_case__ : Dict = {"""a""", """b""", """c""", """d""", """e"""}
snake_case__ : Any = {"""c""", """d""", """e""", """f""", """h""", """i"""}
print(jaccard_similarity(set_a, set_b))
| 707 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
snake_case__ : Optional[Any] = logging.getLogger()
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = "\n".join(_SCREAMING_SNAKE_CASE )
Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random"""
snake_case__ : int = """sshleifer/bart-tiny-random"""
snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart"""
snake_case__ : List[str] = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class _A ( _lowercase ):
'''simple docstring'''
def _snake_case ( self : str , lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
__lowercase = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
__lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
_dump_articles(lowerCamelCase , lowerCamelCase )
__lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" )
__lowercase = "translation_en_to_de" if model == T5_TINY else "summarization"
__lowercase = f"""
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
""".split()
with patch.object(lowerCamelCase , "argv" , lowerCamelCase ):
run_generate()
assert Path(lowerCamelCase ).exists()
# os.remove(Path(output_file_name))
def _snake_case ( self : Dict ):
'''simple docstring'''
self.run_eval_tester(lowerCamelCase )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
self.run_eval_tester(lowerCamelCase )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
__lowercase = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
__lowercase = {
"en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
"de": [
"Maschinelles Lernen ist großartig, oder?",
"Ich esse gerne Bananen",
"Morgen ist wieder ein toller Tag!",
],
}
__lowercase = Path(self.get_auto_remove_tmp_dir() )
__lowercase = str(tmp_dir / "scores.json" )
__lowercase = str(tmp_dir / "val.target" )
_dump_articles(lowerCamelCase , text["en"] )
_dump_articles(lowerCamelCase , text["de"] )
__lowercase = "translation_en_to_de" if model == T5_TINY else "summarization"
__lowercase = f"""
run_eval_search.py
{model}
{str(lowerCamelCase )}
{str(lowerCamelCase )}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
""".split()
testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] )
with patch.object(lowerCamelCase , "argv" , lowerCamelCase ):
with CaptureStdout() as cs:
run_search()
__lowercase = [" num_beams | length_penalty", model, "Best score args"]
__lowercase = ["Info"]
if "translation" in task:
expected_strings.append("bleu" )
else:
expected_strings.extend(lowerCamelCase )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(lowerCamelCase ).exists()
os.remove(Path(lowerCamelCase ) )
| 655 | 0 |
import argparse
import json
import subprocess
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = []
__lowercase = (
F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\""""
" https://api.github.com/repos/huggingface/transformers/actions/runners"
)
__lowercase = subprocess.run(_SCREAMING_SNAKE_CASE , shell=_SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE )
__lowercase = output.stdout.decode("utf-8" )
__lowercase = json.loads(_SCREAMING_SNAKE_CASE )
__lowercase = status["runners"]
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(_SCREAMING_SNAKE_CASE )
# save the result so we can report them on Slack
with open("offline_runners.txt" , "w" ) as fp:
fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) )
if len(_SCREAMING_SNAKE_CASE ) > 0:
__lowercase = "\n".join([x["name"] for x in offline_runners] )
raise ValueError(F"""The following runners are offline:\n{failed}""" )
if __name__ == "__main__":
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
return values.split("," )
snake_case__ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--target_runners""",
default=None,
type=list_str,
required=True,
help="""Comma-separated list of runners to check status.""",
)
parser.add_argument(
"""--token""", default=None, type=str, required=True, help="""A token that has actions:read permission."""
)
snake_case__ : Union[str, Any] = parser.parse_args()
get_runner_status(args.target_runners, args.token)
| 708 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _A :
'''simple docstring'''
_snake_case : int
_snake_case : TreeNode | None = None
_snake_case : TreeNode | None = None
snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""")
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if root is None:
return 0
# Validation
def count_nodes(_SCREAMING_SNAKE_CASE ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(_SCREAMING_SNAKE_CASE ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ):
raise ValueError("The nodes number should be same as the number of coins" )
# Main calculation
def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowercase , __lowercase = get_distrib(node.left )
__lowercase , __lowercase = get_distrib(node.right )
__lowercase = 1 - left_distrib_excess
__lowercase = 1 - right_distrib_excess
__lowercase = (
left_distrib_moves
+ right_distrib_moves
+ abs(_SCREAMING_SNAKE_CASE )
+ abs(_SCREAMING_SNAKE_CASE )
)
__lowercase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return get_distrib(_SCREAMING_SNAKE_CASE )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
from __future__ import annotations
snake_case__ : Tuple = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ):
__lowercase = [
[0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) )
] # the reference grid
__lowercase = 1
__lowercase = [
[0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) )
] # the action grid
__lowercase = init[0]
__lowercase = init[1]
__lowercase = 0
__lowercase = g + heuristic[x][y] # cost from starting cell to destination cell
__lowercase = [[f, g, x, y]]
__lowercase = False # flag that is set when search is complete
__lowercase = False # flag set if we can't find expand
while not found and not resign:
if len(_SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("Algorithm is unable to find solution" )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
__lowercase = cell.pop()
__lowercase = next_cell[2]
__lowercase = next_cell[3]
__lowercase = next_cell[1]
if x == goal[0] and y == goal[1]:
__lowercase = True
else:
for i in range(len(_SCREAMING_SNAKE_CASE ) ): # to try out different valid actions
__lowercase = x + DIRECTIONS[i][0]
__lowercase = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(_SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
__lowercase = g + cost
__lowercase = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
__lowercase = 1
__lowercase = i
__lowercase = []
__lowercase = goal[0]
__lowercase = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
__lowercase = x - DIRECTIONS[action[x][y]][0]
__lowercase = y - DIRECTIONS[action[x][y]][1]
__lowercase = xa
__lowercase = ya
invpath.append([x, y] )
__lowercase = []
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
path.append(invpath[len(_SCREAMING_SNAKE_CASE ) - 1 - i] )
return path, action
if __name__ == "__main__":
snake_case__ : List[str] = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
snake_case__ : Optional[int] = [0, 0]
# all coordinates are given in format [y,x]
snake_case__ : Union[str, Any] = [len(grid) - 1, len(grid[0]) - 1]
snake_case__ : Dict = 1
# the cost map which pushes the path closer to the goal
snake_case__ : Tuple = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
snake_case__ : Optional[int] = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
snake_case__ : List[Any] = 99
snake_case__ : Union[str, Any] = search(grid, init, goal, cost, heuristic)
print("""ACTION MAP""")
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 709 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = SwinvaConfig()
__lowercase = swinva_name.split("_" )
__lowercase = name_split[1]
if "to" in name_split[3]:
__lowercase = int(name_split[3][-3:] )
else:
__lowercase = int(name_split[3] )
if "to" in name_split[2]:
__lowercase = int(name_split[2][-2:] )
else:
__lowercase = int(name_split[2][6:] )
if model_size == "tiny":
__lowercase = 9_6
__lowercase = (2, 2, 6, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif model_size == "small":
__lowercase = 9_6
__lowercase = (2, 2, 1_8, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif model_size == "base":
__lowercase = 1_2_8
__lowercase = (2, 2, 1_8, 2)
__lowercase = (4, 8, 1_6, 3_2)
else:
__lowercase = 1_9_2
__lowercase = (2, 2, 1_8, 2)
__lowercase = (6, 1_2, 2_4, 4_8)
if "to" in swinva_name:
__lowercase = (1_2, 1_2, 1_2, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
__lowercase = 2_1_8_4_1
__lowercase = "huggingface/label-files"
__lowercase = "imagenet-22k-id2label.json"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
else:
__lowercase = 1_0_0_0
__lowercase = "huggingface/label-files"
__lowercase = "imagenet-1k-id2label.json"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = img_size
__lowercase = num_classes
__lowercase = embed_dim
__lowercase = depths
__lowercase = num_heads
__lowercase = window_size
return config
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if "patch_embed.proj" in name:
__lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "patch_embed.norm" in name:
__lowercase = name.replace("patch_embed.norm" , "embeddings.norm" )
if "layers" in name:
__lowercase = "encoder." + name
if "attn.proj" in name:
__lowercase = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
__lowercase = name.replace("attn" , "attention.self" )
if "norm1" in name:
__lowercase = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
__lowercase = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
__lowercase = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
__lowercase = name.replace("mlp.fc2" , "output.dense" )
if "q_bias" in name:
__lowercase = name.replace("q_bias" , "query.bias" )
if "k_bias" in name:
__lowercase = name.replace("k_bias" , "key.bias" )
if "v_bias" in name:
__lowercase = name.replace("v_bias" , "value.bias" )
if "cpb_mlp" in name:
__lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" )
if name == "norm.weight":
__lowercase = "layernorm.weight"
if name == "norm.bias":
__lowercase = "layernorm.bias"
if "head" in name:
__lowercase = name.replace("head" , "classifier" )
else:
__lowercase = "swinv2." + name
return name
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for key in orig_state_dict.copy().keys():
__lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "mask" in key:
continue
elif "qkv" in key:
__lowercase = key.split("." )
__lowercase = int(key_split[1] )
__lowercase = int(key_split[3] )
__lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__lowercase = val[:dim, :]
__lowercase = val[dim : dim * 2, :]
__lowercase = val[-dim:, :]
else:
__lowercase = val[:dim]
__lowercase = val[
dim : dim * 2
]
__lowercase = val[-dim:]
else:
__lowercase = val
return orig_state_dict
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE )
timm_model.eval()
__lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE )
__lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE )
model.eval()
__lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE )
__lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg"
__lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) )
__lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
__lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" )
__lowercase = timm_model(inputs["pixel_values"] )
__lowercase = model(**_SCREAMING_SNAKE_CASE ).logits
assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 )
print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
model.push_to_hub(
repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , )
if __name__ == "__main__":
snake_case__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swinv2_name""",
default="""swinv2_tiny_patch4_window8_256""",
type=str,
help="""Name of the Swinv2 timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
snake_case__ : str = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 655 | 0 |
'''simple docstring'''
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
snake_case__ : List[Any] = """\
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
"""
snake_case__ : Optional[int] = """\
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
"""
snake_case__ : Optional[int] = """
Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset.
Args:
predictions: list of predictions to score. Depending on the SuperGlUE subset:
- for 'record': list of question-answer dictionaries with the following keys:
- 'idx': index of the question as specified by the dataset
- 'prediction_text': the predicted answer text
- for 'multirc': list of question-answer dictionaries with the following keys:
- 'idx': index of the question-answer pair as specified by the dataset
- 'prediction': the predicted answer label
- otherwise: list of predicted labels
references: list of reference labels. Depending on the SuperGLUE subset:
- for 'record': list of question-answers dictionaries with the following keys:
- 'idx': index of the question as specified by the dataset
- 'answers': list of possible answers
- otherwise: list of reference labels
Returns: depending on the SuperGLUE subset:
- for 'record':
- 'exact_match': Exact match between answer and gold answer
- 'f1': F1 score
- for 'multirc':
- 'exact_match': Exact match between answer and gold answer
- 'f1_m': Per-question macro-F1 score
- 'f1_a': Average F1 score over all answers
- for 'axb':
'matthews_correlation': Matthew Correlation
- for 'cb':
- 'accuracy': Accuracy
- 'f1': F1 score
- for all others:
- 'accuracy': Accuracy
Examples:
>>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'cb')
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0, 'f1': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'record')
>>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]
>>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 1.0, 'f1': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')
>>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'axb')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'matthews_correlation': 1.0}
"""
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return float((preds == labels).mean() )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="binary" ):
__lowercase = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowercase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average=_SCREAMING_SNAKE_CASE ) )
return {
"accuracy": acc,
"f1": fa,
}
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = {}
for id_pred, label in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}"""
__lowercase = id_pred["prediction"]
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
__lowercase = [(pred, label)]
__lowercase , __lowercase = [], []
for question, preds_labels in question_map.items():
__lowercase , __lowercase = zip(*_SCREAMING_SNAKE_CASE )
__lowercase = fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average="macro" )
fas.append(_SCREAMING_SNAKE_CASE )
__lowercase = int(sum(pred == label for pred, label in preds_labels ) == len(_SCREAMING_SNAKE_CASE ) )
ems.append(_SCREAMING_SNAKE_CASE )
__lowercase = float(sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) )
__lowercase = sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )
__lowercase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
'''simple docstring'''
def _snake_case ( self : Tuple ):
'''simple docstring'''
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
"You should supply a configuration name selected in "
"[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , )
def _snake_case ( self : Tuple ):
'''simple docstring'''
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value("int64" ),
"query": datasets.Value("int64" ),
},
"prediction_text": datasets.Value("string" ),
},
"references": {
"idx": {
"passage": datasets.Value("int64" ),
"query": datasets.Value("int64" ),
},
"answers": datasets.Sequence(datasets.Value("string" ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value("int64" ),
"paragraph": datasets.Value("int64" ),
"question": datasets.Value("int64" ),
},
"prediction": datasets.Value("int64" ),
},
"references": datasets.Value("int64" ),
}
else:
return {
"predictions": datasets.Value("int64" ),
"references": datasets.Value("int64" ),
}
def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict ):
'''simple docstring'''
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(lowerCamelCase , lowerCamelCase )}
elif self.config_name == "cb":
return acc_and_fa(lowerCamelCase , lowerCamelCase , fa_avg="macro" )
elif self.config_name == "record":
__lowercase = [
{
"qas": [
{"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]}
for ref in references
]
}
]
__lowercase = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions}
return evaluate_record(lowerCamelCase , lowerCamelCase )[0]
elif self.config_name == "multirc":
return evaluate_multirc(lowerCamelCase , lowerCamelCase )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(lowerCamelCase , lowerCamelCase )}
else:
raise KeyError(
"You should supply a configuration name selected in "
"[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
| 710 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
snake_case__ : List[str] = logging.get_logger(__name__)
snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
snake_case__ : Optional[Any] = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
snake_case__ : List[str] = {
"""allenai/led-base-16384""": 1_63_84,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def snake_case_ ( ):
__lowercase = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
__lowercase = bs[:]
__lowercase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_SCREAMING_SNAKE_CASE )
cs.append(2**8 + n )
n += 1
__lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs]
return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = set()
__lowercase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowercase = char
return pairs
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[str] = VOCAB_FILES_NAMES
_snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""]
def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token
super().__init__(
errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , )
with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__lowercase = json.load(lowerCamelCase )
__lowercase = {v: k for k, v in self.encoder.items()}
__lowercase = errors # how to handle errors in decoding
__lowercase = bytes_to_unicode()
__lowercase = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase , encoding="utf-8" ) as merges_handle:
__lowercase = merges_handle.read().split("\n" )[1:-1]
__lowercase = [tuple(merge.split() ) for merge in bpe_merges]
__lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) )
__lowercase = {}
__lowercase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return len(self.encoder )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : List[Any] , lowerCamelCase : str ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
__lowercase = tuple(lowerCamelCase )
__lowercase = get_pairs(lowerCamelCase )
if not pairs:
return token
while True:
__lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__lowercase , __lowercase = bigram
__lowercase = []
__lowercase = 0
while i < len(lowerCamelCase ):
try:
__lowercase = word.index(lowerCamelCase , lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__lowercase = j
if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowercase = tuple(lowerCamelCase )
__lowercase = new_word
if len(lowerCamelCase ) == 1:
break
else:
__lowercase = get_pairs(lowerCamelCase )
__lowercase = " ".join(lowerCamelCase )
__lowercase = word
return word
def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ):
'''simple docstring'''
__lowercase = []
for token in re.findall(self.pat , lowerCamelCase ):
__lowercase = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : str , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.decoder.get(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = "".join(lowerCamelCase )
__lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(lowerCamelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__lowercase = os.path.join(
lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" )
__lowercase = 0
with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
__lowercase = token_index
writer.write(" ".join(lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowercase = [self.cls_token_id]
__lowercase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase )) + [1]
return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1]
def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ):
'''simple docstring'''
__lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()):
__lowercase = " " + text
return (text, kwargs)
def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
__lowercase = super()._pad(
encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
__lowercase = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
__lowercase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
__lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase )
if needs_to_be_padded:
__lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
__lowercase = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
__lowercase = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 655 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Union[str, Any] = """naver-clova-ix/donut-base-finetuned-docvqa"""
_snake_case : List[Any] = (
"""This is a tool that answers a question about an document (pdf). It takes an input named `document` which """
"""should be the document containing the information, as well as a `question` that is the question about the """
"""document. It returns a text that contains the answer to the question."""
)
_snake_case : Tuple = """document_qa"""
_snake_case : Tuple = AutoProcessor
_snake_case : int = VisionEncoderDecoderModel
_snake_case : Dict = ["""image""", """text"""]
_snake_case : Any = ["""text"""]
def __init__( self : Tuple , *lowerCamelCase : int , **lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if not is_vision_available():
raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." )
super().__init__(*lowerCamelCase , **lowerCamelCase )
def _snake_case ( self : List[Any] , lowerCamelCase : "Image" , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
__lowercase = task_prompt.replace("{user_input}" , lowerCamelCase )
__lowercase = self.pre_processor.tokenizer(
lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="pt" ).input_ids
__lowercase = self.pre_processor(lowerCamelCase , return_tensors="pt" ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _snake_case ( self : List[str] , lowerCamelCase : int ):
'''simple docstring'''
return self.model.generate(
inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=lowerCamelCase , ).sequences
def _snake_case ( self : str , lowerCamelCase : List[Any] ):
'''simple docstring'''
__lowercase = self.pre_processor.batch_decode(lowerCamelCase )[0]
__lowercase = sequence.replace(self.pre_processor.tokenizer.eos_token , "" )
__lowercase = sequence.replace(self.pre_processor.tokenizer.pad_token , "" )
__lowercase = re.sub(R"<.*?>" , "" , lowerCamelCase , count=1 ).strip() # remove first task start token
__lowercase = self.pre_processor.tokenajson(lowerCamelCase )
return sequence["answer"]
| 711 |
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ):
raise ValueError("The length of profit and weight must be same." )
if max_weight <= 0:
raise ValueError("max_weight must greater than zero." )
if any(p < 0 for p in profit ):
raise ValueError("Profit can not be negative." )
if any(w < 0 for w in weight ):
raise ValueError("Weight can not be negative." )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
__lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
# Creating a copy of the list and sorting profit/weight in ascending order
__lowercase = sorted(_SCREAMING_SNAKE_CASE )
# declaring useful variables
__lowercase = len(_SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
__lowercase = sorted_profit_by_weight[length - i - 1]
__lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE )
__lowercase = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
"""Input profits, weights, and then max_weight (all positive ints) separated by """
"""spaces."""
)
snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()]
snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()]
snake_case__ : Optional[Any] = int(input("""Max weight allowed: """))
# Function Call
calc_profit(profit, weight, max_weight)
| 655 | 0 |
def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0_0_0_0 ):
__lowercase = set(range(3 , _SCREAMING_SNAKE_CASE , 2 ) )
primes.add(2 )
for p in range(3 , _SCREAMING_SNAKE_CASE , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) )
__lowercase = [float(_SCREAMING_SNAKE_CASE ) for n in range(limit + 1 )]
for p in primes:
for n in range(_SCREAMING_SNAKE_CASE , limit + 1 , _SCREAMING_SNAKE_CASE ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 712 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = """openai/whisper-base"""
_snake_case : Union[str, Any] = (
"""This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """
"""transcribed text."""
)
_snake_case : Any = """transcriber"""
_snake_case : Any = WhisperProcessor
_snake_case : Optional[int] = WhisperForConditionalGeneration
_snake_case : str = ["""audio"""]
_snake_case : Optional[int] = ["""text"""]
def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features
def _snake_case ( self : str , lowerCamelCase : List[Any] ):
'''simple docstring'''
return self.model.generate(inputs=lowerCamelCase )
def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
| 655 | 0 |
from __future__ import annotations
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = position
__lowercase = [
(y + 1, x + 2),
(y - 1, x + 2),
(y + 1, x - 2),
(y - 1, x - 2),
(y + 2, x + 1),
(y + 2, x - 1),
(y - 2, x + 1),
(y - 2, x - 1),
]
__lowercase = []
for position in positions:
__lowercase , __lowercase = position
if 0 <= y_test < n and 0 <= x_test < n:
permissible_positions.append(_SCREAMING_SNAKE_CASE )
return permissible_positions
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
return not any(elem == 0 for row in board for elem in row )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if is_complete(_SCREAMING_SNAKE_CASE ):
return True
for position in get_valid_pos(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ):
__lowercase , __lowercase = position
if board[y][x] == 0:
__lowercase = curr + 1
if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , curr + 1 ):
return True
__lowercase = 0
return False
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = [[0 for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )]
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
__lowercase = 1
if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , (i, j) , 1 ):
return board
__lowercase = 0
__lowercase = F"""Open Kight Tour cannot be performed on a board of size {n}"""
raise ValueError(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 713 |
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class _A :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , )
torch.manual_seed(0 )
__lowercase = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _snake_case ( self : Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , )
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , )
torch.manual_seed(0 )
__lowercase = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = inputs["prompt"]
__lowercase = inputs["generator"]
__lowercase = inputs["num_inference_steps"]
__lowercase = inputs["output_type"]
if "image" in inputs:
__lowercase = inputs["image"]
else:
__lowercase = None
if "mask_image" in inputs:
__lowercase = inputs["mask_image"]
else:
__lowercase = None
if "original_image" in inputs:
__lowercase = inputs["original_image"]
else:
__lowercase = None
__lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase )
# inputs with prompt converted to embeddings
__lowercase = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
__lowercase = image
if mask_image is not None:
__lowercase = mask_image
if original_image is not None:
__lowercase = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase )
__lowercase = pipe(**lowerCamelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(lowerCamelCase )
__lowercase = self.pipeline_class.from_pretrained(lowerCamelCase )
pipe_loaded.to(lowerCamelCase )
pipe_loaded.set_progress_bar_config(disable=lowerCamelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = inputs["generator"]
__lowercase = inputs["num_inference_steps"]
__lowercase = inputs["output_type"]
# inputs with prompt converted to embeddings
__lowercase = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
__lowercase = image
if mask_image is not None:
__lowercase = mask_image
if original_image is not None:
__lowercase = original_image
__lowercase = pipe_loaded(**lowerCamelCase )[0]
__lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max()
self.assertLess(lowerCamelCase , 1e-4 )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = pipe(**lowerCamelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(lowerCamelCase )
__lowercase = self.pipeline_class.from_pretrained(lowerCamelCase )
pipe_loaded.to(lowerCamelCase )
pipe_loaded.set_progress_bar_config(disable=lowerCamelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = pipe_loaded(**lowerCamelCase )[0]
__lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max()
self.assertLess(lowerCamelCase , 1e-4 )
| 655 | 0 |
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = 0
while num > 0:
digit_sum += num % 1_0
num //= 1_0
return digit_sum
def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0 ):
__lowercase = 1
__lowercase = 2
for i in range(2 , max_n + 1 ):
__lowercase = pre_numerator
__lowercase = 2 * i // 3 if i % 3 == 0 else 1
__lowercase = cur_numerator
__lowercase = e_cont * pre_numerator + temp
return sum_digits(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 714 |
import numpy as np
snake_case__ : Tuple = [
["""a""", """b""", """c""", """d""", """e"""],
["""f""", """g""", """h""", """i""", """k"""],
["""l""", """m""", """n""", """o""", """p"""],
["""q""", """r""", """s""", """t""", """u"""],
["""v""", """w""", """x""", """y""", """z"""],
]
class _A :
'''simple docstring'''
def __init__( self : Dict ):
'''simple docstring'''
__lowercase = np.array(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase , __lowercase = np.where(letter == self.SQUARE )
__lowercase = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = self.SQUARE[indexa - 1, indexa - 1]
return letter
def _snake_case ( self : int , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = message.lower()
__lowercase = message.replace(" " , "" )
__lowercase = message.replace("j" , "i" )
__lowercase = np.empty((2, len(lowerCamelCase )) )
for letter_index in range(len(lowerCamelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape(2 * len(lowerCamelCase ) )
__lowercase = ""
for numbers_index in range(len(lowerCamelCase ) ):
__lowercase = int(second_step[numbers_index * 2] )
__lowercase = int(second_step[(numbers_index * 2) + 1] )
__lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__lowercase = encoded_message + letter
return encoded_message
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = message.lower()
message.replace(" " , "" )
__lowercase = np.empty(2 * len(lowerCamelCase ) )
for letter_index in range(len(lowerCamelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape((2, len(lowerCamelCase )) )
__lowercase = ""
for numbers_index in range(len(lowerCamelCase ) ):
__lowercase = int(second_step[0, numbers_index] )
__lowercase = int(second_step[1, numbers_index] )
__lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__lowercase = decoded_message + letter
return decoded_message
| 655 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
snake_case__ : Any = logging.get_logger(__name__)
class _A ( _lowercase , _lowercase ):
'''simple docstring'''
_snake_case : Dict = """maskformer-swin"""
_snake_case : List[str] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = embed_dim
__lowercase = depths
__lowercase = len(lowerCamelCase )
__lowercase = num_heads
__lowercase = window_size
__lowercase = mlp_ratio
__lowercase = qkv_bias
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = drop_path_rate
__lowercase = hidden_act
__lowercase = use_absolute_embeddings
__lowercase = layer_norm_eps
__lowercase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) )
__lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )]
__lowercase , __lowercase = get_aligned_output_features_output_indices(
out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
| 715 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class _A ( ctypes.Structure ):
'''simple docstring'''
_snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def snake_case_ ( ):
if os.name == "nt":
__lowercase = CursorInfo()
__lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
__lowercase = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("\033[?25l" )
sys.stdout.flush()
def snake_case_ ( ):
if os.name == "nt":
__lowercase = CursorInfo()
__lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
__lowercase = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("\033[?25h" )
sys.stdout.flush()
@contextmanager
def snake_case_ ( ):
try:
hide_cursor()
yield
finally:
show_cursor()
| 655 | 0 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = SwinvaConfig()
__lowercase = swinva_name.split("_" )
__lowercase = name_split[1]
if "to" in name_split[3]:
__lowercase = int(name_split[3][-3:] )
else:
__lowercase = int(name_split[3] )
if "to" in name_split[2]:
__lowercase = int(name_split[2][-2:] )
else:
__lowercase = int(name_split[2][6:] )
if model_size == "tiny":
__lowercase = 9_6
__lowercase = (2, 2, 6, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif model_size == "small":
__lowercase = 9_6
__lowercase = (2, 2, 1_8, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif model_size == "base":
__lowercase = 1_2_8
__lowercase = (2, 2, 1_8, 2)
__lowercase = (4, 8, 1_6, 3_2)
else:
__lowercase = 1_9_2
__lowercase = (2, 2, 1_8, 2)
__lowercase = (6, 1_2, 2_4, 4_8)
if "to" in swinva_name:
__lowercase = (1_2, 1_2, 1_2, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
__lowercase = 2_1_8_4_1
__lowercase = "huggingface/label-files"
__lowercase = "imagenet-22k-id2label.json"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
else:
__lowercase = 1_0_0_0
__lowercase = "huggingface/label-files"
__lowercase = "imagenet-1k-id2label.json"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = img_size
__lowercase = num_classes
__lowercase = embed_dim
__lowercase = depths
__lowercase = num_heads
__lowercase = window_size
return config
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if "patch_embed.proj" in name:
__lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "patch_embed.norm" in name:
__lowercase = name.replace("patch_embed.norm" , "embeddings.norm" )
if "layers" in name:
__lowercase = "encoder." + name
if "attn.proj" in name:
__lowercase = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
__lowercase = name.replace("attn" , "attention.self" )
if "norm1" in name:
__lowercase = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
__lowercase = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
__lowercase = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
__lowercase = name.replace("mlp.fc2" , "output.dense" )
if "q_bias" in name:
__lowercase = name.replace("q_bias" , "query.bias" )
if "k_bias" in name:
__lowercase = name.replace("k_bias" , "key.bias" )
if "v_bias" in name:
__lowercase = name.replace("v_bias" , "value.bias" )
if "cpb_mlp" in name:
__lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" )
if name == "norm.weight":
__lowercase = "layernorm.weight"
if name == "norm.bias":
__lowercase = "layernorm.bias"
if "head" in name:
__lowercase = name.replace("head" , "classifier" )
else:
__lowercase = "swinv2." + name
return name
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for key in orig_state_dict.copy().keys():
__lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "mask" in key:
continue
elif "qkv" in key:
__lowercase = key.split("." )
__lowercase = int(key_split[1] )
__lowercase = int(key_split[3] )
__lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__lowercase = val[:dim, :]
__lowercase = val[dim : dim * 2, :]
__lowercase = val[-dim:, :]
else:
__lowercase = val[:dim]
__lowercase = val[
dim : dim * 2
]
__lowercase = val[-dim:]
else:
__lowercase = val
return orig_state_dict
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE )
timm_model.eval()
__lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE )
__lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE )
model.eval()
__lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE )
__lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg"
__lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) )
__lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
__lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" )
__lowercase = timm_model(inputs["pixel_values"] )
__lowercase = model(**_SCREAMING_SNAKE_CASE ).logits
assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 )
print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
model.push_to_hub(
repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , )
if __name__ == "__main__":
snake_case__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swinv2_name""",
default="""swinv2_tiny_patch4_window8_256""",
type=str,
help="""Name of the Swinv2 timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
snake_case__ : str = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 716 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
snake_case__ : List[str] = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[Any] = """yolos"""
def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = qkv_bias
__lowercase = num_detection_tokens
__lowercase = use_mid_position_embeddings
__lowercase = auxiliary_loss
# Hungarian matcher
__lowercase = class_cost
__lowercase = bbox_cost
__lowercase = giou_cost
# Loss coefficients
__lowercase = bbox_loss_coefficient
__lowercase = giou_loss_coefficient
__lowercase = eos_coefficient
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = version.parse("""1.11""" )
@property
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : str ):
'''simple docstring'''
return 1e-4
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return 12
| 655 | 0 |
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
snake_case__ : Dict = logging.get_logger(__name__)
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Tuple = ["""input_features""", """attention_mask"""]
def __init__( self : Any , lowerCamelCase : List[str]=80 , lowerCamelCase : Optional[int]=16_000 , lowerCamelCase : List[str]=80 , lowerCamelCase : Dict=0.0 , lowerCamelCase : int=True , lowerCamelCase : List[Any]=True , lowerCamelCase : Dict=True , **lowerCamelCase : List[str] , ):
'''simple docstring'''
super().__init__(feature_size=lowerCamelCase , sampling_rate=lowerCamelCase , padding_value=lowerCamelCase , **lowerCamelCase )
__lowercase = num_mel_bins
__lowercase = do_ceptral_normalize
__lowercase = normalize_means
__lowercase = normalize_vars
__lowercase = True
def _snake_case ( self : Any , lowerCamelCase : np.ndarray , ):
'''simple docstring'''
__lowercase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
__lowercase = torch.from_numpy(lowerCamelCase ).unsqueeze(0 )
__lowercase = ta_kaldi.fbank(lowerCamelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def _snake_case ( lowerCamelCase : np.ndarray , lowerCamelCase : int , lowerCamelCase : Optional[bool] = True , lowerCamelCase : Optional[bool] = True , lowerCamelCase : float = 0.0 , ):
'''simple docstring'''
if normalize_means:
__lowercase = x[:input_length].mean(axis=0 )
__lowercase = np.subtract(lowerCamelCase , lowerCamelCase )
if normalize_vars:
__lowercase = x[:input_length].std(axis=0 )
__lowercase = np.divide(lowerCamelCase , lowerCamelCase )
if input_length < x.shape[0]:
__lowercase = padding_value
# make sure array is in float32
__lowercase = x.astype(np.floataa )
return x
def _snake_case ( self : Union[str, Any] , lowerCamelCase : List[np.ndarray] , lowerCamelCase : Optional[np.ndarray] = None ):
'''simple docstring'''
__lowercase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(lowerCamelCase , lowerCamelCase , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(lowerCamelCase , lowerCamelCase )
]
def __call__( self : Dict , lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase : Union[bool, str, PaddingStrategy] = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : bool = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , **lowerCamelCase : Dict , ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"""
f""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
__lowercase = isinstance(lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
__lowercase = is_batched_numpy or (
isinstance(lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__lowercase = [np.asarray(lowerCamelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase , np.ndarray ):
__lowercase = np.asarray(lowerCamelCase , dtype=np.floataa )
elif isinstance(lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__lowercase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__lowercase = [raw_speech]
# extract fbank features
__lowercase = [self._extract_fbank_features(lowerCamelCase ) for waveform in raw_speech]
# convert into correct format for padding
__lowercase = BatchFeature({"input_features": features} )
__lowercase = self.pad(
lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , truncation=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , **lowerCamelCase , )
# make sure list is in array format
__lowercase = padded_inputs.get("input_features" )
if isinstance(input_features[0] , lowerCamelCase ):
__lowercase = [np.asarray(lowerCamelCase , dtype=np.floataa ) for feature in input_features]
__lowercase = padded_inputs.get("attention_mask" )
if attention_mask is not None:
__lowercase = [np.asarray(lowerCamelCase , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
__lowercase = (
np.array(lowerCamelCase , dtype=np.intaa )
if self._get_padding_strategies(lowerCamelCase , max_length=lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
__lowercase = self.normalize(
padded_inputs["input_features"] , attention_mask=lowerCamelCase )
if return_tensors is not None:
__lowercase = padded_inputs.convert_to_tensors(lowerCamelCase )
return padded_inputs
| 717 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
snake_case__ : Optional[int] = logging.get_logger(__name__)
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 )
if "_quant" in model_name:
raise ValueError("Quantized models are not supported." )
__lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE )
if matches:
__lowercase = float(matches[1] )
__lowercase = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
__lowercase = 1_0_0_1
__lowercase = "imagenet-1k-id2label.json"
__lowercase = "huggingface/label-files"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()}
__lowercase = "background"
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ ( ):
__lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg"
__lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
__lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE )
# Load 🤗 model
__lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
__lowercase = MobileNetVaImageProcessor(
crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , )
__lowercase = image_processor(images=prepare_img() , return_tensors="pt" )
__lowercase = model(**_SCREAMING_SNAKE_CASE )
__lowercase = outputs.logits
assert logits.shape == (1, 1_0_0_1)
if model_name == "mobilenet_v1_1.0_224":
__lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] )
elif model_name == "mobilenet_v1_0.75_192":
__lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] )
else:
__lowercase = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
print("Pushing to the hub..." )
__lowercase = "google/" + model_name
image_processor.push_to_hub(_SCREAMING_SNAKE_CASE )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
snake_case__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""mobilenet_v1_1.0_224""",
type=str,
help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""",
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
snake_case__ : Dict = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 655 | 0 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _A ( _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : int = LayoutLMTokenizer
_snake_case : List[str] = LayoutLMTokenizerFast
_snake_case : List[str] = True
_snake_case : Tuple = True
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
super().setUp()
__lowercase = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def _snake_case ( self : Dict , **lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase )
def _snake_case ( self : Dict , lowerCamelCase : Any ):
'''simple docstring'''
__lowercase = "UNwant\u00E9d,running"
__lowercase = "unwanted, running"
return input_text, output_text
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = self.tokenizer_class(self.vocab_file )
__lowercase = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(lowerCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [7, 4, 5, 10, 8, 9] )
def _snake_case ( self : Dict ):
'''simple docstring'''
pass
| 718 |
from __future__ import annotations
from typing import Any
class _A :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
self.m_edges.append([u_node, v_node, weight] )
def _snake_case ( self : List[Any] , lowerCamelCase : int ):
'''simple docstring'''
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(lowerCamelCase )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(lowerCamelCase )
component_size[u_node] += component_size[v_node]
self.set_component(lowerCamelCase )
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase , __lowercase , __lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(lowerCamelCase , lowerCamelCase ):
__lowercase , __lowercase , __lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase )
print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def snake_case_ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
'''simple docstring'''
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
snake_case__ : List[Any] = Mapping[str, np.ndarray]
snake_case__ : Any = Mapping[str, Any] # Is a nested dict.
snake_case__ : Any = 0.0_1
@dataclasses.dataclass(frozen=_lowercase )
class _A :
'''simple docstring'''
_snake_case : np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
_snake_case : np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
_snake_case : np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
_snake_case : np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
_snake_case : np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
_snake_case : Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
_snake_case : Optional[str] = None
# Templates used to generate this protein (prediction-only)
_snake_case : Optional[Sequence[str]] = None
# Chain corresponding to each parent
_snake_case : Optional[Sequence[int]] = None
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = R"(\[[A-Z]+\]\n)"
__lowercase = [tag.strip() for tag in re.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0]
__lowercase = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] )
__lowercase = ["N", "CA", "C"]
__lowercase = None
__lowercase = None
__lowercase = None
for g in groups:
if "[PRIMARY]" == g[0]:
__lowercase = g[1][0].strip()
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
if seq[i] not in residue_constants.restypes:
__lowercase = "X" # FIXME: strings are immutable
__lowercase = np.array(
[residue_constants.restype_order.get(_SCREAMING_SNAKE_CASE , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
__lowercase = []
for axis in range(3 ):
tertiary.append(list(map(_SCREAMING_SNAKE_CASE , g[1][axis].split() ) ) )
__lowercase = np.array(_SCREAMING_SNAKE_CASE )
__lowercase = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
__lowercase = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) )
__lowercase = np.zeros(
(
len(_SCREAMING_SNAKE_CASE ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=_SCREAMING_SNAKE_CASE , atom_mask=_SCREAMING_SNAKE_CASE , aatype=_SCREAMING_SNAKE_CASE , residue_index=np.arange(len(_SCREAMING_SNAKE_CASE ) ) , b_factors=_SCREAMING_SNAKE_CASE , )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 ):
__lowercase = []
__lowercase = prot.remark
if remark is not None:
pdb_headers.append(F"""REMARK {remark}""" )
__lowercase = prot.parents
__lowercase = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
__lowercase = [p for i, p in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if i == chain_id]
if parents is None or len(_SCREAMING_SNAKE_CASE ) == 0:
__lowercase = ["N/A"]
pdb_headers.append(F"""PARENT {' '.join(_SCREAMING_SNAKE_CASE )}""" )
return pdb_headers
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = []
__lowercase = pdb_str.split("\n" )
__lowercase = prot.remark
if remark is not None:
out_pdb_lines.append(F"""REMARK {remark}""" )
__lowercase = 4_2
if prot.parents is not None and len(prot.parents ) > 0:
__lowercase = []
if prot.parents_chain_index is not None:
__lowercase = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(_SCREAMING_SNAKE_CASE ) , [] )
parent_dict[str(_SCREAMING_SNAKE_CASE )].append(_SCREAMING_SNAKE_CASE )
__lowercase = max([int(_SCREAMING_SNAKE_CASE ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
__lowercase = parent_dict.get(str(_SCREAMING_SNAKE_CASE ) , ["N/A"] )
parents_per_chain.append(_SCREAMING_SNAKE_CASE )
else:
parents_per_chain.append(list(prot.parents ) )
else:
__lowercase = [["N/A"]]
def make_parent_line(_SCREAMING_SNAKE_CASE ) -> str:
return F"""PARENT {' '.join(_SCREAMING_SNAKE_CASE )}"""
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
__lowercase = 0
for i, l in enumerate(_SCREAMING_SNAKE_CASE ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(_SCREAMING_SNAKE_CASE )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(_SCREAMING_SNAKE_CASE ):
__lowercase = parents_per_chain[chain_counter]
else:
__lowercase = ["N/A"]
out_pdb_lines.append(make_parent_line(_SCREAMING_SNAKE_CASE ) )
return "\n".join(_SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = residue_constants.restypes + ["X"]
def res_atoa(_SCREAMING_SNAKE_CASE ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , "UNK" )
__lowercase = residue_constants.atom_types
__lowercase = []
__lowercase = prot.atom_mask
__lowercase = prot.aatype
__lowercase = prot.atom_positions
__lowercase = prot.residue_index.astype(np.intaa )
__lowercase = prot.b_factors
__lowercase = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError("Invalid aatypes." )
__lowercase = get_pdb_headers(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
pdb_lines.extend(_SCREAMING_SNAKE_CASE )
__lowercase = aatype.shape[0]
__lowercase = 1
__lowercase = 0
__lowercase = string.ascii_uppercase
__lowercase = None
# Add all atom sites.
for i in range(_SCREAMING_SNAKE_CASE ):
__lowercase = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(_SCREAMING_SNAKE_CASE , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
__lowercase = "ATOM"
__lowercase = atom_name if len(_SCREAMING_SNAKE_CASE ) == 4 else F""" {atom_name}"""
__lowercase = ""
__lowercase = ""
__lowercase = 1.0_0
__lowercase = atom_name[0] # Protein supports only C, N, O, S, this works.
__lowercase = ""
__lowercase = "A"
if chain_index is not None:
__lowercase = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
__lowercase = (
F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"""
F"""{res_name_a:>3} {chain_tag:>1}"""
F"""{residue_index[i]:>4}{insertion_code:>1} """
F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"""
F"""{occupancy:>6.2f}{b_factor:>6.2f} """
F"""{element:>2}{charge:>2}"""
)
pdb_lines.append(_SCREAMING_SNAKE_CASE )
atom_index += 1
__lowercase = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
__lowercase = True
__lowercase = chain_index[i + 1]
if should_terminate:
# Close the chain.
__lowercase = "TER"
__lowercase = (
F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}"""
)
pdb_lines.append(_SCREAMING_SNAKE_CASE )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
pdb_lines.append("END" )
pdb_lines.append("" )
return "\n".join(_SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ):
return Protein(
aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=_SCREAMING_SNAKE_CASE , remark=_SCREAMING_SNAKE_CASE , parents=_SCREAMING_SNAKE_CASE , parents_chain_index=_SCREAMING_SNAKE_CASE , )
| 719 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : List[str] = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 655 | 0 |
import os
from collections import deque
import torch
from torch.utils.data import Dataset
class _A ( _lowercase ):
'''simple docstring'''
def __init__( self : List[Any] , lowerCamelCase : Dict="" , lowerCamelCase : int="train" ):
'''simple docstring'''
assert os.path.isdir(lowerCamelCase )
__lowercase = []
__lowercase = os.listdir(lowerCamelCase )
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
__lowercase = os.path.join(lowerCamelCase , lowerCamelCase )
if not os.path.isfile(lowerCamelCase ):
continue
self.documents.append(lowerCamelCase )
def __len__( self : Dict ):
'''simple docstring'''
return len(self.documents )
def __getitem__( self : int , lowerCamelCase : Tuple ):
'''simple docstring'''
__lowercase = self.documents[idx]
__lowercase = document_path.split("/" )[-1]
with open(lowerCamelCase , encoding="utf-8" ) as source:
__lowercase = source.read()
__lowercase , __lowercase = process_story(lowerCamelCase )
return document_name, story_lines, summary_lines
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = list(filter(lambda _SCREAMING_SNAKE_CASE : len(_SCREAMING_SNAKE_CASE ) != 0 , [line.strip() for line in raw_story.split("\n" )] ) )
# for some unknown reason some lines miss a period, add it
__lowercase = [_add_missing_period(_SCREAMING_SNAKE_CASE ) for line in nonempty_lines]
# gather article lines
__lowercase = []
__lowercase = deque(_SCREAMING_SNAKE_CASE )
while True:
try:
__lowercase = lines.popleft()
if element.startswith("@highlight" ):
break
story_lines.append(_SCREAMING_SNAKE_CASE )
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
__lowercase = list(filter(lambda _SCREAMING_SNAKE_CASE : not t.startswith("@highlight" ) , _SCREAMING_SNAKE_CASE ) )
return story_lines, summary_lines
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"]
if line.startswith("@highlight" ):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token_id] * (block_size - len(_SCREAMING_SNAKE_CASE )) )
return sequence
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = torch.ones_like(_SCREAMING_SNAKE_CASE )
__lowercase = sequence == pad_token_id
__lowercase = 0
return mask
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = [tokenizer.encode(_SCREAMING_SNAKE_CASE ) for line in story_lines]
__lowercase = [token for sentence in story_lines_token_ids for token in sentence]
__lowercase = [tokenizer.encode(_SCREAMING_SNAKE_CASE ) for line in summary_lines]
__lowercase = [token for sentence in summary_lines_token_ids for token in sentence]
return story_token_ids, summary_token_ids
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = []
for sequence in batch:
__lowercase = -1
__lowercase = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2 )
batch_embeddings.append(_SCREAMING_SNAKE_CASE )
return torch.tensor(_SCREAMING_SNAKE_CASE )
| 720 |
from __future__ import annotations
import bisect
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
if hi < 0:
__lowercase = len(_SCREAMING_SNAKE_CASE )
while lo < hi:
__lowercase = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
__lowercase = mid + 1
else:
__lowercase = mid
return lo
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
if hi < 0:
__lowercase = len(_SCREAMING_SNAKE_CASE )
while lo < hi:
__lowercase = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
__lowercase = mid + 1
else:
__lowercase = mid
return lo
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = 0
__lowercase = len(_SCREAMING_SNAKE_CASE ) - 1
while left <= right:
__lowercase = left + (right - left) // 2
__lowercase = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
__lowercase = midpoint - 1
else:
__lowercase = midpoint + 1
return None
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item:
return index
return None
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if right < left:
return None
__lowercase = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 )
else:
return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip()
snake_case__ : Any = sorted(int(item) for item in user_input.split(""","""))
snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n"""))
snake_case__ : List[Any] = binary_search(collection, target)
if result is None:
print(F'''{target} was not found in {collection}.''')
else:
print(F'''{target} was found at position {result} in {collection}.''')
| 655 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
snake_case__ : List[str] = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[Any] = """yolos"""
def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = qkv_bias
__lowercase = num_detection_tokens
__lowercase = use_mid_position_embeddings
__lowercase = auxiliary_loss
# Hungarian matcher
__lowercase = class_cost
__lowercase = bbox_cost
__lowercase = giou_cost
# Loss coefficients
__lowercase = bbox_loss_coefficient
__lowercase = giou_loss_coefficient
__lowercase = eos_coefficient
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = version.parse("""1.11""" )
@property
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : str ):
'''simple docstring'''
return 1e-4
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return 12
| 721 |
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
snake_case__ : int = logging.get_logger(__name__)
snake_case__ : Optional[int] = {
"""microsoft/conditional-detr-resnet-50""": (
"""https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json"""
),
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = """conditional_detr"""
_snake_case : Union[str, Any] = ["""past_key_values"""]
_snake_case : Optional[int] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowerCamelCase , lowerCamelCase ):
__lowercase = backbone_config.get("model_type" )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(lowerCamelCase )
__lowercase = use_timm_backbone
__lowercase = backbone_config
__lowercase = num_channels
__lowercase = num_queries
__lowercase = d_model
__lowercase = encoder_ffn_dim
__lowercase = encoder_layers
__lowercase = encoder_attention_heads
__lowercase = decoder_ffn_dim
__lowercase = decoder_layers
__lowercase = decoder_attention_heads
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = activation_function
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = encoder_layers
__lowercase = auxiliary_loss
__lowercase = position_embedding_type
__lowercase = backbone
__lowercase = use_pretrained_backbone
__lowercase = dilation
# Hungarian matcher
__lowercase = class_cost
__lowercase = bbox_cost
__lowercase = giou_cost
# Loss coefficients
__lowercase = mask_loss_coefficient
__lowercase = dice_loss_coefficient
__lowercase = cls_loss_coefficient
__lowercase = bbox_loss_coefficient
__lowercase = giou_loss_coefficient
__lowercase = focal_alpha
super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase )
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def _snake_case ( self : str ):
'''simple docstring'''
return self.d_model
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Any = version.parse("""1.11""" )
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _snake_case ( self : Any ):
'''simple docstring'''
return 1e-5
@property
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
return 12
| 655 | 0 |
'''simple docstring'''
from __future__ import annotations
import time
snake_case__ : Tuple = list[tuple[int, int]]
snake_case__ : Optional[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
snake_case__ : Any = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class _A :
'''simple docstring'''
def __init__( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Node | None ):
'''simple docstring'''
__lowercase = pos_x
__lowercase = pos_y
__lowercase = (pos_y, pos_x)
__lowercase = goal_x
__lowercase = goal_y
__lowercase = parent
class _A :
'''simple docstring'''
def __init__( self : int , lowerCamelCase : tuple[int, int] , lowerCamelCase : tuple[int, int] ):
'''simple docstring'''
__lowercase = Node(start[1] , start[0] , goal[1] , goal[0] , lowerCamelCase )
__lowercase = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCamelCase )
__lowercase = [self.start]
__lowercase = False
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
while self.node_queue:
__lowercase = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
__lowercase = True
return self.retrace_path(lowerCamelCase )
__lowercase = self.get_successors(lowerCamelCase )
for node in successors:
self.node_queue.append(lowerCamelCase )
if not self.reached:
return [self.start.pos]
return None
def _snake_case ( self : Dict , lowerCamelCase : Node ):
'''simple docstring'''
__lowercase = []
for action in delta:
__lowercase = parent.pos_x + action[1]
__lowercase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(lowerCamelCase , lowerCamelCase , self.target.pos_y , self.target.pos_x , lowerCamelCase ) )
return successors
def _snake_case ( self : Any , lowerCamelCase : Node | None ):
'''simple docstring'''
__lowercase = node
__lowercase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__lowercase = current_node.parent
path.reverse()
return path
class _A :
'''simple docstring'''
def __init__( self : Any , lowerCamelCase : Any , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = BreadthFirstSearch(lowerCamelCase , lowerCamelCase )
__lowercase = BreadthFirstSearch(lowerCamelCase , lowerCamelCase )
__lowercase = False
def _snake_case ( self : Any ):
'''simple docstring'''
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
__lowercase = self.fwd_bfs.node_queue.pop(0 )
__lowercase = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
__lowercase = True
return self.retrace_bidirectional_path(
lowerCamelCase , lowerCamelCase )
__lowercase = current_bwd_node
__lowercase = current_fwd_node
__lowercase = {
self.fwd_bfs: self.fwd_bfs.get_successors(lowerCamelCase ),
self.bwd_bfs: self.bwd_bfs.get_successors(lowerCamelCase ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(lowerCamelCase )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def _snake_case ( self : int , lowerCamelCase : Node , lowerCamelCase : Node ):
'''simple docstring'''
__lowercase = self.fwd_bfs.retrace_path(lowerCamelCase )
__lowercase = self.bwd_bfs.retrace_path(lowerCamelCase )
bwd_path.pop()
bwd_path.reverse()
__lowercase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
snake_case__ : Dict = (0, 0)
snake_case__ : List[Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
snake_case__ : Any = time.time()
snake_case__ : str = BreadthFirstSearch(init, goal)
snake_case__ : int = bfs.search()
snake_case__ : List[str] = time.time() - start_bfs_time
print("""Unidirectional BFS computation time : """, bfs_time)
snake_case__ : List[Any] = time.time()
snake_case__ : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal)
snake_case__ : Union[str, Any] = bd_bfs.search()
snake_case__ : Union[str, Any] = time.time() - start_bd_bfs_time
print("""Bidirectional BFS computation time : """, bd_bfs_time)
| 700 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
snake_case__ : Any = logging.get_logger(__name__)
class _A ( _lowercase , _lowercase ):
'''simple docstring'''
_snake_case : Dict = """maskformer-swin"""
_snake_case : List[str] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = embed_dim
__lowercase = depths
__lowercase = len(lowerCamelCase )
__lowercase = num_heads
__lowercase = window_size
__lowercase = mlp_ratio
__lowercase = qkv_bias
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = drop_path_rate
__lowercase = hidden_act
__lowercase = use_absolute_embeddings
__lowercase = layer_norm_eps
__lowercase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) )
__lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )]
__lowercase , __lowercase = get_aligned_output_features_output_indices(
out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
| 655 | 0 |
import inspect
import unittest
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
'''simple docstring'''
try:
import diffusers # noqa: F401
except ImportError:
assert False
def _snake_case ( self : List[Any] ):
'''simple docstring'''
import diffusers
from diffusers.dependency_versions_table import deps
__lowercase = inspect.getmembers(lowerCamelCase , inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
__lowercase = "k-diffusion"
elif backend == "invisible_watermark":
__lowercase = "invisible-watermark"
assert backend in deps, f"""{backend} is not in the deps table!"""
| 701 |
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("The given input must be positive" )
# get the generated string sequence
__lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
__lowercase = int(sequence[i] , 2 )
return sequence
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__lowercase = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__lowercase = gray_code_sequence_string(bit_count - 1 )
__lowercase = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__lowercase = "0" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__lowercase = "1" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _A ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Dict=3 , lowerCamelCase : Dict=18 , lowerCamelCase : Dict=30 , lowerCamelCase : Optional[Any]=400 , lowerCamelCase : Dict=True , lowerCamelCase : Any=None , lowerCamelCase : Optional[Any]=True , lowerCamelCase : str=None , lowerCamelCase : Any=True , lowerCamelCase : int=[0.5, 0.5, 0.5] , lowerCamelCase : Dict=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
__lowercase = size if size is not None else {"shortest_edge": 18}
__lowercase = crop_size if crop_size is not None else {"height": 18, "width": 18}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = do_center_crop
__lowercase = crop_size
__lowercase = do_normalize
__lowercase = image_mean
__lowercase = image_std
def _snake_case ( self : Dict ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _A ( _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : Optional[int] = LevitImageProcessor if is_vision_available() else None
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = LevitImageProcessingTester(self )
@property
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) )
self.assertTrue(hasattr(lowerCamelCase , "image_std" ) )
self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) )
self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) )
self.assertTrue(hasattr(lowerCamelCase , "do_center_crop" ) )
self.assertTrue(hasattr(lowerCamelCase , "size" ) )
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
pass
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
__lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
__lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
__lowercase = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 702 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"""
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ):
model.train()
__lowercase = model(_SCREAMING_SNAKE_CASE )
__lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
set_seed(4_2 )
__lowercase = RegressionModel()
__lowercase = deepcopy(_SCREAMING_SNAKE_CASE )
__lowercase = RegressionDataset(length=8_0 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
model.to(accelerator.device )
if sched:
__lowercase = AdamW(params=model.parameters() , lr=1E-3 )
__lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 )
__lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 )
__lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 )
# Make a copy of `model`
if sched:
__lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
__lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# Test when on a single CPU or GPU that the context manager does nothing
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
# Use a single batch
__lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# Test on distributed setup that context manager behaves properly
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
# Use a single batch
__lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ):
__lowercase = Accelerator(
split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = batch.values()
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
GradientState._reset_state()
def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ):
__lowercase = Accelerator(
split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = batch.values()
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n"""
__lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE ))
if accelerator.num_processes > 1:
check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
GradientState._reset_state()
def snake_case_ ( ):
__lowercase = Accelerator()
__lowercase = RegressionDataset(length=8_0 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
__lowercase = RegressionDataset(length=9_6 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
__lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE )
if iteration < len(_SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE )
if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def snake_case_ ( ):
__lowercase = Accelerator()
__lowercase = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**" )
test_noop_sync(_SCREAMING_SNAKE_CASE )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**" )
test_distributed_sync(_SCREAMING_SNAKE_CASE )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 655 | 0 |
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
snake_case__ : Tuple = logging.get_logger(__name__)
class _A ( _lowercase ):
'''simple docstring'''
def __init__( self : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : str ):
'''simple docstring'''
warnings.warn(
"The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use CLIPImageProcessor instead." , lowerCamelCase , )
super().__init__(*lowerCamelCase , **lowerCamelCase )
| 703 |
from ....utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
class _A ( _lowercase ):
'''simple docstring'''
def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ):
'''simple docstring'''
__lowercase = config.__dict__
__lowercase = modal_hidden_size
if num_labels:
__lowercase = num_labels
| 655 | 0 |
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
'''simple docstring'''
@staticmethod
def _snake_case ( *lowerCamelCase : Any , **lowerCamelCase : Dict ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class _A ( unittest.TestCase ):
'''simple docstring'''
_snake_case : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING
def _snake_case ( self : Any , lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] ):
'''simple docstring'''
__lowercase = ObjectDetectionPipeline(model=lowerCamelCase , image_processor=lowerCamelCase )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def _snake_case ( self : Tuple , lowerCamelCase : Tuple , lowerCamelCase : List[str] ):
'''simple docstring'''
__lowercase = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 )
self.assertGreater(len(lowerCamelCase ) , 0 )
for detected_object in outputs:
self.assertEqual(
lowerCamelCase , {
"score": ANY(lowerCamelCase ),
"label": ANY(lowerCamelCase ),
"box": {"xmin": ANY(lowerCamelCase ), "ymin": ANY(lowerCamelCase ), "xmax": ANY(lowerCamelCase ), "ymax": ANY(lowerCamelCase )},
} , )
import datasets
__lowercase = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" )
__lowercase = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
# LA
dataset[1]["file"],
# L
dataset[2]["file"],
]
__lowercase = object_detector(lowerCamelCase , threshold=0.0 )
self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) )
for outputs in batch_outputs:
self.assertGreater(len(lowerCamelCase ) , 0 )
for detected_object in outputs:
self.assertEqual(
lowerCamelCase , {
"score": ANY(lowerCamelCase ),
"label": ANY(lowerCamelCase ),
"box": {"xmin": ANY(lowerCamelCase ), "ymin": ANY(lowerCamelCase ), "xmax": ANY(lowerCamelCase ), "ymax": ANY(lowerCamelCase )},
} , )
@require_tf
@unittest.skip("Object detection not implemented in TF" )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
pass
@require_torch
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
__lowercase = "hf-internal-testing/tiny-detr-mobilenetsv3"
__lowercase = AutoModelForObjectDetection.from_pretrained(lowerCamelCase )
__lowercase = AutoFeatureExtractor.from_pretrained(lowerCamelCase )
__lowercase = ObjectDetectionPipeline(model=lowerCamelCase , feature_extractor=lowerCamelCase )
__lowercase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}},
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}},
] , )
__lowercase = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
[
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}},
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}},
],
[
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}},
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}},
],
] , )
@require_torch
@slow
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = "facebook/detr-resnet-50"
__lowercase = AutoModelForObjectDetection.from_pretrained(lowerCamelCase )
__lowercase = AutoFeatureExtractor.from_pretrained(lowerCamelCase )
__lowercase = ObjectDetectionPipeline(model=lowerCamelCase , feature_extractor=lowerCamelCase )
__lowercase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
] , )
__lowercase = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
] , )
@require_torch
@slow
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = "facebook/detr-resnet-50"
__lowercase = pipeline("object-detection" , model=lowerCamelCase )
__lowercase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
] , )
__lowercase = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
] , )
@require_torch
@slow
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = 0.9985
__lowercase = "facebook/detr-resnet-50"
__lowercase = pipeline("object-detection" , model=lowerCamelCase )
__lowercase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=lowerCamelCase )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
] , )
@require_torch
@require_pytesseract
@slow
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = "Narsil/layoutlmv3-finetuned-funsd"
__lowercase = 0.9993
__lowercase = pipeline("object-detection" , model=lowerCamelCase , threshold=lowerCamelCase )
__lowercase = object_detector(
"https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" )
self.assertEqual(
nested_simplify(lowerCamelCase , decimals=4 ) , [
{"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}},
{"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}},
] , )
| 704 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : Dict = StableUnCLIPImgaImgPipeline
_snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
_snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_snake_case : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
_snake_case : int = frozenset([] )
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = 32
__lowercase = embedder_hidden_size
# image encoding components
__lowercase = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
__lowercase = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
__lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase )
__lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
__lowercase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , )
torch.manual_seed(0 )
__lowercase = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , )
torch.manual_seed(0 )
__lowercase = AutoencoderKL()
__lowercase = {
# image encoding components
"feature_extractor": feature_extractor,
"image_encoder": image_encoder.eval(),
# image noising components
"image_normalizer": image_normalizer.eval(),
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder.eval(),
"unet": unet.eval(),
"scheduler": scheduler,
"vae": vae.eval(),
}
return components
def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ):
'''simple docstring'''
if str(lowerCamelCase ).startswith("mps" ):
__lowercase = torch.manual_seed(lowerCamelCase )
else:
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
__lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
if pil_image:
__lowercase = input_image * 0.5 + 0.5
__lowercase = input_image.clamp(0 , 1 )
__lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase )
__lowercase = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
inputs.update({"image_embeds": None} )
__lowercase = sd_pipe(**lowerCamelCase ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = torch_device in ["cpu", "mps"]
self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _snake_case ( self : str ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" )
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = torch.Generator(device="cpu" ).manual_seed(0 )
__lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" )
__lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" )
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = torch.Generator(device="cpu" ).manual_seed(0 )
__lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" )
__lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = pipe(
lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , )
__lowercase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 655 | 0 |
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
__lowercase = key - 1
if key <= 0:
raise ValueError("Height of grid can't be 0 or negative" )
if key == 1 or len(_SCREAMING_SNAKE_CASE ) <= key:
return input_string
for position, character in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase = position % (lowest * 2) # puts it in bounds
__lowercase = min(_SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append(_SCREAMING_SNAKE_CASE )
__lowercase = ["".join(_SCREAMING_SNAKE_CASE ) for row in temp_grid]
__lowercase = "".join(_SCREAMING_SNAKE_CASE )
return output_string
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = []
__lowercase = key - 1
if key <= 0:
raise ValueError("Height of grid can't be 0 or negative" )
if key == 1:
return input_string
__lowercase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] # generates template
for position in range(len(_SCREAMING_SNAKE_CASE ) ):
__lowercase = position % (lowest * 2) # puts it in bounds
__lowercase = min(_SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append("*" )
__lowercase = 0
for row in temp_grid: # fills in the characters
__lowercase = input_string[counter : counter + len(_SCREAMING_SNAKE_CASE )]
grid.append(list(_SCREAMING_SNAKE_CASE ) )
counter += len(_SCREAMING_SNAKE_CASE )
__lowercase = "" # reads as zigzag
for position in range(len(_SCREAMING_SNAKE_CASE ) ):
__lowercase = position % (lowest * 2) # puts it in bounds
__lowercase = min(_SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern
output_string += grid[num][0]
grid[num].pop(0 )
return output_string
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = {}
for key_guess in range(1 , len(_SCREAMING_SNAKE_CASE ) ): # tries every key
__lowercase = decrypt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return results
if __name__ == "__main__":
import doctest
doctest.testmod()
| 705 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class _A ( _lowercase , _lowercase ):
'''simple docstring'''
@register_to_config
def __init__( self : Optional[Any] , *,
lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__()
__lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) )
# parameters for additional clip time embeddings
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
# parameters for encoder hidden states
__lowercase = clip_extra_context_tokens
__lowercase = nn.Linear(
lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim )
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
__lowercase = nn.LayerNorm(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ):
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
__lowercase = image_embeddings.shape[0]
__lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
__lowercase = classifier_free_guidance_embeddings.expand(
lowerCamelCase , -1 )
__lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
__lowercase = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
__lowercase = self.embedding_proj(lowerCamelCase )
__lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase )
__lowercase = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
__lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase )
__lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens )
__lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 )
__lowercase = self.encoder_hidden_states_proj(lowerCamelCase )
__lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase )
__lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 655 | 0 |
from __future__ import annotations
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = len(_SCREAMING_SNAKE_CASE )
# We need to create solution object to save path.
__lowercase = [[0 for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )]
__lowercase = run_maze(_SCREAMING_SNAKE_CASE , 0 , 0 , _SCREAMING_SNAKE_CASE )
if solved:
print("\n".join(str(_SCREAMING_SNAKE_CASE ) for row in solutions ) )
else:
print("No solution exists!" )
return solved
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = len(_SCREAMING_SNAKE_CASE )
# Final check point.
if i == j == (size - 1):
__lowercase = 1
return True
__lowercase = (not i < 0) and (not j < 0) # Check lower bounds
__lowercase = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
__lowercase = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
__lowercase = 1
# check for directions
if (
run_maze(_SCREAMING_SNAKE_CASE , i + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
or run_maze(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j + 1 , _SCREAMING_SNAKE_CASE )
or run_maze(_SCREAMING_SNAKE_CASE , i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
or run_maze(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j - 1 , _SCREAMING_SNAKE_CASE )
):
return True
__lowercase = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 706 |
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
snake_case__ : Union[str, Any] = TypeVar("""T""")
snake_case__ : Optional[int] = TypeVar("""U""")
class _A ( Generic[T, U] ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ):
'''simple docstring'''
__lowercase = key
__lowercase = val
__lowercase = None
__lowercase = None
def __repr__( self : Any ):
'''simple docstring'''
return (
f"""Node: key: {self.key}, val: {self.val}, """
f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}"""
)
class _A ( Generic[T, U] ):
'''simple docstring'''
def __init__( self : Dict ):
'''simple docstring'''
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
__lowercase , __lowercase = self.rear, self.head
def __repr__( self : Optional[Any] ):
'''simple docstring'''
__lowercase = ["DoubleLinkedList"]
__lowercase = self.head
while node.next is not None:
rep.append(str(lowerCamelCase ) )
__lowercase = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
__lowercase = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
__lowercase = node
__lowercase = previous
__lowercase = node
__lowercase = self.rear
def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
if node.prev is None or node.next is None:
return None
__lowercase = node.next
__lowercase = node.prev
__lowercase = None
__lowercase = None
return node
class _A ( Generic[T, U] ):
'''simple docstring'''
_snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self : List[Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = DoubleLinkedList()
__lowercase = capacity
__lowercase = 0
__lowercase = 0
__lowercase = 0
__lowercase = {}
def __repr__( self : Optional[Any] ):
'''simple docstring'''
return (
f"""CacheInfo(hits={self.hits}, misses={self.miss}, """
f"""capacity={self.capacity}, current size={self.num_keys})"""
)
def __contains__( self : Dict , lowerCamelCase : T ):
'''simple docstring'''
return key in self.cache
def _snake_case ( self : List[Any] , lowerCamelCase : T ):
'''simple docstring'''
if key in self.cache:
self.hits += 1
__lowercase = self.cache[key]
__lowercase = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowerCamelCase )
return node.val
self.miss += 1
return None
def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ):
'''simple docstring'''
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
__lowercase = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowerCamelCase ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
__lowercase = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
__lowercase = value
self.list.add(lowerCamelCase )
@classmethod
def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ):
'''simple docstring'''
def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowerCamelCase : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
__lowercase = LRUCache(lowerCamelCase )
__lowercase = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
__lowercase = func(*lowerCamelCase )
cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _A ( _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : List[str] = RoCBertTokenizer
_snake_case : Optional[Any] = None
_snake_case : int = False
_snake_case : Optional[int] = True
_snake_case : Optional[Any] = filter_non_english
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
super().setUp()
__lowercase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"]
__lowercase = {}
__lowercase = {}
for i, value in enumerate(lowerCamelCase ):
__lowercase = i
__lowercase = i
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] )
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer:
json.dump(lowerCamelCase , lowerCamelCase , ensure_ascii=lowerCamelCase )
with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer:
json.dump(lowerCamelCase , lowerCamelCase , ensure_ascii=lowerCamelCase )
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
__lowercase = tokenizer.tokenize("你好[SEP]你是谁" )
self.assertListEqual(lowerCamelCase , ["你", "好", "[SEP]", "你", "是", "谁"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowerCamelCase ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowerCamelCase ) , [5, 6, 2, 5, 7, 8] )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] )
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] )
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
__lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase , strip_accents=lowerCamelCase )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] )
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase , never_split=["[UNK]"] )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] )
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
__lowercase = {}
for i, token in enumerate(lowerCamelCase ):
__lowercase = i
__lowercase = RoCBertWordpieceTokenizer(vocab=lowerCamelCase , unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) , [] )
self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] )
self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] )
def _snake_case ( self : int ):
'''simple docstring'''
self.assertTrue(_is_whitespace(" " ) )
self.assertTrue(_is_whitespace("\t" ) )
self.assertTrue(_is_whitespace("\r" ) )
self.assertTrue(_is_whitespace("\n" ) )
self.assertTrue(_is_whitespace("\u00A0" ) )
self.assertFalse(_is_whitespace("A" ) )
self.assertFalse(_is_whitespace("-" ) )
def _snake_case ( self : Tuple ):
'''simple docstring'''
self.assertTrue(_is_control("\u0005" ) )
self.assertFalse(_is_control("A" ) )
self.assertFalse(_is_control(" " ) )
self.assertFalse(_is_control("\t" ) )
self.assertFalse(_is_control("\r" ) )
def _snake_case ( self : Any ):
'''simple docstring'''
self.assertTrue(_is_punctuation("-" ) )
self.assertTrue(_is_punctuation("$" ) )
self.assertTrue(_is_punctuation("`" ) )
self.assertTrue(_is_punctuation("." ) )
self.assertFalse(_is_punctuation("A" ) )
self.assertFalse(_is_punctuation(" " ) )
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(lowerCamelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
if self.test_rust_tokenizer:
__lowercase = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(lowerCamelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowercase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase )
__lowercase = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence."""
__lowercase = tokenizer_r.encode_plus(
lowerCamelCase , return_attention_mask=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase , )
__lowercase = tokenizer_r.do_lower_case if hasattr(lowerCamelCase , "do_lower_case" ) else False
__lowercase = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = ["的", "人", "有"]
__lowercase = "".join(lowerCamelCase )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowercase = True
__lowercase = self.tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase )
__lowercase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase )
__lowercase = tokenizer_p.encode(lowerCamelCase , add_special_tokens=lowerCamelCase )
__lowercase = tokenizer_r.encode(lowerCamelCase , add_special_tokens=lowerCamelCase )
__lowercase = tokenizer_r.convert_ids_to_tokens(lowerCamelCase )
__lowercase = tokenizer_p.convert_ids_to_tokens(lowerCamelCase )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(lowerCamelCase , lowerCamelCase )
self.assertListEqual(lowerCamelCase , lowerCamelCase )
__lowercase = False
__lowercase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase )
__lowercase = self.tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase )
__lowercase = tokenizer_r.encode(lowerCamelCase , add_special_tokens=lowerCamelCase )
__lowercase = tokenizer_p.encode(lowerCamelCase , add_special_tokens=lowerCamelCase )
__lowercase = tokenizer_r.convert_ids_to_tokens(lowerCamelCase )
__lowercase = tokenizer_p.convert_ids_to_tokens(lowerCamelCase )
# it is expected that only the first Chinese character is not preceded by "##".
__lowercase = [
f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCamelCase )
]
self.assertListEqual(lowerCamelCase , lowerCamelCase )
self.assertListEqual(lowerCamelCase , lowerCamelCase )
@slow
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
__lowercase = tokenizer.encode("你好" , add_special_tokens=lowerCamelCase )
__lowercase = tokenizer.encode("你是谁" , add_special_tokens=lowerCamelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = self.get_tokenizers(do_lower_case=lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
__lowercase = "你好,你是谁"
__lowercase = tokenizer.tokenize(lowerCamelCase )
__lowercase = tokenizer.convert_tokens_to_ids(lowerCamelCase )
__lowercase = tokenizer.convert_tokens_to_shape_ids(lowerCamelCase )
__lowercase = tokenizer.convert_tokens_to_pronunciation_ids(lowerCamelCase )
__lowercase = tokenizer.prepare_for_model(
lowerCamelCase , lowerCamelCase , lowerCamelCase , add_special_tokens=lowerCamelCase )
__lowercase = tokenizer.encode_plus(lowerCamelCase , add_special_tokens=lowerCamelCase )
self.assertEqual(lowerCamelCase , lowerCamelCase )
| 707 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
snake_case__ : Optional[Any] = logging.getLogger()
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = "\n".join(_SCREAMING_SNAKE_CASE )
Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random"""
snake_case__ : int = """sshleifer/bart-tiny-random"""
snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart"""
snake_case__ : List[str] = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class _A ( _lowercase ):
'''simple docstring'''
def _snake_case ( self : str , lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
__lowercase = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
__lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
_dump_articles(lowerCamelCase , lowerCamelCase )
__lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" )
__lowercase = "translation_en_to_de" if model == T5_TINY else "summarization"
__lowercase = f"""
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
""".split()
with patch.object(lowerCamelCase , "argv" , lowerCamelCase ):
run_generate()
assert Path(lowerCamelCase ).exists()
# os.remove(Path(output_file_name))
def _snake_case ( self : Dict ):
'''simple docstring'''
self.run_eval_tester(lowerCamelCase )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
self.run_eval_tester(lowerCamelCase )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
__lowercase = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
__lowercase = {
"en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
"de": [
"Maschinelles Lernen ist großartig, oder?",
"Ich esse gerne Bananen",
"Morgen ist wieder ein toller Tag!",
],
}
__lowercase = Path(self.get_auto_remove_tmp_dir() )
__lowercase = str(tmp_dir / "scores.json" )
__lowercase = str(tmp_dir / "val.target" )
_dump_articles(lowerCamelCase , text["en"] )
_dump_articles(lowerCamelCase , text["de"] )
__lowercase = "translation_en_to_de" if model == T5_TINY else "summarization"
__lowercase = f"""
run_eval_search.py
{model}
{str(lowerCamelCase )}
{str(lowerCamelCase )}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
""".split()
testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] )
with patch.object(lowerCamelCase , "argv" , lowerCamelCase ):
with CaptureStdout() as cs:
run_search()
__lowercase = [" num_beams | length_penalty", model, "Best score args"]
__lowercase = ["Info"]
if "translation" in task:
expected_strings.append("bleu" )
else:
expected_strings.extend(lowerCamelCase )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(lowerCamelCase ).exists()
os.remove(Path(lowerCamelCase ) )
| 655 | 0 |
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case__ : int = """CompVis/stable-diffusion-v1-1"""
snake_case__ : Dict = """CompVis/stable-diffusion-v1-2"""
snake_case__ : Dict = """CompVis/stable-diffusion-v1-3"""
snake_case__ : Optional[Any] = """CompVis/stable-diffusion-v1-4"""
class _A ( _lowercase ):
'''simple docstring'''
def __init__( self : Tuple , lowerCamelCase : AutoencoderKL , lowerCamelCase : CLIPTextModel , lowerCamelCase : CLIPTokenizer , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase : StableDiffusionSafetyChecker , lowerCamelCase : CLIPImageProcessor , lowerCamelCase : bool = True , ):
'''simple docstring'''
super()._init_()
__lowercase = StableDiffusionPipeline.from_pretrained(lowerCamelCase )
__lowercase = StableDiffusionPipeline.from_pretrained(lowerCamelCase )
__lowercase = StableDiffusionPipeline.from_pretrained(lowerCamelCase )
__lowercase = StableDiffusionPipeline(
vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , requires_safety_checker=lowerCamelCase , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return {k: getattr(self , lowerCamelCase ) for k in self.config.keys() if not k.startswith("_" )}
def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Union[str, int]] = "auto" ):
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCamelCase )
def _snake_case ( self : Tuple ):
'''simple docstring'''
self.enable_attention_slicing(lowerCamelCase )
@torch.no_grad()
def _snake_case ( self : Union[str, Any] , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Tuple , ):
'''simple docstring'''
return self.pipea(
prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , )
@torch.no_grad()
def _snake_case ( self : int , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Any , ):
'''simple docstring'''
return self.pipea(
prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , )
@torch.no_grad()
def _snake_case ( self : List[Any] , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Union[str, Any] , ):
'''simple docstring'''
return self.pipea(
prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , )
@torch.no_grad()
def _snake_case ( self : Any , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
return self.pipea(
prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , )
@torch.no_grad()
def _snake_case ( self : Optional[Any] , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
__lowercase = "cuda" if torch.cuda.is_available() else "cpu"
self.to(lowerCamelCase )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
__lowercase = self.textaimg_sda_a(
prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , )
# Get first result from Stable Diffusion Checkpoint v1.2
__lowercase = self.textaimg_sda_a(
prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , )
# Get first result from Stable Diffusion Checkpoint v1.3
__lowercase = self.textaimg_sda_a(
prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , )
# Get first result from Stable Diffusion Checkpoint v1.4
__lowercase = self.textaimg_sda_a(
prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 708 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _A :
'''simple docstring'''
_snake_case : int
_snake_case : TreeNode | None = None
_snake_case : TreeNode | None = None
snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""")
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if root is None:
return 0
# Validation
def count_nodes(_SCREAMING_SNAKE_CASE ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(_SCREAMING_SNAKE_CASE ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ):
raise ValueError("The nodes number should be same as the number of coins" )
# Main calculation
def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowercase , __lowercase = get_distrib(node.left )
__lowercase , __lowercase = get_distrib(node.right )
__lowercase = 1 - left_distrib_excess
__lowercase = 1 - right_distrib_excess
__lowercase = (
left_distrib_moves
+ right_distrib_moves
+ abs(_SCREAMING_SNAKE_CASE )
+ abs(_SCREAMING_SNAKE_CASE )
)
__lowercase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return get_distrib(_SCREAMING_SNAKE_CASE )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
snake_case__ : List[Any] = [
"""python""",
"""tqdm""",
"""regex""",
"""requests""",
"""packaging""",
"""filelock""",
"""numpy""",
"""tokenizers""",
"""huggingface-hub""",
"""safetensors""",
"""accelerate""",
"""pyyaml""",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
| 709 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = SwinvaConfig()
__lowercase = swinva_name.split("_" )
__lowercase = name_split[1]
if "to" in name_split[3]:
__lowercase = int(name_split[3][-3:] )
else:
__lowercase = int(name_split[3] )
if "to" in name_split[2]:
__lowercase = int(name_split[2][-2:] )
else:
__lowercase = int(name_split[2][6:] )
if model_size == "tiny":
__lowercase = 9_6
__lowercase = (2, 2, 6, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif model_size == "small":
__lowercase = 9_6
__lowercase = (2, 2, 1_8, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif model_size == "base":
__lowercase = 1_2_8
__lowercase = (2, 2, 1_8, 2)
__lowercase = (4, 8, 1_6, 3_2)
else:
__lowercase = 1_9_2
__lowercase = (2, 2, 1_8, 2)
__lowercase = (6, 1_2, 2_4, 4_8)
if "to" in swinva_name:
__lowercase = (1_2, 1_2, 1_2, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
__lowercase = 2_1_8_4_1
__lowercase = "huggingface/label-files"
__lowercase = "imagenet-22k-id2label.json"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
else:
__lowercase = 1_0_0_0
__lowercase = "huggingface/label-files"
__lowercase = "imagenet-1k-id2label.json"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = img_size
__lowercase = num_classes
__lowercase = embed_dim
__lowercase = depths
__lowercase = num_heads
__lowercase = window_size
return config
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if "patch_embed.proj" in name:
__lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "patch_embed.norm" in name:
__lowercase = name.replace("patch_embed.norm" , "embeddings.norm" )
if "layers" in name:
__lowercase = "encoder." + name
if "attn.proj" in name:
__lowercase = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
__lowercase = name.replace("attn" , "attention.self" )
if "norm1" in name:
__lowercase = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
__lowercase = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
__lowercase = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
__lowercase = name.replace("mlp.fc2" , "output.dense" )
if "q_bias" in name:
__lowercase = name.replace("q_bias" , "query.bias" )
if "k_bias" in name:
__lowercase = name.replace("k_bias" , "key.bias" )
if "v_bias" in name:
__lowercase = name.replace("v_bias" , "value.bias" )
if "cpb_mlp" in name:
__lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" )
if name == "norm.weight":
__lowercase = "layernorm.weight"
if name == "norm.bias":
__lowercase = "layernorm.bias"
if "head" in name:
__lowercase = name.replace("head" , "classifier" )
else:
__lowercase = "swinv2." + name
return name
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for key in orig_state_dict.copy().keys():
__lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "mask" in key:
continue
elif "qkv" in key:
__lowercase = key.split("." )
__lowercase = int(key_split[1] )
__lowercase = int(key_split[3] )
__lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__lowercase = val[:dim, :]
__lowercase = val[dim : dim * 2, :]
__lowercase = val[-dim:, :]
else:
__lowercase = val[:dim]
__lowercase = val[
dim : dim * 2
]
__lowercase = val[-dim:]
else:
__lowercase = val
return orig_state_dict
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE )
timm_model.eval()
__lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE )
__lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE )
model.eval()
__lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE )
__lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg"
__lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) )
__lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
__lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" )
__lowercase = timm_model(inputs["pixel_values"] )
__lowercase = model(**_SCREAMING_SNAKE_CASE ).logits
assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 )
print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
model.push_to_hub(
repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , )
if __name__ == "__main__":
snake_case__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swinv2_name""",
default="""swinv2_tiny_patch4_window8_256""",
type=str,
help="""Name of the Swinv2 timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
snake_case__ : str = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 655 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
snake_case__ : int = {
"""configuration_blenderbot""": [
"""BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlenderbotConfig""",
"""BlenderbotOnnxConfig""",
],
"""tokenization_blenderbot""": ["""BlenderbotTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[str] = ["""BlenderbotTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Tuple = [
"""BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlenderbotForCausalLM""",
"""BlenderbotForConditionalGeneration""",
"""BlenderbotModel""",
"""BlenderbotPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Optional[Any] = [
"""TFBlenderbotForConditionalGeneration""",
"""TFBlenderbotModel""",
"""TFBlenderbotPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Optional[int] = [
"""FlaxBlenderbotForConditionalGeneration""",
"""FlaxBlenderbotModel""",
"""FlaxBlenderbotPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 710 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
snake_case__ : List[str] = logging.get_logger(__name__)
snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
snake_case__ : Optional[Any] = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
snake_case__ : List[str] = {
"""allenai/led-base-16384""": 1_63_84,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def snake_case_ ( ):
__lowercase = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
__lowercase = bs[:]
__lowercase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_SCREAMING_SNAKE_CASE )
cs.append(2**8 + n )
n += 1
__lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs]
return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = set()
__lowercase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowercase = char
return pairs
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[str] = VOCAB_FILES_NAMES
_snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""]
def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token
super().__init__(
errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , )
with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__lowercase = json.load(lowerCamelCase )
__lowercase = {v: k for k, v in self.encoder.items()}
__lowercase = errors # how to handle errors in decoding
__lowercase = bytes_to_unicode()
__lowercase = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase , encoding="utf-8" ) as merges_handle:
__lowercase = merges_handle.read().split("\n" )[1:-1]
__lowercase = [tuple(merge.split() ) for merge in bpe_merges]
__lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) )
__lowercase = {}
__lowercase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return len(self.encoder )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : List[Any] , lowerCamelCase : str ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
__lowercase = tuple(lowerCamelCase )
__lowercase = get_pairs(lowerCamelCase )
if not pairs:
return token
while True:
__lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__lowercase , __lowercase = bigram
__lowercase = []
__lowercase = 0
while i < len(lowerCamelCase ):
try:
__lowercase = word.index(lowerCamelCase , lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__lowercase = j
if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowercase = tuple(lowerCamelCase )
__lowercase = new_word
if len(lowerCamelCase ) == 1:
break
else:
__lowercase = get_pairs(lowerCamelCase )
__lowercase = " ".join(lowerCamelCase )
__lowercase = word
return word
def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ):
'''simple docstring'''
__lowercase = []
for token in re.findall(self.pat , lowerCamelCase ):
__lowercase = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : str , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.decoder.get(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = "".join(lowerCamelCase )
__lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(lowerCamelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__lowercase = os.path.join(
lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" )
__lowercase = 0
with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
__lowercase = token_index
writer.write(" ".join(lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowercase = [self.cls_token_id]
__lowercase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase )) + [1]
return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1]
def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ):
'''simple docstring'''
__lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()):
__lowercase = " " + text
return (text, kwargs)
def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
__lowercase = super()._pad(
encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
__lowercase = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
__lowercase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
__lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase )
if needs_to_be_padded:
__lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
__lowercase = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
__lowercase = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 655 | 0 |
from collections.abc import Generator
from math import sin
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) != 3_2:
raise ValueError("Input must be of length 32" )
__lowercase = b""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if i < 0:
raise ValueError("Input must be non-negative" )
__lowercase = format(_SCREAMING_SNAKE_CASE , "08x" )[-8:]
__lowercase = b""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" )
return little_endian_hex
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = b""
for char in message:
bit_string += format(_SCREAMING_SNAKE_CASE , "08b" ).encode("utf-8" )
__lowercase = format(len(_SCREAMING_SNAKE_CASE ) , "064b" ).encode("utf-8" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(_SCREAMING_SNAKE_CASE ) % 5_1_2 != 4_4_8:
bit_string += b"0"
bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] )
return bit_string
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) % 5_1_2 != 0:
raise ValueError("Input must have length that's a multiple of 512" )
for pos in range(0 , len(_SCREAMING_SNAKE_CASE ) , 5_1_2 ):
__lowercase = bit_string[pos : pos + 5_1_2]
__lowercase = []
for i in range(0 , 5_1_2 , 3_2 ):
block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) )
yield block_words
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if i < 0:
raise ValueError("Input must be non-negative" )
__lowercase = format(_SCREAMING_SNAKE_CASE , "032b" )
__lowercase = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(_SCREAMING_SNAKE_CASE , 2 )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return (a + b) % 2**3_2
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if i < 0:
raise ValueError("Input must be non-negative" )
if shift < 0:
raise ValueError("Shift must be non-negative" )
return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = preprocess(_SCREAMING_SNAKE_CASE )
__lowercase = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )]
# Starting states
__lowercase = 0x6_7_4_5_2_3_0_1
__lowercase = 0xe_f_c_d_a_b_8_9
__lowercase = 0x9_8_b_a_d_c_f_e
__lowercase = 0x1_0_3_2_5_4_7_6
__lowercase = [
7,
1_2,
1_7,
2_2,
7,
1_2,
1_7,
2_2,
7,
1_2,
1_7,
2_2,
7,
1_2,
1_7,
2_2,
5,
9,
1_4,
2_0,
5,
9,
1_4,
2_0,
5,
9,
1_4,
2_0,
5,
9,
1_4,
2_0,
4,
1_1,
1_6,
2_3,
4,
1_1,
1_6,
2_3,
4,
1_1,
1_6,
2_3,
4,
1_1,
1_6,
2_3,
6,
1_0,
1_5,
2_1,
6,
1_0,
1_5,
2_1,
6,
1_0,
1_5,
2_1,
6,
1_0,
1_5,
2_1,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(_SCREAMING_SNAKE_CASE ):
__lowercase = aa
__lowercase = ba
__lowercase = ca
__lowercase = da
# Hash current chunk
for i in range(6_4 ):
if i <= 1_5:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__lowercase = d ^ (b & (c ^ d))
__lowercase = i
elif i <= 3_1:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__lowercase = c ^ (d & (b ^ c))
__lowercase = (5 * i + 1) % 1_6
elif i <= 4_7:
__lowercase = b ^ c ^ d
__lowercase = (3 * i + 5) % 1_6
else:
__lowercase = c ^ (b | not_aa(_SCREAMING_SNAKE_CASE ))
__lowercase = (7 * i) % 1_6
__lowercase = (f + a + added_consts[i] + block_words[g]) % 2**3_2
__lowercase = d
__lowercase = c
__lowercase = b
__lowercase = sum_aa(_SCREAMING_SNAKE_CASE , left_rotate_aa(_SCREAMING_SNAKE_CASE , shift_amounts[i] ) )
# Add hashed chunk to running total
__lowercase = sum_aa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowercase = sum_aa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowercase = sum_aa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowercase = sum_aa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowercase = reformat_hex(_SCREAMING_SNAKE_CASE ) + reformat_hex(_SCREAMING_SNAKE_CASE ) + reformat_hex(_SCREAMING_SNAKE_CASE ) + reformat_hex(_SCREAMING_SNAKE_CASE )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 711 |
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ):
raise ValueError("The length of profit and weight must be same." )
if max_weight <= 0:
raise ValueError("max_weight must greater than zero." )
if any(p < 0 for p in profit ):
raise ValueError("Profit can not be negative." )
if any(w < 0 for w in weight ):
raise ValueError("Weight can not be negative." )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
__lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
# Creating a copy of the list and sorting profit/weight in ascending order
__lowercase = sorted(_SCREAMING_SNAKE_CASE )
# declaring useful variables
__lowercase = len(_SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
__lowercase = sorted_profit_by_weight[length - i - 1]
__lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE )
__lowercase = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
"""Input profits, weights, and then max_weight (all positive ints) separated by """
"""spaces."""
)
snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()]
snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()]
snake_case__ : Optional[Any] = int(input("""Max weight allowed: """))
# Function Call
calc_profit(profit, weight, max_weight)
| 655 | 0 |
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError("Input must be an integer" )
if input_num <= 0:
raise ValueError("Input must be positive" )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 712 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = """openai/whisper-base"""
_snake_case : Union[str, Any] = (
"""This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """
"""transcribed text."""
)
_snake_case : Any = """transcriber"""
_snake_case : Any = WhisperProcessor
_snake_case : Optional[int] = WhisperForConditionalGeneration
_snake_case : str = ["""audio"""]
_snake_case : Optional[int] = ["""text"""]
def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features
def _snake_case ( self : str , lowerCamelCase : List[Any] ):
'''simple docstring'''
return self.model.generate(inputs=lowerCamelCase )
def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
| 655 | 0 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch)
# also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml
# same for Vicuna-13b
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipImageProcessor,
InstructBlipConfig,
InstructBlipForConditionalGeneration,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
LlamaConfig,
LlamaTokenizerFast,
TaConfig,
TaTokenizerFast,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def snake_case_ ( ):
__lowercase = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
__lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert("RGB" )
return image
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = []
# fmt: off
# vision encoder
rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") )
rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") )
rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") )
rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") )
rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") )
rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") )
# QFormer
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") )
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") )
# fmt: on
return rename_keys
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = dct.pop(_SCREAMING_SNAKE_CASE )
__lowercase = val
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__lowercase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" )
__lowercase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" )
# next, set bias in the state dict
__lowercase = torch.cat((q_bias, torch.zeros_like(_SCREAMING_SNAKE_CASE , requires_grad=_SCREAMING_SNAKE_CASE ), v_bias) )
__lowercase = qkv_bias
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = 3_6_4 if "coco" in model_name else 2_2_4
__lowercase = InstructBlipVisionConfig(image_size=_SCREAMING_SNAKE_CASE ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "t5-xl" in model_name:
__lowercase = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__lowercase = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "vicuna-7b" in model_name:
__lowercase = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=3_2_0_0_1 ).to_dict()
elif "vicuna-13b" in model_name:
__lowercase = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=3_2_0_0_1 ).to_dict()
else:
raise ValueError("Model name not supported" )
# the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1
__lowercase = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict()
__lowercase = InstructBlipConfig(vision_config=_SCREAMING_SNAKE_CASE , text_config=_SCREAMING_SNAKE_CASE , qformer_config=_SCREAMING_SNAKE_CASE )
return config, image_size
@torch.no_grad()
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ):
__lowercase = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" )
qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} )
if "t5" in model_name:
__lowercase = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" )
elif "vicuna" in model_name:
# the following was used in the original implementation:
# tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left")
# tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# tokenizer.add_special_tokens({"bos_token": "</s>"})
# tokenizer.add_special_tokens({"eos_token": "</s>"})
# tokenizer.add_special_tokens({"unk_token": "</s>"})
__lowercase = LlamaTokenizerFast.from_pretrained(
"huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" )
tokenizer.add_special_tokens({"pad_token": "[PAD]"} )
__lowercase , __lowercase = get_blipa_config(_SCREAMING_SNAKE_CASE )
__lowercase = InstructBlipForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval()
__lowercase = {
"instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"),
"instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"),
"instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"),
"instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"),
}
__lowercase , __lowercase = model_name_to_original[model_name]
# load original model
print("Loading original model..." )
__lowercase = "cuda:1" if torch.cuda.is_available() else "cpu"
__lowercase = "cuda:2" if torch.cuda.is_available() else "cpu"
__lowercase , __lowercase , __lowercase = load_model_and_preprocess(
name=_SCREAMING_SNAKE_CASE , model_type=_SCREAMING_SNAKE_CASE , is_eval=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
original_model.eval()
print("Done!" )
# update state dict keys
__lowercase = original_model.state_dict()
__lowercase = create_rename_keys(_SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__lowercase = state_dict.pop(_SCREAMING_SNAKE_CASE )
if key.startswith("Qformer.bert" ):
__lowercase = key.replace("Qformer.bert" , "qformer" )
if "attention.self" in key:
__lowercase = key.replace("self" , "attention" )
if "llm_proj" in key:
__lowercase = key.replace("llm_proj" , "language_projection" )
if "t5_proj" in key:
__lowercase = key.replace("t5_proj" , "language_projection" )
if key.startswith("llm_model" ):
__lowercase = key.replace("llm_model" , "language_model" )
if key.startswith("t5" ):
__lowercase = key.replace("t5" , "language" )
__lowercase = val
# read in qv biases
read_in_q_v_bias(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# note: weights get loaded in torch.float32 by default
hf_model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
__lowercase = load_demo_image()
__lowercase = "What is unusual about this image?"
# create processor
__lowercase = BlipImageProcessor(
size={"height": image_size, "width": image_size} , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE )
__lowercase = InstructBlipProcessor(
image_processor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE , )
__lowercase = processor(images=_SCREAMING_SNAKE_CASE , text=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE )
# make sure processor creates exact same pixel values
__lowercase = vis_processors["eval"](_SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(_SCREAMING_SNAKE_CASE )
__lowercase = inputs.pixel_values
assert torch.allclose(original_pixel_values.to(pixel_values.device ) , _SCREAMING_SNAKE_CASE )
original_model.to(_SCREAMING_SNAKE_CASE )
hf_model.to(_SCREAMING_SNAKE_CASE )
with torch.no_grad():
if "vicuna" in model_name:
__lowercase = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits
__lowercase = hf_model(**_SCREAMING_SNAKE_CASE ).logits
else:
__lowercase = original_model(
{"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits
__lowercase = tokenizer("\n" , return_tensors="pt" ).input_ids.to(_SCREAMING_SNAKE_CASE )
__lowercase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 )
__lowercase = hf_model(**_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ).logits
print("First values of original logits:" , original_logits[0, :3, :3] )
print("First values of HF logits:" , logits[0, :3, :3] )
# assert values
assert original_logits.shape == logits.shape
__lowercase = 1E-4 if "vicuna" in model_name else 1E-5
assert torch.allclose(original_logits.to(logits.device ) , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE )
print("Looks ok!" )
print("Generating with original model..." )
__lowercase = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 )
# important: we need to cast the weights of the HF model to the appropriate type
print("Generating with HF model..." )
__lowercase = hf_model.generate(
**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , )
if "vicuna" in model_name:
# convert output id 0 to 2 (eos_token_id)
# TODO add this in the generate method?
__lowercase = 2
print("Original generation:" , _SCREAMING_SNAKE_CASE )
__lowercase = processor.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE )
__lowercase = [text.strip() for text in output_text]
print("HF generation:" , _SCREAMING_SNAKE_CASE )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
hf_model.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
processor.push_to_hub(F"""Salesforce/{model_name}""" )
hf_model.push_to_hub(F"""Salesforce/{model_name}""" )
if __name__ == "__main__":
snake_case__ : Optional[Any] = argparse.ArgumentParser()
snake_case__ : Tuple = [
"""instructblip-vicuna-7b""",
"""instructblip-vicuna-13b""",
"""instructblip-flan-t5-xl""",
"""instructblip-flan-t5-xxl""",
]
parser.add_argument(
"""--model_name""",
default="""instructblip-flan-t5-xl""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
snake_case__ : Dict = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 713 |
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class _A :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , )
torch.manual_seed(0 )
__lowercase = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _snake_case ( self : Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , )
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , )
torch.manual_seed(0 )
__lowercase = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = inputs["prompt"]
__lowercase = inputs["generator"]
__lowercase = inputs["num_inference_steps"]
__lowercase = inputs["output_type"]
if "image" in inputs:
__lowercase = inputs["image"]
else:
__lowercase = None
if "mask_image" in inputs:
__lowercase = inputs["mask_image"]
else:
__lowercase = None
if "original_image" in inputs:
__lowercase = inputs["original_image"]
else:
__lowercase = None
__lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase )
# inputs with prompt converted to embeddings
__lowercase = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
__lowercase = image
if mask_image is not None:
__lowercase = mask_image
if original_image is not None:
__lowercase = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase )
__lowercase = pipe(**lowerCamelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(lowerCamelCase )
__lowercase = self.pipeline_class.from_pretrained(lowerCamelCase )
pipe_loaded.to(lowerCamelCase )
pipe_loaded.set_progress_bar_config(disable=lowerCamelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = inputs["generator"]
__lowercase = inputs["num_inference_steps"]
__lowercase = inputs["output_type"]
# inputs with prompt converted to embeddings
__lowercase = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
__lowercase = image
if mask_image is not None:
__lowercase = mask_image
if original_image is not None:
__lowercase = original_image
__lowercase = pipe_loaded(**lowerCamelCase )[0]
__lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max()
self.assertLess(lowerCamelCase , 1e-4 )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = pipe(**lowerCamelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(lowerCamelCase )
__lowercase = self.pipeline_class.from_pretrained(lowerCamelCase )
pipe_loaded.to(lowerCamelCase )
pipe_loaded.set_progress_bar_config(disable=lowerCamelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = pipe_loaded(**lowerCamelCase )[0]
__lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max()
self.assertLess(lowerCamelCase , 1e-4 )
| 655 | 0 |
import numpy as np
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
return 1 / (1 + np.exp(-vector ))
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
return vector * sigmoid(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 714 |
import numpy as np
snake_case__ : Tuple = [
["""a""", """b""", """c""", """d""", """e"""],
["""f""", """g""", """h""", """i""", """k"""],
["""l""", """m""", """n""", """o""", """p"""],
["""q""", """r""", """s""", """t""", """u"""],
["""v""", """w""", """x""", """y""", """z"""],
]
class _A :
'''simple docstring'''
def __init__( self : Dict ):
'''simple docstring'''
__lowercase = np.array(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase , __lowercase = np.where(letter == self.SQUARE )
__lowercase = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = self.SQUARE[indexa - 1, indexa - 1]
return letter
def _snake_case ( self : int , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = message.lower()
__lowercase = message.replace(" " , "" )
__lowercase = message.replace("j" , "i" )
__lowercase = np.empty((2, len(lowerCamelCase )) )
for letter_index in range(len(lowerCamelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape(2 * len(lowerCamelCase ) )
__lowercase = ""
for numbers_index in range(len(lowerCamelCase ) ):
__lowercase = int(second_step[numbers_index * 2] )
__lowercase = int(second_step[(numbers_index * 2) + 1] )
__lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__lowercase = encoded_message + letter
return encoded_message
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = message.lower()
message.replace(" " , "" )
__lowercase = np.empty(2 * len(lowerCamelCase ) )
for letter_index in range(len(lowerCamelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape((2, len(lowerCamelCase )) )
__lowercase = ""
for numbers_index in range(len(lowerCamelCase ) ):
__lowercase = int(second_step[0, numbers_index] )
__lowercase = int(second_step[1, numbers_index] )
__lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__lowercase = decoded_message + letter
return decoded_message
| 655 | 0 |
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError("Input series is not valid, valid series - [2, 4, 6]" )
if len(_SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("Input list must be a non empty list" )
if len(_SCREAMING_SNAKE_CASE ) == 1:
return True
__lowercase = series[1] - series[0]
for index in range(len(_SCREAMING_SNAKE_CASE ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError("Input series is not valid, valid series - [2, 4, 6]" )
if len(_SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("Input list must be a non empty list" )
__lowercase = 0
for val in series:
answer += val
return answer / len(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 715 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class _A ( ctypes.Structure ):
'''simple docstring'''
_snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def snake_case_ ( ):
if os.name == "nt":
__lowercase = CursorInfo()
__lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
__lowercase = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("\033[?25l" )
sys.stdout.flush()
def snake_case_ ( ):
if os.name == "nt":
__lowercase = CursorInfo()
__lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
__lowercase = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("\033[?25h" )
sys.stdout.flush()
@contextmanager
def snake_case_ ( ):
try:
hide_cursor()
yield
finally:
show_cursor()
| 655 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : Optional[Any] = {
"""configuration_instructblip""": [
"""INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""InstructBlipConfig""",
"""InstructBlipQFormerConfig""",
"""InstructBlipVisionConfig""",
],
"""processing_instructblip""": ["""InstructBlipProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Optional[int] = [
"""INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""InstructBlipQFormerModel""",
"""InstructBlipPreTrainedModel""",
"""InstructBlipForConditionalGeneration""",
"""InstructBlipVisionModel""",
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 716 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
snake_case__ : List[str] = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[Any] = """yolos"""
def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = qkv_bias
__lowercase = num_detection_tokens
__lowercase = use_mid_position_embeddings
__lowercase = auxiliary_loss
# Hungarian matcher
__lowercase = class_cost
__lowercase = bbox_cost
__lowercase = giou_cost
# Loss coefficients
__lowercase = bbox_loss_coefficient
__lowercase = giou_loss_coefficient
__lowercase = eos_coefficient
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = version.parse("""1.11""" )
@property
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : str ):
'''simple docstring'''
return 1e-4
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return 12
| 655 | 0 |
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
snake_case__ : List[str] = logging.getLogger(__name__)
require_version("""pytorch_lightning>=1.0.4""")
snake_case__ : Optional[Any] = {
"""base""": AutoModel,
"""sequence-classification""": AutoModelForSequenceClassification,
"""question-answering""": AutoModelForQuestionAnswering,
"""pretraining""": AutoModelForPreTraining,
"""token-classification""": AutoModelForTokenClassification,
"""language-modeling""": AutoModelWithLMHead,
"""summarization""": AutoModelForSeqaSeqLM,
"""translation""": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
snake_case__ : Optional[int] = {
"""linear""": get_linear_schedule_with_warmup,
"""cosine""": get_cosine_schedule_with_warmup,
"""cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup,
"""polynomial""": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
snake_case__ : List[Any] = sorted(arg_to_scheduler.keys())
snake_case__ : str = """{""" + """, """.join(arg_to_scheduler_choices) + """}"""
class _A ( pl.LightningModule ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCamelCase : argparse.Namespace , lowerCamelCase : List[Any]=None , lowerCamelCase : str="base" , lowerCamelCase : int=None , lowerCamelCase : List[Any]=None , lowerCamelCase : Optional[Any]=None , **lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(lowerCamelCase )
__lowercase = 0
__lowercase = Path(self.hparams.output_dir )
__lowercase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__lowercase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=lowerCamelCase , **lowerCamelCase , )
else:
__lowercase = config
__lowercase = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
if getattr(self.hparams , lowerCamelCase , lowerCamelCase ):
assert hasattr(self.config , lowerCamelCase ), f"""model config doesn't have a `{p}` attribute"""
setattr(self.config , lowerCamelCase , getattr(self.hparams , lowerCamelCase ) )
if tokenizer is None:
__lowercase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowerCamelCase , )
else:
__lowercase = tokenizer
__lowercase = MODEL_MODES[mode]
if model is None:
__lowercase = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowerCamelCase , )
else:
__lowercase = model
def _snake_case ( self : List[str] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Optional[Any] ):
'''simple docstring'''
__lowercase = self.model_type.from_pretrained(*lowerCamelCase , **lowerCamelCase )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = arg_to_scheduler[self.hparams.lr_scheduler]
__lowercase = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__lowercase = {"scheduler": scheduler, "interval": "step", "frequency": 1}
return scheduler
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = self.model
__lowercase = ["bias", "LayerNorm.weight"]
__lowercase = [
{
"params": [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
"weight_decay": self.hparams.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
"weight_decay": 0.0,
},
]
if self.hparams.adafactor:
__lowercase = Adafactor(
lowerCamelCase , lr=self.hparams.learning_rate , scale_parameter=lowerCamelCase , relative_step=lowerCamelCase )
else:
__lowercase = AdamW(
lowerCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__lowercase = optimizer
__lowercase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def _snake_case ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any ):
'''simple docstring'''
return self.validation_step(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Tuple , lowerCamelCase : Any ):
'''simple docstring'''
return self.validation_end(lowerCamelCase )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__lowercase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def _snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any] ):
'''simple docstring'''
if stage == "test":
__lowercase = len(self.test_dataloader().dataset )
else:
__lowercase = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=lowerCamelCase )
__lowercase = len(self.train_dataloader().dataset )
def _snake_case ( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : bool = False ):
'''simple docstring'''
raise NotImplementedError("You must implement this for your task" )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
return self.train_loader
def _snake_case ( self : List[Any] ):
'''simple docstring'''
return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=lowerCamelCase )
def _snake_case ( self : List[str] ):
'''simple docstring'''
return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=lowerCamelCase )
def _snake_case ( self : Optional[Any] , lowerCamelCase : Any ):
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , "cached_{}_{}_{}".format(
lowerCamelCase , list(filter(lowerCamelCase , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def _snake_case ( self : Optional[int] , lowerCamelCase : Dict[str, Any] ):
'''simple docstring'''
__lowercase = self.output_dir.joinpath("best_tfmr" )
__lowercase = self.step_count
self.model.save_pretrained(lowerCamelCase )
self.tokenizer.save_pretrained(lowerCamelCase )
@staticmethod
def _snake_case ( lowerCamelCase : Any , lowerCamelCase : List[str] ):
'''simple docstring'''
parser.add_argument(
"--model_name_or_path" , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , )
parser.add_argument(
"--config_name" , default="" , type=lowerCamelCase , help="Pretrained config name or path if not the same as model_name" )
parser.add_argument(
"--tokenizer_name" , default=lowerCamelCase , type=lowerCamelCase , help="Pretrained tokenizer name or path if not the same as model_name" , )
parser.add_argument(
"--cache_dir" , default=str(Path(lowerCamelCase ).parent / "test_run" / "cache" ) , type=lowerCamelCase , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , )
parser.add_argument(
"--encoder_layerdrop" , type=lowerCamelCase , help="Encoder layer dropout probability (Optional). Goes into model.config" , )
parser.add_argument(
"--decoder_layerdrop" , type=lowerCamelCase , help="Decoder layer dropout probability (Optional). Goes into model.config" , )
parser.add_argument(
"--dropout" , type=lowerCamelCase , help="Dropout probability (Optional). Goes into model.config" , )
parser.add_argument(
"--attention_dropout" , type=lowerCamelCase , help="Attention dropout probability (Optional). Goes into model.config" , )
parser.add_argument("--learning_rate" , default=5e-5 , type=lowerCamelCase , help="The initial learning rate for Adam." )
parser.add_argument(
"--lr_scheduler" , default="linear" , choices=lowerCamelCase , metavar=lowerCamelCase , type=lowerCamelCase , help="Learning rate scheduler" , )
parser.add_argument("--weight_decay" , default=0.0 , type=lowerCamelCase , help="Weight decay if we apply some." )
parser.add_argument("--adam_epsilon" , default=1e-8 , type=lowerCamelCase , help="Epsilon for Adam optimizer." )
parser.add_argument("--warmup_steps" , default=0 , type=lowerCamelCase , help="Linear warmup over warmup_steps." )
parser.add_argument("--num_workers" , default=4 , type=lowerCamelCase , help="kwarg passed to DataLoader" )
parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=lowerCamelCase )
parser.add_argument("--train_batch_size" , default=32 , type=lowerCamelCase )
parser.add_argument("--eval_batch_size" , default=32 , type=lowerCamelCase )
parser.add_argument("--adafactor" , action="store_true" )
class _A ( pl.Callback ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] ):
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _A ( pl.Callback ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] ):
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(lowerCamelCase )
class _A ( pl.Callback ):
'''simple docstring'''
def _snake_case ( self : str , lowerCamelCase : Tuple , lowerCamelCase : List[str] ):
'''simple docstring'''
__lowercase = trainer.lr_schedulers[0]["scheduler"]
__lowercase = {f"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(lowerCamelCase )
def _snake_case ( self : List[str] , lowerCamelCase : pl.Trainer , lowerCamelCase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info("***** Validation results *****" )
__lowercase = trainer.callback_metrics
# Log results
for key in sorted(lowerCamelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(lowerCamelCase , str(metrics[key] ) ) )
def _snake_case ( self : List[str] , lowerCamelCase : pl.Trainer , lowerCamelCase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info("***** Test results *****" )
__lowercase = trainer.callback_metrics
# Log and save results to file
__lowercase = os.path.join(pl_module.hparams.output_dir , "test_results.txt" )
with open(lowerCamelCase , "w" ) as writer:
for key in sorted(lowerCamelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(lowerCamelCase , str(metrics[key] ) ) )
writer.write("{} = {}\n".format(lowerCamelCase , str(metrics[key] ) ) )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
"--output_dir" , default=str(Path(_SCREAMING_SNAKE_CASE ).parent / "test_run" / "model_checkpoints" ) , type=_SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , )
parser.add_argument(
"--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , )
parser.add_argument(
"--fp16_opt_level" , type=_SCREAMING_SNAKE_CASE , default="O2" , help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
) , )
parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=_SCREAMING_SNAKE_CASE )
parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=_SCREAMING_SNAKE_CASE , help="Max gradient norm" )
parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." )
parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." )
parser.add_argument(
"--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=_SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , )
parser.add_argument("--seed" , type=_SCREAMING_SNAKE_CASE , default=4_2 , help="random seed for initialization" )
parser.add_argument(
"--data_dir" , default=str(Path(_SCREAMING_SNAKE_CASE ).parent / "test_run" / "dummy-train-data" ) , type=_SCREAMING_SNAKE_CASE , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[] , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ):
pl.seed_everything(args.seed )
# init model
__lowercase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
# add custom checkpoints
if checkpoint_callback is None:
__lowercase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_SCREAMING_SNAKE_CASE )
if logging_callback is None:
__lowercase = LoggingCallback()
__lowercase = {}
if args.fpaa:
__lowercase = 1_6
if args.gpus > 1:
__lowercase = "auto"
__lowercase = "ddp"
__lowercase = args.accumulate_grad_batches
__lowercase = None
__lowercase = "auto"
__lowercase = pl.Trainer.from_argparse_args(
_SCREAMING_SNAKE_CASE , weights_summary=_SCREAMING_SNAKE_CASE , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_SCREAMING_SNAKE_CASE , val_check_interval=1 , num_sanity_val_steps=2 , **_SCREAMING_SNAKE_CASE , )
if args.do_train:
trainer.fit(_SCREAMING_SNAKE_CASE )
else:
print("RAG modeling tests with new set functions successfuly executed!" )
return trainer
| 717 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
snake_case__ : Optional[int] = logging.get_logger(__name__)
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 )
if "_quant" in model_name:
raise ValueError("Quantized models are not supported." )
__lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE )
if matches:
__lowercase = float(matches[1] )
__lowercase = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
__lowercase = 1_0_0_1
__lowercase = "imagenet-1k-id2label.json"
__lowercase = "huggingface/label-files"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()}
__lowercase = "background"
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ ( ):
__lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg"
__lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
__lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE )
# Load 🤗 model
__lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
__lowercase = MobileNetVaImageProcessor(
crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , )
__lowercase = image_processor(images=prepare_img() , return_tensors="pt" )
__lowercase = model(**_SCREAMING_SNAKE_CASE )
__lowercase = outputs.logits
assert logits.shape == (1, 1_0_0_1)
if model_name == "mobilenet_v1_1.0_224":
__lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] )
elif model_name == "mobilenet_v1_0.75_192":
__lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] )
else:
__lowercase = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
print("Pushing to the hub..." )
__lowercase = "google/" + model_name
image_processor.push_to_hub(_SCREAMING_SNAKE_CASE )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
snake_case__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""mobilenet_v1_1.0_224""",
type=str,
help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""",
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
snake_case__ : Dict = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 655 | 0 |
import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
snake_case__ : int = argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False)
parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""")
parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""")
snake_case__ : str = parser.parse_args()
snake_case__ : int = """cpu"""
snake_case__ : Optional[int] = """a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings"""
snake_case__ : Union[str, Any] = """path-to-your-trained-model"""
snake_case__ : str = StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
snake_case__ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
snake_case__ : Union[str, Any] = pipe.to(device)
# to channels last
snake_case__ : Any = pipe.unet.to(memory_format=torch.channels_last)
snake_case__ : Any = pipe.vae.to(memory_format=torch.channels_last)
snake_case__ : int = pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
snake_case__ : List[str] = pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
snake_case__ : List[Any] = torch.randn(2, 4, 64, 64)
snake_case__ : Optional[int] = torch.rand(1) * 9_99
snake_case__ : str = torch.randn(2, 77, 7_68)
snake_case__ : List[Any] = (sample, timestep, encoder_hidden_status)
try:
snake_case__ : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
snake_case__ : Optional[int] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
snake_case__ : Dict = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
snake_case__ : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
snake_case__ : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
snake_case__ : Dict = 6_66
snake_case__ : List[str] = torch.Generator(device).manual_seed(seed)
snake_case__ : int = {"""generator""": generator}
if args.steps is not None:
snake_case__ : Optional[int] = args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
snake_case__ : Tuple = pipe(prompt, **generate_kwargs).images[0]
# save image
image.save("""generated.png""")
| 718 |
from __future__ import annotations
from typing import Any
class _A :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
self.m_edges.append([u_node, v_node, weight] )
def _snake_case ( self : List[Any] , lowerCamelCase : int ):
'''simple docstring'''
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(lowerCamelCase )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(lowerCamelCase )
component_size[u_node] += component_size[v_node]
self.set_component(lowerCamelCase )
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase , __lowercase , __lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(lowerCamelCase , lowerCamelCase ):
__lowercase , __lowercase , __lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase )
print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def snake_case_ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
'''simple docstring'''
import numpy as np
import datasets
snake_case__ : Union[str, Any] = """
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
"""
snake_case__ : List[Any] = """\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
"""
snake_case__ : Any = """
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{'mahalanobis': array([0.5])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
'''simple docstring'''
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def _snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : Tuple ):
'''simple docstring'''
__lowercase = np.array(lowerCamelCase )
__lowercase = np.array(lowerCamelCase )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
__lowercase = X - np.mean(lowerCamelCase )
__lowercase = np.cov(reference_distribution.T )
try:
__lowercase = np.linalg.inv(lowerCamelCase )
except np.linalg.LinAlgError:
__lowercase = np.linalg.pinv(lowerCamelCase )
__lowercase = np.dot(lowerCamelCase , lowerCamelCase )
__lowercase = np.dot(lowerCamelCase , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 719 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : List[str] = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 655 | 0 |
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case__ : Any = logging.get_logger(__name__)
snake_case__ : Union[str, Any] = """▁"""
snake_case__ : Dict = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""}
snake_case__ : Optional[Any] = {
"""sentencepiece_model_file""": """sentencepiece.bpe.model""",
"""vocab_file""": """vocab.txt""",
}
snake_case__ : Any = {
"""vocab_file""": {
"""ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""",
"""ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""",
},
"""sentencepiece_model_file""": {
"""ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""",
"""ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""",
},
}
snake_case__ : Union[str, Any] = {
"""ernie-m-base""": 5_14,
"""ernie-m-large""": 5_14,
}
snake_case__ : Optional[int] = {
"""ernie-m-base""": {"""do_lower_case""": False},
"""ernie-m-large""": {"""do_lower_case""": False},
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[str] = ["input_ids"]
_snake_case : Union[str, Any] = VOCAB_FILES_NAMES
_snake_case : Dict = PRETRAINED_INIT_CONFIGURATION
_snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[str] = RESOURCE_FILES_NAMES
def __init__( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : List[str]=None , lowerCamelCase : int=False , lowerCamelCase : List[Any]="utf8" , lowerCamelCase : Optional[int]="[UNK]" , lowerCamelCase : List[str]="[SEP]" , lowerCamelCase : int="[PAD]" , lowerCamelCase : List[str]="[CLS]" , lowerCamelCase : Optional[Any]="[MASK]" , lowerCamelCase : Optional[Dict[str, Any]] = None , **lowerCamelCase : List[str] , ):
'''simple docstring'''
__lowercase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , vocab_file=lowerCamelCase , encoding=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , )
__lowercase = do_lower_case
__lowercase = sentencepiece_model_ckpt
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCamelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__lowercase = self.load_vocab(filepath=lowerCamelCase )
else:
__lowercase = {self.sp_model.id_to_piece(lowerCamelCase ): id for id in range(self.sp_model.get_piece_size() )}
__lowercase = {v: k for k, v in self.vocab.items()}
def _snake_case ( self : str , lowerCamelCase : Optional[int] ):
'''simple docstring'''
if text is None:
return None
__lowercase = self.tokenize(lowerCamelCase )
__lowercase , __lowercase = "", []
for i, ch in enumerate(lowerCamelCase ):
if ch in self.SP_CHAR_MAPPING:
__lowercase = self.SP_CHAR_MAPPING.get(lowerCamelCase )
else:
__lowercase = unicodedata.normalize("NFKC" , lowerCamelCase )
if self.is_whitespace(lowerCamelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(lowerCamelCase ) )
__lowercase , __lowercase , __lowercase = normalized_text, [], 0
if self.do_lower_case:
__lowercase = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__lowercase = token[1:]
__lowercase = text[offset:].index(lowerCamelCase ) + offset
__lowercase = start + len(lowerCamelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__lowercase = end
return token_mapping
@property
def _snake_case ( self : Any ):
'''simple docstring'''
return len(self.vocab )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : Optional[int] ):
'''simple docstring'''
__lowercase = self.__dict__.copy()
__lowercase = None
return state
def __setstate__( self : str , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
__lowercase = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__lowercase = {}
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def _snake_case ( self : int , lowerCamelCase : List[str] ):
'''simple docstring'''
return "".join((self.SP_CHAR_MAPPING.get(lowerCamelCase , lowerCamelCase ) for c in text) )
def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : int=False , lowerCamelCase : Tuple=64 , lowerCamelCase : Optional[int]=0.1 ):
'''simple docstring'''
if self.sp_model_kwargs.get("enable_sampling" ) is True:
__lowercase = True
if self.sp_model_kwargs.get("alpha" ) is not None:
__lowercase = self.sp_model_kwargs.get("alpha" )
if self.sp_model_kwargs.get("nbest_size" ) is not None:
__lowercase = self.sp_model_kwargs.get("nbest_size" )
if not enable_sampling:
__lowercase = self.sp_model.EncodeAsPieces(lowerCamelCase )
else:
__lowercase = self.sp_model.SampleEncodeAsPieces(lowerCamelCase , lowerCamelCase , lowerCamelCase )
__lowercase = []
for pi, piece in enumerate(lowerCamelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(lowerCamelCase ) and pi != 0:
new_pieces.append(lowerCamelCase )
continue
else:
continue
__lowercase = 0
for i, chunk in enumerate(lowerCamelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(lowerCamelCase ) or self.is_punct(lowerCamelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(lowerCamelCase )
__lowercase = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__lowercase = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__lowercase = i
if len(lowerCamelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def _snake_case ( self : Any , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
__lowercase = "".join(lowerCamelCase ).replace(lowerCamelCase , " " ).strip()
return out_string
def _snake_case ( self : Union[str, Any] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowercase = self.convert_ids_to_tokens(lowerCamelCase )
__lowercase = "".join(lowerCamelCase ).replace(lowerCamelCase , " " ).strip()
return out_string
def _snake_case ( self : Tuple , lowerCamelCase : List[str] ):
'''simple docstring'''
return self.vocab.get(lowerCamelCase , self.vocab.get(self.unk_token ) )
def _snake_case ( self : List[Any] , lowerCamelCase : List[Any] ):
'''simple docstring'''
return self.reverse_vocab.get(lowerCamelCase , self.unk_token )
def _snake_case ( self : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : List[str]=None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowercase = [self.cls_token_id]
__lowercase = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def _snake_case ( self : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : str=None ):
'''simple docstring'''
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def _snake_case ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int=None , lowerCamelCase : List[str]=False ):
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1]
return [1] + ([0] * len(lowerCamelCase )) + [1]
def _snake_case ( self : Union[str, Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
# [CLS] X [SEP]
return (len(lowerCamelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(lowerCamelCase ) + 1) + [1] * (len(lowerCamelCase ) + 3)
def _snake_case ( self : Any , lowerCamelCase : int ):
'''simple docstring'''
if "\u4e00" <= char <= "\u9fff":
return True
return False
def _snake_case ( self : List[str] , lowerCamelCase : Any ):
'''simple docstring'''
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def _snake_case ( self : List[str] , lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def _snake_case ( self : Optional[int] , lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(lowerCamelCase ) == 1:
__lowercase = unicodedata.category(lowerCamelCase )
if cat == "Zs":
return True
return False
def _snake_case ( self : Optional[Any] , lowerCamelCase : Dict ):
'''simple docstring'''
__lowercase = {}
with io.open(lowerCamelCase , "r" , encoding="utf-8" ) as f:
for index, line in enumerate(lowerCamelCase ):
__lowercase = line.rstrip("\n" )
__lowercase = int(lowerCamelCase )
return token_to_idx
def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
__lowercase = 0
if os.path.isdir(lowerCamelCase ):
__lowercase = os.path.join(
lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
else:
__lowercase = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
" Please check that the vocabulary is not corrupted!" )
__lowercase = token_index
writer.write(token + "\n" )
index += 1
__lowercase = os.path.join(lowerCamelCase , "sentencepiece.bpe.model" )
with open(lowerCamelCase , "wb" ) as fi:
__lowercase = self.sp_model.serialized_model_proto()
fi.write(lowerCamelCase )
return (vocab_file,)
| 720 |
from __future__ import annotations
import bisect
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
if hi < 0:
__lowercase = len(_SCREAMING_SNAKE_CASE )
while lo < hi:
__lowercase = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
__lowercase = mid + 1
else:
__lowercase = mid
return lo
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
if hi < 0:
__lowercase = len(_SCREAMING_SNAKE_CASE )
while lo < hi:
__lowercase = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
__lowercase = mid + 1
else:
__lowercase = mid
return lo
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ):
sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = 0
__lowercase = len(_SCREAMING_SNAKE_CASE ) - 1
while left <= right:
__lowercase = left + (right - left) // 2
__lowercase = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
__lowercase = midpoint - 1
else:
__lowercase = midpoint + 1
return None
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item:
return index
return None
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if right < left:
return None
__lowercase = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 )
else:
return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip()
snake_case__ : Any = sorted(int(item) for item in user_input.split(""","""))
snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n"""))
snake_case__ : List[Any] = binary_search(collection, target)
if result is None:
print(F'''{target} was not found in {collection}.''')
else:
print(F'''{target} was found at position {result} in {collection}.''')
| 655 | 0 |
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def snake_case_ ( _SCREAMING_SNAKE_CASE="" ):
__lowercase = tempfile.mkdtemp()
return os.path.join(_SCREAMING_SNAKE_CASE , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = torch.rand(12 , dtype=torch.floataa ) - 0.5
__lowercase = AgentAudio(lowerCamelCase )
__lowercase = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(lowerCamelCase , agent_type.to_raw() , atol=1e-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(lowerCamelCase ) )
# Ensure that the file contains the same value as the original tensor
__lowercase , __lowercase = sf.read(lowerCamelCase )
self.assertTrue(torch.allclose(lowerCamelCase , torch.tensor(lowerCamelCase ) , atol=1e-4 ) )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = torch.rand(12 , dtype=torch.floataa ) - 0.5
__lowercase = get_new_path(suffix=".wav" )
sf.write(lowerCamelCase , lowerCamelCase , 16_000 )
__lowercase = AgentAudio(lowerCamelCase )
self.assertTrue(torch.allclose(lowerCamelCase , agent_type.to_raw() , atol=1e-4 ) )
self.assertEqual(agent_type.to_string() , lowerCamelCase )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = torch.randint(0 , 256 , (64, 64, 3) )
__lowercase = AgentImage(lowerCamelCase )
__lowercase = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(lowerCamelCase , agent_type._tensor , atol=1e-4 ) )
self.assertIsInstance(agent_type.to_raw() , Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowerCamelCase ) )
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png"
__lowercase = Image.open(lowerCamelCase )
__lowercase = AgentImage(lowerCamelCase )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowerCamelCase ) )
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png"
__lowercase = Image.open(lowerCamelCase )
__lowercase = AgentImage(lowerCamelCase )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowerCamelCase ) )
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = "Hey!"
__lowercase = AgentText(lowerCamelCase )
self.assertEqual(lowerCamelCase , agent_type.to_string() )
self.assertEqual(lowerCamelCase , agent_type.to_raw() )
self.assertEqual(lowerCamelCase , lowerCamelCase )
| 721 |
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
snake_case__ : int = logging.get_logger(__name__)
snake_case__ : Optional[int] = {
"""microsoft/conditional-detr-resnet-50""": (
"""https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json"""
),
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = """conditional_detr"""
_snake_case : Union[str, Any] = ["""past_key_values"""]
_snake_case : Optional[int] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowerCamelCase , lowerCamelCase ):
__lowercase = backbone_config.get("model_type" )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(lowerCamelCase )
__lowercase = use_timm_backbone
__lowercase = backbone_config
__lowercase = num_channels
__lowercase = num_queries
__lowercase = d_model
__lowercase = encoder_ffn_dim
__lowercase = encoder_layers
__lowercase = encoder_attention_heads
__lowercase = decoder_ffn_dim
__lowercase = decoder_layers
__lowercase = decoder_attention_heads
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = activation_function
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = encoder_layers
__lowercase = auxiliary_loss
__lowercase = position_embedding_type
__lowercase = backbone
__lowercase = use_pretrained_backbone
__lowercase = dilation
# Hungarian matcher
__lowercase = class_cost
__lowercase = bbox_cost
__lowercase = giou_cost
# Loss coefficients
__lowercase = mask_loss_coefficient
__lowercase = dice_loss_coefficient
__lowercase = cls_loss_coefficient
__lowercase = bbox_loss_coefficient
__lowercase = giou_loss_coefficient
__lowercase = focal_alpha
super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase )
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def _snake_case ( self : str ):
'''simple docstring'''
return self.d_model
def _snake_case ( self : int ):
'''simple docstring'''
__lowercase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Any = version.parse("""1.11""" )
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _snake_case ( self : Any ):
'''simple docstring'''
return 1e-5
@property
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
return 12
| 655 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : Optional[Any] = logging.get_logger(__name__)
snake_case__ : Dict = {
"""weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""",
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[str] = """roc_bert"""
def __init__( self : int , lowerCamelCase : int=30_522 , lowerCamelCase : str=768 , lowerCamelCase : List[str]=12 , lowerCamelCase : str=12 , lowerCamelCase : Tuple=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Dict=512 , lowerCamelCase : Tuple=2 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : Dict=1e-12 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Union[str, Any]=0 , lowerCamelCase : Dict="absolute" , lowerCamelCase : str=None , lowerCamelCase : Any=True , lowerCamelCase : List[Any]=True , lowerCamelCase : Optional[Any]=768 , lowerCamelCase : int=910 , lowerCamelCase : Union[str, Any]=512 , lowerCamelCase : Dict=24_858 , lowerCamelCase : Any=True , **lowerCamelCase : Dict , ):
'''simple docstring'''
__lowercase = vocab_size
__lowercase = max_position_embeddings
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = initializer_range
__lowercase = type_vocab_size
__lowercase = layer_norm_eps
__lowercase = use_cache
__lowercase = enable_pronunciation
__lowercase = enable_shape
__lowercase = pronunciation_embed_dim
__lowercase = pronunciation_vocab_size
__lowercase = shape_embed_dim
__lowercase = shape_vocab_size
__lowercase = concat_input
__lowercase = position_embedding_type
__lowercase = classifier_dropout
super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase )
| 700 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
snake_case__ : Any = logging.get_logger(__name__)
class _A ( _lowercase , _lowercase ):
'''simple docstring'''
_snake_case : Dict = """maskformer-swin"""
_snake_case : List[str] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = embed_dim
__lowercase = depths
__lowercase = len(lowerCamelCase )
__lowercase = num_heads
__lowercase = window_size
__lowercase = mlp_ratio
__lowercase = qkv_bias
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = drop_path_rate
__lowercase = hidden_act
__lowercase = use_absolute_embeddings
__lowercase = layer_norm_eps
__lowercase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) )
__lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )]
__lowercase , __lowercase = get_aligned_output_features_output_indices(
out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
| 655 | 0 |
import numpy as np
snake_case__ : Tuple = [
["""a""", """b""", """c""", """d""", """e"""],
["""f""", """g""", """h""", """i""", """k"""],
["""l""", """m""", """n""", """o""", """p"""],
["""q""", """r""", """s""", """t""", """u"""],
["""v""", """w""", """x""", """y""", """z"""],
]
class _A :
'''simple docstring'''
def __init__( self : Dict ):
'''simple docstring'''
__lowercase = np.array(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase , __lowercase = np.where(letter == self.SQUARE )
__lowercase = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = self.SQUARE[indexa - 1, indexa - 1]
return letter
def _snake_case ( self : int , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = message.lower()
__lowercase = message.replace(" " , "" )
__lowercase = message.replace("j" , "i" )
__lowercase = np.empty((2, len(lowerCamelCase )) )
for letter_index in range(len(lowerCamelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape(2 * len(lowerCamelCase ) )
__lowercase = ""
for numbers_index in range(len(lowerCamelCase ) ):
__lowercase = int(second_step[numbers_index * 2] )
__lowercase = int(second_step[(numbers_index * 2) + 1] )
__lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__lowercase = encoded_message + letter
return encoded_message
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = message.lower()
message.replace(" " , "" )
__lowercase = np.empty(2 * len(lowerCamelCase ) )
for letter_index in range(len(lowerCamelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape((2, len(lowerCamelCase )) )
__lowercase = ""
for numbers_index in range(len(lowerCamelCase ) ):
__lowercase = int(second_step[0, numbers_index] )
__lowercase = int(second_step[1, numbers_index] )
__lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__lowercase = decoded_message + letter
return decoded_message
| 701 |
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("The given input must be positive" )
# get the generated string sequence
__lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
__lowercase = int(sequence[i] , 2 )
return sequence
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__lowercase = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__lowercase = gray_code_sequence_string(bit_count - 1 )
__lowercase = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__lowercase = "0" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__lowercase = "1" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
snake_case__ : Optional[int] = False
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _snake_case ( self : Any ):
'''simple docstring'''
return 12
@property
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return 12
@property
def _snake_case ( self : int ):
'''simple docstring'''
return 32
@property
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
return tokenizer
@property
def _snake_case ( self : str ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(lowerCamelCase )
@property
def _snake_case ( self : List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = 12
__lowercase = 12
__lowercase = {
"attention_bias": True,
"cross_attention_dim": 32,
"attention_head_dim": height * width,
"num_attention_heads": 1,
"num_vector_embeds": self.num_embed,
"num_embeds_ada_norm": self.num_embeds_ada_norm,
"norm_num_groups": 32,
"sample_size": width,
"activation_fn": "geglu-approximate",
}
__lowercase = TransformeraDModel(**lowerCamelCase )
return model
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = "cpu"
__lowercase = self.dummy_vqvae
__lowercase = self.dummy_text_encoder
__lowercase = self.dummy_tokenizer
__lowercase = self.dummy_transformer
__lowercase = VQDiffusionScheduler(self.num_embed )
__lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase )
__lowercase = VQDiffusionPipeline(
vqvae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , transformer=lowerCamelCase , scheduler=lowerCamelCase , learned_classifier_free_sampling_embeddings=lowerCamelCase , )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = "teddy bear playing in the pool"
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(0 )
__lowercase = pipe([prompt] , generator=lowerCamelCase , num_inference_steps=2 , output_type="np" )
__lowercase = output.images
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(0 )
__lowercase = pipe(
[prompt] , generator=lowerCamelCase , output_type="np" , return_dict=lowerCamelCase , num_inference_steps=2 )[0]
__lowercase = image[0, -3:, -3:, -1]
__lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__lowercase = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = "cpu"
__lowercase = self.dummy_vqvae
__lowercase = self.dummy_text_encoder
__lowercase = self.dummy_tokenizer
__lowercase = self.dummy_transformer
__lowercase = VQDiffusionScheduler(self.num_embed )
__lowercase = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowerCamelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
__lowercase = VQDiffusionPipeline(
vqvae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , transformer=lowerCamelCase , scheduler=lowerCamelCase , learned_classifier_free_sampling_embeddings=lowerCamelCase , )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = "teddy bear playing in the pool"
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(0 )
__lowercase = pipe([prompt] , generator=lowerCamelCase , num_inference_steps=2 , output_type="np" )
__lowercase = output.images
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(0 )
__lowercase = pipe(
[prompt] , generator=lowerCamelCase , output_type="np" , return_dict=lowerCamelCase , num_inference_steps=2 )[0]
__lowercase = image[0, -3:, -3:, -1]
__lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__lowercase = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : str ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" )
__lowercase = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" )
__lowercase = pipeline.to(lowerCamelCase )
pipeline.set_progress_bar_config(disable=lowerCamelCase )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(0 )
__lowercase = pipeline(
"teddy bear playing in the pool" , num_images_per_prompt=1 , generator=lowerCamelCase , output_type="np" , )
__lowercase = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 702 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"""
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ):
model.train()
__lowercase = model(_SCREAMING_SNAKE_CASE )
__lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
set_seed(4_2 )
__lowercase = RegressionModel()
__lowercase = deepcopy(_SCREAMING_SNAKE_CASE )
__lowercase = RegressionDataset(length=8_0 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
model.to(accelerator.device )
if sched:
__lowercase = AdamW(params=model.parameters() , lr=1E-3 )
__lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 )
__lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 )
__lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 )
# Make a copy of `model`
if sched:
__lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
__lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# Test when on a single CPU or GPU that the context manager does nothing
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
# Use a single batch
__lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# Test on distributed setup that context manager behaves properly
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
# Use a single batch
__lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ):
__lowercase = Accelerator(
split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = batch.values()
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
GradientState._reset_state()
def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ):
__lowercase = Accelerator(
split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = batch.values()
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n"""
__lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE ))
if accelerator.num_processes > 1:
check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
GradientState._reset_state()
def snake_case_ ( ):
__lowercase = Accelerator()
__lowercase = RegressionDataset(length=8_0 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
__lowercase = RegressionDataset(length=9_6 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
__lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE )
if iteration < len(_SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE )
if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def snake_case_ ( ):
__lowercase = Accelerator()
__lowercase = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**" )
test_noop_sync(_SCREAMING_SNAKE_CASE )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**" )
test_distributed_sync(_SCREAMING_SNAKE_CASE )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 655 | 0 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
snake_case__ : List[str] = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
snake_case__ : Dict = logging.get_logger(__name__)
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Optional[Any] = """mask2former"""
_snake_case : Union[str, Any] = ["""swin"""]
_snake_case : Union[str, Any] = {"""hidden_size""": """hidden_dim"""}
def __init__( self : Tuple , lowerCamelCase : Optional[Dict] = None , lowerCamelCase : int = 256 , lowerCamelCase : int = 256 , lowerCamelCase : int = 256 , lowerCamelCase : int = 1_024 , lowerCamelCase : str = "relu" , lowerCamelCase : int = 6 , lowerCamelCase : int = 10 , lowerCamelCase : int = 8 , lowerCamelCase : float = 0.0 , lowerCamelCase : int = 2_048 , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : int = 4 , lowerCamelCase : int = 255 , lowerCamelCase : int = 100 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 2.0 , lowerCamelCase : float = 5.0 , lowerCamelCase : float = 5.0 , lowerCamelCase : int = 12_544 , lowerCamelCase : float = 3.0 , lowerCamelCase : float = 0.75 , lowerCamelCase : float = 0.02 , lowerCamelCase : float = 1.0 , lowerCamelCase : bool = True , lowerCamelCase : List[int] = [4, 8, 16, 32] , lowerCamelCase : bool = None , **lowerCamelCase : List[Any] , ):
'''simple docstring'''
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." )
__lowercase = CONFIG_MAPPING["swin"](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , )
if isinstance(lowerCamelCase , lowerCamelCase ):
__lowercase = backbone_config.pop("model_type" )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(lowerCamelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {','.join(self.backbones_supported )}""" )
__lowercase = backbone_config
__lowercase = feature_size
__lowercase = mask_feature_size
__lowercase = hidden_dim
__lowercase = encoder_feedforward_dim
__lowercase = activation_function
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = num_attention_heads
__lowercase = dropout
__lowercase = dim_feedforward
__lowercase = pre_norm
__lowercase = enforce_input_projection
__lowercase = common_stride
__lowercase = ignore_value
__lowercase = num_queries
__lowercase = no_object_weight
__lowercase = class_weight
__lowercase = mask_weight
__lowercase = dice_weight
__lowercase = train_num_points
__lowercase = oversample_ratio
__lowercase = importance_sample_ratio
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = use_auxiliary_loss
__lowercase = feature_strides
__lowercase = output_auxiliary_logits
__lowercase = decoder_layers
super().__init__(**lowerCamelCase )
@classmethod
def _snake_case ( cls : Optional[int] , lowerCamelCase : PretrainedConfig , **lowerCamelCase : List[Any] ):
'''simple docstring'''
return cls(
backbone_config=lowerCamelCase , **lowerCamelCase , )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
| 703 |
from ....utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
class _A ( _lowercase ):
'''simple docstring'''
def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ):
'''simple docstring'''
__lowercase = config.__dict__
__lowercase = modal_hidden_size
if num_labels:
__lowercase = num_labels
| 655 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : Optional[int] = logging.get_logger(__name__)
snake_case__ : Optional[Any] = {
"""tanreinama/GPTSAN-2.8B-spout_is_uniform""": (
"""https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json"""
),
}
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[Any] = """gptsan-japanese"""
_snake_case : int = [
"""past_key_values""",
]
_snake_case : str = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : str , lowerCamelCase : Optional[int]=36_000 , lowerCamelCase : Optional[Any]=1_280 , lowerCamelCase : Dict=1_024 , lowerCamelCase : Optional[int]=8_192 , lowerCamelCase : Union[str, Any]=4_096 , lowerCamelCase : List[Any]=128 , lowerCamelCase : int=10 , lowerCamelCase : Union[str, Any]=0 , lowerCamelCase : Optional[int]=16 , lowerCamelCase : Union[str, Any]=16 , lowerCamelCase : Any=128 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : List[str]=1e-5 , lowerCamelCase : Optional[Any]=False , lowerCamelCase : int=0.0 , lowerCamelCase : str="float32" , lowerCamelCase : Optional[int]=False , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=0.002 , lowerCamelCase : int=False , lowerCamelCase : List[Any]=True , lowerCamelCase : str=35_998 , lowerCamelCase : Dict=35_995 , lowerCamelCase : str=35_999 , **lowerCamelCase : int , ):
'''simple docstring'''
__lowercase = vocab_size
__lowercase = max_position_embeddings
__lowercase = d_model
__lowercase = d_ff
__lowercase = d_ext
__lowercase = d_spout
__lowercase = num_switch_layers
__lowercase = num_ext_layers
__lowercase = num_switch_layers + num_ext_layers
__lowercase = num_heads
__lowercase = num_experts
__lowercase = expert_capacity
__lowercase = dropout_rate
__lowercase = layer_norm_epsilon
__lowercase = router_bias
__lowercase = router_jitter_noise
__lowercase = router_dtype
__lowercase = router_ignore_padding_tokens
__lowercase = output_hidden_states
__lowercase = output_attentions
__lowercase = initializer_factor
__lowercase = output_router_logits
__lowercase = use_cache
super().__init__(
separator_token_id=lowerCamelCase , pad_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , )
| 704 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ):
'''simple docstring'''
_snake_case : Dict = StableUnCLIPImgaImgPipeline
_snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
_snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_snake_case : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
_snake_case : int = frozenset([] )
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = 32
__lowercase = embedder_hidden_size
# image encoding components
__lowercase = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
__lowercase = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
__lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase )
__lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
__lowercase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , )
torch.manual_seed(0 )
__lowercase = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , )
torch.manual_seed(0 )
__lowercase = AutoencoderKL()
__lowercase = {
# image encoding components
"feature_extractor": feature_extractor,
"image_encoder": image_encoder.eval(),
# image noising components
"image_normalizer": image_normalizer.eval(),
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder.eval(),
"unet": unet.eval(),
"scheduler": scheduler,
"vae": vae.eval(),
}
return components
def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ):
'''simple docstring'''
if str(lowerCamelCase ).startswith("mps" ):
__lowercase = torch.manual_seed(lowerCamelCase )
else:
__lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
__lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
if pil_image:
__lowercase = input_image * 0.5 + 0.5
__lowercase = input_image.clamp(0 , 1 )
__lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase )
__lowercase = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
inputs.update({"image_embeds": None} )
__lowercase = sd_pipe(**lowerCamelCase ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = torch_device in ["cpu", "mps"]
self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _snake_case ( self : str ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" )
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = torch.Generator(device="cpu" ).manual_seed(0 )
__lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" )
__lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" )
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = torch.Generator(device="cpu" ).manual_seed(0 )
__lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" )
__lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowercase = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
__lowercase = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = pipe(
lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , )
__lowercase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 655 | 0 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 ):
__lowercase = None
if token is not None:
__lowercase = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""}
# The id of a workflow (not of a workflow run)
__lowercase = "636036"
__lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs"""
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}"""
__lowercase = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json()
return result["workflow_runs"]
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = get_daily_ci_runs(_SCREAMING_SNAKE_CASE )
__lowercase = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
__lowercase = workflow_run["id"]
break
return workflow_run_id
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE )
if workflow_run_id is not None:
__lowercase = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
__lowercase = artifacts_links[artifact_name]
download_artifact(
artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowercase = {}
for artifact_name in artifact_names:
__lowercase = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" )
if os.path.isfile(_SCREAMING_SNAKE_CASE ):
__lowercase = {}
with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z:
for filename in z.namelist():
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
# read the file
with z.open(_SCREAMING_SNAKE_CASE ) as f:
__lowercase = f.read().decode("UTF-8" )
return results
| 705 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class _A ( _lowercase , _lowercase ):
'''simple docstring'''
@register_to_config
def __init__( self : Optional[Any] , *,
lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__()
__lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) )
# parameters for additional clip time embeddings
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
# parameters for encoder hidden states
__lowercase = clip_extra_context_tokens
__lowercase = nn.Linear(
lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim )
__lowercase = nn.Linear(lowerCamelCase , lowerCamelCase )
__lowercase = nn.LayerNorm(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ):
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
__lowercase = image_embeddings.shape[0]
__lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
__lowercase = classifier_free_guidance_embeddings.expand(
lowerCamelCase , -1 )
__lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
__lowercase = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
__lowercase = self.embedding_proj(lowerCamelCase )
__lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase )
__lowercase = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
__lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase )
__lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens )
__lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 )
__lowercase = self.encoder_hidden_states_proj(lowerCamelCase )
__lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase )
__lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 655 | 0 |
import random
from .binary_exp_mod import bin_exp_mod
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1_0_0_0 ):
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
__lowercase = n - 1
__lowercase = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
__lowercase = 0
while count < prec:
__lowercase = random.randint(2 , n - 1 )
__lowercase = bin_exp_mod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if b != 1:
__lowercase = True
for _ in range(_SCREAMING_SNAKE_CASE ):
if b == n - 1:
__lowercase = False
break
__lowercase = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
snake_case__ : Dict = abs(int(input("""Enter bound : """).strip()))
print("""Here's the list of primes:""")
print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 706 |
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
snake_case__ : Union[str, Any] = TypeVar("""T""")
snake_case__ : Optional[int] = TypeVar("""U""")
class _A ( Generic[T, U] ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ):
'''simple docstring'''
__lowercase = key
__lowercase = val
__lowercase = None
__lowercase = None
def __repr__( self : Any ):
'''simple docstring'''
return (
f"""Node: key: {self.key}, val: {self.val}, """
f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}"""
)
class _A ( Generic[T, U] ):
'''simple docstring'''
def __init__( self : Dict ):
'''simple docstring'''
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
__lowercase , __lowercase = self.rear, self.head
def __repr__( self : Optional[Any] ):
'''simple docstring'''
__lowercase = ["DoubleLinkedList"]
__lowercase = self.head
while node.next is not None:
rep.append(str(lowerCamelCase ) )
__lowercase = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
__lowercase = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
__lowercase = node
__lowercase = previous
__lowercase = node
__lowercase = self.rear
def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
if node.prev is None or node.next is None:
return None
__lowercase = node.next
__lowercase = node.prev
__lowercase = None
__lowercase = None
return node
class _A ( Generic[T, U] ):
'''simple docstring'''
_snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self : List[Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = DoubleLinkedList()
__lowercase = capacity
__lowercase = 0
__lowercase = 0
__lowercase = 0
__lowercase = {}
def __repr__( self : Optional[Any] ):
'''simple docstring'''
return (
f"""CacheInfo(hits={self.hits}, misses={self.miss}, """
f"""capacity={self.capacity}, current size={self.num_keys})"""
)
def __contains__( self : Dict , lowerCamelCase : T ):
'''simple docstring'''
return key in self.cache
def _snake_case ( self : List[Any] , lowerCamelCase : T ):
'''simple docstring'''
if key in self.cache:
self.hits += 1
__lowercase = self.cache[key]
__lowercase = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowerCamelCase )
return node.val
self.miss += 1
return None
def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ):
'''simple docstring'''
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
__lowercase = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowerCamelCase ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
__lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
__lowercase = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
__lowercase = value
self.list.add(lowerCamelCase )
@classmethod
def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ):
'''simple docstring'''
def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowerCamelCase : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
__lowercase = LRUCache(lowerCamelCase )
__lowercase = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
__lowercase = func(*lowerCamelCase )
cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
snake_case__ : Optional[int] = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
snake_case__ : str = """https://storage.googleapis.com/cvdf-datasets/mnist/"""
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = numpy.dtype(numpy.uintaa ).newbyteorder(">" )
return numpy.frombuffer(bytestream.read(4 ) , dtype=_SCREAMING_SNAKE_CASE )[0]
@deprecated(_SCREAMING_SNAKE_CASE , "Please use tf.data to implement this functionality." )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
print("Extracting" , f.name )
with gzip.GzipFile(fileobj=_SCREAMING_SNAKE_CASE ) as bytestream:
__lowercase = _readaa(_SCREAMING_SNAKE_CASE )
if magic != 2_0_5_1:
raise ValueError(
"Invalid magic number %d in MNIST image file: %s" % (magic, f.name) )
__lowercase = _readaa(_SCREAMING_SNAKE_CASE )
__lowercase = _readaa(_SCREAMING_SNAKE_CASE )
__lowercase = _readaa(_SCREAMING_SNAKE_CASE )
__lowercase = bytestream.read(rows * cols * num_images )
__lowercase = numpy.frombuffer(_SCREAMING_SNAKE_CASE , dtype=numpy.uinta )
__lowercase = data.reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1 )
return data
@deprecated(_SCREAMING_SNAKE_CASE , "Please use tf.one_hot on tensors." )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = labels_dense.shape[0]
__lowercase = numpy.arange(_SCREAMING_SNAKE_CASE ) * num_classes
__lowercase = numpy.zeros((num_labels, num_classes) )
__lowercase = 1
return labels_one_hot
@deprecated(_SCREAMING_SNAKE_CASE , "Please use tf.data to implement this functionality." )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1_0 ):
print("Extracting" , f.name )
with gzip.GzipFile(fileobj=_SCREAMING_SNAKE_CASE ) as bytestream:
__lowercase = _readaa(_SCREAMING_SNAKE_CASE )
if magic != 2_0_4_9:
raise ValueError(
"Invalid magic number %d in MNIST label file: %s" % (magic, f.name) )
__lowercase = _readaa(_SCREAMING_SNAKE_CASE )
__lowercase = bytestream.read(_SCREAMING_SNAKE_CASE )
__lowercase = numpy.frombuffer(_SCREAMING_SNAKE_CASE , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return labels
class _A :
'''simple docstring'''
@deprecated(
lowerCamelCase , "Please use alternatives such as official/mnist/_DataSet.py"
" from tensorflow/models." , )
def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any]=False , lowerCamelCase : str=False , lowerCamelCase : str=dtypes.floataa , lowerCamelCase : Optional[int]=True , lowerCamelCase : int=None , ):
'''simple docstring'''
__lowercase , __lowercase = random_seed.get_seed(lowerCamelCase )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
__lowercase = dtypes.as_dtype(lowerCamelCase ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype )
if fake_data:
__lowercase = 10_000
__lowercase = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f"""images.shape: {images.shape} labels.shape: {labels.shape}"""
__lowercase = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
__lowercase = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
__lowercase = images.astype(numpy.floataa )
__lowercase = numpy.multiply(lowerCamelCase , 1.0 / 255.0 )
__lowercase = images
__lowercase = labels
__lowercase = 0
__lowercase = 0
@property
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
return self._images
@property
def _snake_case ( self : List[str] ):
'''simple docstring'''
return self._labels
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
return self._num_examples
@property
def _snake_case ( self : List[str] ):
'''simple docstring'''
return self._epochs_completed
def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=True ):
'''simple docstring'''
if fake_data:
__lowercase = [1] * 784
__lowercase = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(lowerCamelCase )],
[fake_label for _ in range(lowerCamelCase )],
)
__lowercase = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
__lowercase = numpy.arange(self._num_examples )
numpy.random.shuffle(lowerCamelCase )
__lowercase = self.images[perma]
__lowercase = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
__lowercase = self._num_examples - start
__lowercase = self._images[start : self._num_examples]
__lowercase = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
__lowercase = numpy.arange(self._num_examples )
numpy.random.shuffle(lowerCamelCase )
__lowercase = self.images[perm]
__lowercase = self.labels[perm]
# Start next epoch
__lowercase = 0
__lowercase = batch_size - rest_num_examples
__lowercase = self._index_in_epoch
__lowercase = self._images[start:end]
__lowercase = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
__lowercase = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(_SCREAMING_SNAKE_CASE , "Please write your own downloading logic." )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if not gfile.Exists(_SCREAMING_SNAKE_CASE ):
gfile.MakeDirs(_SCREAMING_SNAKE_CASE )
__lowercase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if not gfile.Exists(_SCREAMING_SNAKE_CASE ):
urllib.request.urlretrieve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # noqa: S310
with gfile.GFile(_SCREAMING_SNAKE_CASE ) as f:
__lowercase = f.size()
print("Successfully downloaded" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "bytes." )
return filepath
@deprecated(
_SCREAMING_SNAKE_CASE , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=dtypes.floataa , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=5_0_0_0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=DEFAULT_SOURCE_URL , ):
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , seed=_SCREAMING_SNAKE_CASE )
__lowercase = fake()
__lowercase = fake()
__lowercase = fake()
return _Datasets(train=_SCREAMING_SNAKE_CASE , validation=_SCREAMING_SNAKE_CASE , test=_SCREAMING_SNAKE_CASE )
if not source_url: # empty string check
__lowercase = DEFAULT_SOURCE_URL
__lowercase = "train-images-idx3-ubyte.gz"
__lowercase = "train-labels-idx1-ubyte.gz"
__lowercase = "t10k-images-idx3-ubyte.gz"
__lowercase = "t10k-labels-idx1-ubyte.gz"
__lowercase = _maybe_download(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + train_images_file )
with gfile.Open(_SCREAMING_SNAKE_CASE , "rb" ) as f:
__lowercase = _extract_images(_SCREAMING_SNAKE_CASE )
__lowercase = _maybe_download(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + train_labels_file )
with gfile.Open(_SCREAMING_SNAKE_CASE , "rb" ) as f:
__lowercase = _extract_labels(_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE )
__lowercase = _maybe_download(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + test_images_file )
with gfile.Open(_SCREAMING_SNAKE_CASE , "rb" ) as f:
__lowercase = _extract_images(_SCREAMING_SNAKE_CASE )
__lowercase = _maybe_download(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + test_labels_file )
with gfile.Open(_SCREAMING_SNAKE_CASE , "rb" ) as f:
__lowercase = _extract_labels(_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE )
if not 0 <= validation_size <= len(_SCREAMING_SNAKE_CASE ):
__lowercase = (
"Validation size should be between 0 and "
F"""{len(_SCREAMING_SNAKE_CASE )}. Received: {validation_size}."""
)
raise ValueError(_SCREAMING_SNAKE_CASE )
__lowercase = train_images[:validation_size]
__lowercase = train_labels[:validation_size]
__lowercase = train_images[validation_size:]
__lowercase = train_labels[validation_size:]
__lowercase = {"dtype": dtype, "reshape": reshape, "seed": seed}
__lowercase = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
__lowercase = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
__lowercase = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
return _Datasets(train=_SCREAMING_SNAKE_CASE , validation=_SCREAMING_SNAKE_CASE , test=_SCREAMING_SNAKE_CASE )
| 707 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
snake_case__ : Optional[Any] = logging.getLogger()
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = "\n".join(_SCREAMING_SNAKE_CASE )
Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random"""
snake_case__ : int = """sshleifer/bart-tiny-random"""
snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart"""
snake_case__ : List[str] = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class _A ( _lowercase ):
'''simple docstring'''
def _snake_case ( self : str , lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
__lowercase = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
__lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
_dump_articles(lowerCamelCase , lowerCamelCase )
__lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" )
__lowercase = "translation_en_to_de" if model == T5_TINY else "summarization"
__lowercase = f"""
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
""".split()
with patch.object(lowerCamelCase , "argv" , lowerCamelCase ):
run_generate()
assert Path(lowerCamelCase ).exists()
# os.remove(Path(output_file_name))
def _snake_case ( self : Dict ):
'''simple docstring'''
self.run_eval_tester(lowerCamelCase )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
self.run_eval_tester(lowerCamelCase )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
__lowercase = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
__lowercase = {
"en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
"de": [
"Maschinelles Lernen ist großartig, oder?",
"Ich esse gerne Bananen",
"Morgen ist wieder ein toller Tag!",
],
}
__lowercase = Path(self.get_auto_remove_tmp_dir() )
__lowercase = str(tmp_dir / "scores.json" )
__lowercase = str(tmp_dir / "val.target" )
_dump_articles(lowerCamelCase , text["en"] )
_dump_articles(lowerCamelCase , text["de"] )
__lowercase = "translation_en_to_de" if model == T5_TINY else "summarization"
__lowercase = f"""
run_eval_search.py
{model}
{str(lowerCamelCase )}
{str(lowerCamelCase )}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
""".split()
testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] )
with patch.object(lowerCamelCase , "argv" , lowerCamelCase ):
with CaptureStdout() as cs:
run_search()
__lowercase = [" num_beams | length_penalty", model, "Best score args"]
__lowercase = ["Info"]
if "translation" in task:
expected_strings.append("bleu" )
else:
expected_strings.extend(lowerCamelCase )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(lowerCamelCase ).exists()
os.remove(Path(lowerCamelCase ) )
| 655 | 0 |
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1E-1_2 ):
__lowercase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T
__lowercase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T
return jnp.matmul(_SCREAMING_SNAKE_CASE , norm_emb_a.T )
class _A ( nn.Module ):
'''simple docstring'''
_snake_case : CLIPConfig
_snake_case : jnp.dtype = jnp.floataa
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = FlaxCLIPVisionModule(self.config.vision_config )
__lowercase = nn.Dense(self.config.projection_dim , use_bias=lowerCamelCase , dtype=self.dtype )
__lowercase = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) )
__lowercase = self.param(
"special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) )
__lowercase = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) )
__lowercase = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) )
def __call__( self : str , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
__lowercase = self.vision_model(lowerCamelCase )[1]
__lowercase = self.visual_projection(lowerCamelCase )
__lowercase = jax_cosine_distance(lowerCamelCase , self.special_care_embeds )
__lowercase = jax_cosine_distance(lowerCamelCase , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
__lowercase = 0.0
__lowercase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
__lowercase = jnp.round(lowerCamelCase , 3 )
__lowercase = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCamelCase )
# Use a lower threshold if an image has any special care concept
__lowercase = is_special_care * 0.01
__lowercase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
__lowercase = jnp.round(lowerCamelCase , 3 )
__lowercase = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : str = CLIPConfig
_snake_case : Optional[int] = """clip_input"""
_snake_case : Optional[Any] = FlaxStableDiffusionSafetyCheckerModule
def __init__( self : Tuple , lowerCamelCase : CLIPConfig , lowerCamelCase : Optional[Tuple] = None , lowerCamelCase : int = 0 , lowerCamelCase : jnp.dtype = jnp.floataa , lowerCamelCase : bool = True , **lowerCamelCase : List[Any] , ):
'''simple docstring'''
if input_shape is None:
__lowercase = (1, 224, 224, 3)
__lowercase = self.module_class(config=lowerCamelCase , dtype=lowerCamelCase , **lowerCamelCase )
super().__init__(lowerCamelCase , lowerCamelCase , input_shape=lowerCamelCase , seed=lowerCamelCase , dtype=lowerCamelCase , _do_init=_do_init )
def _snake_case ( self : List[Any] , lowerCamelCase : jax.random.KeyArray , lowerCamelCase : Tuple , lowerCamelCase : FrozenDict = None ):
'''simple docstring'''
__lowercase = jax.random.normal(lowerCamelCase , lowerCamelCase )
__lowercase , __lowercase = jax.random.split(lowerCamelCase )
__lowercase = {"params": params_rng, "dropout": dropout_rng}
__lowercase = self.module.init(lowerCamelCase , lowerCamelCase )["params"]
return random_params
def __call__( self : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : dict = None , ):
'''simple docstring'''
__lowercase = jnp.transpose(lowerCamelCase , (0, 2, 3, 1) )
return self.module.apply(
{"params": params or self.params} , jnp.array(lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
| 708 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _A :
'''simple docstring'''
_snake_case : int
_snake_case : TreeNode | None = None
_snake_case : TreeNode | None = None
snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""")
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if root is None:
return 0
# Validation
def count_nodes(_SCREAMING_SNAKE_CASE ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(_SCREAMING_SNAKE_CASE ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ):
raise ValueError("The nodes number should be same as the number of coins" )
# Main calculation
def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowercase , __lowercase = get_distrib(node.left )
__lowercase , __lowercase = get_distrib(node.right )
__lowercase = 1 - left_distrib_excess
__lowercase = 1 - right_distrib_excess
__lowercase = (
left_distrib_moves
+ right_distrib_moves
+ abs(_SCREAMING_SNAKE_CASE )
+ abs(_SCREAMING_SNAKE_CASE )
)
__lowercase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return get_distrib(_SCREAMING_SNAKE_CASE )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655 | 0 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class _A ( _lowercase ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = SMALL_MODEL_IDENTIFIER
__lowercase = "pt"
__lowercase = "tf"
def _snake_case ( self : Union[str, Any] , lowerCamelCase : Any ):
'''simple docstring'''
__lowercase = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(lowerCamelCase )
def _snake_case ( self : int , lowerCamelCase : List[Any] ):
'''simple docstring'''
__lowercase = TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCamelCase )
model_tf.save_pretrained(lowerCamelCase )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowercase = "mock_framework"
# Framework provided - return whatever the user provides
__lowercase = FeaturesManager.determine_framework(self.test_model , lowerCamelCase )
self.assertEqual(lowerCamelCase , lowerCamelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(lowerCamelCase )
__lowercase = FeaturesManager.determine_framework(lowerCamelCase , lowerCamelCase )
self.assertEqual(lowerCamelCase , lowerCamelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(lowerCamelCase )
__lowercase = FeaturesManager.determine_framework(lowerCamelCase , lowerCamelCase )
self.assertEqual(lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Dict ):
'''simple docstring'''
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(lowerCamelCase )
__lowercase = FeaturesManager.determine_framework(lowerCamelCase )
self.assertEqual(lowerCamelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(lowerCamelCase )
__lowercase = FeaturesManager.determine_framework(lowerCamelCase )
self.assertEqual(lowerCamelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(lowerCamelCase ):
__lowercase = FeaturesManager.determine_framework(lowerCamelCase )
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase = MagicMock(return_value=lowerCamelCase )
with patch("transformers.onnx.features.is_tf_available" , lowerCamelCase ):
__lowercase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(lowerCamelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
__lowercase = MagicMock(return_value=lowerCamelCase )
with patch("transformers.onnx.features.is_torch_available" , lowerCamelCase ):
__lowercase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(lowerCamelCase , self.framework_tf )
# Both in environment -> use PyTorch
__lowercase = MagicMock(return_value=lowerCamelCase )
__lowercase = MagicMock(return_value=lowerCamelCase )
with patch("transformers.onnx.features.is_tf_available" , lowerCamelCase ), patch(
"transformers.onnx.features.is_torch_available" , lowerCamelCase ):
__lowercase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(lowerCamelCase , self.framework_pt )
# Both not in environment -> raise error
__lowercase = MagicMock(return_value=lowerCamelCase )
__lowercase = MagicMock(return_value=lowerCamelCase )
with patch("transformers.onnx.features.is_tf_available" , lowerCamelCase ), patch(
"transformers.onnx.features.is_torch_available" , lowerCamelCase ):
with self.assertRaises(lowerCamelCase ):
__lowercase = FeaturesManager.determine_framework(self.test_model )
| 709 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = SwinvaConfig()
__lowercase = swinva_name.split("_" )
__lowercase = name_split[1]
if "to" in name_split[3]:
__lowercase = int(name_split[3][-3:] )
else:
__lowercase = int(name_split[3] )
if "to" in name_split[2]:
__lowercase = int(name_split[2][-2:] )
else:
__lowercase = int(name_split[2][6:] )
if model_size == "tiny":
__lowercase = 9_6
__lowercase = (2, 2, 6, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif model_size == "small":
__lowercase = 9_6
__lowercase = (2, 2, 1_8, 2)
__lowercase = (3, 6, 1_2, 2_4)
elif model_size == "base":
__lowercase = 1_2_8
__lowercase = (2, 2, 1_8, 2)
__lowercase = (4, 8, 1_6, 3_2)
else:
__lowercase = 1_9_2
__lowercase = (2, 2, 1_8, 2)
__lowercase = (6, 1_2, 2_4, 4_8)
if "to" in swinva_name:
__lowercase = (1_2, 1_2, 1_2, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
__lowercase = 2_1_8_4_1
__lowercase = "huggingface/label-files"
__lowercase = "imagenet-22k-id2label.json"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
else:
__lowercase = 1_0_0_0
__lowercase = "huggingface/label-files"
__lowercase = "imagenet-1k-id2label.json"
__lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
__lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = img_size
__lowercase = num_classes
__lowercase = embed_dim
__lowercase = depths
__lowercase = num_heads
__lowercase = window_size
return config
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if "patch_embed.proj" in name:
__lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "patch_embed.norm" in name:
__lowercase = name.replace("patch_embed.norm" , "embeddings.norm" )
if "layers" in name:
__lowercase = "encoder." + name
if "attn.proj" in name:
__lowercase = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
__lowercase = name.replace("attn" , "attention.self" )
if "norm1" in name:
__lowercase = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
__lowercase = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
__lowercase = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
__lowercase = name.replace("mlp.fc2" , "output.dense" )
if "q_bias" in name:
__lowercase = name.replace("q_bias" , "query.bias" )
if "k_bias" in name:
__lowercase = name.replace("k_bias" , "key.bias" )
if "v_bias" in name:
__lowercase = name.replace("v_bias" , "value.bias" )
if "cpb_mlp" in name:
__lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" )
if name == "norm.weight":
__lowercase = "layernorm.weight"
if name == "norm.bias":
__lowercase = "layernorm.bias"
if "head" in name:
__lowercase = name.replace("head" , "classifier" )
else:
__lowercase = "swinv2." + name
return name
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for key in orig_state_dict.copy().keys():
__lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "mask" in key:
continue
elif "qkv" in key:
__lowercase = key.split("." )
__lowercase = int(key_split[1] )
__lowercase = int(key_split[3] )
__lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__lowercase = val[:dim, :]
__lowercase = val[dim : dim * 2, :]
__lowercase = val[-dim:, :]
else:
__lowercase = val[:dim]
__lowercase = val[
dim : dim * 2
]
__lowercase = val[-dim:]
else:
__lowercase = val
return orig_state_dict
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE )
timm_model.eval()
__lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE )
__lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE )
model.eval()
__lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE )
__lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg"
__lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) )
__lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
__lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" )
__lowercase = timm_model(inputs["pixel_values"] )
__lowercase = model(**_SCREAMING_SNAKE_CASE ).logits
assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 )
print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
model.push_to_hub(
repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , )
if __name__ == "__main__":
snake_case__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swinv2_name""",
default="""swinv2_tiny_patch4_window8_256""",
type=str,
help="""Name of the Swinv2 timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
snake_case__ : str = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 655 | 0 |
'''simple docstring'''
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise TypeError("Input value must be a 'int' type" )
return bin(_SCREAMING_SNAKE_CASE ).count("1" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 710 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
snake_case__ : List[str] = logging.get_logger(__name__)
snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
snake_case__ : Optional[Any] = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
snake_case__ : List[str] = {
"""allenai/led-base-16384""": 1_63_84,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def snake_case_ ( ):
__lowercase = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
__lowercase = bs[:]
__lowercase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_SCREAMING_SNAKE_CASE )
cs.append(2**8 + n )
n += 1
__lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs]
return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = set()
__lowercase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowercase = char
return pairs
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : List[str] = VOCAB_FILES_NAMES
_snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""]
def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token
super().__init__(
errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , )
with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__lowercase = json.load(lowerCamelCase )
__lowercase = {v: k for k, v in self.encoder.items()}
__lowercase = errors # how to handle errors in decoding
__lowercase = bytes_to_unicode()
__lowercase = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase , encoding="utf-8" ) as merges_handle:
__lowercase = merges_handle.read().split("\n" )[1:-1]
__lowercase = [tuple(merge.split() ) for merge in bpe_merges]
__lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) )
__lowercase = {}
__lowercase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return len(self.encoder )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : List[Any] , lowerCamelCase : str ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
__lowercase = tuple(lowerCamelCase )
__lowercase = get_pairs(lowerCamelCase )
if not pairs:
return token
while True:
__lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__lowercase , __lowercase = bigram
__lowercase = []
__lowercase = 0
while i < len(lowerCamelCase ):
try:
__lowercase = word.index(lowerCamelCase , lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__lowercase = j
if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowercase = tuple(lowerCamelCase )
__lowercase = new_word
if len(lowerCamelCase ) == 1:
break
else:
__lowercase = get_pairs(lowerCamelCase )
__lowercase = " ".join(lowerCamelCase )
__lowercase = word
return word
def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ):
'''simple docstring'''
__lowercase = []
for token in re.findall(self.pat , lowerCamelCase ):
__lowercase = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : str , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.decoder.get(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = "".join(lowerCamelCase )
__lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(lowerCamelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__lowercase = os.path.join(
lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" )
__lowercase = 0
with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
__lowercase = token_index
writer.write(" ".join(lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowercase = [self.cls_token_id]
__lowercase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase )) + [1]
return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1]
def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ):
'''simple docstring'''
__lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()):
__lowercase = " " + text
return (text, kwargs)
def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
__lowercase = super()._pad(
encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
__lowercase = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
__lowercase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
__lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase )
if needs_to_be_padded:
__lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
__lowercase = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
__lowercase = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 655 | 0 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
snake_case__ : Dict = logging.getLogger(__name__)
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return (preds == labels).mean()
@dataclass
class _A :
'''simple docstring'''
_snake_case : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_snake_case : Optional[str] = field(
default=_lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_snake_case : Optional[str] = field(
default=_lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_snake_case : Optional[str] = field(
default=_lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class _A :
'''simple docstring'''
_snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
_snake_case : str = field(metadata={"""help""": """Should contain the data files for the task."""} )
_snake_case : int = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_snake_case : bool = field(
default=_lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def snake_case_ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s" , _SCREAMING_SNAKE_CASE )
# Set seed
set_seed(training_args.seed )
try:
__lowercase = processors[data_args.task_name]()
__lowercase = processor.get_labels()
__lowercase = len(_SCREAMING_SNAKE_CASE )
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowercase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_SCREAMING_SNAKE_CASE , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
__lowercase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowercase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , )
# Get datasets
__lowercase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__lowercase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_SCREAMING_SNAKE_CASE ) -> Dict:
__lowercase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , p.label_ids )}
# Data collator
__lowercase = DataCollatorWithPadding(_SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__lowercase = Trainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__lowercase = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
__lowercase = trainer.evaluate()
__lowercase = os.path.join(training_args.output_dir , "eval_results.txt" )
if trainer.is_world_master():
with open(_SCREAMING_SNAKE_CASE , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(" %s = %s" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
writer.write("%s = %s\n" % (key, value) )
results.update(_SCREAMING_SNAKE_CASE )
return results
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 711 |
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ):
raise ValueError("The length of profit and weight must be same." )
if max_weight <= 0:
raise ValueError("max_weight must greater than zero." )
if any(p < 0 for p in profit ):
raise ValueError("Profit can not be negative." )
if any(w < 0 for w in weight ):
raise ValueError("Weight can not be negative." )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
__lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
# Creating a copy of the list and sorting profit/weight in ascending order
__lowercase = sorted(_SCREAMING_SNAKE_CASE )
# declaring useful variables
__lowercase = len(_SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
__lowercase = sorted_profit_by_weight[length - i - 1]
__lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE )
__lowercase = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
"""Input profits, weights, and then max_weight (all positive ints) separated by """
"""spaces."""
)
snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()]
snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()]
snake_case__ : Optional[Any] = int(input("""Max weight allowed: """))
# Function Call
calc_profit(profit, weight, max_weight)
| 655 | 0 |
from PIL import Image
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = image.size
__lowercase = 0
__lowercase = image.load()
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
__lowercase = pixels[j, i]
mean += pixel
mean //= width * height
for j in range(_SCREAMING_SNAKE_CASE ):
for i in range(_SCREAMING_SNAKE_CASE ):
__lowercase = 2_5_5 if pixels[i, j] > mean else 0
return image
if __name__ == "__main__":
snake_case__ : int = mean_threshold(Image.open("""path_to_image""").convert("""L"""))
image.save("""output_image_path""")
| 712 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Dict = """openai/whisper-base"""
_snake_case : Union[str, Any] = (
"""This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """
"""transcribed text."""
)
_snake_case : Any = """transcriber"""
_snake_case : Any = WhisperProcessor
_snake_case : Optional[int] = WhisperForConditionalGeneration
_snake_case : str = ["""audio"""]
_snake_case : Optional[int] = ["""text"""]
def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features
def _snake_case ( self : str , lowerCamelCase : List[Any] ):
'''simple docstring'''
return self.model.generate(inputs=lowerCamelCase )
def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
| 655 | 0 |
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class _A ( enum.Enum ):
'''simple docstring'''
_snake_case : str = 0
_snake_case : Any = 1
_snake_case : Optional[Any] = 2
@add_end_docstrings(_lowercase )
class _A ( _lowercase ):
'''simple docstring'''
_snake_case : Optional[Any] = """
In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The
voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western
Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision
and denounces one of the men as a horse thief. Although his father initially slaps him for making such an
accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,
begging for his blessing. <eod> </s> <eos>
"""
def __init__( self : List[str] , *lowerCamelCase : List[str] , **lowerCamelCase : Optional[int] ):
'''simple docstring'''
super().__init__(*lowerCamelCase , **lowerCamelCase )
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING )
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
__lowercase = None
if self.model.config.prefix is not None:
__lowercase = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
__lowercase = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
__lowercase , __lowercase , __lowercase = self._sanitize_parameters(prefix=lowerCamelCase , **self._forward_params )
__lowercase = {**self._preprocess_params, **preprocess_params}
__lowercase = {**self._forward_params, **forward_params}
def _snake_case ( self : Any , lowerCamelCase : Optional[int]=None , lowerCamelCase : Any=None , lowerCamelCase : Optional[int]=None , lowerCamelCase : List[str]=None , lowerCamelCase : int=None , lowerCamelCase : Any=None , lowerCamelCase : List[str]=None , lowerCamelCase : Union[str, Any]=None , **lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
__lowercase = {}
if prefix is not None:
__lowercase = prefix
if prefix:
__lowercase = self.tokenizer(
lowerCamelCase , padding=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors=self.framework )
__lowercase = prefix_inputs["input_ids"].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected"""
" [None, 'hole']" )
__lowercase = handle_long_generation
preprocess_params.update(lowerCamelCase )
__lowercase = generate_kwargs
__lowercase = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError("`return_text` is mutually exclusive with `return_full_text`" )
if return_tensors is not None:
raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" )
__lowercase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError("`return_text` is mutually exclusive with `return_tensors`" )
__lowercase = ReturnType.TENSORS
if return_type is not None:
__lowercase = return_type
if clean_up_tokenization_spaces is not None:
__lowercase = clean_up_tokenization_spaces
if stop_sequence is not None:
__lowercase = self.tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase )
if len(lowerCamelCase ) > 1:
warnings.warn(
"Stopping on a multiple token sequence is not yet supported on transformers. The first token of"
" the stop sequence will be used as the stop sequence string in the interim." )
__lowercase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def _snake_case ( self : int , *lowerCamelCase : Optional[int] , **lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({"add_space_before_punct_symbol": True} )
return super()._parse_and_tokenize(*lowerCamelCase , **lowerCamelCase )
def __call__( self : Tuple , lowerCamelCase : Union[str, Any] , **lowerCamelCase : str ):
'''simple docstring'''
return super().__call__(lowerCamelCase , **lowerCamelCase )
def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Dict="" , lowerCamelCase : List[Any]=None , **lowerCamelCase : List[str] ):
'''simple docstring'''
__lowercase = self.tokenizer(
prefix + prompt_text , padding=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors=self.framework )
__lowercase = prompt_text
if handle_long_generation == "hole":
__lowercase = inputs["input_ids"].shape[-1]
if "max_new_tokens" in generate_kwargs:
__lowercase = generate_kwargs["max_new_tokens"]
else:
__lowercase = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len
if new_tokens < 0:
raise ValueError("We cannot infer how many new tokens are expected" )
if cur_len + new_tokens > self.tokenizer.model_max_length:
__lowercase = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
"We cannot use `hole` to handle this generation the number of desired tokens exceeds the"
" models max length" )
__lowercase = inputs["input_ids"][:, -keep_length:]
if "attention_mask" in inputs:
__lowercase = inputs["attention_mask"][:, -keep_length:]
return inputs
def _snake_case ( self : Union[str, Any] , lowerCamelCase : Optional[int] , **lowerCamelCase : Optional[Any] ):
'''simple docstring'''
__lowercase = model_inputs["input_ids"]
__lowercase = model_inputs.get("attention_mask" , lowerCamelCase )
# Allow empty prompts
if input_ids.shape[1] == 0:
__lowercase = None
__lowercase = None
__lowercase = 1
else:
__lowercase = input_ids.shape[0]
__lowercase = model_inputs.pop("prompt_text" )
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
__lowercase = generate_kwargs.pop("prefix_length" , 0 )
if prefix_length > 0:
__lowercase = "max_new_tokens" in generate_kwargs or (
"generation_config" in generate_kwargs
and generate_kwargs["generation_config"].max_new_tokens is not None
)
if not has_max_new_tokens:
__lowercase = generate_kwargs.get("max_length" ) or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
__lowercase = "min_new_tokens" in generate_kwargs or (
"generation_config" in generate_kwargs
and generate_kwargs["generation_config"].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
__lowercase = self.model.generate(input_ids=lowerCamelCase , attention_mask=lowerCamelCase , **lowerCamelCase )
__lowercase = generated_sequence.shape[0]
if self.framework == "pt":
__lowercase = generated_sequence.reshape(lowerCamelCase , out_b // in_b , *generated_sequence.shape[1:] )
elif self.framework == "tf":
__lowercase = tf.reshape(lowerCamelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) )
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def _snake_case ( self : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[int]=ReturnType.FULL_TEXT , lowerCamelCase : List[str]=True ):
'''simple docstring'''
__lowercase = model_outputs["generated_sequence"][0]
__lowercase = model_outputs["input_ids"]
__lowercase = model_outputs["prompt_text"]
__lowercase = generated_sequence.numpy().tolist()
__lowercase = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
__lowercase = {"generated_token_ids": sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
__lowercase = self.tokenizer.decode(
lowerCamelCase , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase , )
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
__lowercase = 0
else:
__lowercase = len(
self.tokenizer.decode(
input_ids[0] , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase , ) )
if return_type == ReturnType.FULL_TEXT:
__lowercase = prompt_text + text[prompt_length:]
else:
__lowercase = text[prompt_length:]
__lowercase = {"generated_text": all_text}
records.append(lowerCamelCase )
return records
| 713 |
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class _A :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , )
torch.manual_seed(0 )
__lowercase = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _snake_case ( self : Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
__lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , )
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , )
torch.manual_seed(0 )
__lowercase = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = inputs["prompt"]
__lowercase = inputs["generator"]
__lowercase = inputs["num_inference_steps"]
__lowercase = inputs["output_type"]
if "image" in inputs:
__lowercase = inputs["image"]
else:
__lowercase = None
if "mask_image" in inputs:
__lowercase = inputs["mask_image"]
else:
__lowercase = None
if "original_image" in inputs:
__lowercase = inputs["original_image"]
else:
__lowercase = None
__lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase )
# inputs with prompt converted to embeddings
__lowercase = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
__lowercase = image
if mask_image is not None:
__lowercase = mask_image
if original_image is not None:
__lowercase = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase )
__lowercase = pipe(**lowerCamelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(lowerCamelCase )
__lowercase = self.pipeline_class.from_pretrained(lowerCamelCase )
pipe_loaded.to(lowerCamelCase )
pipe_loaded.set_progress_bar_config(disable=lowerCamelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = inputs["generator"]
__lowercase = inputs["num_inference_steps"]
__lowercase = inputs["output_type"]
# inputs with prompt converted to embeddings
__lowercase = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
__lowercase = image
if mask_image is not None:
__lowercase = mask_image
if original_image is not None:
__lowercase = original_image
__lowercase = pipe_loaded(**lowerCamelCase )[0]
__lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max()
self.assertLess(lowerCamelCase , 1e-4 )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = pipe(**lowerCamelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(lowerCamelCase )
__lowercase = self.pipeline_class.from_pretrained(lowerCamelCase )
pipe_loaded.to(lowerCamelCase )
pipe_loaded.set_progress_bar_config(disable=lowerCamelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
__lowercase = self.get_dummy_inputs(lowerCamelCase )
__lowercase = pipe_loaded(**lowerCamelCase )[0]
__lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max()
self.assertLess(lowerCamelCase , 1e-4 )
| 655 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
snake_case__ : Union[str, Any] = {
"""configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Tuple = ["""AlbertTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Any = ["""AlbertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[Any] = [
"""ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AlbertForMaskedLM""",
"""AlbertForMultipleChoice""",
"""AlbertForPreTraining""",
"""AlbertForQuestionAnswering""",
"""AlbertForSequenceClassification""",
"""AlbertForTokenClassification""",
"""AlbertModel""",
"""AlbertPreTrainedModel""",
"""load_tf_weights_in_albert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[Any] = [
"""TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFAlbertForMaskedLM""",
"""TFAlbertForMultipleChoice""",
"""TFAlbertForPreTraining""",
"""TFAlbertForQuestionAnswering""",
"""TFAlbertForSequenceClassification""",
"""TFAlbertForTokenClassification""",
"""TFAlbertMainLayer""",
"""TFAlbertModel""",
"""TFAlbertPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Tuple = [
"""FlaxAlbertForMaskedLM""",
"""FlaxAlbertForMultipleChoice""",
"""FlaxAlbertForPreTraining""",
"""FlaxAlbertForQuestionAnswering""",
"""FlaxAlbertForSequenceClassification""",
"""FlaxAlbertForTokenClassification""",
"""FlaxAlbertModel""",
"""FlaxAlbertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert import AlbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert_fast import AlbertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_albert import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
AlbertPreTrainedModel,
load_tf_weights_in_albert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_albert import (
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAlbertForMaskedLM,
TFAlbertForMultipleChoice,
TFAlbertForPreTraining,
TFAlbertForQuestionAnswering,
TFAlbertForSequenceClassification,
TFAlbertForTokenClassification,
TFAlbertMainLayer,
TFAlbertModel,
TFAlbertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
FlaxAlbertPreTrainedModel,
)
else:
import sys
snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 714 |
import numpy as np
snake_case__ : Tuple = [
["""a""", """b""", """c""", """d""", """e"""],
["""f""", """g""", """h""", """i""", """k"""],
["""l""", """m""", """n""", """o""", """p"""],
["""q""", """r""", """s""", """t""", """u"""],
["""v""", """w""", """x""", """y""", """z"""],
]
class _A :
'''simple docstring'''
def __init__( self : Dict ):
'''simple docstring'''
__lowercase = np.array(lowerCamelCase )
def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase , __lowercase = np.where(letter == self.SQUARE )
__lowercase = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
__lowercase = self.SQUARE[indexa - 1, indexa - 1]
return letter
def _snake_case ( self : int , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = message.lower()
__lowercase = message.replace(" " , "" )
__lowercase = message.replace("j" , "i" )
__lowercase = np.empty((2, len(lowerCamelCase )) )
for letter_index in range(len(lowerCamelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape(2 * len(lowerCamelCase ) )
__lowercase = ""
for numbers_index in range(len(lowerCamelCase ) ):
__lowercase = int(second_step[numbers_index * 2] )
__lowercase = int(second_step[(numbers_index * 2) + 1] )
__lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__lowercase = encoded_message + letter
return encoded_message
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = message.lower()
message.replace(" " , "" )
__lowercase = np.empty(2 * len(lowerCamelCase ) )
for letter_index in range(len(lowerCamelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape((2, len(lowerCamelCase )) )
__lowercase = ""
for numbers_index in range(len(lowerCamelCase ) ):
__lowercase = int(second_step[0, numbers_index] )
__lowercase = int(second_step[1, numbers_index] )
__lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__lowercase = decoded_message + letter
return decoded_message
| 655 | 0 |
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class _A :
'''simple docstring'''
_snake_case : torch.Tensor # [batch_size x 3]
_snake_case : torch.Tensor # [batch_size x 3]
_snake_case : torch.Tensor # [batch_size x 3]
_snake_case : torch.Tensor # [batch_size x 3]
_snake_case : int
_snake_case : int
_snake_case : float
_snake_case : float
_snake_case : Tuple[int]
def _snake_case ( self : List[str] ):
'''simple docstring'''
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def _snake_case ( self : Any ):
'''simple docstring'''
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = torch.arange(self.height * self.width )
__lowercase = torch.stack(
[
pixel_indices % self.width,
torch.div(lowerCamelCase , self.width , rounding_mode="trunc" ),
] , axis=1 , )
return coords
@property
def _snake_case ( self : Any ):
'''simple docstring'''
__lowercase , *__lowercase = self.shape
__lowercase = int(np.prod(lowerCamelCase ) )
__lowercase = self.get_image_coords()
__lowercase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
__lowercase = self.get_camera_rays(lowerCamelCase )
__lowercase = rays.view(lowerCamelCase , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def _snake_case ( self : Optional[int] , lowerCamelCase : torch.Tensor ):
'''simple docstring'''
__lowercase , *__lowercase , __lowercase = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
__lowercase = coords.view(lowerCamelCase , -1 , 2 )
__lowercase = self.resolution()
__lowercase = self.fov()
__lowercase = (flat.float() / (res - 1)) * 2 - 1
__lowercase = fracs * torch.tan(fov / 2 )
__lowercase = fracs.view(lowerCamelCase , -1 , 2 )
__lowercase = (
self.z.view(lowerCamelCase , 1 , 3 )
+ self.x.view(lowerCamelCase , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(lowerCamelCase , 1 , 3 ) * fracs[:, :, 1:]
)
__lowercase = directions / directions.norm(dim=-1 , keepdim=lowerCamelCase )
__lowercase = torch.stack(
[
torch.broadcast_to(self.origin.view(lowerCamelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(lowerCamelCase , *lowerCamelCase , 2 , 3 )
def _snake_case ( self : Any , lowerCamelCase : int , lowerCamelCase : int ):
'''simple docstring'''
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCamelCase , height=lowerCamelCase , x_fov=self.x_fov , y_fov=self.y_fov , )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
__lowercase = []
__lowercase = []
__lowercase = []
__lowercase = []
for theta in np.linspace(0 , 2 * np.pi , num=2_0 ):
__lowercase = np.array([np.sin(_SCREAMING_SNAKE_CASE ), np.cos(_SCREAMING_SNAKE_CASE ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
__lowercase = -z * 4
__lowercase = np.array([np.cos(_SCREAMING_SNAKE_CASE ), -np.sin(_SCREAMING_SNAKE_CASE ), 0.0] )
__lowercase = np.cross(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
origins.append(_SCREAMING_SNAKE_CASE )
xs.append(_SCREAMING_SNAKE_CASE )
ys.append(_SCREAMING_SNAKE_CASE )
zs.append(_SCREAMING_SNAKE_CASE )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(_SCREAMING_SNAKE_CASE , axis=0 ) ).float() , x=torch.from_numpy(np.stack(_SCREAMING_SNAKE_CASE , axis=0 ) ).float() , y=torch.from_numpy(np.stack(_SCREAMING_SNAKE_CASE , axis=0 ) ).float() , z=torch.from_numpy(np.stack(_SCREAMING_SNAKE_CASE , axis=0 ) ).float() , width=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , x_fov=0.7 , y_fov=0.7 , shape=(1, len(_SCREAMING_SNAKE_CASE )) , )
| 715 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class _A ( ctypes.Structure ):
'''simple docstring'''
_snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def snake_case_ ( ):
if os.name == "nt":
__lowercase = CursorInfo()
__lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
__lowercase = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("\033[?25l" )
sys.stdout.flush()
def snake_case_ ( ):
if os.name == "nt":
__lowercase = CursorInfo()
__lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
__lowercase = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("\033[?25h" )
sys.stdout.flush()
@contextmanager
def snake_case_ ( ):
try:
hide_cursor()
yield
finally:
show_cursor()
| 655 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.