code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
__lowerCamelCase : Tuple = '''src/transformers'''
__lowerCamelCase : Any = '''docs/source/en'''
__lowerCamelCase : str = '''.'''
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[Any]:
"""simple docstring"""
with open(__magic_name__ ,"r" ,encoding="utf-8" ,newline="\n" ) as f:
snake_case_ : Optional[Any] = f.readlines()
# Find the start prompt.
snake_case_ : Optional[Any] = 0
while not lines[start_index].startswith(__magic_name__ ):
start_index += 1
start_index += 1
snake_case_ : List[str] = start_index
while not lines[end_index].startswith(__magic_name__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
__lowerCamelCase : str = '''Model|Encoder|Decoder|ForConditionalGeneration'''
# Regexes that match TF/Flax/PT model names.
__lowerCamelCase : Tuple = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
__lowerCamelCase : List[Any] = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
__lowerCamelCase : Dict = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# This is to make sure the transformers module imported is the one in the repo.
__lowerCamelCase : str = direct_transformers_import(TRANSFORMERS_PATH)
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Union[str, Any] = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,__magic_name__ )
return [m.group(0 ) for m in matches]
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[int]:
"""simple docstring"""
snake_case_ : Union[str, Any] = 2 if text == "✅" or text == "❌" else len(__magic_name__ )
snake_case_ : List[Any] = (width - text_length) // 2
snake_case_ : str = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def __UpperCAmelCase ( )-> Dict:
"""simple docstring"""
snake_case_ : Any = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
snake_case_ : int = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
snake_case_ : int = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
snake_case_ : Union[str, Any] = collections.defaultdict(__magic_name__ )
snake_case_ : List[Any] = collections.defaultdict(__magic_name__ )
snake_case_ : Dict = collections.defaultdict(__magic_name__ )
snake_case_ : List[str] = collections.defaultdict(__magic_name__ )
snake_case_ : Optional[Any] = collections.defaultdict(__magic_name__ )
# Let's lookup through all transformers object (once).
for attr_name in dir(__magic_name__ ):
snake_case_ : Optional[Any] = None
if attr_name.endswith("Tokenizer" ):
snake_case_ : Any = slow_tokenizers
snake_case_ : Union[str, Any] = attr_name[:-9]
elif attr_name.endswith("TokenizerFast" ):
snake_case_ : List[Any] = fast_tokenizers
snake_case_ : Optional[Any] = attr_name[:-13]
elif _re_tf_models.match(__magic_name__ ) is not None:
snake_case_ : str = tf_models
snake_case_ : List[Any] = _re_tf_models.match(__magic_name__ ).groups()[0]
elif _re_flax_models.match(__magic_name__ ) is not None:
snake_case_ : int = flax_models
snake_case_ : Tuple = _re_flax_models.match(__magic_name__ ).groups()[0]
elif _re_pt_models.match(__magic_name__ ) is not None:
snake_case_ : List[Any] = pt_models
snake_case_ : Union[str, Any] = _re_pt_models.match(__magic_name__ ).groups()[0]
if lookup_dict is not None:
while len(__magic_name__ ) > 0:
if attr_name in model_name_to_prefix.values():
snake_case_ : Union[str, Any] = True
break
# Try again after removing the last word in the name
snake_case_ : Any = "".join(camel_case_split(__magic_name__ )[:-1] )
# Let's build that table!
snake_case_ : List[Any] = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
snake_case_ : List[Any] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
snake_case_ : List[Any] = [len(__magic_name__ ) + 2 for c in columns]
snake_case_ : Optional[Any] = max([len(__magic_name__ ) for name in model_names] ) + 2
# Build the table per se
snake_case_ : Optional[Any] = "|" + "|".join([_center_text(__magic_name__ ,__magic_name__ ) for c, w in zip(__magic_name__ ,__magic_name__ )] ) + "|\n"
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n"
snake_case_ : Optional[Any] = {True: "✅", False: "❌"}
for name in model_names:
snake_case_ : List[Any] = model_name_to_prefix[name]
snake_case_ : Tuple = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(__magic_name__ ,__magic_name__ ) for l, w in zip(__magic_name__ ,__magic_name__ )] ) + "|\n"
return table
def __UpperCAmelCase ( __magic_name__=False )-> Tuple:
"""simple docstring"""
snake_case_, snake_case_, snake_case_, snake_case_ : List[Any] = _find_text_in_file(
filename=os.path.join(__magic_name__ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,)
snake_case_ : List[Any] = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(__magic_name__ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." )
if __name__ == "__main__":
__lowerCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__lowerCamelCase : List[str] = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 656 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
__lowerCamelCase : str = '''\
@inproceedings{snover-etal-2006-study,
title = "A Study of Translation Edit Rate with Targeted Human Annotation",
author = "Snover, Matthew and
Dorr, Bonnie and
Schwartz, Rich and
Micciulla, Linnea and
Makhoul, John",
booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",
month = aug # " 8-12",
year = "2006",
address = "Cambridge, Massachusetts, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2006.amta-papers.25",
pages = "223--231",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__lowerCamelCase : Dict = '''\
TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a
hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu
(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found
here: https://github.com/jhclark/tercom.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.
'''
__lowerCamelCase : int = '''
Produces TER scores alongside the number of edits and reference length.
Args:
predictions (list of str): The system stream (a sequence of segments).
references (list of list of str): A list of one or more reference streams (each a sequence of segments).
normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,
as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.
Only applies if `normalized = True`. Defaults to `False`.
case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.
Returns:
\'score\' (float): TER score (num_edits / sum_ref_lengths * 100)
\'num_edits\' (int): The cumulative number of edits
\'ref_length\' (float): The cumulative average reference length
Examples:
Example 1:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}
Example 2:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}
Example 3:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... normalized=True,
... case_sensitive=True)
>>> print(results)
{\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}
Example 4:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}
Example 5:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
if version.parse(scb.__version__ ) < version.parse("1.4.12" ):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
"You can install it with `pip install \"sacrebleu>=1.4.12\"`." )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[
"https://github.com/jhclark/tercom",
] , )
def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[str] = len(references[0] )
if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )]
snake_case_ : List[str] = TER(
normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , )
snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ )
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 656 | 1 |
'''simple docstring'''
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase : Union[str, Any] = logging.get_logger()
@dataclass
class A_ :
"""simple docstring"""
a__ = 42
a__ = field(default_factory=a_ )
a__ = field(default_factory=a_ )
def _A ( self :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tensor , lowerCAmelCase__ :Tensor ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Tuple = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase__ , nn.Convad ) or isinstance(lowerCAmelCase__ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(lowerCAmelCase__ )
def __call__( self :Tuple , lowerCAmelCase__ :Tensor ) -> Any:
'''simple docstring'''
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(lowerCAmelCase__ )
[x.remove() for x in self.handles]
return self
@property
def _A ( self :List[Any] ) -> Tuple:
'''simple docstring'''
return list(filter(lambda lowerCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class A_ :
"""simple docstring"""
a__ = 42
a__ = 42
a__ = 1
a__ = field(default_factory=a_ )
a__ = field(default_factory=a_ )
a__ = True
def __call__( self :List[str] , lowerCAmelCase__ :Tensor ) -> List[Any]:
'''simple docstring'''
snake_case_ : Tuple = Tracker(self.dest )(lowerCAmelCase__ ).parametrized
snake_case_ : Tuple = Tracker(self.src )(lowerCAmelCase__ ).parametrized
snake_case_ : Optional[int] = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.src_skip , lowerCAmelCase__ ) )
snake_case_ : Optional[int] = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.dest_skip , lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ) and self.raise_if_mismatch:
raise Exception(
F'''Numbers of operations are different. Source module has {len(lowerCAmelCase__ )} operations while'''
F''' destination module has {len(lowerCAmelCase__ )}.''' )
for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F'''Transfered from={src_m} to={dest_m}''' )
class A_ (nn.Module ):
"""simple docstring"""
def __init__( self :str , lowerCAmelCase__ :nn.Module ) -> str:
'''simple docstring'''
super().__init__()
snake_case_ : List[Tuple[str, nn.Module]] = []
# - get the stem
feature_blocks.append(("conv1", model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith("block" ), F'''Unexpected layer name {k}'''
snake_case_ : str = len(lowerCAmelCase__ ) + 1
feature_blocks.append((F'''res{block_index}''', v) )
snake_case_ : str = nn.ModuleDict(lowerCAmelCase__ )
def _A ( self :Union[str, Any] , lowerCAmelCase__ :Tensor ) -> Optional[Any]:
'''simple docstring'''
return get_trunk_forward_outputs(
lowerCAmelCase__ , out_feat_keys=lowerCAmelCase__ , feature_blocks=self._feature_blocks , )
class A_ (a_ ):
"""simple docstring"""
def _A ( self :str , lowerCAmelCase__ :str ) -> str:
'''simple docstring'''
snake_case_ : Tuple = x.split("-" )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self :Any , lowerCAmelCase__ :str ) -> Callable[[], Tuple[nn.Module, Dict]]:
'''simple docstring'''
if x not in self:
snake_case_ : Optional[Any] = self.convert_name_to_timm(lowerCAmelCase__ )
snake_case_ : Any = partial(lambda: (timm.create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ).eval(), None) )
else:
snake_case_ : Any = super().__getitem__(lowerCAmelCase__ )
return val
class A_ (a_ ):
"""simple docstring"""
def __getitem__( self :Union[str, Any] , lowerCAmelCase__ :str ) -> Callable[[], nn.Module]:
'''simple docstring'''
if "seer" in x and "in1k" not in x:
snake_case_ : List[Any] = RegNetModel
else:
snake_case_ : Any = RegNetForImageClassification
return val
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[int]:
"""simple docstring"""
for from_key, to_key in keys:
snake_case_ : List[Any] = from_state_dict[from_key].clone()
print(F'''Copied key={from_key} to={to_key}''' )
return to_state_dict
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ = True ,)-> Union[str, Any]:
"""simple docstring"""
print(F'''Converting {name}...''' )
with torch.no_grad():
snake_case_, snake_case_ : Tuple = from_model_func()
snake_case_ : str = our_model_func(__magic_name__ ).eval()
snake_case_ : List[Any] = ModuleTransfer(src=__magic_name__ ,dest=__magic_name__ ,raise_if_mismatch=__magic_name__ )
snake_case_ : List[Any] = torch.randn((1, 3, 224, 224) )
module_transfer(__magic_name__ )
if from_state_dict is not None:
snake_case_ : Optional[int] = []
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
snake_case_ : Tuple = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")]
snake_case_ : Union[str, Any] = manually_copy_vissl_head(__magic_name__ ,our_model.state_dict() ,__magic_name__ )
our_model.load_state_dict(__magic_name__ )
snake_case_ : str = our_model(__magic_name__ ,output_hidden_states=__magic_name__ )
snake_case_ : Optional[Any] = (
our_outputs.logits if isinstance(__magic_name__ ,__magic_name__ ) else our_outputs.last_hidden_state
)
snake_case_ : Tuple = from_model(__magic_name__ )
snake_case_ : str = from_output[-1] if type(__magic_name__ ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
snake_case_ : Tuple = our_outputs.hidden_states[-1]
assert torch.allclose(__magic_name__ ,__magic_name__ ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name ,commit_message="Add model" ,use_temp_dir=__magic_name__ ,)
snake_case_ : List[str] = 224 if "seer" not in name else 384
# we can use the convnext one
snake_case_ : str = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ,size=__magic_name__ )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name ,commit_message="Add image processor" ,use_temp_dir=__magic_name__ ,)
print(F'''Pushed {name}''' )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = None ,__magic_name__ = True )-> Optional[Any]:
"""simple docstring"""
snake_case_ : int = "imagenet-1k-id2label.json"
snake_case_ : Dict = 1000
snake_case_ : Union[str, Any] = (1, num_labels)
snake_case_ : str = "huggingface/label-files"
snake_case_ : Dict = num_labels
snake_case_ : int = json.load(open(cached_download(hf_hub_url(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ) ,"r" ) )
snake_case_ : int = {int(__magic_name__ ): v for k, v in idalabel.items()}
snake_case_ : Any = idalabel
snake_case_ : Dict = {v: k for k, v in idalabel.items()}
snake_case_ : str = partial(__magic_name__ ,num_labels=__magic_name__ ,idalabel=__magic_name__ ,labelaid=__magic_name__ )
snake_case_ : Dict = {
"regnet-x-002": ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7] ,hidden_sizes=[24, 56, 152, 368] ,groups_width=8 ,layer_type="x" ),
"regnet-x-004": ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12] ,hidden_sizes=[32, 64, 160, 384] ,groups_width=16 ,layer_type="x" ),
"regnet-x-006": ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7] ,hidden_sizes=[48, 96, 240, 528] ,groups_width=24 ,layer_type="x" ),
"regnet-x-008": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5] ,hidden_sizes=[64, 128, 288, 672] ,groups_width=16 ,layer_type="x" ),
"regnet-x-016": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2] ,hidden_sizes=[72, 168, 408, 912] ,groups_width=24 ,layer_type="x" ),
"regnet-x-032": ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2] ,hidden_sizes=[96, 192, 432, 1008] ,groups_width=48 ,layer_type="x" ),
"regnet-x-040": ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2] ,hidden_sizes=[80, 240, 560, 1360] ,groups_width=40 ,layer_type="x" ),
"regnet-x-064": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] ,hidden_sizes=[168, 392, 784, 1624] ,groups_width=56 ,layer_type="x" ),
"regnet-x-080": ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1] ,hidden_sizes=[80, 240, 720, 1920] ,groups_width=120 ,layer_type="x" ),
"regnet-x-120": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] ,hidden_sizes=[224, 448, 896, 2240] ,groups_width=112 ,layer_type="x" ),
"regnet-x-160": ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1] ,hidden_sizes=[256, 512, 896, 2048] ,groups_width=128 ,layer_type="x" ),
"regnet-x-320": ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1] ,hidden_sizes=[336, 672, 1344, 2520] ,groups_width=168 ,layer_type="x" ),
# y variant
"regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] ,hidden_sizes=[24, 56, 152, 368] ,groups_width=8 ),
"regnet-y-004": ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6] ,hidden_sizes=[48, 104, 208, 440] ,groups_width=8 ),
"regnet-y-006": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4] ,hidden_sizes=[48, 112, 256, 608] ,groups_width=16 ),
"regnet-y-008": ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2] ,hidden_sizes=[64, 128, 320, 768] ,groups_width=16 ),
"regnet-y-016": ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2] ,hidden_sizes=[48, 120, 336, 888] ,groups_width=24 ),
"regnet-y-032": ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1] ,hidden_sizes=[72, 216, 576, 1512] ,groups_width=24 ),
"regnet-y-040": ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2] ,hidden_sizes=[128, 192, 512, 1088] ,groups_width=64 ),
"regnet-y-064": ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2] ,hidden_sizes=[144, 288, 576, 1296] ,groups_width=72 ),
"regnet-y-080": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] ,hidden_sizes=[168, 448, 896, 2016] ,groups_width=56 ),
"regnet-y-120": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] ,hidden_sizes=[224, 448, 896, 2240] ,groups_width=112 ),
"regnet-y-160": ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1] ,hidden_sizes=[224, 448, 1232, 3024] ,groups_width=112 ),
"regnet-y-320": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] ,hidden_sizes=[232, 696, 1392, 3712] ,groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
"regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] ,hidden_sizes=[232, 696, 1392, 3712] ,groups_width=232 ),
"regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] ,hidden_sizes=[328, 984, 1968, 4920] ,groups_width=328 ),
"regnet-y-1280-seer": RegNetConfig(
depths=[2, 7, 17, 1] ,hidden_sizes=[528, 1056, 2904, 7392] ,groups_width=264 ),
"regnet-y-2560-seer": RegNetConfig(
depths=[3, 7, 16, 1] ,hidden_sizes=[640, 1696, 2544, 5088] ,groups_width=640 ),
"regnet-y-10b-seer": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] ,hidden_sizes=[2020, 4040, 1_1110, 2_8280] ,groups_width=1010 ),
# finetuned on imagenet
"regnet-y-320-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] ,hidden_sizes=[232, 696, 1392, 3712] ,groups_width=232 ),
"regnet-y-640-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] ,hidden_sizes=[328, 984, 1968, 4920] ,groups_width=328 ),
"regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] ,hidden_sizes=[528, 1056, 2904, 7392] ,groups_width=264 ),
"regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1] ,hidden_sizes=[640, 1696, 2544, 5088] ,groups_width=640 ),
"regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] ,hidden_sizes=[2020, 4040, 1_1110, 2_8280] ,groups_width=1010 ),
}
snake_case_ : Any = NameToOurModelFuncMap()
snake_case_ : Tuple = NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(__magic_name__ ,__magic_name__ ) -> Tuple[nn.Module, Dict]:
snake_case_ : Optional[Any] = torch.hub.load_state_dict_from_url(__magic_name__ ,model_dir=str(__magic_name__ ) ,map_location="cpu" )
snake_case_ : int = model_func()
# check if we have a head, if yes add it
snake_case_ : Union[str, Any] = files["classy_state_dict"]["base_model"]["model"]
snake_case_ : Union[str, Any] = model_state_dict["trunk"]
model.load_state_dict(__magic_name__ )
return model.eval(), model_state_dict["heads"]
# pretrained
snake_case_ : Any = partial(
__magic_name__ ,"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" ,lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) ,)
snake_case_ : Dict = partial(
__magic_name__ ,"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" ,lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) ,)
snake_case_ : Optional[int] = partial(
__magic_name__ ,"https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" ,lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) ,)
snake_case_ : Union[str, Any] = partial(
__magic_name__ ,"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" ,lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 ,group_width=1010 ,w_a=1744 ,w_a=620.83 ,w_m=2.52 ) ) ) ,)
# IN1K finetuned
snake_case_ : str = partial(
__magic_name__ ,"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" ,lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) ,)
snake_case_ : Optional[int] = partial(
__magic_name__ ,"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" ,lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) ,)
snake_case_ : str = partial(
__magic_name__ ,"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" ,lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) ,)
snake_case_ : Union[str, Any] = partial(
__magic_name__ ,"https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" ,lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 ,group_width=1010 ,w_a=1744 ,w_a=620.83 ,w_m=2.52 ) ) ) ,)
if model_name:
convert_weight_and_push(
__magic_name__ ,names_to_from_model_map[model_name] ,names_to_ours_model_map[model_name] ,names_to_config[model_name] ,__magic_name__ ,__magic_name__ ,)
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
__magic_name__ ,names_to_from_model_map[model_name] ,names_to_ours_model_map[model_name] ,__magic_name__ ,__magic_name__ ,__magic_name__ ,)
return config, expected_shape
if __name__ == "__main__":
__lowerCamelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help=(
'''The name of the model you wish to convert, it must be one of the supported regnet* architecture,'''
''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=Path,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
default=True,
type=bool,
required=False,
help='''If True, push model and image processor to the hub.''',
)
__lowerCamelCase : Any = parser.parse_args()
__lowerCamelCase : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 656 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Any = {
"repo_name": ["test_repo1", "test_repo2", "test_repo3"],
"path": ["test_1.py", "test_2.py", "unit_test.py"],
"content": ["a " * 20, "a " * 30, "b " * 7],
}
snake_case_ : int = Dataset.from_dict(__magic_name__ )
return dataset
class A_ (a_ ):
"""simple docstring"""
def _A ( self :List[str] ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = get_dataset()
snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[int] = get_dataset()
snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 2 )
print(lowerCAmelCase__ )
self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 )
self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
| 656 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
__lowerCamelCase : Any = logging.get_logger(__name__)
__lowerCamelCase : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__lowerCamelCase : int = {
'''vocab_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt'''
),
},
'''tokenizer_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''',
'''roberta-base-openai-detector''': (
'''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json'''
),
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json'''
),
},
}
__lowerCamelCase : Optional[int] = {
'''roberta-base''': 512,
'''roberta-large''': 512,
'''roberta-large-mnli''': 512,
'''distilroberta-base''': 512,
'''roberta-base-openai-detector''': 512,
'''roberta-large-openai-detector''': 512,
}
class A_ (a_ ):
"""simple docstring"""
a__ = VOCAB_FILES_NAMES
a__ = PRETRAINED_VOCAB_FILES_MAP
a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ = ['''input_ids''', '''attention_mask''']
a__ = RobertaTokenizer
def __init__( self :Tuple , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Optional[Any]="replace" , lowerCAmelCase__ :Dict="<s>" , lowerCAmelCase__ :Optional[int]="</s>" , lowerCAmelCase__ :str="</s>" , lowerCAmelCase__ :Tuple="<s>" , lowerCAmelCase__ :Tuple="<unk>" , lowerCAmelCase__ :Dict="<pad>" , lowerCAmelCase__ :Union[str, Any]="<mask>" , lowerCAmelCase__ :str=False , lowerCAmelCase__ :str=True , **lowerCAmelCase__ :str , ) -> Dict:
'''simple docstring'''
super().__init__(
lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , )
snake_case_ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , lowerCAmelCase__ ) != add_prefix_space:
snake_case_ : Any = getattr(lowerCAmelCase__ , pre_tok_state.pop("type" ) )
snake_case_ : List[str] = add_prefix_space
snake_case_ : Optional[Any] = pre_tok_class(**lowerCAmelCase__ )
snake_case_ : Tuple = add_prefix_space
snake_case_ : List[Any] = "post_processor"
snake_case_ : List[str] = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ )
if tokenizer_component_instance:
snake_case_ : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case_ : Optional[int] = tuple(state["sep"] )
if "cls" in state:
snake_case_ : List[str] = tuple(state["cls"] )
snake_case_ : Any = False
if state.get("add_prefix_space" , lowerCAmelCase__ ) != add_prefix_space:
snake_case_ : List[Any] = add_prefix_space
snake_case_ : Optional[int] = True
if state.get("trim_offsets" , lowerCAmelCase__ ) != trim_offsets:
snake_case_ : Tuple = trim_offsets
snake_case_ : Optional[Any] = True
if changes_to_apply:
snake_case_ : int = getattr(lowerCAmelCase__ , state.pop("type" ) )
snake_case_ : str = component_class(**lowerCAmelCase__ )
setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ )
@property
def _A ( self :List[Any] ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def _A ( self :str , lowerCAmelCase__ :str ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value
snake_case_ : Union[str, Any] = value
def _A ( self :Optional[Any] , *lowerCAmelCase__ :str , **lowerCAmelCase__ :List[str] ) -> BatchEncoding:
'''simple docstring'''
snake_case_ : Dict = kwargs.get("is_split_into_words" , lowerCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _A ( self :int , *lowerCAmelCase__ :str , **lowerCAmelCase__ :Any ) -> BatchEncoding:
'''simple docstring'''
snake_case_ : Any = kwargs.get("is_split_into_words" , lowerCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _A ( self :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
snake_case_ : Dict = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ )
return tuple(lowerCAmelCase__ )
def _A ( self :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Any=None ) -> List[Any]:
'''simple docstring'''
snake_case_ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _A ( self :str , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
snake_case_ : Union[str, Any] = [self.sep_token_id]
snake_case_ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 656 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable
__lowerCamelCase : Dict = {
'''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''],
'''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : int = [
'''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTNeoXJapaneseForCausalLM''',
'''GPTNeoXJapaneseLayer''',
'''GPTNeoXJapaneseModel''',
'''GPTNeoXJapanesePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox_japanese import (
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
else:
import sys
__lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 656 | 1 |
'''simple docstring'''
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
__lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--txt2img_unclip''',
default='''kakaobrain/karlo-v1-alpha''',
type=str,
required=False,
help='''The pretrained txt2img unclip.''',
)
__lowerCamelCase : Optional[Any] = parser.parse_args()
__lowerCamelCase : Tuple = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
__lowerCamelCase : Union[str, Any] = CLIPImageProcessor()
__lowerCamelCase : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''')
__lowerCamelCase : List[Any] = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 656 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ )-> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ):
raise ValueError("Length must be a positive integer." )
return [n * (2 * n - 1) for n in range(__magic_name__ )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 656 | 1 |
'''simple docstring'''
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Dict:
"""simple docstring"""
snake_case_ : Any = OmegaConf.load(__magic_name__ )
if display:
print(yaml.dump(OmegaConf.to_container(__magic_name__ ) ) )
return config
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=None ,__magic_name__=None )-> List[str]:
"""simple docstring"""
if conf_path is None:
snake_case_ : str = "./model_checkpoints/vqgan_only.yaml"
snake_case_ : List[Any] = load_config(__magic_name__ ,display=__magic_name__ )
snake_case_ : Dict = VQModel(**config.model.params )
if ckpt_path is None:
snake_case_ : Union[str, Any] = "./model_checkpoints/vqgan_only.pt"
snake_case_ : Optional[Any] = torch.load(__magic_name__ ,map_location=__magic_name__ )
if ".ckpt" in ckpt_path:
snake_case_ : Optional[int] = sd["state_dict"]
model.load_state_dict(__magic_name__ ,strict=__magic_name__ )
model.to(__magic_name__ )
del sd
return model
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_, snake_case_, snake_case_ : Tuple = model.encode(__magic_name__ )
print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' )
snake_case_ : List[Any] = model.decode(__magic_name__ )
return xrec
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> List[Any]:
"""simple docstring"""
snake_case_, snake_case_ : List[str] = string.rsplit("." ,1 )
if reload:
snake_case_ : Dict = importlib.import_module(__magic_name__ )
importlib.reload(__magic_name__ )
return getattr(importlib.import_module(__magic_name__ ,package=__magic_name__ ) ,cls )
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
if "target" not in config:
raise KeyError("Expected key `target` to instantiate." )
return get_obj_from_str(config["target"] )(**config.get("params" ,{} ) )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=True ,__magic_name__=True )-> Optional[int]:
"""simple docstring"""
snake_case_ : Any = instantiate_from_config(__magic_name__ )
if sd is not None:
model.load_state_dict(__magic_name__ )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> str:
"""simple docstring"""
if ckpt:
snake_case_ : Any = torch.load(__magic_name__ ,map_location="cpu" )
snake_case_ : Any = pl_sd["global_step"]
print(F'''loaded model from global step {global_step}.''' )
else:
snake_case_ : List[str] = {"state_dict": None}
snake_case_ : List[Any] = None
snake_case_ : str = load_model_from_config(config.model ,pl_sd["state_dict"] ,gpu=__magic_name__ ,eval_mode=__magic_name__ )["model"]
return model, global_step
| 656 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __UpperCAmelCase ( __magic_name__=None )-> List[str]:
"""simple docstring"""
if subparsers is not None:
snake_case_ : List[str] = subparsers.add_parser("test" )
else:
snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" ,default=__magic_name__ ,help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) ,)
if subparsers is not None:
parser.set_defaults(func=__magic_name__ )
return parser
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
snake_case_ : str = script_name
else:
snake_case_ : Any = F'''--config_file={args.config_file} {script_name}'''
snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split()
snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Dict = test_command_parser()
snake_case_ : Dict = parser.parse_args()
test_command(__magic_name__ )
if __name__ == "__main__":
main()
| 656 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class A_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :Union[str, Any]=32 , lowerCAmelCase__ :int=5 , lowerCAmelCase__ :int=4 , lowerCAmelCase__ :str=37 , lowerCAmelCase__ :Tuple="gelu" , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :Any=512 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Optional[Any]=2 , lowerCAmelCase__ :Dict=0.0_2 , lowerCAmelCase__ :str=4 , ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[int] = parent
snake_case_ : Any = batch_size
snake_case_ : Union[str, Any] = seq_length
snake_case_ : Any = is_training
snake_case_ : Optional[Any] = use_attention_mask
snake_case_ : str = use_token_type_ids
snake_case_ : Any = use_labels
snake_case_ : int = vocab_size
snake_case_ : Dict = hidden_size
snake_case_ : str = num_hidden_layers
snake_case_ : str = num_attention_heads
snake_case_ : List[str] = intermediate_size
snake_case_ : str = hidden_act
snake_case_ : int = hidden_dropout_prob
snake_case_ : Union[str, Any] = attention_probs_dropout_prob
snake_case_ : Dict = max_position_embeddings
snake_case_ : Tuple = type_vocab_size
snake_case_ : Optional[int] = type_sequence_label_size
snake_case_ : Optional[int] = initializer_range
snake_case_ : Union[str, Any] = num_choices
def _A ( self :Optional[Any] ) -> Any:
'''simple docstring'''
snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ : Tuple = None
if self.use_attention_mask:
snake_case_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ : Union[str, Any] = None
if self.use_token_type_ids:
snake_case_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ : List[Any] = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _A ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : int = self.prepare_config_and_inputs()
snake_case_, snake_case_, snake_case_, snake_case_ : Union[str, Any] = config_and_inputs
snake_case_ : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def _A ( self :Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = self.prepare_config_and_inputs()
snake_case_, snake_case_, snake_case_, snake_case_ : List[Any] = config_and_inputs
snake_case_ : Optional[int] = True
snake_case_ : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = True
a__ = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _A ( self :Union[str, Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Dict = FlaxRobertaPreLayerNormModelTester(self )
@slow
def _A ( self :Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
snake_case_ : Dict = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=lowerCAmelCase__ )
snake_case_ : Any = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class A_ (unittest.TestCase ):
"""simple docstring"""
@slow
def _A ( self :Dict ) -> Tuple:
'''simple docstring'''
snake_case_ : List[Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=lowerCAmelCase__ )
snake_case_ : str = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
snake_case_ : Optional[Any] = model(lowerCAmelCase__ )[0]
snake_case_ : Optional[int] = [1, 11, 50_265]
self.assertEqual(list(output.shape ) , lowerCAmelCase__ )
# compare the actual values for a slice.
snake_case_ : Union[str, Any] = np.array(
[[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
@slow
def _A ( self :Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[Any] = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=lowerCAmelCase__ )
snake_case_ : List[Any] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
snake_case_ : Union[str, Any] = model(lowerCAmelCase__ )[0]
# compare the actual values for a slice.
snake_case_ : Union[str, Any] = np.array(
[[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
| 656 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCamelCase : str = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
__lowerCamelCase : int = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
__lowerCamelCase : List[str] = R'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , )
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 656 | 1 |
'''simple docstring'''
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
__lowerCamelCase : Dict = pytest.mark.integration
__lowerCamelCase : Any = {'''comet'''}
__lowerCamelCase : Optional[int] = importlib.util.find_spec('''fairseq''') is not None
__lowerCamelCase : int = {'''code_eval'''}
__lowerCamelCase : Dict = os.name == '''nt'''
__lowerCamelCase : str = {'''bertscore''', '''frugalscore''', '''perplexity'''}
__lowerCamelCase : List[str] = importlib.util.find_spec('''transformers''') is not None
def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]:
"""simple docstring"""
@wraps(__magic_name__ )
def wrapper(self ,__magic_name__ ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("\"test requires Fairseq\"" )
else:
test_case(self ,__magic_name__ )
return wrapper
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
@wraps(__magic_name__ )
def wrapper(self ,__magic_name__ ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("\"test requires transformers\"" )
else:
test_case(self ,__magic_name__ )
return wrapper
def __UpperCAmelCase ( __magic_name__ )-> Optional[int]:
"""simple docstring"""
@wraps(__magic_name__ )
def wrapper(self ,__magic_name__ ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("\"test not supported on Windows\"" )
else:
test_case(self ,__magic_name__ )
return wrapper
def __UpperCAmelCase ( )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Optional[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
a_ , a_ , a_ )
@local
class A_ (parameterized.TestCase ):
"""simple docstring"""
a__ = {}
a__ = None
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" )
def _A ( self :List[str] , lowerCAmelCase__ :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Dict = "[...]"
snake_case_ : Union[str, Any] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , lowerCAmelCase__ ) ).module_path )
snake_case_ : Optional[Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCAmelCase__ )
# check parameters
snake_case_ : int = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(lowerCAmelCase__ , metric_module.__name__ ):
with self.use_local_metrics():
try:
snake_case_ : Optional[Any] = doctest.testmod(lowerCAmelCase__ , verbose=lowerCAmelCase__ , raise_on_error=lowerCAmelCase__ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def _A ( self :Union[str, Any] , lowerCAmelCase__ :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[Any] = "[...]"
snake_case_ : List[Any] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , lowerCAmelCase__ ) ).module_path )
# run doctest
with self.use_local_metrics():
snake_case_ : Any = doctest.testmod(lowerCAmelCase__ , verbose=lowerCAmelCase__ , raise_on_error=lowerCAmelCase__ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def _A ( self :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] ) -> Optional[Any]:
'''simple docstring'''
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCAmelCase__ ):
yield
else:
yield
@contextmanager
def _A ( self :Optional[int] ) -> Optional[int]:
'''simple docstring'''
def load_local_metric(lowerCAmelCase__ :Optional[Any] , *lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ):
return load_metric(os.path.join("metrics" , lowerCAmelCase__ ) , *lowerCAmelCase__ , **lowerCAmelCase__ )
with patch("datasets.load_metric" ) as mock_load_metric:
snake_case_ : List[str] = load_local_metric
yield
@classmethod
def _A ( cls :Optional[Any] , lowerCAmelCase__ :str ) -> str:
'''simple docstring'''
def wrapper(lowerCAmelCase__ :Any ):
snake_case_ : Optional[int] = contextmanager(lowerCAmelCase__ )
snake_case_ : List[Any] = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("bleurt" )
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("sv" ,"" ,"" ) # handle pytest cli flags
class A_ (a_ ):
"""simple docstring"""
def _A ( self :Any , lowerCAmelCase__ :Optional[Any] ) -> str:
'''simple docstring'''
assert len(input_dict["input_ids"] ) == 2
return np.array([1.0_3, 1.0_4] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("bleurt.score._create_predictor" ) as mock_create_predictor:
snake_case_ : Dict = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("bertscore" )
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
import torch
def bert_cos_score_idf(__magic_name__ ,__magic_name__ ,*__magic_name__ ,**__magic_name__ ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(__magic_name__ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("bert_score.scorer.get_model" ), patch(
"bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf:
snake_case_ : List[Any] = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("comet" )
def __UpperCAmelCase ( __magic_name__ )-> Optional[int]:
"""simple docstring"""
def load_from_checkpoint(__magic_name__ ):
class A_ :
"""simple docstring"""
def _A ( self :Tuple , lowerCAmelCase__ :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
assert len(lowerCAmelCase__ ) == 2
snake_case_ : Tuple = [0.1_9, 0.9_2]
return scores, sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("comet.download_model" ) as mock_download_model:
snake_case_ : Union[str, Any] = None
with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint:
snake_case_ : int = load_from_checkpoint
yield
def __UpperCAmelCase ( )-> List[Any]:
"""simple docstring"""
snake_case_ : Optional[int] = load_metric(os.path.join("metrics" ,"seqeval" ) )
snake_case_ : int = "ERROR"
snake_case_ : int = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'''
with pytest.raises(__magic_name__ ,match=re.escape(__magic_name__ ) ):
metric.compute(predictions=[] ,references=[] ,scheme=__magic_name__ )
| 656 |
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
__lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
__lowerCamelCase : str = 128022
__lowerCamelCase : List[Any] = 128028
@require_sentencepiece
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = MaMaaaTokenizer
a__ = False
a__ = False
a__ = True
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
super().setUp()
snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
snake_case_ : Optional[int] = Path(self.tmpdirname )
save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] )
snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str:
'''simple docstring'''
return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]:
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def _A ( self :List[str] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : str = "</s>"
snake_case_ : Union[str, Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.get_tokenizer()
snake_case_ : Any = list(tokenizer.get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "</s>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "<s>" )
self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) )
@unittest.skip("Skip this test while all models are still to be uploaded." )
def _A ( self :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def _A ( self :Optional[int] ) -> int:
'''simple docstring'''
snake_case_ : int = self.get_tokenizer()
snake_case_ : List[str] = tokenizer.tokenize("This is a test" )
self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , )
snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] )
self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , "This is a test" )
@slow
def _A ( self :Any ) -> List[Any]:
'''simple docstring'''
snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , )
@require_torch
@require_sentencepiece
@require_tokenizers
class A_ (unittest.TestCase ):
"""simple docstring"""
a__ = '''facebook/m2m100_418M'''
a__ = [
'''In my opinion, there are two levels of response from the French government.''',
'''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''',
]
a__ = [
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
]
# fmt: off
a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2]
@classmethod
def _A ( cls :str ) -> int:
'''simple docstring'''
snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="en" , tgt_lang="fr" )
snake_case_ : List[str] = 1
return cls
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 )
self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 )
self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 )
self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 )
def _A ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.tokenizer.get_vocab()
self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size )
self.assertEqual(vocab["<unk>"] , 3 )
self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ )
def _A ( self :Any ) -> Dict:
'''simple docstring'''
snake_case_ : List[str] = "en"
snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
# fmt: off
snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2]
# fmt: on
snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def _A ( self :Tuple ) -> Tuple:
'''simple docstring'''
snake_case_ : Union[str, Any] = tempfile.mkdtemp()
snake_case_ : int = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(lowerCAmelCase__ )
snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ )
@require_torch
def _A ( self :Optional[Any] ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = "en"
snake_case_ : Tuple = "fr"
snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" )
snake_case_ : Dict = shift_tokens_right(
batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id )
for k in batch:
snake_case_ : str = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : List[str] = "mr"
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
snake_case_ : int = "zh"
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
@require_torch
def _A ( self :str ) -> int:
'''simple docstring'''
snake_case_ : Dict = "mr"
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
snake_case_ : Tuple = "zh"
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
@require_torch
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# en_XX, A, test, EOS
"input_ids": [[128_022, 58, 4_183, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 128_006,
} , )
| 656 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCamelCase : List[str] = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : str = ['''FNetTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[str] = ['''FNetTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[Any] = [
'''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FNetForMaskedLM''',
'''FNetForMultipleChoice''',
'''FNetForNextSentencePrediction''',
'''FNetForPreTraining''',
'''FNetForQuestionAnswering''',
'''FNetForSequenceClassification''',
'''FNetForTokenClassification''',
'''FNetLayer''',
'''FNetModel''',
'''FNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 656 |
'''simple docstring'''
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__lowerCamelCase : str = '''.'''
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
__lowerCamelCase : Tuple = [
'''Assert''',
'''AssignVariableOp''',
'''EmptyTensorList''',
'''MergeV2Checkpoints''',
'''ReadVariableOp''',
'''ResourceGather''',
'''RestoreV2''',
'''SaveV2''',
'''ShardedFilename''',
'''StatefulPartitionedCall''',
'''StaticRegexFullMatch''',
'''VarHandleOp''',
]
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]:
"""simple docstring"""
snake_case_ : Tuple = SavedModel()
snake_case_ : Dict = []
with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f:
snake_case_ : Dict = json.load(__magic_name__ )["opsets"]
for i in range(1 ,opset + 1 ):
onnx_ops.extend(onnx_opsets[str(__magic_name__ )] )
with open(__magic_name__ ,"rb" ) as f:
saved_model.ParseFromString(f.read() )
snake_case_ : Tuple = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
snake_case_ : str = sorted(__magic_name__ )
snake_case_ : Optional[int] = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(__magic_name__ )
if strict and len(__magic_name__ ) > 0:
raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops )
elif len(__magic_name__ ) > 0:
print(F'''Found the following incompatible ops for the opset {opset}:''' )
print(*__magic_name__ ,sep="\n" )
else:
print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser()
parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''')
parser.add_argument(
'''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.'''
)
parser.add_argument(
'''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.'''
)
parser.add_argument(
'''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)'''
)
__lowerCamelCase : Dict = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 656 | 1 |
'''simple docstring'''
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Any = VideoMAEConfig()
set_architecture_configs(__magic_name__ ,__magic_name__ )
if "finetuned" not in model_name:
snake_case_ : Union[str, Any] = False
if "finetuned" in model_name:
snake_case_ : str = "huggingface/label-files"
if "kinetics" in model_name:
snake_case_ : List[str] = 400
snake_case_ : int = "kinetics400-id2label.json"
elif "ssv2" in model_name:
snake_case_ : Dict = 174
snake_case_ : Union[str, Any] = "something-something-v2-id2label.json"
else:
raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." )
snake_case_ : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) )
snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()}
snake_case_ : Optional[int] = idalabel
snake_case_ : List[str] = {v: k for k, v in idalabel.items()}
return config
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[Any]:
"""simple docstring"""
if "small" in model_name:
snake_case_ : str = 384
snake_case_ : str = 1536
snake_case_ : str = 12
snake_case_ : Optional[int] = 16
snake_case_ : List[Any] = 12
snake_case_ : Optional[int] = 3
snake_case_ : Optional[int] = 192
snake_case_ : Any = 768
elif "large" in model_name:
snake_case_ : Any = 1024
snake_case_ : Union[str, Any] = 4096
snake_case_ : Optional[int] = 24
snake_case_ : str = 16
snake_case_ : Tuple = 12
snake_case_ : int = 8
snake_case_ : Optional[int] = 512
snake_case_ : Any = 2048
elif "huge" in model_name:
snake_case_ : Tuple = 1280
snake_case_ : Dict = 5120
snake_case_ : int = 32
snake_case_ : Optional[Any] = 16
snake_case_ : List[Any] = 12
snake_case_ : Tuple = 8
snake_case_ : Optional[int] = 640
snake_case_ : List[str] = 2560
elif "base" not in model_name:
raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" )
def __UpperCAmelCase ( __magic_name__ )-> Dict:
"""simple docstring"""
if "encoder." in name:
snake_case_ : Any = name.replace("encoder." ,"" )
if "cls_token" in name:
snake_case_ : Dict = name.replace("cls_token" ,"videomae.embeddings.cls_token" )
if "decoder_pos_embed" in name:
snake_case_ : List[str] = name.replace("decoder_pos_embed" ,"decoder.decoder_pos_embed" )
if "pos_embed" in name and "decoder" not in name:
snake_case_ : List[Any] = name.replace("pos_embed" ,"videomae.embeddings.position_embeddings" )
if "patch_embed.proj" in name:
snake_case_ : str = name.replace("patch_embed.proj" ,"videomae.embeddings.patch_embeddings.projection" )
if "patch_embed.norm" in name:
snake_case_ : int = name.replace("patch_embed.norm" ,"videomae.embeddings.norm" )
if "decoder.blocks" in name:
snake_case_ : Any = name.replace("decoder.blocks" ,"decoder.decoder_layers" )
if "blocks" in name:
snake_case_ : Optional[int] = name.replace("blocks" ,"videomae.encoder.layer" )
if "attn.proj" in name:
snake_case_ : Union[str, Any] = name.replace("attn.proj" ,"attention.output.dense" )
if "attn" in name and "bias" not in name:
snake_case_ : List[Any] = name.replace("attn" ,"attention.self" )
if "attn" in name:
snake_case_ : Dict = name.replace("attn" ,"attention.attention" )
if "norm1" in name:
snake_case_ : List[Any] = name.replace("norm1" ,"layernorm_before" )
if "norm2" in name:
snake_case_ : Union[str, Any] = name.replace("norm2" ,"layernorm_after" )
if "mlp.fc1" in name:
snake_case_ : int = name.replace("mlp.fc1" ,"intermediate.dense" )
if "mlp.fc2" in name:
snake_case_ : Any = name.replace("mlp.fc2" ,"output.dense" )
if "decoder_embed" in name:
snake_case_ : Optional[int] = name.replace("decoder_embed" ,"decoder.decoder_embed" )
if "decoder_norm" in name:
snake_case_ : str = name.replace("decoder_norm" ,"decoder.decoder_norm" )
if "decoder_pred" in name:
snake_case_ : List[Any] = name.replace("decoder_pred" ,"decoder.decoder_pred" )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
snake_case_ : Union[str, Any] = name.replace("norm.weight" ,"videomae.layernorm.weight" )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
snake_case_ : str = name.replace("norm.bias" ,"videomae.layernorm.bias" )
if "head" in name and "decoder" not in name:
snake_case_ : Any = name.replace("head" ,"classifier" )
return name
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Any:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
snake_case_ : Optional[Any] = orig_state_dict.pop(__magic_name__ )
if key.startswith("encoder." ):
snake_case_ : Dict = key.replace("encoder." ,"" )
if "qkv" in key:
snake_case_ : List[Any] = key.split("." )
if key.startswith("decoder.blocks" ):
snake_case_ : Any = config.decoder_hidden_size
snake_case_ : Optional[int] = int(key_split[2] )
snake_case_ : Dict = "decoder.decoder_layers."
if "weight" in key:
snake_case_ : int = val[:dim, :]
snake_case_ : Union[str, Any] = val[dim : dim * 2, :]
snake_case_ : Dict = val[-dim:, :]
else:
snake_case_ : Tuple = config.hidden_size
snake_case_ : List[str] = int(key_split[1] )
snake_case_ : str = "videomae.encoder.layer."
if "weight" in key:
snake_case_ : List[str] = val[:dim, :]
snake_case_ : List[Any] = val[dim : dim * 2, :]
snake_case_ : Any = val[-dim:, :]
else:
snake_case_ : Any = val
return orig_state_dict
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Union[str, Any] = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video" ,filename="eating_spaghetti.npy" ,repo_type="dataset" )
snake_case_ : List[Any] = np.load(__magic_name__ )
return list(__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> str:
"""simple docstring"""
snake_case_ : Tuple = get_videomae_config(__magic_name__ )
if "finetuned" in model_name:
snake_case_ : Optional[int] = VideoMAEForVideoClassification(__magic_name__ )
else:
snake_case_ : int = VideoMAEForPreTraining(__magic_name__ )
# download original checkpoint, hosted on Google Drive
snake_case_ : Any = "pytorch_model.bin"
gdown.cached_download(__magic_name__ ,__magic_name__ ,quiet=__magic_name__ )
snake_case_ : List[Any] = torch.load(__magic_name__ ,map_location="cpu" )
if "model" in files:
snake_case_ : Union[str, Any] = files["model"]
else:
snake_case_ : int = files["module"]
snake_case_ : Optional[Any] = convert_state_dict(__magic_name__ ,__magic_name__ )
model.load_state_dict(__magic_name__ )
model.eval()
# verify model on basic input
snake_case_ : Union[str, Any] = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] )
snake_case_ : List[str] = prepare_video()
snake_case_ : Union[str, Any] = image_processor(__magic_name__ ,return_tensors="pt" )
if "finetuned" not in model_name:
snake_case_ : Any = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" ,filename="bool_masked_pos.pt" )
snake_case_ : Dict = torch.load(__magic_name__ )
snake_case_ : Any = model(**__magic_name__ )
snake_case_ : Tuple = outputs.logits
snake_case_ : Tuple = [
"videomae-small-finetuned-kinetics",
"videomae-small-finetuned-ssv2",
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
"videomae-base-short",
"videomae-base-short-finetuned-kinetics",
"videomae-base",
"videomae-base-finetuned-kinetics",
"videomae-large",
"videomae-large-finetuned-kinetics",
"videomae-huge-finetuned-kinetics",
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
"videomae-base-short-ssv2",
"videomae-base-short-finetuned-ssv2",
"videomae-base-ssv2",
"videomae-base-finetuned-ssv2",
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
snake_case_ : Any = torch.Size([1, 400] )
snake_case_ : List[Any] = torch.tensor([-0.9_291, -0.4_061, -0.9_307] )
elif model_name == "videomae-small-finetuned-ssv2":
snake_case_ : List[Any] = torch.Size([1, 174] )
snake_case_ : Union[str, Any] = torch.tensor([0.2_671, -0.4_689, -0.8_235] )
elif model_name == "videomae-base":
snake_case_ : Dict = torch.Size([1, 1408, 1536] )
snake_case_ : Dict = torch.tensor([[0.7_739, 0.7_968, 0.7_089], [0.6_701, 0.7_487, 0.6_209], [0.4_287, 0.5_158, 0.4_773]] )
elif model_name == "videomae-base-short":
snake_case_ : Union[str, Any] = torch.Size([1, 1408, 1536] )
snake_case_ : Optional[int] = torch.tensor([[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] )
# we verified the loss both for normalized and unnormalized targets for this one
snake_case_ : List[str] = torch.tensor([0.5_142] ) if config.norm_pix_loss else torch.tensor([0.6_469] )
elif model_name == "videomae-large":
snake_case_ : Any = torch.Size([1, 1408, 1536] )
snake_case_ : List[str] = torch.tensor([[0.7_149, 0.7_997, 0.6_966], [0.6_768, 0.7_869, 0.6_948], [0.5_139, 0.6_221, 0.5_605]] )
elif model_name == "videomae-large-finetuned-kinetics":
snake_case_ : List[Any] = torch.Size([1, 400] )
snake_case_ : Optional[int] = torch.tensor([0.0_771, 0.0_011, -0.3_625] )
elif model_name == "videomae-huge-finetuned-kinetics":
snake_case_ : List[str] = torch.Size([1, 400] )
snake_case_ : Union[str, Any] = torch.tensor([0.2_433, 0.1_632, -0.4_894] )
elif model_name == "videomae-base-short-finetuned-kinetics":
snake_case_ : List[Any] = torch.Size([1, 400] )
snake_case_ : int = torch.tensor([0.6_588, 0.0_990, -0.2_493] )
elif model_name == "videomae-base-finetuned-kinetics":
snake_case_ : Dict = torch.Size([1, 400] )
snake_case_ : str = torch.tensor([0.3_669, -0.0_688, -0.2_421] )
elif model_name == "videomae-base-short-ssv2":
snake_case_ : Optional[Any] = torch.Size([1, 1408, 1536] )
snake_case_ : Optional[int] = torch.tensor([[0.4_712, 0.5_296, 0.5_786], [0.2_278, 0.2_729, 0.4_026], [0.0_352, 0.0_730, 0.2_506]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
snake_case_ : Dict = torch.Size([1, 174] )
snake_case_ : str = torch.tensor([-0.0_537, -0.1_539, -0.3_266] )
elif model_name == "videomae-base-ssv2":
snake_case_ : Union[str, Any] = torch.Size([1, 1408, 1536] )
snake_case_ : List[str] = torch.tensor([[0.8_131, 0.8_727, 0.8_546], [0.7_366, 0.9_377, 0.8_870], [0.5_935, 0.8_874, 0.8_564]] )
elif model_name == "videomae-base-finetuned-ssv2":
snake_case_ : int = torch.Size([1, 174] )
snake_case_ : Any = torch.tensor([0.1_961, -0.8_337, -0.6_389] )
else:
raise ValueError(F'''Model name not supported. Should be one of {model_names}''' )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] ,__magic_name__ ,atol=1E-4 )
else:
print("Logits:" ,logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] ,__magic_name__ ,atol=1E-4 )
print("Logits ok!" )
# verify loss, if applicable
if model_name == "videomae-base-short":
snake_case_ : Tuple = outputs.loss
assert torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-4 )
print("Loss ok!" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__magic_name__ )
model.save_pretrained(__magic_name__ )
if push_to_hub:
print("Pushing to the hub..." )
model.push_to_hub(__magic_name__ ,organization="nielsr" )
if __name__ == "__main__":
__lowerCamelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''',
type=str,
help=(
'''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct'''
''' download link.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/Users/nielsrogge/Documents/VideoMAE/Test''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''')
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__lowerCamelCase : Any = parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 656 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
__lowerCamelCase : List[str] = ['''names''', '''prefix''']
__lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols''']
__lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines''']
__lowerCamelCase : Optional[Any] = ['''date_format''']
@dataclass
class A_ (datasets.BuilderConfig ):
"""simple docstring"""
a__ = ","
a__ = None
a__ = "infer"
a__ = None
a__ = None
a__ = None
a__ = None
a__ = None
a__ = True
a__ = None
a__ = None
a__ = None
a__ = None
a__ = False
a__ = None
a__ = None
a__ = None
a__ = True
a__ = True
a__ = False
a__ = True
a__ = None
a__ = "."
a__ = None
a__ = '"'
a__ = 0
a__ = None
a__ = None
a__ = None
a__ = None
a__ = True
a__ = True
a__ = 0
a__ = True
a__ = False
a__ = None
a__ = 10000
a__ = None
a__ = "strict"
a__ = "error"
a__ = None
def _A ( self :List[str] ) -> Any:
'''simple docstring'''
if self.delimiter is not None:
snake_case_ : Tuple = self.delimiter
if self.column_names is not None:
snake_case_ : List[Any] = self.column_names
@property
def _A ( self :Optional[Any] ) -> int:
'''simple docstring'''
snake_case_ : Optional[int] = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A_ (datasets.ArrowBasedBuilder ):
"""simple docstring"""
a__ = CsvConfig
def _A ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
snake_case_ : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : List[str] = [files]
snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
snake_case_ : str = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : str = [files]
snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table:
'''simple docstring'''
if self.config.features is not None:
snake_case_ : int = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
snake_case_ : str = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' )
raise
| 656 | 1 |
'''simple docstring'''
from collections import deque
class A_ :
"""simple docstring"""
def __init__( self :List[str] , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> None:
'''simple docstring'''
snake_case_ : List[Any] = process_name # process name
snake_case_ : int = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
snake_case_ : Union[str, Any] = arrival_time
snake_case_ : Tuple = burst_time # remaining burst time
snake_case_ : Dict = 0 # total time of the process wait in ready queue
snake_case_ : Any = 0 # time from arrival time to completion time
class A_ :
"""simple docstring"""
def __init__( self :int , lowerCAmelCase__ :int , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :deque[Process] , lowerCAmelCase__ :int , ) -> None:
'''simple docstring'''
snake_case_ : int = number_of_queues
# time slice of queues that round robin algorithm applied
snake_case_ : Any = time_slices
# unfinished process is in this ready_queue
snake_case_ : Tuple = queue
# current time
snake_case_ : Union[str, Any] = current_time
# finished process is in this sequence queue
snake_case_ : deque[Process] = deque()
def _A ( self :Tuple ) -> list[str]:
'''simple docstring'''
snake_case_ : List[Any] = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def _A ( self :List[str] , lowerCAmelCase__ :list[Process] ) -> list[int]:
'''simple docstring'''
snake_case_ : Optional[int] = []
for i in range(len(lowerCAmelCase__ ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def _A ( self :Optional[int] , lowerCAmelCase__ :list[Process] ) -> list[int]:
'''simple docstring'''
snake_case_ : str = []
for i in range(len(lowerCAmelCase__ ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def _A ( self :str , lowerCAmelCase__ :list[Process] ) -> list[int]:
'''simple docstring'''
snake_case_ : str = []
for i in range(len(lowerCAmelCase__ ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def _A ( self :str , lowerCAmelCase__ :deque[Process] ) -> list[int]:
'''simple docstring'''
return [q.burst_time for q in queue]
def _A ( self :Dict , lowerCAmelCase__ :Process ) -> int:
'''simple docstring'''
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def _A ( self :Tuple , lowerCAmelCase__ :deque[Process] ) -> deque[Process]:
'''simple docstring'''
snake_case_ : deque[Process] = deque() # sequence deque of finished process
while len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(lowerCAmelCase__ )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
snake_case_ : Tuple = 0
# set the process's turnaround time because it is finished
snake_case_ : Union[str, Any] = self.current_time - cp.arrival_time
# set the completion time
snake_case_ : Tuple = self.current_time
# add the process to queue that has finished queue
finished.append(lowerCAmelCase__ )
self.finish_queue.extend(lowerCAmelCase__ ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def _A ( self :Dict , lowerCAmelCase__ :deque[Process] , lowerCAmelCase__ :int ) -> tuple[deque[Process], deque[Process]]:
'''simple docstring'''
snake_case_ : deque[Process] = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(lowerCAmelCase__ ) ):
snake_case_ : Any = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(lowerCAmelCase__ )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
snake_case_ : List[Any] = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(lowerCAmelCase__ )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
snake_case_ : int = 0
# set the finish time
snake_case_ : Union[str, Any] = self.current_time
# update the process' turnaround time because it is finished
snake_case_ : Tuple = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(lowerCAmelCase__ )
self.finish_queue.extend(lowerCAmelCase__ ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def _A ( self :List[Any] ) -> deque[Process]:
'''simple docstring'''
for i in range(self.number_of_queues - 1 ):
snake_case_, snake_case_ : Dict = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
__lowerCamelCase : Any = Process('''P1''', 0, 53)
__lowerCamelCase : Optional[Any] = Process('''P2''', 0, 17)
__lowerCamelCase : Optional[Any] = Process('''P3''', 0, 68)
__lowerCamelCase : List[Any] = Process('''P4''', 0, 24)
__lowerCamelCase : List[str] = 3
__lowerCamelCase : Dict = [17, 25]
__lowerCamelCase : Optional[Any] = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])})
__lowerCamelCase : Any = Process('''P1''', 0, 53)
__lowerCamelCase : Optional[Any] = Process('''P2''', 0, 17)
__lowerCamelCase : Optional[int] = Process('''P3''', 0, 68)
__lowerCamelCase : int = Process('''P4''', 0, 24)
__lowerCamelCase : str = 3
__lowerCamelCase : List[Any] = [17, 25]
__lowerCamelCase : int = deque([Pa, Pa, Pa, Pa])
__lowerCamelCase : Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0)
__lowerCamelCase : Optional[int] = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
f'''waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print completion times of processes(P1, P2, P3, P4)
print(
f'''completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
f'''turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print sequence of finished processes
print(
f'''sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}'''
)
| 656 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = MgpstrTokenizer
a__ = False
a__ = {}
a__ = False
def _A ( self :List[str] ) -> List[str]:
'''simple docstring'''
super().setUp()
# fmt: off
snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str:
'''simple docstring'''
snake_case_ : Dict = "tester"
snake_case_ : Tuple = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def _A ( self :Dict ) -> str:
'''simple docstring'''
pass
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_ : Tuple = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def _A ( self :int ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ )
snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def _A ( self :Union[str, Any] ) -> Any:
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def _A ( self :int ) -> Dict:
'''simple docstring'''
pass
| 656 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class A_ (unittest.TestCase ):
"""simple docstring"""
@property
def _A ( self :List[Any] ) -> str:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _A ( self :int ) -> int:
'''simple docstring'''
snake_case_ : str = ort.SessionOptions()
snake_case_ : List[str] = False
return options
def _A ( self :Tuple ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[str] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
snake_case_ : Optional[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
snake_case_ : int = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
snake_case_ : int = "A red cat sitting on a park bench"
snake_case_ : Optional[Any] = np.random.RandomState(0 )
snake_case_ : Dict = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase__ , output_type="np" , )
snake_case_ : Optional[Any] = output.images
snake_case_ : Any = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
snake_case_ : Dict = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _A ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
snake_case_ : List[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
snake_case_ : Optional[Any] = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" )
snake_case_ : Dict = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
snake_case_ : Union[str, Any] = "A red cat sitting on a park bench"
snake_case_ : int = np.random.RandomState(0 )
snake_case_ : int = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCAmelCase__ , output_type="np" , )
snake_case_ : List[Any] = output.images
snake_case_ : Dict = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
snake_case_ : Dict = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 656 |
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]:
"""simple docstring"""
if dataset.ndim != value_array.ndim:
snake_case_ : int = (
"Wrong input data's dimensions... "
F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}'''
)
raise ValueError(__magic_name__ )
try:
if dataset.shape[1] != value_array.shape[1]:
snake_case_ : Dict = (
"Wrong input data's shape... "
F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}'''
)
raise ValueError(__magic_name__ )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("Wrong shape" )
if dataset.dtype != value_array.dtype:
snake_case_ : Dict = (
"Input data have different datatype... "
F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}'''
)
raise TypeError(__magic_name__ )
snake_case_ : Optional[int] = []
for value in value_array:
snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] )
snake_case_ : int = dataset[0].tolist()
for dataset_value in dataset[1:]:
snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ )
if dist > temp_dist:
snake_case_ : Tuple = temp_dist
snake_case_ : Optional[int] = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 656 | 1 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
__lowerCamelCase : Tuple = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
__lowerCamelCase : Tuple = '''\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
'''
__lowerCamelCase : str = '''
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
"raw_values" : Returns a full set of errors in case of multioutput input.
"uniform_average" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric("mse")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{\'mse\': 0.6123724356957945}
If you\'re using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric("mse", "multilist")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{\'mse\': array([0.41666667, 1. ])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"
] , )
def _A ( self :int ) -> Any:
'''simple docstring'''
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("float" ) ),
"references": datasets.Sequence(datasets.Value("float" ) ),
}
else:
return {
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
}
def _A ( self :Union[str, Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :str="uniform_average" , lowerCAmelCase__ :Union[str, Any]=True ) -> Tuple:
'''simple docstring'''
snake_case_ : Any = mean_squared_error(
lowerCAmelCase__ , lowerCAmelCase__ , sample_weight=lowerCAmelCase__ , multioutput=lowerCAmelCase__ , squared=lowerCAmelCase__ )
return {"mse": mse}
| 656 |
'''simple docstring'''
import fire
from utils import calculate_rouge, save_json
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()]
snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )]
snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ )
if save_path is not None:
save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 656 | 1 |
'''simple docstring'''
__lowerCamelCase : int = {str(digit): digit**5 for digit in range(10)}
def __UpperCAmelCase ( __magic_name__ )-> int:
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__magic_name__ ) )
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
return sum(
number
for number in range(1000 ,100_0000 )
if number == digits_fifth_powers_sum(__magic_name__ ) )
if __name__ == "__main__":
print(solution())
| 656 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
__lowerCamelCase : Optional[Any] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
f'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
f'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''),
('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''),
('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''),
('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''),
('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''),
('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''),
('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''),
('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''),
('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''),
('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''),
]
)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int:
"""simple docstring"""
snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ )
snake_case_ : Any = val
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Any = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" )
snake_case_ : int = value
else:
snake_case_ : int = value
return new_state_dict
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]:
"""simple docstring"""
snake_case_ : str = ""
if is_panoptic:
snake_case_ : Dict = "conditional_detr."
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case_ : Tuple = in_proj_weight[:256, :]
snake_case_ : List[Any] = in_proj_bias[:256]
snake_case_ : Optional[Any] = in_proj_weight[256:512, :]
snake_case_ : Optional[int] = in_proj_bias[256:512]
snake_case_ : Optional[int] = in_proj_weight[-256:, :]
snake_case_ : str = in_proj_bias[-256:]
def __UpperCAmelCase ( )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]:
"""simple docstring"""
snake_case_ : Optional[Any] = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
snake_case_ : Optional[Any] = "resnet101"
if "dc5" in model_name:
snake_case_ : List[str] = True
snake_case_ : Tuple = "panoptic" in model_name
if is_panoptic:
snake_case_ : List[Any] = 250
else:
snake_case_ : Optional[Any] = 91
snake_case_ : Optional[int] = "huggingface/label-files"
snake_case_ : Dict = "coco-detection-id2label.json"
snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) )
snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()}
snake_case_ : int = idalabel
snake_case_ : Dict = {v: k for k, v in idalabel.items()}
# load image processor
snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection"
snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ )
# prepare image
snake_case_ : str = prepare_img()
snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" )
snake_case_ : Union[str, Any] = encoding["pixel_values"]
logger.info(F'''Converting model {model_name}...''' )
# load original model from torch hub
snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval()
snake_case_ : Any = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
snake_case_ : Any = "conditional_detr." + src
rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ )
snake_case_ : Tuple = rename_backbone_keys(__magic_name__ )
# query, key and value matrices need special treatment
read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
snake_case_ : int = "conditional_detr.model." if is_panoptic else "model."
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("conditional_detr" )
and not key.startswith("class_labels_classifier" )
and not key.startswith("bbox_predictor" )
):
snake_case_ : Any = state_dict.pop(__magic_name__ )
snake_case_ : Optional[int] = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
snake_case_ : Tuple = state_dict.pop(__magic_name__ )
snake_case_ : Any = val
elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ):
continue
else:
snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ )
snake_case_ : List[Any] = val
else:
if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ):
snake_case_ : Any = state_dict.pop(__magic_name__ )
snake_case_ : List[Any] = val
# finally, create HuggingFace model and load state dict
snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ )
model.load_state_dict(__magic_name__ )
model.eval()
model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" )
# verify our conversion
snake_case_ : Dict = conditional_detr(__magic_name__ )
snake_case_ : Union[str, Any] = model(__magic_name__ )
assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 )
assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 )
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
model.save_pretrained(__magic_name__ )
image_processor.save_pretrained(__magic_name__ )
if __name__ == "__main__":
__lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''conditional_detr_resnet50''',
type=str,
help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
__lowerCamelCase : int = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 656 | 1 |
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> bool:
"""simple docstring"""
snake_case_ : Union[str, Any] = get_failure_array(__magic_name__ )
# 2) Step through text searching for pattern
snake_case_, snake_case_ : List[Any] = 0, 0 # index into text, pattern
while i < len(__magic_name__ ):
if pattern[j] == text[i]:
if j == (len(__magic_name__ ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
snake_case_ : List[Any] = failure[j - 1]
continue
i += 1
return False
def __UpperCAmelCase ( __magic_name__ )-> list[int]:
"""simple docstring"""
snake_case_ : List[str] = [0]
snake_case_ : List[str] = 0
snake_case_ : Any = 1
while j < len(__magic_name__ ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
snake_case_ : Optional[int] = failure[i - 1]
continue
j += 1
failure.append(__magic_name__ )
return failure
if __name__ == "__main__":
# Test 1)
__lowerCamelCase : Tuple = '''abc1abc12'''
__lowerCamelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
__lowerCamelCase : Optional[Any] = '''alskfjaldsk23adsfabcabc'''
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
__lowerCamelCase : int = '''ABABX'''
__lowerCamelCase : Dict = '''ABABZABABYABABX'''
assert kmp(pattern, text)
# Test 3)
__lowerCamelCase : Tuple = '''AAAB'''
__lowerCamelCase : Dict = '''ABAAAAAB'''
assert kmp(pattern, text)
# Test 4)
__lowerCamelCase : int = '''abcdabcy'''
__lowerCamelCase : Tuple = '''abcxabcdabxabcdabcdabcy'''
assert kmp(pattern, text)
# Test 5)
__lowerCamelCase : Union[str, Any] = '''aabaabaaa'''
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 656 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :Any ) -> str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _A ( self :List[Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Any = 1
snake_case_ : Dict = 3
snake_case_ : Union[str, Any] = (32, 32)
snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
return image
@property
def _A ( self :Optional[int] ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : List[str] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def _A ( self :Dict ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : Optional[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def _A ( self :Dict ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : str = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , )
return RobertaSeriesModelWithTransformation(lowerCAmelCase__ )
@property
def _A ( self :Any ) -> str:
'''simple docstring'''
def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ):
class A_ :
"""simple docstring"""
def __init__( self :Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case_ : str = torch.ones([0] )
def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple:
'''simple docstring'''
self.pixel_values.to(lowerCAmelCase__ )
return self
return Out()
return extract
def _A ( self :int ) -> Dict:
'''simple docstring'''
snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator
snake_case_ : str = self.dummy_cond_unet
snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
snake_case_ : Dict = self.dummy_vae
snake_case_ : Dict = self.dummy_text_encoder
snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
snake_case_ : str = 77
snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ )
snake_case_ : Tuple = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ )
snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ )
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
snake_case_ : Dict = "A painting of a squirrel eating a burger"
snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
snake_case_ : Dict = alt_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , )
snake_case_ : Any = output.images
snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
snake_case_ : Optional[Any] = alt_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0]
snake_case_ : Tuple = image[0, -3:, -3:, -1]
snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def _A ( self :int ) -> List[str]:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.dummy_cond_unet
snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
snake_case_ : int = self.dummy_vae
snake_case_ : List[Any] = self.dummy_text_encoder
snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
snake_case_ : int = 77
snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ )
# put models in fp16
snake_case_ : Optional[Any] = unet.half()
snake_case_ : Tuple = vae.half()
snake_case_ : List[str] = bert.half()
# make sure here that pndm scheduler skips prk
snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ )
snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ )
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
snake_case_ : List[Any] = "A painting of a squirrel eating a burger"
snake_case_ : str = torch.manual_seed(0 )
snake_case_ : Any = alt_pipe(
[prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def _A ( self :Optional[int] ) -> Any:
'''simple docstring'''
snake_case_ : Union[str, Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
# resize to resolution that is divisible by 8 but not 16 or 32
snake_case_ : str = init_image.resize((760, 504) )
snake_case_ : Optional[Any] = "BAAI/AltDiffusion"
snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained(
lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
pipe.enable_attention_slicing()
snake_case_ : Tuple = "A fantasy landscape, trending on artstation"
snake_case_ : int = torch.manual_seed(0 )
snake_case_ : List[str] = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , )
snake_case_ : str = output.images[0]
snake_case_ : List[Any] = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _A ( self :str ) -> Any:
'''simple docstring'''
snake_case_ : Optional[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
snake_case_ : List[Any] = init_image.resize((768, 512) )
snake_case_ : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" )
snake_case_ : Any = "BAAI/AltDiffusion"
snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained(
lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
pipe.enable_attention_slicing()
snake_case_ : Tuple = "A fantasy landscape, trending on artstation"
snake_case_ : Tuple = torch.manual_seed(0 )
snake_case_ : List[Any] = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , )
snake_case_ : Optional[int] = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 656 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
__lowerCamelCase : List[str] = logging.get_logger(__name__)
class A_ (a_ ):
"""simple docstring"""
def __init__( self :List[str] , *lowerCAmelCase__ :Dict , **lowerCAmelCase__ :Optional[Any] ) -> None:
'''simple docstring'''
warnings.warn(
"The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use LayoutLMv2ImageProcessor instead." , lowerCAmelCase__ , )
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
| 656 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class A_ (unittest.TestCase ):
"""simple docstring"""
a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
a__ = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any:
'''simple docstring'''
snake_case_ : Optional[Any] = ZeroShotClassificationPipeline(
model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
# No kwarg
snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" )
self.assertEqual(
lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 )
snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] )
self.assertEqual(
lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 )
snake_case_ : str = classifier(
"Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
# https://github.com/huggingface/transformers/issues/13846
snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] )
self.assertEqual(
lowerCAmelCase__ , [
{"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]}
for i in range(1 )
] , )
snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] )
self.assertEqual(
lowerCAmelCase__ , [
{"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]}
for i in range(2 )
] , )
with self.assertRaises(lowerCAmelCase__ ):
classifier("" , candidate_labels="politics" )
with self.assertRaises(lowerCAmelCase__ ):
classifier(lowerCAmelCase__ , candidate_labels="politics" )
with self.assertRaises(lowerCAmelCase__ ):
classifier("Who are you voting for in 2020?" , candidate_labels="" )
with self.assertRaises(lowerCAmelCase__ ):
classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ )
with self.assertRaises(lowerCAmelCase__ ):
classifier(
"Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , )
with self.assertRaises(lowerCAmelCase__ ):
classifier(
"Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , )
self.run_entailment_id(lowerCAmelCase__ )
def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : int = zero_shot_classifier.model.config
snake_case_ : Optional[int] = config.labelaid
snake_case_ : Tuple = zero_shot_classifier.entailment_id
snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
snake_case_ : List[str] = original_labelaid
self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id )
@require_torch
def _A ( self :Tuple ) -> Any:
'''simple docstring'''
snake_case_ : List[Any] = pipeline(
"zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
"Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] )
@require_torch
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Union[str, Any] = pipeline(
"zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , )
snake_case_ : int = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["science", "public health", "politics"],
"scores": [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@require_tf
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
snake_case_ : List[str] = pipeline(
"zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , )
snake_case_ : Optional[int] = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["science", "public health", "politics"],
"scores": [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@slow
@require_torch
def _A ( self :Union[str, Any] ) -> int:
'''simple docstring'''
snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" )
snake_case_ : str = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["politics", "public health", "science"],
"scores": [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
snake_case_ : Optional[int] = zero_shot_classifier(
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"
" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"
" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"
" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"
" machine translation tasks show these models to be superior in quality while being more parallelizable"
" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"
" English-to-German translation task, improving over the existing best results, including ensembles by"
" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"
" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"
" fraction of the training costs of the best models from the literature. We show that the Transformer"
" generalizes well to other tasks by applying it successfully to English constituency parsing both with"
" large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": (
"The dominant sequence transduction models are based on complex recurrent or convolutional neural"
" networks in an encoder-decoder configuration. The best performing models also connect the"
" encoder and decoder through an attention mechanism. We propose a new simple network"
" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"
" and convolutions entirely. Experiments on two machine translation tasks show these models to be"
" superior in quality while being more parallelizable and requiring significantly less time to"
" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"
" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"
" English-to-French translation task, our model establishes a new single-model state-of-the-art"
" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"
" costs of the best models from the literature. We show that the Transformer generalizes well to"
" other tasks by applying it successfully to English constituency parsing both with large and"
" limited training data."
),
"labels": ["translation", "machine learning", "vision", "statistics"],
"scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
@slow
@require_tf
def _A ( self :List[str] ) -> str:
'''simple docstring'''
snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" )
snake_case_ : Optional[Any] = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["politics", "public health", "science"],
"scores": [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
snake_case_ : Tuple = zero_shot_classifier(
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"
" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"
" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"
" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"
" machine translation tasks show these models to be superior in quality while being more parallelizable"
" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"
" English-to-German translation task, improving over the existing best results, including ensembles by"
" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"
" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"
" fraction of the training costs of the best models from the literature. We show that the Transformer"
" generalizes well to other tasks by applying it successfully to English constituency parsing both with"
" large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": (
"The dominant sequence transduction models are based on complex recurrent or convolutional neural"
" networks in an encoder-decoder configuration. The best performing models also connect the"
" encoder and decoder through an attention mechanism. We propose a new simple network"
" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"
" and convolutions entirely. Experiments on two machine translation tasks show these models to be"
" superior in quality while being more parallelizable and requiring significantly less time to"
" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"
" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"
" English-to-French translation task, our model establishes a new single-model state-of-the-art"
" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"
" costs of the best models from the literature. We show that the Transformer generalizes well to"
" other tasks by applying it successfully to English constituency parsing both with large and"
" limited training data."
),
"labels": ["translation", "machine learning", "vision", "statistics"],
"scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
| 656 | 1 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCamelCase : str = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
__lowerCamelCase : int = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
__lowerCamelCase : List[str] = R'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , )
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 656 |
'''simple docstring'''
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''):
raise Exception('''requires fairseq >= 1.0.0a''')
logging.set_verbosity_info()
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip'''
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ )
roberta.eval() # disable dropout
snake_case_ : Dict = roberta.model.encoder.sentence_encoder
snake_case_ : List[str] = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,)
if classification_head:
snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our RoBERTa config:" ,__magic_name__ )
snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ )
model.eval()
# Now let's copy all the weights.
# Embeddings
snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight
snake_case_ : int = roberta_sent_encoder.embed_positions.weight
snake_case_ : Union[str, Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight
snake_case_ : str = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
snake_case_ : BertLayer = model.roberta.encoder.layer[i]
snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
snake_case_ : RobertaAttention = layer.attention
snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight
snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias
# self attention
snake_case_ : BertSelfAttention = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight
snake_case_ : Any = roberta_layer.self_attn.q_proj.bias
snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight
snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias
snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight
snake_case_ : Any = roberta_layer.self_attn.v_proj.bias
# self-attention output
snake_case_ : BertSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight
snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
snake_case_ : int = roberta_layer.final_layer_norm.weight
snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias
# intermediate
snake_case_ : BertIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
snake_case_ : List[str] = roberta_layer.fca.weight
snake_case_ : List[Any] = roberta_layer.fca.bias
# output
snake_case_ : BertOutput = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
snake_case_ : Any = roberta_layer.fca.weight
snake_case_ : Any = roberta_layer.fca.bias
# end of layer
if classification_head:
snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight
snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias
snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight
snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight
snake_case_ : int = roberta.model.encoder.lm_head.dense.bias
snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight
snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias
snake_case_ : int = roberta.model.encoder.lm_head.weight
snake_case_ : List[str] = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1
snake_case_ : Union[str, Any] = model(__magic_name__ )[0]
if classification_head:
snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) )
else:
snake_case_ : List[str] = roberta.model(__magic_name__ )[0]
print(our_output.shape ,their_output.shape )
snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 )
print("Do both models output the same tensors?" ,"🔥" if success else "💩" )
if not success:
raise Exception("Something went wRoNg" )
pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowerCamelCase : Tuple = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 656 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ )-> bool:
"""simple docstring"""
return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") )
def __UpperCAmelCase ( __magic_name__ )-> bool:
"""simple docstring"""
snake_case_ : Optional[int] = credit_card_number
snake_case_ : Optional[Any] = 0
snake_case_ : Optional[int] = len(__magic_name__ ) - 2
for i in range(__magic_name__ ,-1 ,-2 ):
# double the value of every second digit
snake_case_ : List[str] = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
snake_case_ : Tuple = cc_number[:i] + str(__magic_name__ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(__magic_name__ ) - 1 ,-1 ,-2 ):
total += int(cc_number[i] )
return total % 10 == 0
def __UpperCAmelCase ( __magic_name__ )-> bool:
"""simple docstring"""
snake_case_ : List[Any] = F'''{credit_card_number} is an invalid credit card number because'''
if not credit_card_number.isdigit():
print(F'''{error_message} it has nonnumerical characters.''' )
return False
if not 13 <= len(__magic_name__ ) <= 16:
print(F'''{error_message} of its length.''' )
return False
if not validate_initial_digits(__magic_name__ ):
print(F'''{error_message} of its first two digits.''' )
return False
if not luhn_validation(__magic_name__ ):
print(F'''{error_message} it fails the Luhn check.''' )
return False
print(F'''{credit_card_number} is a valid credit card number.''' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number('''4111111111111111''')
validate_credit_card_number('''32323''')
| 656 |
'''simple docstring'''
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]:
"""simple docstring"""
snake_case_ : str = False
snake_case_ : int = False
if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ):
snake_case_ : Any = True
elif "IPython" in sys.modules:
snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() )
try:
snake_case_ : Any = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' )
if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside "
"your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`." )
if num_processes is None:
snake_case_ : Tuple = 8
snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" )
print(F'''Launching a training on {num_processes} TPU cores.''' )
xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print("Launching training on one GPU." )
else:
print("Launching training on one CPU." )
function(*__magic_name__ )
else:
if num_processes is None:
raise ValueError(
"You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized "
"inside your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`." )
if torch.cuda.is_initialized():
raise ValueError(
"To launch a multi-GPU training from your notebook, you need to avoid running any instruction "
"using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA "
"function." )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ):
snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" )
print(F'''Launching training on {num_processes} GPUs.''' )
try:
start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
"CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. "
"This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
"Please review your imports and test them when running the `notebook_launcher()` to identify "
"which one is problematic." ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
snake_case_ : Any = "1"
print("Launching training on MPS." )
elif torch.cuda.is_available():
print("Launching training on one GPU." )
else:
print("Launching training on CPU." )
function(*__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict:
"""simple docstring"""
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,):
snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ )
start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
| 656 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A_ :
"""simple docstring"""
def __init__( self :List[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, Any]=13 , lowerCAmelCase__ :int=[30, 30] , lowerCAmelCase__ :int=2 , lowerCAmelCase__ :Tuple=3 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :str=32 , lowerCAmelCase__ :Tuple=5 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :str=37 , lowerCAmelCase__ :List[str]="gelu" , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :Union[str, Any]=10 , lowerCAmelCase__ :int=0.0_2 , lowerCAmelCase__ :str=3 , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=8 , lowerCAmelCase__ :Optional[Any]=10 , ) -> int:
'''simple docstring'''
snake_case_ : str = parent
snake_case_ : Optional[int] = batch_size
snake_case_ : Union[str, Any] = image_size
snake_case_ : str = patch_size
snake_case_ : List[str] = num_channels
snake_case_ : str = is_training
snake_case_ : int = use_labels
snake_case_ : Optional[Any] = hidden_size
snake_case_ : int = num_hidden_layers
snake_case_ : int = num_attention_heads
snake_case_ : List[Any] = intermediate_size
snake_case_ : Tuple = hidden_act
snake_case_ : List[Any] = hidden_dropout_prob
snake_case_ : int = attention_probs_dropout_prob
snake_case_ : Union[str, Any] = type_sequence_label_size
snake_case_ : Dict = initializer_range
snake_case_ : List[str] = num_labels
snake_case_ : Optional[Any] = scope
snake_case_ : Dict = n_targets
snake_case_ : int = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
snake_case_ : Union[str, Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size)
snake_case_ : List[str] = num_patches + 1 + self.num_detection_tokens
def _A ( self :List[str] ) -> List[Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
snake_case_ : Dict = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
snake_case_ : Tuple = []
for i in range(self.batch_size ):
snake_case_ : Tuple = {}
snake_case_ : Optional[int] = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=lowerCAmelCase__ )
snake_case_ : int = torch.rand(self.n_targets , 4 , device=lowerCAmelCase__ )
labels.append(lowerCAmelCase__ )
snake_case_ : Dict = self.get_config()
return config, pixel_values, labels
def _A ( self :Optional[int] ) -> Dict:
'''simple docstring'''
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] ) -> Any:
'''simple docstring'''
snake_case_ : Any = YolosModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : Tuple = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def _A ( self :int , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :Tuple ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = YolosForObjectDetection(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : Dict = model(pixel_values=lowerCAmelCase__ )
snake_case_ : str = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
snake_case_ : Optional[int] = model(pixel_values=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def _A ( self :List[str] ) -> Any:
'''simple docstring'''
snake_case_ : Optional[Any] = self.prepare_config_and_inputs()
snake_case_, snake_case_, snake_case_ : int = config_and_inputs
snake_case_ : str = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class A_ (a_ , a_ , unittest.TestCase ):
"""simple docstring"""
a__ = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
a__ = (
{'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {}
)
a__ = False
a__ = False
a__ = False
a__ = False
def _A ( self :int , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str]=False ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[str] = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
snake_case_ : Optional[Any] = []
for i in range(self.model_tester.batch_size ):
snake_case_ : Optional[Any] = {}
snake_case_ : str = torch.ones(
size=(self.model_tester.n_targets,) , device=lowerCAmelCase__ , dtype=torch.long )
snake_case_ : int = torch.ones(
self.model_tester.n_targets , 4 , device=lowerCAmelCase__ , dtype=torch.float )
labels.append(lowerCAmelCase__ )
snake_case_ : Any = labels
return inputs_dict
def _A ( self :Tuple ) -> Tuple:
'''simple docstring'''
snake_case_ : Dict = YolosModelTester(self )
snake_case_ : str = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 )
def _A ( self :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
pass
def _A ( self :Tuple ) -> Optional[Any]:
'''simple docstring'''
snake_case_, snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : Any = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case_ : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def _A ( self :int ) -> Optional[Any]:
'''simple docstring'''
snake_case_, snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : Tuple = model_class(lowerCAmelCase__ )
snake_case_ : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ : List[Any] = [*signature.parameters.keys()]
snake_case_ : List[Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def _A ( self :Optional[int] ) -> Any:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
snake_case_, snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = True
# in YOLOS, the seq_len is different
snake_case_ : Dict = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
snake_case_ : Dict = True
snake_case_ : Tuple = False
snake_case_ : str = True
snake_case_ : List[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
snake_case_ : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
snake_case_ : str = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
snake_case_ : Optional[int] = True
snake_case_ : Union[str, Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
snake_case_ : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
snake_case_ : int = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
snake_case_ : Any = len(lowerCAmelCase__ )
# Check attention is always last and order is fine
snake_case_ : List[Any] = True
snake_case_ : Optional[Any] = True
snake_case_ : Any = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
snake_case_ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
snake_case_ : Optional[Any] = 1
self.assertEqual(out_len + added_hidden_states , len(lowerCAmelCase__ ) )
snake_case_ : Dict = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def _A ( self :Dict ) -> List[Any]:
'''simple docstring'''
def check_hidden_states_output(lowerCAmelCase__ :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str] ):
snake_case_ : int = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
snake_case_ : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
snake_case_ : Union[str, Any] = outputs.hidden_states
snake_case_ : int = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# YOLOS has a different seq_length
snake_case_ : int = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
snake_case_, snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ : Optional[int] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _A ( self :str ) -> Any:
'''simple docstring'''
snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*lowerCAmelCase__ )
@slow
def _A ( self :Optional[int] ) -> int:
'''simple docstring'''
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ : List[Any] = YolosModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class A_ (unittest.TestCase ):
"""simple docstring"""
@cached_property
def _A ( self :Tuple ) -> List[str]:
'''simple docstring'''
return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None
@slow
def _A ( self :Tuple ) -> Tuple:
'''simple docstring'''
snake_case_ : str = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(lowerCAmelCase__ )
snake_case_ : Dict = self.default_image_processor
snake_case_ : List[str] = prepare_img()
snake_case_ : List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
snake_case_ : Optional[int] = model(inputs.pixel_values )
# verify outputs
snake_case_ : int = torch.Size((1, 100, 92) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
snake_case_ : str = torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=lowerCAmelCase__ , )
snake_case_ : Optional[int] = torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
# verify postprocessing
snake_case_ : Optional[int] = image_processor.post_process_object_detection(
lowerCAmelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
snake_case_ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(lowerCAmelCase__ )
snake_case_ : List[str] = [75, 75, 17, 63, 17]
snake_case_ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(lowerCAmelCase__ )
self.assertEqual(len(results["scores"] ) , 5 )
self.assertTrue(torch.allclose(results["scores"] , lowerCAmelCase__ , atol=1E-4 ) )
self.assertSequenceEqual(results["labels"].tolist() , lowerCAmelCase__ )
self.assertTrue(torch.allclose(results["boxes"][0, :] , lowerCAmelCase__ ) )
| 656 |
'''simple docstring'''
from collections import deque
from math import floor
from random import random
from time import time
class A_ :
"""simple docstring"""
def __init__( self :Dict ) -> List[str]:
'''simple docstring'''
snake_case_ : int = {}
def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
snake_case_ : Optional[int] = [[w, v]]
if not self.graph.get(lowerCAmelCase__ ):
snake_case_ : Dict = []
def _A ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
return list(self.graph )
def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(lowerCAmelCase__ )
def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str:
'''simple docstring'''
if s == d:
return []
snake_case_ : str = []
snake_case_ : Optional[int] = []
if s == -2:
snake_case_ : List[Any] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Dict = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : str = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(lowerCAmelCase__ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[Any] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return visited
def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int:
'''simple docstring'''
if c == -1:
snake_case_ : Any = floor(random() * 10_000 ) + 10
for i in range(lowerCAmelCase__ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
snake_case_ : Optional[Any] = floor(random() * c ) + 1
if n != i:
self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 )
def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict:
'''simple docstring'''
snake_case_ : Union[str, Any] = deque()
snake_case_ : Optional[Any] = []
if s == -2:
snake_case_ : Tuple = list(self.graph )[0]
d.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
while d:
snake_case_ : Optional[int] = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Tuple = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]:
'''simple docstring'''
return len(self.graph[u] )
def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : str = []
snake_case_ : str = []
if s == -2:
snake_case_ : Optional[Any] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : int = s
snake_case_ : Optional[int] = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[Any] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : List[str] = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(lowerCAmelCase__ ) != 0:
snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Union[str, Any] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return sorted_nodes
def _A ( self :Dict ) -> Any:
'''simple docstring'''
snake_case_ : Dict = []
snake_case_ : Any = []
snake_case_ : str = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Optional[int] = -2
snake_case_ : Any = []
snake_case_ : List[Any] = s
snake_case_ : int = False
snake_case_ : Optional[int] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Any = len(lowerCAmelCase__ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : Optional[int] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Optional[Any] = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : str = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : List[str] = s
snake_case_ : Optional[int] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return list(lowerCAmelCase__ )
def _A ( self :Tuple ) -> List[str]:
'''simple docstring'''
snake_case_ : List[Any] = []
snake_case_ : Tuple = []
snake_case_ : List[str] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : str = -2
snake_case_ : List[str] = []
snake_case_ : List[Any] = s
snake_case_ : List[str] = False
snake_case_ : Dict = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Any = len(lowerCAmelCase__ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Tuple = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[int] = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : int = s
snake_case_ : Union[str, Any] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return False
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str:
'''simple docstring'''
snake_case_ : Optional[int] = time()
self.dfs(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : Optional[Any] = time()
return end - begin
def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Any = time()
self.bfs(lowerCAmelCase__ )
snake_case_ : Any = time()
return end - begin
class A_ :
"""simple docstring"""
def __init__( self :Tuple ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[Any] = {}
def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
snake_case_ : str = [[w, v]]
# add the other way
if self.graph.get(lowerCAmelCase__ ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
snake_case_ : List[str] = [[w, u]]
def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(lowerCAmelCase__ )
# the other way round
if self.graph.get(lowerCAmelCase__ ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(lowerCAmelCase__ )
def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int:
'''simple docstring'''
if s == d:
return []
snake_case_ : Any = []
snake_case_ : Dict = []
if s == -2:
snake_case_ : Optional[int] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Tuple = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[str] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(lowerCAmelCase__ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : str = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return visited
def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]:
'''simple docstring'''
if c == -1:
snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10
for i in range(lowerCAmelCase__ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
snake_case_ : str = floor(random() * c ) + 1
if n != i:
self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 )
def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]:
'''simple docstring'''
snake_case_ : List[str] = deque()
snake_case_ : Optional[Any] = []
if s == -2:
snake_case_ : List[Any] = list(self.graph )[0]
d.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
while d:
snake_case_ : Optional[int] = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return len(self.graph[u] )
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
snake_case_ : Any = []
snake_case_ : Optional[Any] = []
snake_case_ : Optional[Any] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Tuple = -2
snake_case_ : Optional[int] = []
snake_case_ : Tuple = s
snake_case_ : Optional[Any] = False
snake_case_ : Optional[int] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : Optional[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : Tuple = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Optional[int] = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[int] = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : List[Any] = s
snake_case_ : Dict = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return list(lowerCAmelCase__ )
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Optional[Any] = []
snake_case_ : int = []
snake_case_ : List[str] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Tuple = -2
snake_case_ : int = []
snake_case_ : int = s
snake_case_ : Optional[Any] = False
snake_case_ : List[Any] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : Union[str, Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : Optional[Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Optional[Any] = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[int] = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = s
snake_case_ : Tuple = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return False
def _A ( self :Any ) -> Tuple:
'''simple docstring'''
return list(self.graph )
def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str:
'''simple docstring'''
snake_case_ : List[str] = time()
self.dfs(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : List[Any] = time()
return end - begin
def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int:
'''simple docstring'''
snake_case_ : List[str] = time()
self.bfs(lowerCAmelCase__ )
snake_case_ : Tuple = time()
return end - begin
| 656 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__lowerCamelCase : str = logging.get_logger(__name__)
class A_ (a_ ):
"""simple docstring"""
a__ = ['''input_features''', '''attention_mask''']
def __init__( self :Optional[Any] , lowerCAmelCase__ :str=80 , lowerCAmelCase__ :Optional[Any]=16_000 , lowerCAmelCase__ :List[str]=80 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :Union[str, Any]=True , **lowerCAmelCase__ :Tuple , ) -> List[str]:
'''simple docstring'''
super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ )
snake_case_ : List[str] = num_mel_bins
snake_case_ : Any = do_ceptral_normalize
snake_case_ : Tuple = normalize_means
snake_case_ : Optional[int] = normalize_vars
snake_case_ : Dict = True
def _A ( self :List[Any] , lowerCAmelCase__ :np.ndarray , ) -> np.ndarray:
'''simple docstring'''
snake_case_ : Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
snake_case_ : Dict = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 )
snake_case_ : Union[str, Any] = ta_kaldi.fbank(lowerCAmelCase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def _A ( lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[bool] = True , lowerCAmelCase__ :Optional[bool] = True , lowerCAmelCase__ :float = 0.0 , ) -> np.ndarray:
'''simple docstring'''
if normalize_means:
snake_case_ : int = x[:input_length].mean(axis=0 )
snake_case_ : List[str] = np.subtract(lowerCAmelCase__ , lowerCAmelCase__ )
if normalize_vars:
snake_case_ : Union[str, Any] = x[:input_length].std(axis=0 )
snake_case_ : int = np.divide(lowerCAmelCase__ , lowerCAmelCase__ )
if input_length < x.shape[0]:
snake_case_ : Union[str, Any] = padding_value
# make sure array is in float32
snake_case_ : Union[str, Any] = x.astype(np.floataa )
return x
def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[np.ndarray] , lowerCAmelCase__ :Optional[np.ndarray] = None ) -> List[np.ndarray]:
'''simple docstring'''
snake_case_ : int = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(lowerCAmelCase__ , lowerCAmelCase__ , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
def __call__( self :Union[str, Any] , lowerCAmelCase__ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase__ :Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[bool] = None , **lowerCAmelCase__ :Optional[int] , ) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
snake_case_ : Optional[int] = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
snake_case_ : Union[str, Any] = is_batched_numpy or (
isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
snake_case_ : List[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ):
snake_case_ : Optional[int] = np.asarray(lowerCAmelCase__ , dtype=np.floataa )
elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
snake_case_ : Optional[int] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
snake_case_ : Tuple = [raw_speech]
# extract fbank features
snake_case_ : int = [self._extract_fbank_features(lowerCAmelCase__ ) for waveform in raw_speech]
# convert into correct format for padding
snake_case_ : int = BatchFeature({"input_features": features} )
snake_case_ : Optional[int] = self.pad(
lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , )
# make sure list is in array format
snake_case_ : str = padded_inputs.get("input_features" )
if isinstance(input_features[0] , lowerCAmelCase__ ):
snake_case_ : Tuple = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_features]
snake_case_ : Any = padded_inputs.get("attention_mask" )
if attention_mask is not None:
snake_case_ : str = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
snake_case_ : int = (
np.array(lowerCAmelCase__ , dtype=np.intaa )
if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD
else None
)
snake_case_ : Dict = self.normalize(
padded_inputs["input_features"] , attention_mask=lowerCAmelCase__ )
if return_tensors is not None:
snake_case_ : List[str] = padded_inputs.convert_to_tensors(lowerCAmelCase__ )
return padded_inputs
| 656 |
'''simple docstring'''
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
__lowerCamelCase : List[str] = re.compile(R'''\s+''')
def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]:
"""simple docstring"""
return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()}
def __UpperCAmelCase ( __magic_name__ )-> str:
"""simple docstring"""
snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()]
return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )}
def __UpperCAmelCase ( __magic_name__ )-> int:
"""simple docstring"""
snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] )
return {"alpha_frac": alpha_frac}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple:
"""simple docstring"""
if example["hash"] in uniques:
uniques.remove(example["hash"] )
return True
else:
return False
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple:
"""simple docstring"""
snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"]
snake_case_ : Optional[Any] = example["content"].splitlines()
for _, line in zip(range(__magic_name__ ) ,__magic_name__ ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]:
"""simple docstring"""
snake_case_ : str = ["unit tests", "test file", "configuration file"]
snake_case_ : int = example["content"].splitlines()
snake_case_ : Optional[Any] = 0
snake_case_ : Any = 0
# first test
for _, line in zip(range(__magic_name__ ) ,__magic_name__ ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
snake_case_ : Tuple = example["content"].count("\n" )
snake_case_ : int = int(coeff * nlines )
for line in lines:
count_config += line.lower().count("config" )
count_test += line.lower().count("test" )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def __UpperCAmelCase ( __magic_name__ )-> str:
"""simple docstring"""
snake_case_ : List[Any] = ["def ", "class ", "for ", "while "]
snake_case_ : Optional[Any] = example["content"].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]:
"""simple docstring"""
snake_case_ : Tuple = example["content"].splitlines()
snake_case_ : Tuple = 0
for line in lines:
counter += line.lower().count("=" )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"]
snake_case_ : int = len(example["content"] ) / len(__magic_name__ )
return {"ratio": ratio}
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Union[str, Any] = {}
results.update(get_hash(__magic_name__ ) )
results.update(line_stats(__magic_name__ ) )
results.update(alpha_stats(__magic_name__ ) )
results.update(char_token_ratio(__magic_name__ ) )
results.update(is_autogenerated(__magic_name__ ) )
results.update(is_config_or_test(__magic_name__ ) )
results.update(has_no_keywords(__magic_name__ ) )
results.update(has_few_assignments(__magic_name__ ) )
return results
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple:
"""simple docstring"""
if not check_uniques(__magic_name__ ,__magic_name__ ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def __UpperCAmelCase ( __magic_name__ )-> Dict:
"""simple docstring"""
with open(__magic_name__ ,"rb" ) as f_in:
with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out:
shutil.copyfileobj(__magic_name__ ,__magic_name__ )
os.unlink(__magic_name__ )
# Settings
__lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments)
__lowerCamelCase : str = parser.parse_args()
if args.num_workers is None:
__lowerCamelCase : List[Any] = multiprocessing.cpu_count()
__lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
__lowerCamelCase : Any = time.time()
__lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''')
print(f'''Time to load dataset: {time.time()-t_start:.2f}''')
# Run preprocessing
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers)
print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''')
# Deduplicate hashes
__lowerCamelCase : Any = set(ds.unique('''hash'''))
__lowerCamelCase : Optional[int] = len(uniques) / len(ds)
print(f'''Fraction of duplicates: {1-frac:.2%}''')
# Deduplicate data and apply heuristics
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args})
print(f'''Time to filter dataset: {time.time()-t_start:.2f}''')
print(f'''Size of filtered dataset: {len(ds_filter)}''')
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''')
print(f'''Size of deduplicate dataset: {len(ds_filter)}''')
# Save data in batches of samples_per_file
__lowerCamelCase : List[Any] = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / '''duplicate_clusters.json''', '''w''') as f:
json.dump(duplicate_clusters, f)
__lowerCamelCase : List[str] = output_dir / '''data'''
data_dir.mkdir(exist_ok=True)
__lowerCamelCase : int = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
__lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''')
__lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
| 656 | 1 |
'''simple docstring'''
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def __UpperCAmelCase ( __magic_name__ )-> str:
"""simple docstring"""
return "".join(sorted(__magic_name__ ) )
def __UpperCAmelCase ( __magic_name__ )-> list[str]:
"""simple docstring"""
return word_by_signature[signature(__magic_name__ )]
__lowerCamelCase : str = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''')
__lowerCamelCase : Optional[int] = sorted({word.strip().lower() for word in data.splitlines()})
__lowerCamelCase : Optional[int] = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
__lowerCamelCase : Any = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('''anagrams.txt''', '''w''') as file:
file.write('''all_anagrams = \n ''')
file.write(pprint.pformat(all_anagrams))
| 656 |
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 )
snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 )
snake_case_ : Tuple = Accelerator()
snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ )
try:
pickle.loads(pickle.dumps(lowerCAmelCase__ ) )
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 656 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowerCamelCase : List[str] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Tuple = ['''DeiTFeatureExtractor''']
__lowerCamelCase : Optional[Any] = ['''DeiTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[Any] = [
'''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DeiTForImageClassification''',
'''DeiTForImageClassificationWithTeacher''',
'''DeiTForMaskedImageModeling''',
'''DeiTModel''',
'''DeiTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = [
'''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFDeiTForImageClassification''',
'''TFDeiTForImageClassificationWithTeacher''',
'''TFDeiTForMaskedImageModeling''',
'''TFDeiTModel''',
'''TFDeiTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 656 |
'''simple docstring'''
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__lowerCamelCase : Any = '''src/transformers'''
# This is to make sure the transformers module imported is the one in the repo.
__lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS)
__lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''')
__lowerCamelCase : Any = {
'''DecisionTransformerConfig''',
'''EncoderDecoderConfig''',
'''MusicgenConfig''',
'''RagConfig''',
'''SpeechEncoderDecoderConfig''',
'''TimmBackboneConfig''',
'''VisionEncoderDecoderConfig''',
'''VisionTextDualEncoderConfig''',
'''LlamaConfig''',
}
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
snake_case_ : Tuple = None
# source code of `config_class`
snake_case_ : List[Any] = inspect.getsource(__magic_name__ )
snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith("/" ):
snake_case_ : Optional[Any] = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
snake_case_ : str = F'''https://huggingface.co/{ckpt_name}'''
if ckpt_link == ckpt_link_from_name:
snake_case_ : Dict = ckpt_name
break
return checkpoint
def __UpperCAmelCase ( )-> Dict:
"""simple docstring"""
snake_case_ : Optional[int] = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ )
snake_case_ : Union[str, Any] = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(__magic_name__ )
if len(__magic_name__ ) > 0:
snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) )
raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 656 | 1 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __UpperCAmelCase ( __magic_name__=None )-> List[str]:
"""simple docstring"""
if subparsers is not None:
snake_case_ : List[str] = subparsers.add_parser("test" )
else:
snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" ,default=__magic_name__ ,help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) ,)
if subparsers is not None:
parser.set_defaults(func=__magic_name__ )
return parser
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
snake_case_ : str = script_name
else:
snake_case_ : Any = F'''--config_file={args.config_file} {script_name}'''
snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split()
snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Dict = test_command_parser()
snake_case_ : Dict = parser.parse_args()
test_command(__magic_name__ )
if __name__ == "__main__":
main()
| 656 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase : List[str] = logging.get_logger(__name__)
__lowerCamelCase : int = {
'''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class A_ (a_ ):
"""simple docstring"""
a__ = '''cvt'''
def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
snake_case_ : int = num_channels
snake_case_ : int = patch_sizes
snake_case_ : Optional[Any] = patch_stride
snake_case_ : Dict = patch_padding
snake_case_ : Tuple = embed_dim
snake_case_ : Optional[int] = num_heads
snake_case_ : Union[str, Any] = depth
snake_case_ : Optional[int] = mlp_ratio
snake_case_ : Tuple = attention_drop_rate
snake_case_ : str = drop_rate
snake_case_ : Tuple = drop_path_rate
snake_case_ : Any = qkv_bias
snake_case_ : Union[str, Any] = cls_token
snake_case_ : int = qkv_projection_method
snake_case_ : Any = kernel_qkv
snake_case_ : Union[str, Any] = padding_kv
snake_case_ : str = stride_kv
snake_case_ : Dict = padding_q
snake_case_ : Tuple = stride_q
snake_case_ : Any = initializer_range
snake_case_ : Any = layer_norm_eps
| 656 | 1 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class A_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any]=7 , lowerCAmelCase__ :List[str]=3 , lowerCAmelCase__ :Optional[Any]=30 , lowerCAmelCase__ :Optional[Any]=400 , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :int=[0.5, 0.5, 0.5] , lowerCAmelCase__ :List[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Union[str, Any]=1 / 255 , lowerCAmelCase__ :Dict=True , ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Dict = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333}
snake_case_ : int = parent
snake_case_ : Optional[int] = batch_size
snake_case_ : Tuple = num_channels
snake_case_ : Any = min_resolution
snake_case_ : Optional[Any] = max_resolution
snake_case_ : Optional[int] = do_resize
snake_case_ : List[str] = size
snake_case_ : Optional[Any] = do_normalize
snake_case_ : List[str] = image_mean
snake_case_ : Tuple = image_std
snake_case_ : Tuple = do_rescale
snake_case_ : List[str] = rescale_factor
snake_case_ : str = do_pad
def _A ( self :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _A ( self :int , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int]=False ) -> List[str]:
'''simple docstring'''
if not batched:
snake_case_ : Dict = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
snake_case_, snake_case_ : Optional[int] = image.size
else:
snake_case_, snake_case_ : Union[str, Any] = image.shape[1], image.shape[2]
if w < h:
snake_case_ : Tuple = int(self.size["shortest_edge"] * h / w )
snake_case_ : List[str] = self.size["shortest_edge"]
elif w > h:
snake_case_ : List[Any] = self.size["shortest_edge"]
snake_case_ : Union[str, Any] = int(self.size["shortest_edge"] * w / h )
else:
snake_case_ : Any = self.size["shortest_edge"]
snake_case_ : str = self.size["shortest_edge"]
else:
snake_case_ : str = []
for image in image_inputs:
snake_case_, snake_case_ : Optional[Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case_ : str = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
snake_case_ : int = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = DeformableDetrImageProcessor if is_vision_available() else None
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = DeformableDetrImageProcessingTester(self )
@property
def _A ( self :List[str] ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _A ( self :Dict ) -> Tuple:
'''simple docstring'''
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "image_mean" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "image_std" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_rescale" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_pad" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) )
def _A ( self :Optional[int] ) -> Dict:
'''simple docstring'''
snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
snake_case_ : str = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ )
self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
def _A ( self :Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def _A ( self :Optional[int] ) -> int:
'''simple docstring'''
snake_case_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
snake_case_ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case_, snake_case_ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_, snake_case_ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
snake_case_ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _A ( self :List[str] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
snake_case_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case_, snake_case_ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
snake_case_, snake_case_ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _A ( self :Any ) -> str:
'''simple docstring'''
snake_case_ : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
snake_case_ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case_, snake_case_ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : Tuple = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
snake_case_, snake_case_ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
snake_case_ : List[str] = json.loads(f.read() )
snake_case_ : str = {"image_id": 39_769, "annotations": target}
# encode them
snake_case_ : List[str] = DeformableDetrImageProcessor()
snake_case_ : Optional[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors="pt" )
# verify pixel values
snake_case_ : List[Any] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__ )
snake_case_ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
# verify area
snake_case_ : int = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__ ) )
# verify boxes
snake_case_ : List[str] = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__ )
snake_case_ : int = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3 ) )
# verify image_id
snake_case_ : List[str] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__ ) )
# verify is_crowd
snake_case_ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__ ) )
# verify class_labels
snake_case_ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__ ) )
# verify orig_size
snake_case_ : List[str] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__ ) )
# verify size
snake_case_ : str = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__ ) )
@slow
def _A ( self :Optional[int] ) -> Dict:
'''simple docstring'''
snake_case_ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
snake_case_ : Optional[Any] = json.loads(f.read() )
snake_case_ : Any = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target}
snake_case_ : Tuple = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
snake_case_ : Union[str, Any] = DeformableDetrImageProcessor(format="coco_panoptic" )
snake_case_ : List[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors="pt" )
# verify pixel values
snake_case_ : Optional[int] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__ )
snake_case_ : List[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
# verify area
snake_case_ : Optional[int] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__ ) )
# verify boxes
snake_case_ : str = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__ )
snake_case_ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3 ) )
# verify image_id
snake_case_ : Any = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__ ) )
# verify is_crowd
snake_case_ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__ ) )
# verify class_labels
snake_case_ : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__ ) )
# verify masks
snake_case_ : Tuple = 822_873
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCAmelCase__ )
# verify orig_size
snake_case_ : int = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__ ) )
# verify size
snake_case_ : Tuple = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__ ) )
| 656 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
__lowerCamelCase : str = '''\
@inproceedings{snover-etal-2006-study,
title = "A Study of Translation Edit Rate with Targeted Human Annotation",
author = "Snover, Matthew and
Dorr, Bonnie and
Schwartz, Rich and
Micciulla, Linnea and
Makhoul, John",
booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",
month = aug # " 8-12",
year = "2006",
address = "Cambridge, Massachusetts, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2006.amta-papers.25",
pages = "223--231",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__lowerCamelCase : Dict = '''\
TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a
hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu
(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found
here: https://github.com/jhclark/tercom.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.
'''
__lowerCamelCase : int = '''
Produces TER scores alongside the number of edits and reference length.
Args:
predictions (list of str): The system stream (a sequence of segments).
references (list of list of str): A list of one or more reference streams (each a sequence of segments).
normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,
as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.
Only applies if `normalized = True`. Defaults to `False`.
case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.
Returns:
\'score\' (float): TER score (num_edits / sum_ref_lengths * 100)
\'num_edits\' (int): The cumulative number of edits
\'ref_length\' (float): The cumulative average reference length
Examples:
Example 1:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}
Example 2:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}
Example 3:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... normalized=True,
... case_sensitive=True)
>>> print(results)
{\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}
Example 4:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}
Example 5:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
if version.parse(scb.__version__ ) < version.parse("1.4.12" ):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
"You can install it with `pip install \"sacrebleu>=1.4.12\"`." )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[
"https://github.com/jhclark/tercom",
] , )
def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[str] = len(references[0] )
if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )]
snake_case_ : List[str] = TER(
normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , )
snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ )
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 656 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> int:
"""simple docstring"""
return int(input_a == input_a == 0 )
def __UpperCAmelCase ( )-> None:
"""simple docstring"""
print("Truth Table of NOR Gate:" )
print("| Input 1 | Input 2 | Output |" )
print(F'''| 0 | 0 | {nor_gate(0 ,0 )} |''' )
print(F'''| 0 | 1 | {nor_gate(0 ,1 )} |''' )
print(F'''| 1 | 0 | {nor_gate(1 ,0 )} |''' )
print(F'''| 1 | 1 | {nor_gate(1 ,1 )} |''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 656 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Any = {
"repo_name": ["test_repo1", "test_repo2", "test_repo3"],
"path": ["test_1.py", "test_2.py", "unit_test.py"],
"content": ["a " * 20, "a " * 30, "b " * 7],
}
snake_case_ : int = Dataset.from_dict(__magic_name__ )
return dataset
class A_ (a_ ):
"""simple docstring"""
def _A ( self :List[str] ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = get_dataset()
snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[int] = get_dataset()
snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 2 )
print(lowerCAmelCase__ )
self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 )
self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
| 656 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=10 )-> Union[str, Any]:
"""simple docstring"""
snake_case_ : Any = []
for _ in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=10 )-> Any:
"""simple docstring"""
snake_case_ : Optional[int] = []
for step in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : List[Any] = os.path.join(__magic_name__ ,"schedule.bin" )
torch.save(scheduler.state_dict() ,__magic_name__ )
snake_case_ : Dict = torch.load(__magic_name__ )
scheduler.load_state_dict(__magic_name__ )
return lrs
@require_torch
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Optional[int]:
'''simple docstring'''
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ )
def _A ( self :Any ) -> Dict:
'''simple docstring'''
snake_case_ : str = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__ )
snake_case_ : Optional[int] = torch.tensor([0.4, 0.2, -0.5] )
snake_case_ : Any = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
snake_case_ : str = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
snake_case_ : List[str] = criterion(lowerCAmelCase__ , lowerCAmelCase__ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def _A ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
snake_case_ : Optional[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__ )
snake_case_ : Any = torch.tensor([0.4, 0.2, -0.5] )
snake_case_ : str = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
snake_case_ : int = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , )
for _ in range(1_000 ):
snake_case_ : Union[str, Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class A_ (unittest.TestCase ):
"""simple docstring"""
a__ = nn.Linear(50 , 50 ) if is_torch_available() else None
a__ = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
a__ = 10
def _A ( self :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str]=None ) -> Dict:
'''simple docstring'''
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__ )
def _A ( self :str ) -> List[str]:
'''simple docstring'''
snake_case_ : str = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
snake_case_ : Optional[Any] = {
get_constant_schedule: ({}, [1_0.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4],
),
}
for scheduler_func, data in scheds.items():
snake_case_, snake_case_ : Optional[int] = data
snake_case_ : Optional[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__ )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
snake_case_ : Optional[int] = unwrap_schedule(lowerCAmelCase__ , self.num_steps )
self.assertListAlmostEqual(
lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
snake_case_ : Dict = scheduler_func(self.optimizer , **lowerCAmelCase__ )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__ ) # wrap to test picklability of the schedule
snake_case_ : Union[str, Any] = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F'''failed for {scheduler_func} in save and reload''' )
class A_ :
"""simple docstring"""
def __init__( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Dict = fn
def __call__( self :Tuple , *lowerCAmelCase__ :str , **lowerCAmelCase__ :Optional[int] ) -> List[str]:
'''simple docstring'''
return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__ )
@classmethod
def _A ( self :Tuple , lowerCAmelCase__ :int ) -> Dict:
'''simple docstring'''
snake_case_ : Any = list(map(self , scheduler.lr_lambdas ) )
| 656 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable
__lowerCamelCase : Dict = {
'''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''],
'''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : int = [
'''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTNeoXJapaneseForCausalLM''',
'''GPTNeoXJapaneseLayer''',
'''GPTNeoXJapaneseModel''',
'''GPTNeoXJapanesePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox_japanese import (
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
else:
import sys
__lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 656 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ = 10**12 )-> int:
"""simple docstring"""
snake_case_ : Dict = 1
snake_case_ : str = 0
snake_case_ : Dict = 1
snake_case_ : Union[str, Any] = 1
while numerator <= 2 * min_total - 1:
prev_numerator += 2 * numerator
numerator += 2 * prev_numerator
prev_denominator += 2 * denominator
denominator += 2 * prev_denominator
return (denominator + 1) // 2
if __name__ == "__main__":
print(f'''{solution() = }''')
| 656 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ )-> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ):
raise ValueError("Length must be a positive integer." )
return [n * (2 * n - 1) for n in range(__magic_name__ )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 656 | 1 |
'''simple docstring'''
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__lowerCamelCase : int = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='''relu'''))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='''relu'''))
classifier.add(layers.Dense(units=1, activation='''sigmoid'''))
# Compiling the CNN
classifier.compile(
optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy''']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__lowerCamelCase : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__lowerCamelCase : List[Any] = train_datagen.flow_from_directory(
'''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
__lowerCamelCase : Tuple = test_datagen.flow_from_directory(
'''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('''cnn.h5''')
# Part 3 - Making new predictions
__lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.load_img(
'''dataset/single_prediction/image.png''', target_size=(64, 64)
)
__lowerCamelCase : Union[str, Any] = tf.keras.preprocessing.image.img_to_array(test_image)
__lowerCamelCase : Optional[int] = np.expand_dims(test_image, axis=0)
__lowerCamelCase : Optional[int] = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__lowerCamelCase : Union[str, Any] = '''Normal'''
if result[0][0] == 1:
__lowerCamelCase : Optional[int] = '''Abnormality detected'''
| 656 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __UpperCAmelCase ( __magic_name__=None )-> List[str]:
"""simple docstring"""
if subparsers is not None:
snake_case_ : List[str] = subparsers.add_parser("test" )
else:
snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" ,default=__magic_name__ ,help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) ,)
if subparsers is not None:
parser.set_defaults(func=__magic_name__ )
return parser
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
snake_case_ : str = script_name
else:
snake_case_ : Any = F'''--config_file={args.config_file} {script_name}'''
snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split()
snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Dict = test_command_parser()
snake_case_ : Dict = parser.parse_args()
test_command(__magic_name__ )
if __name__ == "__main__":
main()
| 656 | 1 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__lowerCamelCase : str = logging.getLogger(__name__)
@dataclass
class A_ :
"""simple docstring"""
a__ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
a__ = field(
default=a_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
a__ = field(
default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} )
a__ = field(
default=a_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
a__ = field(default=a_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
a__ = field(
default=a_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class A_ :
"""simple docstring"""
a__ = field(
metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} )
a__ = field(
default=a_ , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , )
a__ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
a__ = field(
default=a_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def __UpperCAmelCase ( )-> List[str]:
"""simple docstring"""
snake_case_ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case_, snake_case_, snake_case_ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case_, snake_case_, snake_case_ : List[Any] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
" --overwrite_output_dir to overcome." )
snake_case_ : str = import_module("tasks" )
try:
snake_case_ : Dict = getattr(__magic_name__ ,model_args.task_type )
snake_case_ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s" ,__magic_name__ )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
snake_case_ : Any = token_classification_task.get_labels(data_args.labels )
snake_case_ : Dict[int, str] = dict(enumerate(__magic_name__ ) )
snake_case_ : List[str] = len(__magic_name__ )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=__magic_name__ ,idalabel=__magic_name__ ,labelaid={label: i for i, label in enumerate(__magic_name__ )} ,cache_dir=model_args.cache_dir ,)
snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast ,)
snake_case_ : Any = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=__magic_name__ ,cache_dir=model_args.cache_dir ,)
# Get datasets
snake_case_ : str = (
TokenClassificationDataset(
token_classification_task=__magic_name__ ,data_dir=data_args.data_dir ,tokenizer=__magic_name__ ,labels=__magic_name__ ,model_type=config.model_type ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,)
if training_args.do_train
else None
)
snake_case_ : List[str] = (
TokenClassificationDataset(
token_classification_task=__magic_name__ ,data_dir=data_args.data_dir ,tokenizer=__magic_name__ ,labels=__magic_name__ ,model_type=config.model_type ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,)
if training_args.do_eval
else None
)
def align_predictions(__magic_name__ ,__magic_name__ ) -> Tuple[List[int], List[int]]:
snake_case_ : Dict = np.argmax(__magic_name__ ,axis=2 )
snake_case_, snake_case_ : Dict = preds.shape
snake_case_ : Tuple = [[] for _ in range(__magic_name__ )]
snake_case_ : Tuple = [[] for _ in range(__magic_name__ )]
for i in range(__magic_name__ ):
for j in range(__magic_name__ ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(__magic_name__ ) -> Dict:
snake_case_, snake_case_ : int = align_predictions(p.predictions ,p.label_ids )
return {
"accuracy_score": accuracy_score(__magic_name__ ,__magic_name__ ),
"precision": precision_score(__magic_name__ ,__magic_name__ ),
"recall": recall_score(__magic_name__ ,__magic_name__ ),
"f1": fa_score(__magic_name__ ,__magic_name__ ),
}
# Data collator
snake_case_ : Optional[int] = DataCollatorWithPadding(__magic_name__ ,pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
snake_case_ : Tuple = Trainer(
model=__magic_name__ ,args=__magic_name__ ,train_dataset=__magic_name__ ,eval_dataset=__magic_name__ ,compute_metrics=__magic_name__ ,data_collator=__magic_name__ ,)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
snake_case_ : Dict = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
snake_case_ : Tuple = trainer.evaluate()
snake_case_ : int = os.path.join(training_args.output_dir ,"eval_results.txt" )
if trainer.is_world_process_zero():
with open(__magic_name__ ,"w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(" %s = %s" ,__magic_name__ ,__magic_name__ )
writer.write("%s = %s\n" % (key, value) )
results.update(__magic_name__ )
# Predict
if training_args.do_predict:
snake_case_ : List[str] = TokenClassificationDataset(
token_classification_task=__magic_name__ ,data_dir=data_args.data_dir ,tokenizer=__magic_name__ ,labels=__magic_name__ ,model_type=config.model_type ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.test ,)
snake_case_, snake_case_, snake_case_ : str = trainer.predict(__magic_name__ )
snake_case_, snake_case_ : List[Any] = align_predictions(__magic_name__ ,__magic_name__ )
snake_case_ : Optional[Any] = os.path.join(training_args.output_dir ,"test_results.txt" )
if trainer.is_world_process_zero():
with open(__magic_name__ ,"w" ) as writer:
for key, value in metrics.items():
logger.info(" %s = %s" ,__magic_name__ ,__magic_name__ )
writer.write("%s = %s\n" % (key, value) )
# Save predictions
snake_case_ : Optional[Any] = os.path.join(training_args.output_dir ,"test_predictions.txt" )
if trainer.is_world_process_zero():
with open(__magic_name__ ,"w" ) as writer:
with open(os.path.join(data_args.data_dir ,"test.txt" ) ,"r" ) as f:
token_classification_task.write_predictions_to_file(__magic_name__ ,__magic_name__ ,__magic_name__ )
return results
def __UpperCAmelCase ( __magic_name__ )-> Dict:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 656 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCamelCase : str = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
__lowerCamelCase : int = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
__lowerCamelCase : List[str] = R'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , )
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 656 | 1 |
'''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def __UpperCAmelCase ( )-> Dict:
"""simple docstring"""
snake_case_ : Optional[int] = HfArgumentParser(__magic_name__ )
snake_case_ : str = parser.parse_args_into_dataclasses()[0]
snake_case_ : Tuple = TensorFlowBenchmark(args=__magic_name__ )
try:
snake_case_ : Optional[Any] = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
snake_case_ : Dict = "Arg --no_{0} is no longer used, please use --no-{0} instead."
snake_case_ : Tuple = " ".join(str(__magic_name__ ).split(" " )[:-1] )
snake_case_ : Any = ""
snake_case_ : Tuple = eval(str(__magic_name__ ).split(" " )[-1] )
snake_case_ : List[str] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(__magic_name__ )
if len(__magic_name__ ) > 0:
snake_case_ : Union[str, Any] = full_error_msg + begin_error_msg + str(__magic_name__ )
raise ValueError(__magic_name__ )
benchmark.run()
if __name__ == "__main__":
main()
| 656 |
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
__lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
__lowerCamelCase : str = 128022
__lowerCamelCase : List[Any] = 128028
@require_sentencepiece
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = MaMaaaTokenizer
a__ = False
a__ = False
a__ = True
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
super().setUp()
snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
snake_case_ : Optional[int] = Path(self.tmpdirname )
save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] )
snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str:
'''simple docstring'''
return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]:
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def _A ( self :List[str] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : str = "</s>"
snake_case_ : Union[str, Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.get_tokenizer()
snake_case_ : Any = list(tokenizer.get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "</s>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "<s>" )
self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) )
@unittest.skip("Skip this test while all models are still to be uploaded." )
def _A ( self :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def _A ( self :Optional[int] ) -> int:
'''simple docstring'''
snake_case_ : int = self.get_tokenizer()
snake_case_ : List[str] = tokenizer.tokenize("This is a test" )
self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , )
snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] )
self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , "This is a test" )
@slow
def _A ( self :Any ) -> List[Any]:
'''simple docstring'''
snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , )
@require_torch
@require_sentencepiece
@require_tokenizers
class A_ (unittest.TestCase ):
"""simple docstring"""
a__ = '''facebook/m2m100_418M'''
a__ = [
'''In my opinion, there are two levels of response from the French government.''',
'''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''',
]
a__ = [
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
]
# fmt: off
a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2]
@classmethod
def _A ( cls :str ) -> int:
'''simple docstring'''
snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="en" , tgt_lang="fr" )
snake_case_ : List[str] = 1
return cls
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 )
self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 )
self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 )
self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 )
def _A ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.tokenizer.get_vocab()
self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size )
self.assertEqual(vocab["<unk>"] , 3 )
self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ )
def _A ( self :Any ) -> Dict:
'''simple docstring'''
snake_case_ : List[str] = "en"
snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
# fmt: off
snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2]
# fmt: on
snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def _A ( self :Tuple ) -> Tuple:
'''simple docstring'''
snake_case_ : Union[str, Any] = tempfile.mkdtemp()
snake_case_ : int = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(lowerCAmelCase__ )
snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ )
@require_torch
def _A ( self :Optional[Any] ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = "en"
snake_case_ : Tuple = "fr"
snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" )
snake_case_ : Dict = shift_tokens_right(
batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id )
for k in batch:
snake_case_ : str = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : List[str] = "mr"
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
snake_case_ : int = "zh"
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
@require_torch
def _A ( self :str ) -> int:
'''simple docstring'''
snake_case_ : Dict = "mr"
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
snake_case_ : Tuple = "zh"
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
@require_torch
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# en_XX, A, test, EOS
"input_ids": [[128_022, 58, 4_183, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 128_006,
} , )
| 656 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
__lowerCamelCase : str = logging.get_logger(__name__)
class A_ (a_ ):
"""simple docstring"""
def __init__( self :Union[str, Any] , *lowerCAmelCase__ :Any , **lowerCAmelCase__ :Dict ) -> None:
'''simple docstring'''
warnings.warn(
"The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use PoolFormerImageProcessor instead." , lowerCAmelCase__ , )
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
| 656 |
'''simple docstring'''
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__lowerCamelCase : str = '''.'''
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
__lowerCamelCase : Tuple = [
'''Assert''',
'''AssignVariableOp''',
'''EmptyTensorList''',
'''MergeV2Checkpoints''',
'''ReadVariableOp''',
'''ResourceGather''',
'''RestoreV2''',
'''SaveV2''',
'''ShardedFilename''',
'''StatefulPartitionedCall''',
'''StaticRegexFullMatch''',
'''VarHandleOp''',
]
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]:
"""simple docstring"""
snake_case_ : Tuple = SavedModel()
snake_case_ : Dict = []
with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f:
snake_case_ : Dict = json.load(__magic_name__ )["opsets"]
for i in range(1 ,opset + 1 ):
onnx_ops.extend(onnx_opsets[str(__magic_name__ )] )
with open(__magic_name__ ,"rb" ) as f:
saved_model.ParseFromString(f.read() )
snake_case_ : Tuple = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
snake_case_ : str = sorted(__magic_name__ )
snake_case_ : Optional[int] = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(__magic_name__ )
if strict and len(__magic_name__ ) > 0:
raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops )
elif len(__magic_name__ ) > 0:
print(F'''Found the following incompatible ops for the opset {opset}:''' )
print(*__magic_name__ ,sep="\n" )
else:
print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser()
parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''')
parser.add_argument(
'''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.'''
)
parser.add_argument(
'''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.'''
)
parser.add_argument(
'''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)'''
)
__lowerCamelCase : Dict = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 656 | 1 |
'''simple docstring'''
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : int = XCLIPTextConfig()
# derive patch size from model name
snake_case_ : List[str] = model_name.find("patch" )
snake_case_ : Optional[int] = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] )
snake_case_ : str = XCLIPVisionConfig(patch_size=__magic_name__ ,num_frames=__magic_name__ )
if "large" in model_name:
snake_case_ : int = 768
snake_case_ : List[str] = 3072
snake_case_ : Any = 12
snake_case_ : Union[str, Any] = 1024
snake_case_ : int = 4096
snake_case_ : Optional[int] = 16
snake_case_ : str = 24
snake_case_ : List[Any] = 768
snake_case_ : int = 3072
if model_name == "xclip-large-patch14-16-frames":
snake_case_ : List[Any] = 336
snake_case_ : Union[str, Any] = XCLIPConfig.from_text_vision_configs(__magic_name__ ,__magic_name__ )
if "large" in model_name:
snake_case_ : int = 768
return config
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
if name == "token_embedding.weight":
snake_case_ : Union[str, Any] = name.replace("token_embedding.weight" ,"text_model.embeddings.token_embedding.weight" )
if name == "positional_embedding":
snake_case_ : List[str] = name.replace("positional_embedding" ,"text_model.embeddings.position_embedding.weight" )
if "ln_1" in name:
snake_case_ : Optional[Any] = name.replace("ln_1" ,"layer_norm1" )
if "ln_2" in name:
snake_case_ : int = name.replace("ln_2" ,"layer_norm2" )
if "c_fc" in name:
snake_case_ : Tuple = name.replace("c_fc" ,"fc1" )
if "c_proj" in name:
snake_case_ : Dict = name.replace("c_proj" ,"fc2" )
if name.startswith("transformer.resblocks" ):
snake_case_ : Union[str, Any] = name.replace("transformer.resblocks" ,"text_model.encoder.layers" )
if "attn.out_proj" in name and "message" not in name:
snake_case_ : List[Any] = name.replace("attn.out_proj" ,"self_attn.out_proj" )
if "ln_final" in name:
snake_case_ : Dict = name.replace("ln_final" ,"text_model.final_layer_norm" )
# visual encoder
if name == "visual.class_embedding":
snake_case_ : List[Any] = name.replace("visual.class_embedding" ,"vision_model.embeddings.class_embedding" )
if name == "visual.positional_embedding":
snake_case_ : Optional[Any] = name.replace("visual.positional_embedding" ,"vision_model.embeddings.position_embedding.weight" )
if name.startswith("visual.transformer.resblocks" ):
snake_case_ : str = name.replace("visual.transformer.resblocks" ,"vision_model.encoder.layers" )
if "visual.conv1" in name:
snake_case_ : Union[str, Any] = name.replace("visual.conv1" ,"vision_model.embeddings.patch_embedding" )
if "visual.ln_pre" in name:
snake_case_ : int = name.replace("visual.ln_pre" ,"vision_model.pre_layernorm" )
if "visual.ln_post" in name:
snake_case_ : Optional[int] = name.replace("visual.ln_post" ,"vision_model.post_layernorm" )
if "visual.proj" in name:
snake_case_ : str = name.replace("visual.proj" ,"visual_projection.weight" )
if "text_projection" in name:
snake_case_ : Optional[Any] = name.replace("text_projection" ,"text_projection.weight" )
# things on top
if "prompts_visual_proj" in name:
snake_case_ : List[Any] = name.replace("prompts_visual_proj" ,"prompts_visual_projection" )
if "prompts_visual_ln" in name:
snake_case_ : Optional[Any] = name.replace("prompts_visual_ln" ,"prompts_visual_layernorm" )
# mit
if name == "mit.positional_embedding":
snake_case_ : Union[str, Any] = name.replace("positional" ,"position" )
if name.startswith("mit.resblocks" ):
snake_case_ : int = name.replace("mit.resblocks" ,"mit.encoder.layers" )
# prompts generator
if name.startswith("prompts_generator.norm" ):
snake_case_ : Optional[int] = name.replace("prompts_generator.norm" ,"prompts_generator.layernorm" )
return name
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
snake_case_ : List[Any] = orig_state_dict.pop(__magic_name__ )
if "attn.in_proj" in key:
snake_case_ : int = key.split("." )
if key.startswith("visual" ):
snake_case_ : str = key_split[3]
snake_case_ : List[Any] = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
snake_case_ : List[str] = val[
:dim, :
]
snake_case_ : Optional[int] = val[
dim : dim * 2, :
]
snake_case_ : Tuple = val[
-dim:, :
]
else:
snake_case_ : Any = val[
:dim
]
snake_case_ : Optional[int] = val[
dim : dim * 2
]
snake_case_ : Union[str, Any] = val[
-dim:
]
else:
if "weight" in key:
snake_case_ : List[str] = val[
:dim, :
]
snake_case_ : str = val[
dim : dim * 2, :
]
snake_case_ : Any = val[
-dim:, :
]
else:
snake_case_ : Tuple = val[:dim]
snake_case_ : Optional[int] = val[
dim : dim * 2
]
snake_case_ : Optional[Any] = val[-dim:]
elif key.startswith("mit" ):
snake_case_ : int = key_split[2]
snake_case_ : int = config.vision_config.mit_hidden_size
if "weight" in key:
snake_case_ : Dict = val[:dim, :]
snake_case_ : List[str] = val[dim : dim * 2, :]
snake_case_ : List[Any] = val[-dim:, :]
else:
snake_case_ : Optional[int] = val[:dim]
snake_case_ : Any = val[dim : dim * 2]
snake_case_ : Optional[Any] = val[-dim:]
else:
snake_case_ : Optional[Any] = key_split[2]
snake_case_ : int = config.text_config.hidden_size
if "weight" in key:
snake_case_ : str = val[:dim, :]
snake_case_ : int = val[
dim : dim * 2, :
]
snake_case_ : Union[str, Any] = val[-dim:, :]
else:
snake_case_ : Optional[int] = val[:dim]
snake_case_ : Any = val[
dim : dim * 2
]
snake_case_ : str = val[-dim:]
else:
snake_case_ : Any = rename_key(__magic_name__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
snake_case_ : str = val.T
snake_case_ : Any = val
return orig_state_dict
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
if num_frames == 8:
snake_case_ : str = "eating_spaghetti_8_frames.npy"
elif num_frames == 16:
snake_case_ : Union[str, Any] = "eating_spaghetti.npy"
elif num_frames == 32:
snake_case_ : Any = "eating_spaghetti_32_frames.npy"
snake_case_ : str = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video" ,filename=__magic_name__ ,repo_type="dataset" ,)
snake_case_ : Union[str, Any] = np.load(__magic_name__ )
return list(__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=None ,__magic_name__=False )-> str:
"""simple docstring"""
snake_case_ : Any = {
# fully supervised kinetics-400 checkpoints
"xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth",
"xclip-base-patch32-16-frames": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth"
),
"xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth",
"xclip-base-patch16-16-frames": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth"
),
"xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb",
"xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f",
# fully supervised kinetics-600 checkpoints
"xclip-base-patch16-kinetics-600": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth"
),
"xclip-base-patch16-kinetics-600-16-frames": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth"
),
"xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be",
# few shot
"xclip-base-patch16-hmdb-2-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth"
),
"xclip-base-patch16-hmdb-4-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth"
),
"xclip-base-patch16-hmdb-8-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth"
),
"xclip-base-patch16-hmdb-16-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth"
),
"xclip-base-patch16-ucf-2-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth"
),
"xclip-base-patch16-ucf-4-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth"
),
"xclip-base-patch16-ucf-8-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth"
),
"xclip-base-patch16-ucf-16-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth"
),
# zero shot
"xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth",
}
snake_case_ : Union[str, Any] = model_to_url[model_name]
snake_case_ : Optional[int] = 8
if "16-frames" in model_name:
snake_case_ : Union[str, Any] = 16
elif "shot" in model_name:
snake_case_ : Tuple = 32
snake_case_ : Optional[int] = get_xclip_config(__magic_name__ ,__magic_name__ )
snake_case_ : int = XCLIPModel(__magic_name__ )
model.eval()
if "drive" in checkpoint_url:
snake_case_ : Optional[int] = "pytorch_model.bin"
gdown.cached_download(__magic_name__ ,__magic_name__ ,quiet=__magic_name__ )
snake_case_ : List[str] = torch.load(__magic_name__ ,map_location="cpu" )["model"]
else:
snake_case_ : str = torch.hub.load_state_dict_from_url(__magic_name__ )["model"]
snake_case_ : Optional[Any] = convert_state_dict(__magic_name__ ,__magic_name__ )
snake_case_ : Union[str, Any] = XCLIPModel(__magic_name__ )
snake_case_, snake_case_ : Optional[int] = model.load_state_dict(__magic_name__ ,strict=__magic_name__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
snake_case_ : str = 336 if model_name == "xclip-large-patch14-16-frames" else 224
snake_case_ : str = VideoMAEImageProcessor(size=__magic_name__ )
snake_case_ : List[str] = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" )
snake_case_ : Optional[int] = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" )
snake_case_ : Dict = XCLIPProcessor(image_processor=__magic_name__ ,tokenizer=__magic_name__ )
snake_case_ : Union[str, Any] = prepare_video(__magic_name__ )
snake_case_ : Dict = processor(
text=["playing sports", "eating spaghetti", "go shopping"] ,videos=__magic_name__ ,return_tensors="pt" ,padding=__magic_name__ )
print("Shape of pixel values:" ,inputs.pixel_values.shape )
with torch.no_grad():
snake_case_ : str = model(**__magic_name__ )
# Verify outputs
snake_case_ : List[str] = outputs.logits_per_video
snake_case_ : Optional[int] = logits_per_video.softmax(dim=1 )
print("Probs:" ,__magic_name__ )
# kinetics-400
if model_name == "xclip-base-patch32":
snake_case_ : List[str] = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] )
elif model_name == "xclip-base-patch32-16-frames":
snake_case_ : Any = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]] )
elif model_name == "xclip-base-patch16":
snake_case_ : Tuple = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] )
elif model_name == "xclip-base-patch16-16-frames":
snake_case_ : Optional[int] = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]] )
elif model_name == "xclip-large-patch14":
snake_case_ : int = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] )
elif model_name == "xclip-large-patch14-16-frames":
snake_case_ : List[str] = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
snake_case_ : Union[str, Any] = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
snake_case_ : List[Any] = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
snake_case_ : List[str] = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
snake_case_ : Dict = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
snake_case_ : Tuple = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
snake_case_ : Optional[int] = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
snake_case_ : List[Any] = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
snake_case_ : Any = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
snake_case_ : Dict = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
snake_case_ : Dict = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
snake_case_ : Optional[Any] = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
snake_case_ : Union[str, Any] = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]] )
else:
raise ValueError(F'''Model name {model_name} not supported''' )
assert torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
if push_to_hub:
print("Pushing model, processor and slow tokenizer files to the hub..." )
model.push_to_hub(__magic_name__ ,organization="nielsr" )
processor.push_to_hub(__magic_name__ ,organization="nielsr" )
slow_tokenizer.push_to_hub(__magic_name__ ,organization="nielsr" )
if __name__ == "__main__":
__lowerCamelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__lowerCamelCase : str = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 656 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
__lowerCamelCase : List[str] = ['''names''', '''prefix''']
__lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols''']
__lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines''']
__lowerCamelCase : Optional[Any] = ['''date_format''']
@dataclass
class A_ (datasets.BuilderConfig ):
"""simple docstring"""
a__ = ","
a__ = None
a__ = "infer"
a__ = None
a__ = None
a__ = None
a__ = None
a__ = None
a__ = True
a__ = None
a__ = None
a__ = None
a__ = None
a__ = False
a__ = None
a__ = None
a__ = None
a__ = True
a__ = True
a__ = False
a__ = True
a__ = None
a__ = "."
a__ = None
a__ = '"'
a__ = 0
a__ = None
a__ = None
a__ = None
a__ = None
a__ = True
a__ = True
a__ = 0
a__ = True
a__ = False
a__ = None
a__ = 10000
a__ = None
a__ = "strict"
a__ = "error"
a__ = None
def _A ( self :List[str] ) -> Any:
'''simple docstring'''
if self.delimiter is not None:
snake_case_ : Tuple = self.delimiter
if self.column_names is not None:
snake_case_ : List[Any] = self.column_names
@property
def _A ( self :Optional[Any] ) -> int:
'''simple docstring'''
snake_case_ : Optional[int] = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A_ (datasets.ArrowBasedBuilder ):
"""simple docstring"""
a__ = CsvConfig
def _A ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
snake_case_ : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : List[str] = [files]
snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
snake_case_ : str = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : str = [files]
snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table:
'''simple docstring'''
if self.config.features is not None:
snake_case_ : int = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
snake_case_ : str = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' )
raise
| 656 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class A_ (a_ ):
"""simple docstring"""
def __init__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :int ) -> Optional[int]:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
snake_case_ : Union[str, Any] = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ )
@torch.no_grad()
def __call__( self :List[Any] , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :int = 50 , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[str] = "pil" , lowerCAmelCase__ :bool = True , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(self.unet.config.sample_size , lowerCAmelCase__ ):
snake_case_ : Tuple = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
snake_case_ : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(lowerCAmelCase__ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
snake_case_ : Optional[int] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(lowerCAmelCase__ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
snake_case_ : int = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
snake_case_ : Any = self.scheduler.step(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , eta=lowerCAmelCase__ , use_clipped_model_output=lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample
snake_case_ : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 )
snake_case_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
snake_case_ : List[Any] = self.numpy_to_pil(lowerCAmelCase__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase__ )
| 656 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = MgpstrTokenizer
a__ = False
a__ = {}
a__ = False
def _A ( self :List[str] ) -> List[str]:
'''simple docstring'''
super().setUp()
# fmt: off
snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str:
'''simple docstring'''
snake_case_ : Dict = "tester"
snake_case_ : Tuple = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def _A ( self :Dict ) -> str:
'''simple docstring'''
pass
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_ : Tuple = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def _A ( self :int ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ )
snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def _A ( self :Union[str, Any] ) -> Any:
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def _A ( self :int ) -> Dict:
'''simple docstring'''
pass
| 656 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ )-> list[int]:
"""simple docstring"""
if num <= 0:
raise ValueError("Input must be a positive integer" )
snake_case_ : Union[str, Any] = [True] * (num + 1)
snake_case_ : Any = 2
while p * p <= num:
if primes[p]:
for i in range(p * p ,num + 1 ,__magic_name__ ):
snake_case_ : Tuple = False
p += 1
return [prime for prime in range(2 ,num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCamelCase : Optional[int] = int(input('''Enter a positive integer: ''').strip())
print(prime_sieve_eratosthenes(user_num))
| 656 |
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]:
"""simple docstring"""
if dataset.ndim != value_array.ndim:
snake_case_ : int = (
"Wrong input data's dimensions... "
F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}'''
)
raise ValueError(__magic_name__ )
try:
if dataset.shape[1] != value_array.shape[1]:
snake_case_ : Dict = (
"Wrong input data's shape... "
F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}'''
)
raise ValueError(__magic_name__ )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("Wrong shape" )
if dataset.dtype != value_array.dtype:
snake_case_ : Dict = (
"Input data have different datatype... "
F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}'''
)
raise TypeError(__magic_name__ )
snake_case_ : Optional[int] = []
for value in value_array:
snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] )
snake_case_ : int = dataset[0].tolist()
for dataset_value in dataset[1:]:
snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ )
if dist > temp_dist:
snake_case_ : Tuple = temp_dist
snake_case_ : Optional[int] = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 656 | 1 |
'''simple docstring'''
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class A_ :
"""simple docstring"""
def __init__( self :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int=99 , lowerCAmelCase__ :Tuple=13 , lowerCAmelCase__ :Any=7 , lowerCAmelCase__ :List[Any]=9 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Union[str, Any]=5 , lowerCAmelCase__ :Optional[int]=4 , lowerCAmelCase__ :Tuple=37 , lowerCAmelCase__ :Dict=8 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.0_0_2 , lowerCAmelCase__ :str=1 , lowerCAmelCase__ :str=0 , lowerCAmelCase__ :Optional[int]=0 , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Union[str, Any]=None , ) -> Dict:
'''simple docstring'''
snake_case_ : Dict = parent
snake_case_ : Union[str, Any] = batch_size
snake_case_ : Dict = encoder_seq_length
snake_case_ : Dict = decoder_seq_length
# For common tests
snake_case_ : Any = self.decoder_seq_length
snake_case_ : Tuple = is_training
snake_case_ : Optional[int] = use_attention_mask
snake_case_ : Any = use_labels
snake_case_ : Any = vocab_size
snake_case_ : Any = hidden_size
snake_case_ : Tuple = num_hidden_layers
snake_case_ : Union[str, Any] = num_attention_heads
snake_case_ : Any = d_ff
snake_case_ : Dict = relative_attention_num_buckets
snake_case_ : Any = dropout_rate
snake_case_ : int = initializer_factor
snake_case_ : Union[str, Any] = eos_token_id
snake_case_ : List[Any] = pad_token_id
snake_case_ : List[Any] = decoder_start_token_id
snake_case_ : Tuple = None
snake_case_ : Tuple = decoder_layers
def _A ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
return TaConfig.from_pretrained("google/umt5-base" )
def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :str=None , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :Optional[int]=None , ) -> Union[str, Any]:
'''simple docstring'''
if attention_mask is None:
snake_case_ : List[Any] = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
snake_case_ : Any = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
snake_case_ : Optional[int] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowerCAmelCase__ )
if decoder_head_mask is None:
snake_case_ : Optional[int] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowerCAmelCase__ )
if cross_attn_head_mask is None:
snake_case_ : Dict = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=lowerCAmelCase__ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _A ( self :List[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
snake_case_ : Any = input_ids.clamp(self.pad_token_id + 1 )
snake_case_ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 )
snake_case_ : Tuple = self.get_config()
snake_case_ : Dict = config.num_attention_heads
snake_case_ : Optional[Any] = self.prepare_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return config, input_dict
def _A ( self :Tuple ) -> Tuple:
'''simple docstring'''
snake_case_, snake_case_ : List[str] = self.prepare_config_and_inputs()
return config, inputs_dict
def _A ( self :Tuple ) -> List[str]:
'''simple docstring'''
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _A ( self :List[Any] ) -> int:
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _A ( self :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int , ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[str] = UMTaModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : Optional[Any] = model(
input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , )
snake_case_ : Dict = model(input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ )
snake_case_ : Dict = result.last_hidden_state
snake_case_ : Dict = result.past_key_values
snake_case_ : List[Any] = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(lowerCAmelCase__ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _A ( self :Tuple , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int] , ) -> int:
'''simple docstring'''
snake_case_ : str = UMTaModel(config=lowerCAmelCase__ ).get_decoder().to(lowerCAmelCase__ ).eval()
# first forward pass
snake_case_ : int = model(lowerCAmelCase__ , use_cache=lowerCAmelCase__ )
snake_case_ : Optional[int] = model(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = model(lowerCAmelCase__ , use_cache=lowerCAmelCase__ )
self.parent.assertTrue(len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) )
self.parent.assertTrue(len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) + 1 )
snake_case_, snake_case_ : Optional[Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case_ : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
snake_case_ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ : List[str] = model(lowerCAmelCase__ )["last_hidden_state"]
snake_case_ : str = model(lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )["last_hidden_state"]
# select random slice
snake_case_ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach()
snake_case_ : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) )
def _A ( self :str , lowerCAmelCase__ :str , lowerCAmelCase__ :int , ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Any = UMTaModel(config=lowerCAmelCase__ ).to(lowerCAmelCase__ ).half().eval()
snake_case_ : Union[str, Any] = model(**lowerCAmelCase__ )["last_hidden_state"]
self.parent.assertFalse(torch.isnan(lowerCAmelCase__ ).any().item() )
@require_torch
class A_ (a_ , a_ , a_ , unittest.TestCase ):
"""simple docstring"""
a__ = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a__ = (UMTaForConditionalGeneration,) if is_torch_available() else ()
a__ = (
{
'''conversational''': UMTaForConditionalGeneration,
'''feature-extraction''': UMTaModel,
'''summarization''': UMTaForConditionalGeneration,
'''text2text-generation''': UMTaForConditionalGeneration,
'''translation''': UMTaForConditionalGeneration,
'''question-answering''': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a__ = True
a__ = False
a__ = False
a__ = True
a__ = True
# The small UMT5 model needs higher percentages for CPU/MP tests
a__ = [0.8, 0.9]
def _A ( self :List[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Union[str, Any] = UMTaModelTester(self )
@unittest.skip("Test has a segmentation fault on torch 1.8.0" )
def _A ( self :Union[str, Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Dict = self.model_tester.prepare_config_and_inputs()
snake_case_ : Optional[int] = UMTaModel(config_and_inputs[0] ).to(lowerCAmelCase__ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
lowerCAmelCase__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=lowerCAmelCase__ , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , )
@unittest.skipIf(torch_device == "cpu" , "Cant do half precision" )
def _A ( self :Optional[Any] ) -> str:
'''simple docstring'''
snake_case_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Tuple = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
snake_case_ : int = self.model_tester.prepare_config_and_inputs()
snake_case_ : List[Any] = config_and_inputs[0]
snake_case_ : Any = UMTaForConditionalGeneration(lowerCAmelCase__ ).eval()
model.to(lowerCAmelCase__ )
snake_case_ : Optional[int] = {
"head_mask": torch.zeros(config.num_layers , config.num_heads , device=lowerCAmelCase__ ),
"decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCAmelCase__ ),
"cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCAmelCase__ ),
}
for attn_name, (name, mask) in zip(lowerCAmelCase__ , head_masking.items() ):
snake_case_ : Dict = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
snake_case_ : List[Any] = torch.ones(
config.num_decoder_layers , config.num_heads , device=lowerCAmelCase__ )
snake_case_ : Any = model.generate(
config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=lowerCAmelCase__ , return_dict_in_generate=lowerCAmelCase__ , **lowerCAmelCase__ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
snake_case_ : List[Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases." )
def _A ( self :int ) -> Dict:
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class A_ (unittest.TestCase ):
"""simple docstring"""
@slow
@unittest.skip(
"Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" )
def _A ( self :str ) -> Dict:
'''simple docstring'''
snake_case_ : List[Any] = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=lowerCAmelCase__ ).to(lowerCAmelCase__ )
snake_case_ : Dict = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=lowerCAmelCase__ , legacy=lowerCAmelCase__ )
snake_case_ : List[str] = [
"Bonjour monsieur <extra_id_0> bien <extra_id_1>.",
"No se como puedo <extra_id_0>.",
"This is the reason why we <extra_id_0> them.",
"The <extra_id_0> walks in <extra_id_1>, seats",
"A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.",
]
snake_case_ : Any = tokenizer(lowerCAmelCase__ , return_tensors="pt" , padding=lowerCAmelCase__ ).input_ids
# fmt: off
snake_case_ : List[Any] = torch.tensor(
[
[ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : Tuple = model.generate(input_ids.to(lowerCAmelCase__ ) )
snake_case_ : str = [
"<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>",
"<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
]
snake_case_ : List[Any] = tokenizer.batch_decode(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
| 656 |
'''simple docstring'''
import fire
from utils import calculate_rouge, save_json
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()]
snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )]
snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ )
if save_path is not None:
save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 656 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__lowerCamelCase : Any = logging.get_logger(__name__)
__lowerCamelCase : Union[str, Any] = {
'''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''',
# See all Nat models at https://huggingface.co/models?filter=nat
}
class A_ (a_ , a_ ):
"""simple docstring"""
a__ = '''nat'''
a__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :str , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Union[str, Any]=3 , lowerCAmelCase__ :Dict=64 , lowerCAmelCase__ :List[Any]=[3, 4, 6, 5] , lowerCAmelCase__ :List[str]=[2, 4, 8, 16] , lowerCAmelCase__ :Optional[int]=7 , lowerCAmelCase__ :Dict=3.0 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :Any=0.0 , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :List[Any]=1E-5 , lowerCAmelCase__ :Tuple=0.0 , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=None , **lowerCAmelCase__ :Optional[int] , ) -> str:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
snake_case_ : str = patch_size
snake_case_ : Optional[Any] = num_channels
snake_case_ : List[str] = embed_dim
snake_case_ : Dict = depths
snake_case_ : Optional[int] = len(lowerCAmelCase__ )
snake_case_ : List[Any] = num_heads
snake_case_ : Optional[Any] = kernel_size
snake_case_ : Dict = mlp_ratio
snake_case_ : Optional[int] = qkv_bias
snake_case_ : Union[str, Any] = hidden_dropout_prob
snake_case_ : Optional[int] = attention_probs_dropout_prob
snake_case_ : Union[str, Any] = drop_path_rate
snake_case_ : int = hidden_act
snake_case_ : Optional[int] = layer_norm_eps
snake_case_ : Tuple = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
snake_case_ : Any = int(embed_dim * 2 ** (len(lowerCAmelCase__ ) - 1) )
snake_case_ : str = layer_scale_init_value
snake_case_ : List[Any] = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase__ ) + 1 )]
snake_case_, snake_case_ : List[Any] = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 656 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
__lowerCamelCase : Optional[Any] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
f'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
f'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''),
('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''),
('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''),
('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''),
('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''),
('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''),
('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''),
('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''),
('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''),
('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''),
]
)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int:
"""simple docstring"""
snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ )
snake_case_ : Any = val
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Any = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" )
snake_case_ : int = value
else:
snake_case_ : int = value
return new_state_dict
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]:
"""simple docstring"""
snake_case_ : str = ""
if is_panoptic:
snake_case_ : Dict = "conditional_detr."
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case_ : Tuple = in_proj_weight[:256, :]
snake_case_ : List[Any] = in_proj_bias[:256]
snake_case_ : Optional[Any] = in_proj_weight[256:512, :]
snake_case_ : Optional[int] = in_proj_bias[256:512]
snake_case_ : Optional[int] = in_proj_weight[-256:, :]
snake_case_ : str = in_proj_bias[-256:]
def __UpperCAmelCase ( )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]:
"""simple docstring"""
snake_case_ : Optional[Any] = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
snake_case_ : Optional[Any] = "resnet101"
if "dc5" in model_name:
snake_case_ : List[str] = True
snake_case_ : Tuple = "panoptic" in model_name
if is_panoptic:
snake_case_ : List[Any] = 250
else:
snake_case_ : Optional[Any] = 91
snake_case_ : Optional[int] = "huggingface/label-files"
snake_case_ : Dict = "coco-detection-id2label.json"
snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) )
snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()}
snake_case_ : int = idalabel
snake_case_ : Dict = {v: k for k, v in idalabel.items()}
# load image processor
snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection"
snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ )
# prepare image
snake_case_ : str = prepare_img()
snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" )
snake_case_ : Union[str, Any] = encoding["pixel_values"]
logger.info(F'''Converting model {model_name}...''' )
# load original model from torch hub
snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval()
snake_case_ : Any = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
snake_case_ : Any = "conditional_detr." + src
rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ )
snake_case_ : Tuple = rename_backbone_keys(__magic_name__ )
# query, key and value matrices need special treatment
read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
snake_case_ : int = "conditional_detr.model." if is_panoptic else "model."
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("conditional_detr" )
and not key.startswith("class_labels_classifier" )
and not key.startswith("bbox_predictor" )
):
snake_case_ : Any = state_dict.pop(__magic_name__ )
snake_case_ : Optional[int] = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
snake_case_ : Tuple = state_dict.pop(__magic_name__ )
snake_case_ : Any = val
elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ):
continue
else:
snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ )
snake_case_ : List[Any] = val
else:
if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ):
snake_case_ : Any = state_dict.pop(__magic_name__ )
snake_case_ : List[Any] = val
# finally, create HuggingFace model and load state dict
snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ )
model.load_state_dict(__magic_name__ )
model.eval()
model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" )
# verify our conversion
snake_case_ : Dict = conditional_detr(__magic_name__ )
snake_case_ : Union[str, Any] = model(__magic_name__ )
assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 )
assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 )
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
model.save_pretrained(__magic_name__ )
image_processor.save_pretrained(__magic_name__ )
if __name__ == "__main__":
__lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''conditional_detr_resnet50''',
type=str,
help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
__lowerCamelCase : int = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 656 | 1 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class A_ (tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self :Optional[int] , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int = None , lowerCAmelCase__ :int = None ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
snake_case_ : Optional[int] = pad_token_id
snake_case_ : List[str] = max_length
snake_case_ : Tuple = vocab
snake_case_ : int = merges
snake_case_ : Tuple = BytePairTokenizer(lowerCAmelCase__ , lowerCAmelCase__ , sequence_length=lowerCAmelCase__ )
@classmethod
def _A ( cls :str , lowerCAmelCase__ :GPTaTokenizer , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :int ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Union[str, Any] = [" ".join(lowerCAmelCase__ ) for m in tokenizer.bpe_ranks.keys()]
snake_case_ : Optional[Any] = tokenizer.get_vocab()
return cls(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ )
@classmethod
def _A ( cls :str , lowerCAmelCase__ :Union[str, os.PathLike] , *lowerCAmelCase__ :str , **lowerCAmelCase__ :List[str] ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[str] = GPTaTokenizer.from_pretrained(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ )
return cls.from_tokenizer(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ )
@classmethod
def _A ( cls :Tuple , lowerCAmelCase__ :Optional[int] ) -> Dict:
'''simple docstring'''
return cls(**lowerCAmelCase__ )
def _A ( self :List[str] ) -> int:
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def _A ( self :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int = None ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = self.tf_tokenizer(lowerCAmelCase__ )
snake_case_ : Tuple = tf.ones_like(lowerCAmelCase__ )
if self.pad_token_id is not None:
# pad the tokens up to max length
snake_case_ : Any = max_length if max_length is not None else self.max_length
if max_length is not None:
snake_case_, snake_case_ : List[str] = pad_model_inputs(
lowerCAmelCase__ , max_seq_length=lowerCAmelCase__ , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 656 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :Any ) -> str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _A ( self :List[Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Any = 1
snake_case_ : Dict = 3
snake_case_ : Union[str, Any] = (32, 32)
snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
return image
@property
def _A ( self :Optional[int] ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : List[str] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def _A ( self :Dict ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : Optional[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def _A ( self :Dict ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : str = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , )
return RobertaSeriesModelWithTransformation(lowerCAmelCase__ )
@property
def _A ( self :Any ) -> str:
'''simple docstring'''
def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ):
class A_ :
"""simple docstring"""
def __init__( self :Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case_ : str = torch.ones([0] )
def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple:
'''simple docstring'''
self.pixel_values.to(lowerCAmelCase__ )
return self
return Out()
return extract
def _A ( self :int ) -> Dict:
'''simple docstring'''
snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator
snake_case_ : str = self.dummy_cond_unet
snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
snake_case_ : Dict = self.dummy_vae
snake_case_ : Dict = self.dummy_text_encoder
snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
snake_case_ : str = 77
snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ )
snake_case_ : Tuple = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ )
snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ )
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
snake_case_ : Dict = "A painting of a squirrel eating a burger"
snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
snake_case_ : Dict = alt_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , )
snake_case_ : Any = output.images
snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
snake_case_ : Optional[Any] = alt_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0]
snake_case_ : Tuple = image[0, -3:, -3:, -1]
snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def _A ( self :int ) -> List[str]:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.dummy_cond_unet
snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
snake_case_ : int = self.dummy_vae
snake_case_ : List[Any] = self.dummy_text_encoder
snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
snake_case_ : int = 77
snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ )
# put models in fp16
snake_case_ : Optional[Any] = unet.half()
snake_case_ : Tuple = vae.half()
snake_case_ : List[str] = bert.half()
# make sure here that pndm scheduler skips prk
snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ )
snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ )
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
snake_case_ : List[Any] = "A painting of a squirrel eating a burger"
snake_case_ : str = torch.manual_seed(0 )
snake_case_ : Any = alt_pipe(
[prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def _A ( self :Optional[int] ) -> Any:
'''simple docstring'''
snake_case_ : Union[str, Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
# resize to resolution that is divisible by 8 but not 16 or 32
snake_case_ : str = init_image.resize((760, 504) )
snake_case_ : Optional[Any] = "BAAI/AltDiffusion"
snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained(
lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
pipe.enable_attention_slicing()
snake_case_ : Tuple = "A fantasy landscape, trending on artstation"
snake_case_ : int = torch.manual_seed(0 )
snake_case_ : List[str] = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , )
snake_case_ : str = output.images[0]
snake_case_ : List[Any] = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _A ( self :str ) -> Any:
'''simple docstring'''
snake_case_ : Optional[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
snake_case_ : List[Any] = init_image.resize((768, 512) )
snake_case_ : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" )
snake_case_ : Any = "BAAI/AltDiffusion"
snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained(
lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
pipe.enable_attention_slicing()
snake_case_ : Tuple = "A fantasy landscape, trending on artstation"
snake_case_ : Tuple = torch.manual_seed(0 )
snake_case_ : List[Any] = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , )
snake_case_ : Optional[int] = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 656 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
__lowerCamelCase : Optional[Any] = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[str] = ['''BeitFeatureExtractor''']
__lowerCamelCase : Tuple = ['''BeitImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[int] = [
'''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BeitForImageClassification''',
'''BeitForMaskedImageModeling''',
'''BeitForSemanticSegmentation''',
'''BeitModel''',
'''BeitPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[Any] = [
'''FlaxBeitForImageClassification''',
'''FlaxBeitForMaskedImageModeling''',
'''FlaxBeitModel''',
'''FlaxBeitPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 656 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class A_ (unittest.TestCase ):
"""simple docstring"""
a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
a__ = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any:
'''simple docstring'''
snake_case_ : Optional[Any] = ZeroShotClassificationPipeline(
model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
# No kwarg
snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" )
self.assertEqual(
lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 )
snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] )
self.assertEqual(
lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 )
snake_case_ : str = classifier(
"Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
# https://github.com/huggingface/transformers/issues/13846
snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] )
self.assertEqual(
lowerCAmelCase__ , [
{"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]}
for i in range(1 )
] , )
snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] )
self.assertEqual(
lowerCAmelCase__ , [
{"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]}
for i in range(2 )
] , )
with self.assertRaises(lowerCAmelCase__ ):
classifier("" , candidate_labels="politics" )
with self.assertRaises(lowerCAmelCase__ ):
classifier(lowerCAmelCase__ , candidate_labels="politics" )
with self.assertRaises(lowerCAmelCase__ ):
classifier("Who are you voting for in 2020?" , candidate_labels="" )
with self.assertRaises(lowerCAmelCase__ ):
classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ )
with self.assertRaises(lowerCAmelCase__ ):
classifier(
"Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , )
with self.assertRaises(lowerCAmelCase__ ):
classifier(
"Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , )
self.run_entailment_id(lowerCAmelCase__ )
def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : int = zero_shot_classifier.model.config
snake_case_ : Optional[int] = config.labelaid
snake_case_ : Tuple = zero_shot_classifier.entailment_id
snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
snake_case_ : List[str] = original_labelaid
self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id )
@require_torch
def _A ( self :Tuple ) -> Any:
'''simple docstring'''
snake_case_ : List[Any] = pipeline(
"zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
"Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] )
@require_torch
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Union[str, Any] = pipeline(
"zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , )
snake_case_ : int = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["science", "public health", "politics"],
"scores": [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@require_tf
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
snake_case_ : List[str] = pipeline(
"zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , )
snake_case_ : Optional[int] = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["science", "public health", "politics"],
"scores": [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@slow
@require_torch
def _A ( self :Union[str, Any] ) -> int:
'''simple docstring'''
snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" )
snake_case_ : str = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["politics", "public health", "science"],
"scores": [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
snake_case_ : Optional[int] = zero_shot_classifier(
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"
" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"
" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"
" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"
" machine translation tasks show these models to be superior in quality while being more parallelizable"
" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"
" English-to-German translation task, improving over the existing best results, including ensembles by"
" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"
" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"
" fraction of the training costs of the best models from the literature. We show that the Transformer"
" generalizes well to other tasks by applying it successfully to English constituency parsing both with"
" large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": (
"The dominant sequence transduction models are based on complex recurrent or convolutional neural"
" networks in an encoder-decoder configuration. The best performing models also connect the"
" encoder and decoder through an attention mechanism. We propose a new simple network"
" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"
" and convolutions entirely. Experiments on two machine translation tasks show these models to be"
" superior in quality while being more parallelizable and requiring significantly less time to"
" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"
" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"
" English-to-French translation task, our model establishes a new single-model state-of-the-art"
" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"
" costs of the best models from the literature. We show that the Transformer generalizes well to"
" other tasks by applying it successfully to English constituency parsing both with large and"
" limited training data."
),
"labels": ["translation", "machine learning", "vision", "statistics"],
"scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
@slow
@require_tf
def _A ( self :List[str] ) -> str:
'''simple docstring'''
snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" )
snake_case_ : Optional[Any] = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["politics", "public health", "science"],
"scores": [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
snake_case_ : Tuple = zero_shot_classifier(
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"
" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"
" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"
" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"
" machine translation tasks show these models to be superior in quality while being more parallelizable"
" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"
" English-to-German translation task, improving over the existing best results, including ensembles by"
" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"
" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"
" fraction of the training costs of the best models from the literature. We show that the Transformer"
" generalizes well to other tasks by applying it successfully to English constituency parsing both with"
" large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": (
"The dominant sequence transduction models are based on complex recurrent or convolutional neural"
" networks in an encoder-decoder configuration. The best performing models also connect the"
" encoder and decoder through an attention mechanism. We propose a new simple network"
" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"
" and convolutions entirely. Experiments on two machine translation tasks show these models to be"
" superior in quality while being more parallelizable and requiring significantly less time to"
" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"
" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"
" English-to-French translation task, our model establishes a new single-model state-of-the-art"
" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"
" costs of the best models from the literature. We show that the Transformer generalizes well to"
" other tasks by applying it successfully to English constituency parsing both with large and"
" limited training data."
),
"labels": ["translation", "machine learning", "vision", "statistics"],
"scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
| 656 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class A_ (metaclass=a_ ):
"""simple docstring"""
a__ = ['''transformers''', '''torch''', '''note_seq''']
def __init__( self :Any , *lowerCAmelCase__ :Dict , **lowerCAmelCase__ :List[Any] ) -> Dict:
'''simple docstring'''
requires_backends(self , ["transformers", "torch", "note_seq"] )
@classmethod
def _A ( cls :Union[str, Any] , *lowerCAmelCase__ :List[str] , **lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
requires_backends(cls , ["transformers", "torch", "note_seq"] )
@classmethod
def _A ( cls :List[Any] , *lowerCAmelCase__ :Optional[int] , **lowerCAmelCase__ :List[Any] ) -> Dict:
'''simple docstring'''
requires_backends(cls , ["transformers", "torch", "note_seq"] )
| 656 |
'''simple docstring'''
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''):
raise Exception('''requires fairseq >= 1.0.0a''')
logging.set_verbosity_info()
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip'''
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ )
roberta.eval() # disable dropout
snake_case_ : Dict = roberta.model.encoder.sentence_encoder
snake_case_ : List[str] = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,)
if classification_head:
snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our RoBERTa config:" ,__magic_name__ )
snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ )
model.eval()
# Now let's copy all the weights.
# Embeddings
snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight
snake_case_ : int = roberta_sent_encoder.embed_positions.weight
snake_case_ : Union[str, Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight
snake_case_ : str = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
snake_case_ : BertLayer = model.roberta.encoder.layer[i]
snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
snake_case_ : RobertaAttention = layer.attention
snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight
snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias
# self attention
snake_case_ : BertSelfAttention = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight
snake_case_ : Any = roberta_layer.self_attn.q_proj.bias
snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight
snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias
snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight
snake_case_ : Any = roberta_layer.self_attn.v_proj.bias
# self-attention output
snake_case_ : BertSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight
snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
snake_case_ : int = roberta_layer.final_layer_norm.weight
snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias
# intermediate
snake_case_ : BertIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
snake_case_ : List[str] = roberta_layer.fca.weight
snake_case_ : List[Any] = roberta_layer.fca.bias
# output
snake_case_ : BertOutput = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
snake_case_ : Any = roberta_layer.fca.weight
snake_case_ : Any = roberta_layer.fca.bias
# end of layer
if classification_head:
snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight
snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias
snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight
snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight
snake_case_ : int = roberta.model.encoder.lm_head.dense.bias
snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight
snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias
snake_case_ : int = roberta.model.encoder.lm_head.weight
snake_case_ : List[str] = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1
snake_case_ : Union[str, Any] = model(__magic_name__ )[0]
if classification_head:
snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) )
else:
snake_case_ : List[str] = roberta.model(__magic_name__ )[0]
print(our_output.shape ,their_output.shape )
snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 )
print("Do both models output the same tensors?" ,"🔥" if success else "💩" )
if not success:
raise Exception("Something went wRoNg" )
pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowerCamelCase : Tuple = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 656 | 1 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class A_ (a_ , a_ , unittest.TestCase ):
"""simple docstring"""
a__ = IFInpaintingSuperResolutionPipeline
a__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
a__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} )
a__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def _A ( self :Tuple ) -> List[str]:
'''simple docstring'''
return self._get_superresolution_dummy_components()
def _A ( self :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=0 ) -> List[Any]:
'''simple docstring'''
if str(lowerCAmelCase__ ).startswith("mps" ):
snake_case_ : List[Any] = torch.manual_seed(lowerCAmelCase__ )
else:
snake_case_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
snake_case_ : List[str] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
snake_case_ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
snake_case_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
snake_case_ : List[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _A ( self :Union[str, Any] ) -> int:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def _A ( self :List[Any] ) -> Dict:
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def _A ( self :List[Any] ) -> Optional[Any]:
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1E-1 )
def _A ( self :Tuple ) -> List[Any]:
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def _A ( self :Any ) -> Dict:
'''simple docstring'''
self._test_save_load_local()
def _A ( self :List[str] ) -> Any:
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 656 |
'''simple docstring'''
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]:
"""simple docstring"""
snake_case_ : str = False
snake_case_ : int = False
if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ):
snake_case_ : Any = True
elif "IPython" in sys.modules:
snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() )
try:
snake_case_ : Any = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' )
if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside "
"your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`." )
if num_processes is None:
snake_case_ : Tuple = 8
snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" )
print(F'''Launching a training on {num_processes} TPU cores.''' )
xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print("Launching training on one GPU." )
else:
print("Launching training on one CPU." )
function(*__magic_name__ )
else:
if num_processes is None:
raise ValueError(
"You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized "
"inside your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`." )
if torch.cuda.is_initialized():
raise ValueError(
"To launch a multi-GPU training from your notebook, you need to avoid running any instruction "
"using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA "
"function." )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ):
snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" )
print(F'''Launching training on {num_processes} GPUs.''' )
try:
start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
"CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. "
"This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
"Please review your imports and test them when running the `notebook_launcher()` to identify "
"which one is problematic." ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
snake_case_ : Any = "1"
print("Launching training on MPS." )
elif torch.cuda.is_available():
print("Launching training on one GPU." )
else:
print("Launching training on CPU." )
function(*__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict:
"""simple docstring"""
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,):
snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ )
start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
| 656 | 1 |
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class A_ :
"""simple docstring"""
def __init__( self :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]=sys.maxsize ) -> List[Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = "bilinear"
snake_case_ : str = max_size
snake_case_ : Union[str, Any] = short_edge_length
def __call__( self :Tuple , lowerCAmelCase__ :Any ) -> int:
'''simple docstring'''
snake_case_ : Dict = []
for img in imgs:
snake_case_, snake_case_ : Dict = img.shape[:2]
# later: provide list and randomly choose index for resize
snake_case_ : List[str] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
snake_case_ : int = size * 1.0 / min(lowerCAmelCase__ , lowerCAmelCase__ )
if h < w:
snake_case_, snake_case_ : Optional[Any] = size, scale * w
else:
snake_case_, snake_case_ : int = scale * h, size
if max(lowerCAmelCase__ , lowerCAmelCase__ ) > self.max_size:
snake_case_ : str = self.max_size * 1.0 / max(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : Any = newh * scale
snake_case_ : Any = neww * scale
snake_case_ : Dict = int(neww + 0.5 )
snake_case_ : List[str] = int(newh + 0.5 )
if img.dtype == np.uinta:
snake_case_ : Dict = Image.fromarray(lowerCAmelCase__ )
snake_case_ : List[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
snake_case_ : List[Any] = np.asarray(lowerCAmelCase__ )
else:
snake_case_ : List[Any] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
snake_case_ : Optional[Any] = nn.functional.interpolate(
lowerCAmelCase__ , (newh, neww) , mode=self.interp_method , align_corners=lowerCAmelCase__ ).squeeze(0 )
img_augs.append(lowerCAmelCase__ )
return img_augs
class A_ :
"""simple docstring"""
def __init__( self :List[Any] , lowerCAmelCase__ :Dict ) -> int:
'''simple docstring'''
snake_case_ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
snake_case_ : Optional[Any] = cfg.INPUT.FORMAT
snake_case_ : List[str] = cfg.SIZE_DIVISIBILITY
snake_case_ : Tuple = cfg.PAD_VALUE
snake_case_ : Tuple = cfg.INPUT.MAX_SIZE_TEST
snake_case_ : Any = cfg.MODEL.DEVICE
snake_case_ : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
snake_case_ : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
snake_case_ : List[Any] = lambda lowerCAmelCase__ : (x - self.pixel_mean) / self.pixel_std
def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> int:
'''simple docstring'''
snake_case_ : Union[str, Any] = tuple(max(lowerCAmelCase__ ) for s in zip(*[img.shape for img in images] ) )
snake_case_ : List[Any] = [im.shape[-2:] for im in images]
snake_case_ : Any = [
nn.functional.pad(
lowerCAmelCase__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
return torch.stack(lowerCAmelCase__ ), torch.tensor(lowerCAmelCase__ )
def __call__( self :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any]=False ) -> Optional[int]:
'''simple docstring'''
with torch.no_grad():
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : Union[str, Any] = [images]
if single_image:
assert len(lowerCAmelCase__ ) == 1
for i in range(len(lowerCAmelCase__ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(lowerCAmelCase__ , images.pop(lowerCAmelCase__ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
lowerCAmelCase__ , torch.as_tensor(img_tensorize(images.pop(lowerCAmelCase__ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
snake_case_ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] )
snake_case_ : Any = self.aug(lowerCAmelCase__ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
snake_case_ : str = [self.normalizer(lowerCAmelCase__ ) for x in images]
# now pad them to do the following operations
snake_case_, snake_case_ : List[str] = self.pad(lowerCAmelCase__ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
snake_case_ : List[Any] = torch.true_divide(lowerCAmelCase__ , lowerCAmelCase__ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str:
"""simple docstring"""
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Dict:
"""simple docstring"""
assert torch.isfinite(__magic_name__ ).all(), "Box tensor contains infinite or NaN!"
snake_case_, snake_case_ : str = box_size
tensor[:, 0].clamp_(min=0 ,max=__magic_name__ )
tensor[:, 1].clamp_(min=0 ,max=__magic_name__ )
tensor[:, 2].clamp_(min=0 ,max=__magic_name__ )
tensor[:, 3].clamp_(min=0 ,max=__magic_name__ )
| 656 |
'''simple docstring'''
from collections import deque
from math import floor
from random import random
from time import time
class A_ :
"""simple docstring"""
def __init__( self :Dict ) -> List[str]:
'''simple docstring'''
snake_case_ : int = {}
def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
snake_case_ : Optional[int] = [[w, v]]
if not self.graph.get(lowerCAmelCase__ ):
snake_case_ : Dict = []
def _A ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
return list(self.graph )
def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(lowerCAmelCase__ )
def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str:
'''simple docstring'''
if s == d:
return []
snake_case_ : str = []
snake_case_ : Optional[int] = []
if s == -2:
snake_case_ : List[Any] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Dict = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : str = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(lowerCAmelCase__ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[Any] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return visited
def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int:
'''simple docstring'''
if c == -1:
snake_case_ : Any = floor(random() * 10_000 ) + 10
for i in range(lowerCAmelCase__ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
snake_case_ : Optional[Any] = floor(random() * c ) + 1
if n != i:
self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 )
def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict:
'''simple docstring'''
snake_case_ : Union[str, Any] = deque()
snake_case_ : Optional[Any] = []
if s == -2:
snake_case_ : Tuple = list(self.graph )[0]
d.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
while d:
snake_case_ : Optional[int] = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Tuple = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]:
'''simple docstring'''
return len(self.graph[u] )
def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : str = []
snake_case_ : str = []
if s == -2:
snake_case_ : Optional[Any] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : int = s
snake_case_ : Optional[int] = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[Any] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : List[str] = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(lowerCAmelCase__ ) != 0:
snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Union[str, Any] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return sorted_nodes
def _A ( self :Dict ) -> Any:
'''simple docstring'''
snake_case_ : Dict = []
snake_case_ : Any = []
snake_case_ : str = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Optional[int] = -2
snake_case_ : Any = []
snake_case_ : List[Any] = s
snake_case_ : int = False
snake_case_ : Optional[int] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Any = len(lowerCAmelCase__ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : Optional[int] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Optional[Any] = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : str = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : List[str] = s
snake_case_ : Optional[int] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return list(lowerCAmelCase__ )
def _A ( self :Tuple ) -> List[str]:
'''simple docstring'''
snake_case_ : List[Any] = []
snake_case_ : Tuple = []
snake_case_ : List[str] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : str = -2
snake_case_ : List[str] = []
snake_case_ : List[Any] = s
snake_case_ : List[str] = False
snake_case_ : Dict = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Any = len(lowerCAmelCase__ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Tuple = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[int] = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : int = s
snake_case_ : Union[str, Any] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return False
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str:
'''simple docstring'''
snake_case_ : Optional[int] = time()
self.dfs(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : Optional[Any] = time()
return end - begin
def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Any = time()
self.bfs(lowerCAmelCase__ )
snake_case_ : Any = time()
return end - begin
class A_ :
"""simple docstring"""
def __init__( self :Tuple ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[Any] = {}
def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
snake_case_ : str = [[w, v]]
# add the other way
if self.graph.get(lowerCAmelCase__ ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
snake_case_ : List[str] = [[w, u]]
def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(lowerCAmelCase__ )
# the other way round
if self.graph.get(lowerCAmelCase__ ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(lowerCAmelCase__ )
def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int:
'''simple docstring'''
if s == d:
return []
snake_case_ : Any = []
snake_case_ : Dict = []
if s == -2:
snake_case_ : Optional[int] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Tuple = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[str] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(lowerCAmelCase__ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : str = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return visited
def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]:
'''simple docstring'''
if c == -1:
snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10
for i in range(lowerCAmelCase__ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
snake_case_ : str = floor(random() * c ) + 1
if n != i:
self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 )
def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]:
'''simple docstring'''
snake_case_ : List[str] = deque()
snake_case_ : Optional[Any] = []
if s == -2:
snake_case_ : List[Any] = list(self.graph )[0]
d.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
while d:
snake_case_ : Optional[int] = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return len(self.graph[u] )
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
snake_case_ : Any = []
snake_case_ : Optional[Any] = []
snake_case_ : Optional[Any] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Tuple = -2
snake_case_ : Optional[int] = []
snake_case_ : Tuple = s
snake_case_ : Optional[Any] = False
snake_case_ : Optional[int] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : Optional[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : Tuple = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Optional[int] = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[int] = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : List[Any] = s
snake_case_ : Dict = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return list(lowerCAmelCase__ )
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Optional[Any] = []
snake_case_ : int = []
snake_case_ : List[str] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Tuple = -2
snake_case_ : int = []
snake_case_ : int = s
snake_case_ : Optional[Any] = False
snake_case_ : List[Any] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : Union[str, Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : Optional[Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Optional[Any] = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[int] = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = s
snake_case_ : Tuple = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return False
def _A ( self :Any ) -> Tuple:
'''simple docstring'''
return list(self.graph )
def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str:
'''simple docstring'''
snake_case_ : List[str] = time()
self.dfs(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : List[Any] = time()
return end - begin
def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int:
'''simple docstring'''
snake_case_ : List[str] = time()
self.bfs(lowerCAmelCase__ )
snake_case_ : Tuple = time()
return end - begin
| 656 | 1 |
'''simple docstring'''
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCamelCase : int = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
__lowerCamelCase : Any = 50003
__lowerCamelCase : List[str] = 50002
@require_sentencepiece
@require_tokenizers
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = PLBartTokenizer
a__ = None
a__ = False
def _A ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
snake_case_ : int = PLBartTokenizer(lowerCAmelCase__ , language_codes="base" , keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def _A ( self :Tuple ) -> int:
'''simple docstring'''
snake_case_ : str = PLBartTokenizer(lowerCAmelCase__ , language_codes="base" , keep_accents=lowerCAmelCase__ )
snake_case_ : List[str] = tokenizer.tokenize("This is a test" )
self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
snake_case_ : int = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
snake_case_ : str = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
snake_case_ : int = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
snake_case_ : int = tokenizer.vocab_size
snake_case_ : List[str] = [tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) for x in range(end - 4 , lowerCAmelCase__ )]
self.assertListEqual(lowerCAmelCase__ , ["__java__", "__python__", "__en_XX__", "<mask>"] )
snake_case_ : List[str] = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
snake_case_ : List[Any] = tokenizer(lowerCAmelCase__ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) , lowerCAmelCase__ , )
def _A ( self :str ) -> Dict:
'''simple docstring'''
snake_case_ : Optional[Any] = PLBartTokenizer(lowerCAmelCase__ , language_codes="multi" , keep_accents=lowerCAmelCase__ )
snake_case_ : List[Any] = tokenizer.tokenize("This is a test" )
self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
snake_case_ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
snake_case_ : str = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
snake_case_ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
snake_case_ : Dict = tokenizer.vocab_size
snake_case_ : List[str] = [tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) for x in range(end - 7 , lowerCAmelCase__ )]
self.assertListEqual(
lowerCAmelCase__ , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] )
snake_case_ : Any = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
snake_case_ : Optional[Any] = tokenizer(lowerCAmelCase__ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) , lowerCAmelCase__ , )
@require_torch
@require_sentencepiece
@require_tokenizers
class A_ (unittest.TestCase ):
"""simple docstring"""
a__ = '''uclanlp/plbart-python-en_XX'''
a__ = [
'''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''',
'''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''',
]
a__ = [
'''Returns the maximum value of a b c.''',
'''Sums the values of a b c.''',
]
a__ = [
134,
5452,
33460,
33441,
33463,
33465,
33463,
33449,
988,
20,
33456,
19,
33456,
771,
39,
4258,
889,
3318,
33441,
33463,
33465,
33463,
33449,
2471,
2,
PYTHON_CODE,
]
@classmethod
def _A ( cls :int ) -> List[Any]:
'''simple docstring'''
snake_case_ : PLBartTokenizer = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" )
snake_case_ : Union[str, Any] = 1
return cls
def _A ( self :str ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50_001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50_002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50_003 )
def _A ( self :List[Any] ) -> int:
'''simple docstring'''
snake_case_ : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def _A ( self :List[str] ) -> Optional[int]:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
snake_case_ : List[str] = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2]
snake_case_ : str = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
snake_case_ : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def _A ( self :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[str] = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
self.assertIsInstance(src_text[0] , lowerCAmelCase__ )
snake_case_ : List[Any] = 10
snake_case_ : int = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _A ( self :str ) -> List[str]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50_004, 50_001] )
def _A ( self :Tuple ) -> Tuple:
'''simple docstring'''
snake_case_ : List[str] = tempfile.mkdtemp()
snake_case_ : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase__ )
snake_case_ : Tuple = PLBartTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ )
@require_torch
def _A ( self :int ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" )
snake_case_ : Any = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase__ )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def _A ( self :Tuple ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[Any] = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
snake_case_ : Tuple = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
snake_case_ : Optional[int] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def _A ( self :int ) -> List[Any]:
'''simple docstring'''
snake_case_ : Tuple = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors="pt" )
snake_case_ : List[str] = self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors="pt" )
snake_case_ : int = targets["input_ids"]
snake_case_ : List[Any] = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def _A ( self :Dict ) -> str:
'''simple docstring'''
snake_case_ : str = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# A, test, EOS, en_XX
"input_ids": [[150, 242, 2, 50_003]],
"attention_mask": [[1, 1, 1, 1]],
# java
"forced_bos_token_id": 50_001,
} , )
| 656 |
'''simple docstring'''
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
__lowerCamelCase : List[str] = re.compile(R'''\s+''')
def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]:
"""simple docstring"""
return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()}
def __UpperCAmelCase ( __magic_name__ )-> str:
"""simple docstring"""
snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()]
return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )}
def __UpperCAmelCase ( __magic_name__ )-> int:
"""simple docstring"""
snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] )
return {"alpha_frac": alpha_frac}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple:
"""simple docstring"""
if example["hash"] in uniques:
uniques.remove(example["hash"] )
return True
else:
return False
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple:
"""simple docstring"""
snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"]
snake_case_ : Optional[Any] = example["content"].splitlines()
for _, line in zip(range(__magic_name__ ) ,__magic_name__ ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]:
"""simple docstring"""
snake_case_ : str = ["unit tests", "test file", "configuration file"]
snake_case_ : int = example["content"].splitlines()
snake_case_ : Optional[Any] = 0
snake_case_ : Any = 0
# first test
for _, line in zip(range(__magic_name__ ) ,__magic_name__ ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
snake_case_ : Tuple = example["content"].count("\n" )
snake_case_ : int = int(coeff * nlines )
for line in lines:
count_config += line.lower().count("config" )
count_test += line.lower().count("test" )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def __UpperCAmelCase ( __magic_name__ )-> str:
"""simple docstring"""
snake_case_ : List[Any] = ["def ", "class ", "for ", "while "]
snake_case_ : Optional[Any] = example["content"].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]:
"""simple docstring"""
snake_case_ : Tuple = example["content"].splitlines()
snake_case_ : Tuple = 0
for line in lines:
counter += line.lower().count("=" )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"]
snake_case_ : int = len(example["content"] ) / len(__magic_name__ )
return {"ratio": ratio}
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Union[str, Any] = {}
results.update(get_hash(__magic_name__ ) )
results.update(line_stats(__magic_name__ ) )
results.update(alpha_stats(__magic_name__ ) )
results.update(char_token_ratio(__magic_name__ ) )
results.update(is_autogenerated(__magic_name__ ) )
results.update(is_config_or_test(__magic_name__ ) )
results.update(has_no_keywords(__magic_name__ ) )
results.update(has_few_assignments(__magic_name__ ) )
return results
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple:
"""simple docstring"""
if not check_uniques(__magic_name__ ,__magic_name__ ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def __UpperCAmelCase ( __magic_name__ )-> Dict:
"""simple docstring"""
with open(__magic_name__ ,"rb" ) as f_in:
with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out:
shutil.copyfileobj(__magic_name__ ,__magic_name__ )
os.unlink(__magic_name__ )
# Settings
__lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments)
__lowerCamelCase : str = parser.parse_args()
if args.num_workers is None:
__lowerCamelCase : List[Any] = multiprocessing.cpu_count()
__lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
__lowerCamelCase : Any = time.time()
__lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''')
print(f'''Time to load dataset: {time.time()-t_start:.2f}''')
# Run preprocessing
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers)
print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''')
# Deduplicate hashes
__lowerCamelCase : Any = set(ds.unique('''hash'''))
__lowerCamelCase : Optional[int] = len(uniques) / len(ds)
print(f'''Fraction of duplicates: {1-frac:.2%}''')
# Deduplicate data and apply heuristics
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args})
print(f'''Time to filter dataset: {time.time()-t_start:.2f}''')
print(f'''Size of filtered dataset: {len(ds_filter)}''')
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''')
print(f'''Size of deduplicate dataset: {len(ds_filter)}''')
# Save data in batches of samples_per_file
__lowerCamelCase : List[Any] = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / '''duplicate_clusters.json''', '''w''') as f:
json.dump(duplicate_clusters, f)
__lowerCamelCase : List[str] = output_dir / '''data'''
data_dir.mkdir(exist_ok=True)
__lowerCamelCase : int = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
__lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''')
__lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
| 656 | 1 |
'''simple docstring'''
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"compression_format, is_archive" ,[
("7z", True),
("bz2", False),
("gzip", False),
("lz4", False),
("tar", True),
("xz", False),
("zip", True),
("zstd", False),
] ,)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,)-> Optional[int]:
"""simple docstring"""
snake_case_ : List[str] = {
"7z": (seven_zip_file, SevenZipExtractor),
"bz2": (bza_file, BzipaExtractor),
"gzip": (gz_file, GzipExtractor),
"lz4": (lza_file, LzaExtractor),
"tar": (tar_file, TarExtractor),
"xz": (xz_file, XzExtractor),
"zip": (zip_file, ZipExtractor),
"zstd": (zstd_file, ZstdExtractor),
}
snake_case_, snake_case_ : str = input_paths_and_base_extractors[compression_format]
if input_path is None:
snake_case_ : Tuple = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__magic_name__ )
assert base_extractor.is_extractable(__magic_name__ )
snake_case_ : List[Any] = tmp_path / ("extracted" if is_archive else "extracted.txt")
base_extractor.extract(__magic_name__ ,__magic_name__ )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
snake_case_ : Optional[int] = file_path.read_text(encoding="utf-8" )
else:
snake_case_ : Any = output_path.read_text(encoding="utf-8" )
snake_case_ : Optional[Any] = text_file.read_text(encoding="utf-8" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"compression_format, is_archive" ,[
("7z", True),
("bz2", False),
("gzip", False),
("lz4", False),
("tar", True),
("xz", False),
("zip", True),
("zstd", False),
] ,)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,)-> Union[str, Any]:
"""simple docstring"""
snake_case_ : Tuple = {
"7z": seven_zip_file,
"bz2": bza_file,
"gzip": gz_file,
"lz4": lza_file,
"tar": tar_file,
"xz": xz_file,
"zip": zip_file,
"zstd": zstd_file,
}
snake_case_ : Optional[Any] = input_paths[compression_format]
if input_path is None:
snake_case_ : Dict = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__magic_name__ )
snake_case_ : str = Extractor.infer_extractor_format(__magic_name__ )
assert extractor_format is not None
snake_case_ : Union[str, Any] = tmp_path / ("extracted" if is_archive else "extracted.txt")
Extractor.extract(__magic_name__ ,__magic_name__ ,__magic_name__ )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
snake_case_ : Optional[int] = file_path.read_text(encoding="utf-8" )
else:
snake_case_ : int = output_path.read_text(encoding="utf-8" )
snake_case_ : List[str] = text_file.read_text(encoding="utf-8" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str:
"""simple docstring"""
import tarfile
snake_case_ : List[str] = tmp_path / "data_dot_dot"
directory.mkdir()
snake_case_ : int = directory / "tar_file_with_dot_dot.tar"
with tarfile.TarFile(__magic_name__ ,"w" ) as f:
f.add(__magic_name__ ,arcname=os.path.join(".." ,text_file.name ) )
return path
@pytest.fixture
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
import tarfile
snake_case_ : Optional[int] = tmp_path / "data_sym_link"
directory.mkdir()
snake_case_ : Union[str, Any] = directory / "tar_file_with_sym_link.tar"
os.symlink(".." ,directory / "subdir" ,target_is_directory=__magic_name__ )
with tarfile.TarFile(__magic_name__ ,"w" ) as f:
f.add(str(directory / "subdir" ) ,arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"insecure_tar_file, error_log" ,[("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] ,)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> Dict:
"""simple docstring"""
snake_case_ : str = {
"tar_file_with_dot_dot": tar_file_with_dot_dot,
"tar_file_with_sym_link": tar_file_with_sym_link,
}
snake_case_ : str = insecure_tar_files[insecure_tar_file]
snake_case_ : List[Any] = tmp_path / "extracted"
TarExtractor.extract(__magic_name__ ,__magic_name__ )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def __UpperCAmelCase ( __magic_name__ )-> str:
"""simple docstring"""
snake_case_ : Union[str, Any] = tmpdir / "not_a_zip_file"
# From: https://github.com/python/cpython/pull/5053
snake_case_ : Union[str, Any] = (
B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"
B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"
B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"
B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"
)
with not_a_zip_file.open("wb" ) as f:
f.write(__magic_name__ )
assert zipfile.is_zipfile(str(__magic_name__ ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__magic_name__ ) # but we're right
| 656 |
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 )
snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 )
snake_case_ : Tuple = Accelerator()
snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ )
try:
pickle.loads(pickle.dumps(lowerCAmelCase__ ) )
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 656 | 1 |
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
__lowerCamelCase : int = [
'''kernels/rwkv/wkv_cuda.cu''',
'''kernels/rwkv/wkv_op.cpp''',
'''kernels/deformable_detr/ms_deform_attn.h''',
'''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''',
'''models/graphormer/algos_graphormer.pyx''',
]
def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]:
"""simple docstring"""
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
__lowerCamelCase : List[str] = argparse.ArgumentParser()
parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''')
__lowerCamelCase : List[Any] = parser.parse_args()
if args.check_lib:
__lowerCamelCase : Union[str, Any] = importlib.import_module('''transformers''')
__lowerCamelCase : int = Path(transformers_module.__file__).parent
else:
__lowerCamelCase : Optional[int] = Path.cwd() / '''build/lib/transformers'''
if not test_custom_files_are_present(transformers_path):
raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
| 656 |
'''simple docstring'''
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__lowerCamelCase : Any = '''src/transformers'''
# This is to make sure the transformers module imported is the one in the repo.
__lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS)
__lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''')
__lowerCamelCase : Any = {
'''DecisionTransformerConfig''',
'''EncoderDecoderConfig''',
'''MusicgenConfig''',
'''RagConfig''',
'''SpeechEncoderDecoderConfig''',
'''TimmBackboneConfig''',
'''VisionEncoderDecoderConfig''',
'''VisionTextDualEncoderConfig''',
'''LlamaConfig''',
}
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
snake_case_ : Tuple = None
# source code of `config_class`
snake_case_ : List[Any] = inspect.getsource(__magic_name__ )
snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith("/" ):
snake_case_ : Optional[Any] = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
snake_case_ : str = F'''https://huggingface.co/{ckpt_name}'''
if ckpt_link == ckpt_link_from_name:
snake_case_ : Dict = ckpt_name
break
return checkpoint
def __UpperCAmelCase ( )-> Dict:
"""simple docstring"""
snake_case_ : Optional[int] = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ )
snake_case_ : Union[str, Any] = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(__magic_name__ )
if len(__magic_name__ ) > 0:
snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) )
raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 656 | 1 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase : List[Any] = logging.get_logger(__name__)
__lowerCamelCase : Tuple = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class A_ (a_ ):
"""simple docstring"""
a__ = '''xlnet'''
a__ = ['''mems''']
a__ = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self :Any , lowerCAmelCase__ :Optional[int]=32_000 , lowerCAmelCase__ :Any=1_024 , lowerCAmelCase__ :Tuple=24 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Optional[Any]=4_096 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :Optional[int]="bi" , lowerCAmelCase__ :Any=0.0_2 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :Any=512 , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :Tuple=-1 , lowerCAmelCase__ :Any=False , lowerCAmelCase__ :Optional[int]="last" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :str="tanh" , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :int=5 , lowerCAmelCase__ :Optional[int]=5 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[Any]=1 , lowerCAmelCase__ :Dict=2 , **lowerCAmelCase__ :Tuple , ) -> Any:
'''simple docstring'''
snake_case_ : Optional[Any] = vocab_size
snake_case_ : int = d_model
snake_case_ : List[str] = n_layer
snake_case_ : Optional[int] = n_head
if d_model % n_head != 0:
raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
snake_case_ : Any = d_model // n_head
snake_case_ : int = ff_activation
snake_case_ : str = d_inner
snake_case_ : Optional[Any] = untie_r
snake_case_ : Tuple = attn_type
snake_case_ : Dict = initializer_range
snake_case_ : int = layer_norm_eps
snake_case_ : Optional[Any] = dropout
snake_case_ : Union[str, Any] = mem_len
snake_case_ : Optional[int] = reuse_len
snake_case_ : Any = bi_data
snake_case_ : Any = clamp_len
snake_case_ : int = same_length
snake_case_ : Any = summary_type
snake_case_ : Dict = summary_use_proj
snake_case_ : str = summary_activation
snake_case_ : Tuple = summary_last_dropout
snake_case_ : int = start_n_top
snake_case_ : str = end_n_top
snake_case_ : List[Any] = bos_token_id
snake_case_ : List[str] = pad_token_id
snake_case_ : Optional[int] = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"
" instead." , lowerCAmelCase__ , )
snake_case_ : Optional[int] = kwargs["use_cache"]
snake_case_ : Optional[int] = use_mems_eval
snake_case_ : Optional[Any] = use_mems_train
super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _A ( self :List[str] ) -> Any:
'''simple docstring'''
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def _A ( self :int , lowerCAmelCase__ :Dict ) -> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 656 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase : List[str] = logging.get_logger(__name__)
__lowerCamelCase : int = {
'''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class A_ (a_ ):
"""simple docstring"""
a__ = '''cvt'''
def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
snake_case_ : int = num_channels
snake_case_ : int = patch_sizes
snake_case_ : Optional[Any] = patch_stride
snake_case_ : Dict = patch_padding
snake_case_ : Tuple = embed_dim
snake_case_ : Optional[int] = num_heads
snake_case_ : Union[str, Any] = depth
snake_case_ : Optional[int] = mlp_ratio
snake_case_ : Tuple = attention_drop_rate
snake_case_ : str = drop_rate
snake_case_ : Tuple = drop_path_rate
snake_case_ : Any = qkv_bias
snake_case_ : Union[str, Any] = cls_token
snake_case_ : int = qkv_projection_method
snake_case_ : Any = kernel_qkv
snake_case_ : Union[str, Any] = padding_kv
snake_case_ : str = stride_kv
snake_case_ : Dict = padding_q
snake_case_ : Tuple = stride_q
snake_case_ : Any = initializer_range
snake_case_ : Any = layer_norm_eps
| 656 | 1 |
'''simple docstring'''
import math
def __UpperCAmelCase ( __magic_name__ = 100 )-> int:
"""simple docstring"""
snake_case_ : Union[str, Any] = sum(i * i for i in range(1 ,n + 1 ) )
snake_case_ : int = int(math.pow(sum(range(1 ,n + 1 ) ) ,2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(f'''{solution() = }''')
| 656 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
__lowerCamelCase : str = '''\
@inproceedings{snover-etal-2006-study,
title = "A Study of Translation Edit Rate with Targeted Human Annotation",
author = "Snover, Matthew and
Dorr, Bonnie and
Schwartz, Rich and
Micciulla, Linnea and
Makhoul, John",
booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",
month = aug # " 8-12",
year = "2006",
address = "Cambridge, Massachusetts, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2006.amta-papers.25",
pages = "223--231",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__lowerCamelCase : Dict = '''\
TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a
hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu
(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found
here: https://github.com/jhclark/tercom.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.
'''
__lowerCamelCase : int = '''
Produces TER scores alongside the number of edits and reference length.
Args:
predictions (list of str): The system stream (a sequence of segments).
references (list of list of str): A list of one or more reference streams (each a sequence of segments).
normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,
as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.
Only applies if `normalized = True`. Defaults to `False`.
case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.
Returns:
\'score\' (float): TER score (num_edits / sum_ref_lengths * 100)
\'num_edits\' (int): The cumulative number of edits
\'ref_length\' (float): The cumulative average reference length
Examples:
Example 1:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}
Example 2:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}
Example 3:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... normalized=True,
... case_sensitive=True)
>>> print(results)
{\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}
Example 4:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}
Example 5:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
if version.parse(scb.__version__ ) < version.parse("1.4.12" ):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
"You can install it with `pip install \"sacrebleu>=1.4.12\"`." )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[
"https://github.com/jhclark/tercom",
] , )
def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[str] = len(references[0] )
if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )]
snake_case_ : List[str] = TER(
normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , )
snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ )
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 656 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = MgpstrTokenizer
a__ = False
a__ = {}
a__ = False
def _A ( self :List[str] ) -> List[str]:
'''simple docstring'''
super().setUp()
# fmt: off
snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str:
'''simple docstring'''
snake_case_ : Dict = "tester"
snake_case_ : Tuple = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def _A ( self :Dict ) -> str:
'''simple docstring'''
pass
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_ : Tuple = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def _A ( self :int ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ )
snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def _A ( self :Union[str, Any] ) -> Any:
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def _A ( self :int ) -> Dict:
'''simple docstring'''
pass
| 656 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Any = {
"repo_name": ["test_repo1", "test_repo2", "test_repo3"],
"path": ["test_1.py", "test_2.py", "unit_test.py"],
"content": ["a " * 20, "a " * 30, "b " * 7],
}
snake_case_ : int = Dataset.from_dict(__magic_name__ )
return dataset
class A_ (a_ ):
"""simple docstring"""
def _A ( self :List[str] ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = get_dataset()
snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[int] = get_dataset()
snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 2 )
print(lowerCAmelCase__ )
self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 )
self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
| 656 | 1 |
'''simple docstring'''
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__lowerCamelCase : str = '''.'''
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
__lowerCamelCase : Tuple = [
'''Assert''',
'''AssignVariableOp''',
'''EmptyTensorList''',
'''MergeV2Checkpoints''',
'''ReadVariableOp''',
'''ResourceGather''',
'''RestoreV2''',
'''SaveV2''',
'''ShardedFilename''',
'''StatefulPartitionedCall''',
'''StaticRegexFullMatch''',
'''VarHandleOp''',
]
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]:
"""simple docstring"""
snake_case_ : Tuple = SavedModel()
snake_case_ : Dict = []
with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f:
snake_case_ : Dict = json.load(__magic_name__ )["opsets"]
for i in range(1 ,opset + 1 ):
onnx_ops.extend(onnx_opsets[str(__magic_name__ )] )
with open(__magic_name__ ,"rb" ) as f:
saved_model.ParseFromString(f.read() )
snake_case_ : Tuple = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
snake_case_ : str = sorted(__magic_name__ )
snake_case_ : Optional[int] = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(__magic_name__ )
if strict and len(__magic_name__ ) > 0:
raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops )
elif len(__magic_name__ ) > 0:
print(F'''Found the following incompatible ops for the opset {opset}:''' )
print(*__magic_name__ ,sep="\n" )
else:
print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser()
parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''')
parser.add_argument(
'''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.'''
)
parser.add_argument(
'''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.'''
)
parser.add_argument(
'''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)'''
)
__lowerCamelCase : Dict = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 656 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable
__lowerCamelCase : Dict = {
'''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''],
'''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : int = [
'''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTNeoXJapaneseForCausalLM''',
'''GPTNeoXJapaneseLayer''',
'''GPTNeoXJapaneseModel''',
'''GPTNeoXJapanesePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox_japanese import (
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
else:
import sys
__lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 656 | 1 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCamelCase : Any = logging.get_logger(__name__)
__lowerCamelCase : int = {
'''microsoft/conditional-detr-resnet-50''': (
'''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json'''
),
}
class A_ (a_ ):
"""simple docstring"""
a__ = '''conditional_detr'''
a__ = ['''past_key_values''']
a__ = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self :List[Any] , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=3 , lowerCAmelCase__ :Dict=300 , lowerCAmelCase__ :List[Any]=6 , lowerCAmelCase__ :Any=2_048 , lowerCAmelCase__ :Any=8 , lowerCAmelCase__ :Union[str, Any]=6 , lowerCAmelCase__ :Tuple=2_048 , lowerCAmelCase__ :Optional[int]=8 , lowerCAmelCase__ :Dict=0.0 , lowerCAmelCase__ :Any=0.0 , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :List[Any]="relu" , lowerCAmelCase__ :Tuple=256 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :int=0.0 , lowerCAmelCase__ :Optional[Any]=0.0 , lowerCAmelCase__ :Optional[int]=0.0_2 , lowerCAmelCase__ :Dict=1.0 , lowerCAmelCase__ :List[str]=False , lowerCAmelCase__ :List[Any]="sine" , lowerCAmelCase__ :Any="resnet50" , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :List[str]=False , lowerCAmelCase__ :Tuple=2 , lowerCAmelCase__ :List[Any]=5 , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :Optional[Any]=1 , lowerCAmelCase__ :List[str]=1 , lowerCAmelCase__ :Union[str, Any]=2 , lowerCAmelCase__ :Tuple=5 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :List[str]=0.2_5 , **lowerCAmelCase__ :Tuple , ) -> Any:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
snake_case_ : Any = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : Optional[Any] = backbone_config.get("model_type" )
snake_case_ : Tuple = CONFIG_MAPPING[backbone_model_type]
snake_case_ : List[str] = config_class.from_dict(lowerCAmelCase__ )
snake_case_ : int = use_timm_backbone
snake_case_ : Union[str, Any] = backbone_config
snake_case_ : int = num_channels
snake_case_ : int = num_queries
snake_case_ : List[Any] = d_model
snake_case_ : int = encoder_ffn_dim
snake_case_ : str = encoder_layers
snake_case_ : str = encoder_attention_heads
snake_case_ : List[Any] = decoder_ffn_dim
snake_case_ : Union[str, Any] = decoder_layers
snake_case_ : List[Any] = decoder_attention_heads
snake_case_ : List[Any] = dropout
snake_case_ : int = attention_dropout
snake_case_ : str = activation_dropout
snake_case_ : int = activation_function
snake_case_ : str = init_std
snake_case_ : Union[str, Any] = init_xavier_std
snake_case_ : Optional[Any] = encoder_layerdrop
snake_case_ : str = decoder_layerdrop
snake_case_ : Tuple = encoder_layers
snake_case_ : Dict = auxiliary_loss
snake_case_ : str = position_embedding_type
snake_case_ : Dict = backbone
snake_case_ : Union[str, Any] = use_pretrained_backbone
snake_case_ : Tuple = dilation
# Hungarian matcher
snake_case_ : int = class_cost
snake_case_ : Optional[int] = bbox_cost
snake_case_ : int = giou_cost
# Loss coefficients
snake_case_ : Optional[int] = mask_loss_coefficient
snake_case_ : Dict = dice_loss_coefficient
snake_case_ : Optional[int] = cls_loss_coefficient
snake_case_ : Any = bbox_loss_coefficient
snake_case_ : List[Any] = giou_loss_coefficient
snake_case_ : List[str] = focal_alpha
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _A ( self :Dict ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def _A ( self :Optional[int] ) -> int:
'''simple docstring'''
return self.d_model
def _A ( self :Optional[int] ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
snake_case_ : Union[str, Any] = self.backbone_config.to_dict()
snake_case_ : str = self.__class__.model_type
return output
class A_ (a_ ):
"""simple docstring"""
a__ = version.parse('''1.11''' )
@property
def _A ( self :Any ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _A ( self :Dict ) -> float:
'''simple docstring'''
return 1E-5
@property
def _A ( self :Union[str, Any] ) -> int:
'''simple docstring'''
return 12
| 656 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ )-> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ):
raise ValueError("Length must be a positive integer." )
return [n * (2 * n - 1) for n in range(__magic_name__ )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 656 | 1 |
'''simple docstring'''
from __future__ import annotations
__lowerCamelCase : Optional[Any] = {
'''A''': ['''B''', '''C''', '''E'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F''', '''G'''],
'''D''': ['''B'''],
'''E''': ['''A''', '''B''', '''D'''],
'''F''': ['''C'''],
'''G''': ['''C'''],
}
class A_ :
"""simple docstring"""
def __init__( self :List[Any] , lowerCAmelCase__ :dict[str, list[str]] , lowerCAmelCase__ :str ) -> None:
'''simple docstring'''
snake_case_ : List[str] = graph
# mapping node to its parent in resulting breadth first tree
snake_case_ : dict[str, str | None] = {}
snake_case_ : Dict = source_vertex
def _A ( self :Optional[int] ) -> None:
'''simple docstring'''
snake_case_ : int = {self.source_vertex}
snake_case_ : Dict = None
snake_case_ : Tuple = [self.source_vertex] # first in first out queue
while queue:
snake_case_ : Dict = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(lowerCAmelCase__ )
snake_case_ : List[Any] = vertex
queue.append(lowerCAmelCase__ )
def _A ( self :Optional[Any] , lowerCAmelCase__ :str ) -> str:
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
snake_case_ : Any = self.parent.get(lowerCAmelCase__ )
if target_vertex_parent is None:
snake_case_ : Optional[Any] = (
F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}'''
)
raise ValueError(lowerCAmelCase__ )
return self.shortest_path(lowerCAmelCase__ ) + F'''->{target_vertex}'''
if __name__ == "__main__":
__lowerCamelCase : Tuple = Graph(graph, '''G''')
g.breath_first_search()
print(g.shortest_path('''D'''))
print(g.shortest_path('''G'''))
print(g.shortest_path('''Foo'''))
| 656 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __UpperCAmelCase ( __magic_name__=None )-> List[str]:
"""simple docstring"""
if subparsers is not None:
snake_case_ : List[str] = subparsers.add_parser("test" )
else:
snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" ,default=__magic_name__ ,help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) ,)
if subparsers is not None:
parser.set_defaults(func=__magic_name__ )
return parser
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
snake_case_ : str = script_name
else:
snake_case_ : Any = F'''--config_file={args.config_file} {script_name}'''
snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split()
snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Dict = test_command_parser()
snake_case_ : Dict = parser.parse_args()
test_command(__magic_name__ )
if __name__ == "__main__":
main()
| 656 | 1 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import List, Optional
class A_ (a_ ):
"""simple docstring"""
def __init__( self :Optional[Any] ) -> List[Any]:
'''simple docstring'''
self.test()
def _A ( self :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Tuple = 0
snake_case_ : int = False
while not completed:
if counter == 1:
self.reset()
snake_case_ : Union[str, Any] = self.advance()
if not self.does_advance(lowerCAmelCase__ ):
raise Exception(
"Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." )
snake_case_, snake_case_, snake_case_ : List[Any] = self.update(lowerCAmelCase__ )
counter += 1
if counter > 10_000:
raise Exception("update() does not fulfill the constraint." )
if self.remaining() != 0:
raise Exception("Custom Constraint is not defined correctly." )
@abstractmethod
def _A ( self :Dict ) -> Optional[Any]:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def _A ( self :Optional[Any] , lowerCAmelCase__ :int ) -> Any:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def _A ( self :Dict , lowerCAmelCase__ :int ) -> Tuple:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def _A ( self :Any ) -> List[str]:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def _A ( self :Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def _A ( self :str , lowerCAmelCase__ :List[str]=False ) -> int:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class A_ (a_ ):
"""simple docstring"""
def __init__( self :Any , lowerCAmelCase__ :List[int] ) -> List[str]:
'''simple docstring'''
super(lowerCAmelCase__ , self ).__init__()
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or len(lowerCAmelCase__ ) == 0:
raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or token_id < 0) for token_id in token_ids ):
raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
snake_case_ : Any = token_ids
snake_case_ : Any = len(self.token_ids )
snake_case_ : Tuple = -1 # the index of the currently fulfilled step
snake_case_ : Optional[int] = False
def _A ( self :List[str] ) -> Any:
'''simple docstring'''
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def _A ( self :str , lowerCAmelCase__ :int ) -> Union[str, Any]:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase__ )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def _A ( self :List[str] , lowerCAmelCase__ :int ) -> str:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase__ )}''' )
snake_case_ : Any = False
snake_case_ : List[Any] = False
snake_case_ : Any = False
if self.does_advance(lowerCAmelCase__ ):
self.fulfilled_idx += 1
snake_case_ : Union[str, Any] = True
if self.fulfilled_idx == (self.seqlen - 1):
snake_case_ : Dict = True
snake_case_ : List[str] = completed
else:
# failed to make progress.
snake_case_ : List[Any] = True
self.reset()
return stepped, completed, reset
def _A ( self :str ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[Any] = False
snake_case_ : Dict = 0
def _A ( self :int ) -> Tuple:
'''simple docstring'''
return self.seqlen - (self.fulfilled_idx + 1)
def _A ( self :int , lowerCAmelCase__ :Union[str, Any]=False ) -> str:
'''simple docstring'''
snake_case_ : List[str] = PhrasalConstraint(self.token_ids )
if stateful:
snake_case_ : Dict = self.seqlen
snake_case_ : List[Any] = self.fulfilled_idx
snake_case_ : Dict = self.completed
return new_constraint
class A_ :
"""simple docstring"""
def __init__( self :int , lowerCAmelCase__ :List[List[int]] , lowerCAmelCase__ :Any=True ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Dict = max([len(lowerCAmelCase__ ) for one in nested_token_ids] )
snake_case_ : List[str] = {}
for token_ids in nested_token_ids:
snake_case_ : Union[str, Any] = root
for tidx, token_id in enumerate(lowerCAmelCase__ ):
if token_id not in level:
snake_case_ : int = {}
snake_case_ : Optional[Any] = level[token_id]
if no_subsets and self.has_subsets(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError(
"Each list in `nested_token_ids` can't be a complete subset of another list, but is"
F''' {nested_token_ids}.''' )
snake_case_ : Union[str, Any] = root
def _A ( self :int , lowerCAmelCase__ :Optional[int] ) -> Tuple:
'''simple docstring'''
snake_case_ : Any = self.trie
for current_token in current_seq:
snake_case_ : str = start[current_token]
snake_case_ : List[Any] = list(start.keys() )
return next_tokens
def _A ( self :Optional[int] , lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[int] = self.next_tokens(lowerCAmelCase__ )
return len(lowerCAmelCase__ ) == 0
def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> int:
'''simple docstring'''
snake_case_ : Optional[int] = list(root.values() )
if len(lowerCAmelCase__ ) == 0:
return 1
else:
return sum([self.count_leaves(lowerCAmelCase__ ) for nn in next_nodes] )
def _A ( self :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Any ) -> str:
'''simple docstring'''
snake_case_ : str = self.count_leaves(lowerCAmelCase__ )
return len(lowerCAmelCase__ ) != leaf_count
class A_ (a_ ):
"""simple docstring"""
def __init__( self :Any , lowerCAmelCase__ :List[List[int]] ) -> List[Any]:
'''simple docstring'''
super(lowerCAmelCase__ , self ).__init__()
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or len(lowerCAmelCase__ ) == 0:
raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for token_ids in nested_token_ids ):
raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
snake_case_ : Any = DisjunctiveTrie(lowerCAmelCase__ )
snake_case_ : Optional[int] = nested_token_ids
snake_case_ : List[str] = self.trie.max_height
snake_case_ : Tuple = []
snake_case_ : int = False
def _A ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Any = self.trie.next_tokens(self.current_seq )
if len(lowerCAmelCase__ ) == 0:
return None
else:
return token_list
def _A ( self :Optional[Any] , lowerCAmelCase__ :int ) -> Dict:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase__ )}''' )
snake_case_ : List[Any] = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def _A ( self :Any , lowerCAmelCase__ :int ) -> Any:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase__ )}''' )
snake_case_ : Optional[int] = False
snake_case_ : Union[str, Any] = False
snake_case_ : Tuple = False
if self.does_advance(lowerCAmelCase__ ):
self.current_seq.append(lowerCAmelCase__ )
snake_case_ : Dict = True
else:
snake_case_ : Optional[Any] = True
self.reset()
snake_case_ : Optional[int] = self.trie.reached_leaf(self.current_seq )
snake_case_ : Tuple = completed
return stepped, completed, reset
def _A ( self :List[str] ) -> Any:
'''simple docstring'''
snake_case_ : str = False
snake_case_ : List[str] = []
def _A ( self :Any ) -> Any:
'''simple docstring'''
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def _A ( self :List[Any] , lowerCAmelCase__ :Optional[int]=False ) -> Any:
'''simple docstring'''
snake_case_ : str = DisjunctiveConstraint(self.token_ids )
if stateful:
snake_case_ : int = self.seqlen
snake_case_ : Tuple = self.current_seq
snake_case_ : Optional[Any] = self.completed
return new_constraint
class A_ :
"""simple docstring"""
def __init__( self :Optional[Any] , lowerCAmelCase__ :List[Constraint] ) -> Tuple:
'''simple docstring'''
snake_case_ : Optional[int] = constraints
# max # of steps required to fulfill a given constraint
snake_case_ : Dict = max([c.seqlen for c in constraints] )
snake_case_ : Optional[Any] = len(lowerCAmelCase__ )
snake_case_ : Optional[Any] = False
self.init_state()
def _A ( self :str ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Any = []
snake_case_ : Optional[int] = None
snake_case_ : Any = [constraint.copy(stateful=lowerCAmelCase__ ) for constraint in self.constraints]
def _A ( self :int ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def _A ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Any = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
snake_case_ : Optional[int] = constraint.advance()
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
token_list.append(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
token_list.extend(lowerCAmelCase__ )
else:
snake_case_ : Union[str, Any] = self.inprogress_constraint.advance()
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
token_list.append(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
token_list.extend(lowerCAmelCase__ )
if len(lowerCAmelCase__ ) == 0:
return None
else:
return token_list
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[List[int]] ) -> List[str]:
'''simple docstring'''
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
snake_case_, snake_case_ : Tuple = self.add(lowerCAmelCase__ )
# the entire list of constraints are fulfilled
if self.completed:
break
def _A ( self :int , lowerCAmelCase__ :int ) -> Dict:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' )
snake_case_, snake_case_ : List[str] = False, False
if self.completed:
snake_case_ : Any = True
snake_case_ : Optional[Any] = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
snake_case_, snake_case_, snake_case_ : Any = self.inprogress_constraint.update(lowerCAmelCase__ )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowerCAmelCase__ ) )
snake_case_ : List[Any] = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
snake_case_ : int = None
if len(self.pending_constraints ) == 0:
# we're done!
snake_case_ : List[str] = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(lowerCAmelCase__ ):
snake_case_, snake_case_, snake_case_ : Tuple = pending_constraint.update(lowerCAmelCase__ )
if not stepped:
raise Exception(
"`constraint.update(token_id)` is not yielding incremental progress, "
"even though `constraint.does_advance(token_id)` is true." )
if complete:
self.complete_constraints.append(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = None
if not complete and stepped:
snake_case_ : Optional[Any] = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
snake_case_ : Union[str, Any] = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
snake_case_ : Union[str, Any] = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def _A ( self :Union[str, Any] , lowerCAmelCase__ :Dict=True ) -> int:
'''simple docstring'''
snake_case_ : int = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
snake_case_ : Dict = [
constraint.copy(stateful=lowerCAmelCase__ ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
snake_case_ : Tuple = self.inprogress_constraint.copy(stateful=lowerCAmelCase__ )
snake_case_ : List[str] = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 656 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCamelCase : str = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
__lowerCamelCase : int = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
__lowerCamelCase : List[str] = R'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , )
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 656 | 1 |
'''simple docstring'''
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
__lowerCamelCase : Any = logging.get_logger(__name__)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> None:
"""simple docstring"""
snake_case_ : Tuple = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(__magic_name__ ) == len(__magic_name__ ), F'''{len(__magic_name__ )} != {len(__magic_name__ )}'''
dest_layers.load_state_dict(layers_to_copy.state_dict() )
__lowerCamelCase : Dict = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
__lowerCamelCase : str = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
try:
snake_case_ : int = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first'''
F''' {n_student}''' )
return list(range(__magic_name__ ) )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[int]:
"""simple docstring"""
if n_student > n_teacher:
raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' )
elif n_teacher == n_student:
return list(range(__magic_name__ ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = "student" ,__magic_name__ = None ,__magic_name__ = None ,__magic_name__=False ,__magic_name__=None ,__magic_name__=None ,**__magic_name__ ,)-> Tuple[PreTrainedModel, List[int], List[int]]:
"""simple docstring"""
snake_case_ : Tuple = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher."
assert (e is not None) or (d is not None), _msg
if isinstance(__magic_name__ ,__magic_name__ ):
AutoTokenizer.from_pretrained(__magic_name__ ).save_pretrained(__magic_name__ ) # purely for convenience
snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).eval()
else:
assert isinstance(__magic_name__ ,__magic_name__ ), F'''teacher must be a model or string got type {type(__magic_name__ )}'''
snake_case_ : Any = teacher.config.to_diff_dict()
try:
snake_case_, snake_case_ : Union[str, Any] = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
snake_case_ : str = teacher_e
if d is None:
snake_case_ : str = teacher_d
init_kwargs.update({"encoder_layers": e, "decoder_layers": d} )
except AttributeError: # T5
if hasattr(teacher.config ,"num_encoder_layers" ):
snake_case_, snake_case_ : Optional[int] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
snake_case_, snake_case_ : List[Any] = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
snake_case_ : Tuple = teacher_e
if d is None:
snake_case_ : Optional[Any] = teacher_d
if hasattr(teacher.config ,"num_encoder_layers" ):
init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} )
else:
init_kwargs.update({"num_layers": e, "num_decoder_layers": d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(__magic_name__ )
# Copy weights
snake_case_ : Optional[Any] = teacher.config_class(**__magic_name__ )
snake_case_ : str = AutoModelForSeqaSeqLM.from_config(__magic_name__ )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
snake_case_ : str = student.load_state_dict(teacher.state_dict() ,strict=__magic_name__ )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
snake_case_, snake_case_ : Optional[int] = list(range(__magic_name__ ) ), list(range(__magic_name__ ) )
logger.info(
F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to'''
F''' {save_path}''' )
student.save_pretrained(__magic_name__ )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
snake_case_ : List[int] = pick_layers_to_copy(__magic_name__ ,__magic_name__ )
if d_layers_to_copy is None:
snake_case_ : List[int] = pick_layers_to_copy(__magic_name__ ,__magic_name__ )
try:
if hasattr(
__magic_name__ ,"prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers ,student.prophetnet.encoder.layers ,__magic_name__ )
copy_layers(teacher.prophetnet.decoder.layers ,student.prophetnet.decoder.layers ,__magic_name__ )
else:
copy_layers(teacher.model.encoder.layers ,student.model.encoder.layers ,__magic_name__ )
copy_layers(teacher.model.decoder.layers ,student.model.decoder.layers ,__magic_name__ )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block ,student.encoder.block ,__magic_name__ )
copy_layers(teacher.decoder.block ,student.decoder.block ,__magic_name__ )
logger.info(
F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' )
snake_case_ : Optional[Any] = {
"teacher_type": teacher.config.model_type,
"copied_encoder_layers": e_layers_to_copy,
"copied_decoder_layers": d_layers_to_copy,
}
student.save_pretrained(__magic_name__ )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 656 |
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
__lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
__lowerCamelCase : str = 128022
__lowerCamelCase : List[Any] = 128028
@require_sentencepiece
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = MaMaaaTokenizer
a__ = False
a__ = False
a__ = True
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
super().setUp()
snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
snake_case_ : Optional[int] = Path(self.tmpdirname )
save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] )
snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str:
'''simple docstring'''
return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]:
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def _A ( self :List[str] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : str = "</s>"
snake_case_ : Union[str, Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.get_tokenizer()
snake_case_ : Any = list(tokenizer.get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "</s>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "<s>" )
self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) )
@unittest.skip("Skip this test while all models are still to be uploaded." )
def _A ( self :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def _A ( self :Optional[int] ) -> int:
'''simple docstring'''
snake_case_ : int = self.get_tokenizer()
snake_case_ : List[str] = tokenizer.tokenize("This is a test" )
self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , )
snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] )
self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , "This is a test" )
@slow
def _A ( self :Any ) -> List[Any]:
'''simple docstring'''
snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , )
@require_torch
@require_sentencepiece
@require_tokenizers
class A_ (unittest.TestCase ):
"""simple docstring"""
a__ = '''facebook/m2m100_418M'''
a__ = [
'''In my opinion, there are two levels of response from the French government.''',
'''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''',
]
a__ = [
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
]
# fmt: off
a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2]
@classmethod
def _A ( cls :str ) -> int:
'''simple docstring'''
snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="en" , tgt_lang="fr" )
snake_case_ : List[str] = 1
return cls
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 )
self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 )
self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 )
self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 )
def _A ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.tokenizer.get_vocab()
self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size )
self.assertEqual(vocab["<unk>"] , 3 )
self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ )
def _A ( self :Any ) -> Dict:
'''simple docstring'''
snake_case_ : List[str] = "en"
snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
# fmt: off
snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2]
# fmt: on
snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def _A ( self :Tuple ) -> Tuple:
'''simple docstring'''
snake_case_ : Union[str, Any] = tempfile.mkdtemp()
snake_case_ : int = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(lowerCAmelCase__ )
snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ )
@require_torch
def _A ( self :Optional[Any] ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = "en"
snake_case_ : Tuple = "fr"
snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" )
snake_case_ : Dict = shift_tokens_right(
batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id )
for k in batch:
snake_case_ : str = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : List[str] = "mr"
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
snake_case_ : int = "zh"
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
@require_torch
def _A ( self :str ) -> int:
'''simple docstring'''
snake_case_ : Dict = "mr"
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
snake_case_ : Tuple = "zh"
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
@require_torch
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# en_XX, A, test, EOS
"input_ids": [[128_022, 58, 4_183, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 128_006,
} , )
| 656 | 1 |
'''simple docstring'''
from transformers import BertTokenizerFast
from .custom_tokenization import CustomTokenizer
class A_ (a_ ):
"""simple docstring"""
a__ = CustomTokenizer
pass
| 656 |
'''simple docstring'''
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__lowerCamelCase : str = '''.'''
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
__lowerCamelCase : Tuple = [
'''Assert''',
'''AssignVariableOp''',
'''EmptyTensorList''',
'''MergeV2Checkpoints''',
'''ReadVariableOp''',
'''ResourceGather''',
'''RestoreV2''',
'''SaveV2''',
'''ShardedFilename''',
'''StatefulPartitionedCall''',
'''StaticRegexFullMatch''',
'''VarHandleOp''',
]
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]:
"""simple docstring"""
snake_case_ : Tuple = SavedModel()
snake_case_ : Dict = []
with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f:
snake_case_ : Dict = json.load(__magic_name__ )["opsets"]
for i in range(1 ,opset + 1 ):
onnx_ops.extend(onnx_opsets[str(__magic_name__ )] )
with open(__magic_name__ ,"rb" ) as f:
saved_model.ParseFromString(f.read() )
snake_case_ : Tuple = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
snake_case_ : str = sorted(__magic_name__ )
snake_case_ : Optional[int] = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(__magic_name__ )
if strict and len(__magic_name__ ) > 0:
raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops )
elif len(__magic_name__ ) > 0:
print(F'''Found the following incompatible ops for the opset {opset}:''' )
print(*__magic_name__ ,sep="\n" )
else:
print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser()
parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''')
parser.add_argument(
'''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.'''
)
parser.add_argument(
'''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.'''
)
parser.add_argument(
'''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)'''
)
__lowerCamelCase : Dict = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 656 | 1 |
'''simple docstring'''
from pathlib import Path
import fire
from tqdm import tqdm
def __UpperCAmelCase ( __magic_name__="ro" ,__magic_name__="en" ,__magic_name__="wmt16" ,__magic_name__=None )-> None:
"""simple docstring"""
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError("run pip install datasets" )
snake_case_ : Union[str, Any] = F'''{src_lang}-{tgt_lang}'''
print(F'''Converting {dataset}-{pair}''' )
snake_case_ : str = datasets.load_dataset(__magic_name__ ,__magic_name__ )
if save_dir is None:
snake_case_ : List[Any] = F'''{dataset}-{pair}'''
snake_case_ : Optional[int] = Path(__magic_name__ )
save_dir.mkdir(exist_ok=__magic_name__ )
for split in ds.keys():
print(F'''Splitting {split} with {ds[split].num_rows} records''' )
# to save to val.source, val.target like summary datasets
snake_case_ : int = "val" if split == "validation" else split
snake_case_ : int = save_dir.joinpath(F'''{fn}.source''' )
snake_case_ : Optional[Any] = save_dir.joinpath(F'''{fn}.target''' )
snake_case_ : Optional[int] = src_path.open("w+" )
snake_case_ : List[Any] = tgt_path.open("w+" )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
snake_case_ : Optional[int] = x["translation"]
src_fp.write(ex[src_lang] + "\n" )
tgt_fp.write(ex[tgt_lang] + "\n" )
print(F'''Saved {dataset} dataset to {save_dir}''' )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 656 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
__lowerCamelCase : List[str] = ['''names''', '''prefix''']
__lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols''']
__lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines''']
__lowerCamelCase : Optional[Any] = ['''date_format''']
@dataclass
class A_ (datasets.BuilderConfig ):
"""simple docstring"""
a__ = ","
a__ = None
a__ = "infer"
a__ = None
a__ = None
a__ = None
a__ = None
a__ = None
a__ = True
a__ = None
a__ = None
a__ = None
a__ = None
a__ = False
a__ = None
a__ = None
a__ = None
a__ = True
a__ = True
a__ = False
a__ = True
a__ = None
a__ = "."
a__ = None
a__ = '"'
a__ = 0
a__ = None
a__ = None
a__ = None
a__ = None
a__ = True
a__ = True
a__ = 0
a__ = True
a__ = False
a__ = None
a__ = 10000
a__ = None
a__ = "strict"
a__ = "error"
a__ = None
def _A ( self :List[str] ) -> Any:
'''simple docstring'''
if self.delimiter is not None:
snake_case_ : Tuple = self.delimiter
if self.column_names is not None:
snake_case_ : List[Any] = self.column_names
@property
def _A ( self :Optional[Any] ) -> int:
'''simple docstring'''
snake_case_ : Optional[int] = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A_ (datasets.ArrowBasedBuilder ):
"""simple docstring"""
a__ = CsvConfig
def _A ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
snake_case_ : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : List[str] = [files]
snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
snake_case_ : str = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : str = [files]
snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table:
'''simple docstring'''
if self.config.features is not None:
snake_case_ : int = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
snake_case_ : str = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' )
raise
| 656 | 1 |
'''simple docstring'''
import heapq as hq
import math
from collections.abc import Iterator
class A_ :
"""simple docstring"""
def __init__( self :Optional[int] , lowerCAmelCase__ :List[Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Optional[Any] = str(id_ )
snake_case_ : Union[str, Any] = None
snake_case_ : Union[str, Any] = None
snake_case_ : Optional[Any] = []
snake_case_ : List[str] = {} # {vertex:distance}
def __lt__( self :List[Any] , lowerCAmelCase__ :Tuple ) -> List[str]:
'''simple docstring'''
return self.key < other.key
def __repr__( self :Optional[Any] ) -> Dict:
'''simple docstring'''
return self.id
def _A ( self :List[Any] , lowerCAmelCase__ :str ) -> Dict:
'''simple docstring'''
self.neighbors.append(lowerCAmelCase__ )
def _A ( self :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case_ : Any = weight
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> Any:
"""simple docstring"""
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] ,__magic_name__ )
graph[b - 1].add_edge(graph[a - 1] ,__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list:
"""simple docstring"""
snake_case_ : Union[str, Any] = []
for u in graph:
snake_case_ : Optional[int] = math.inf
snake_case_ : Union[str, Any] = None
snake_case_ : List[Any] = 0
snake_case_ : Optional[Any] = graph[:]
while q:
snake_case_ : List[Any] = min(__magic_name__ )
q.remove(__magic_name__ )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
snake_case_ : Any = u
snake_case_ : int = u.edges[v.id]
for i in range(1 ,len(__magic_name__ ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Iterator[tuple]:
"""simple docstring"""
for u in graph:
snake_case_ : Any = math.inf
snake_case_ : str = None
snake_case_ : List[str] = 0
snake_case_ : Dict = list(__magic_name__ )
hq.heapify(__magic_name__ )
while h:
snake_case_ : Union[str, Any] = hq.heappop(__magic_name__ )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
snake_case_ : Tuple = u
snake_case_ : Any = u.edges[v.id]
hq.heapify(__magic_name__ )
for i in range(1 ,len(__magic_name__ ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def __UpperCAmelCase ( )-> None:
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 656 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = MgpstrTokenizer
a__ = False
a__ = {}
a__ = False
def _A ( self :List[str] ) -> List[str]:
'''simple docstring'''
super().setUp()
# fmt: off
snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str:
'''simple docstring'''
snake_case_ : Dict = "tester"
snake_case_ : Tuple = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def _A ( self :Dict ) -> str:
'''simple docstring'''
pass
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_ : Tuple = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def _A ( self :int ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ )
snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def _A ( self :Union[str, Any] ) -> Any:
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def _A ( self :int ) -> Dict:
'''simple docstring'''
pass
| 656 | 1 |
'''simple docstring'''
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
'''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , a_ , )
class A_ (a_ ):
"""simple docstring"""
a__ = RobertaConfig
a__ = '''roberta'''
def __init__( self :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> List[Any]:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
snake_case_ : int = RobertaEmbeddings(lowerCAmelCase__ )
self.init_weights()
@add_start_docstrings(
'''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. ''' , a_ , )
class A_ (a_ ):
"""simple docstring"""
a__ = RobertaConfig
a__ = '''roberta'''
def __init__( self :Union[str, Any] , lowerCAmelCase__ :int ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
snake_case_ : Tuple = config.num_labels
snake_case_ : List[str] = config.num_hidden_layers
snake_case_ : Optional[int] = DeeRobertaModel(lowerCAmelCase__ )
snake_case_ : Optional[int] = nn.Dropout(config.hidden_dropout_prob )
snake_case_ : Optional[int] = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
def _A ( self :Union[str, Any] , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :str=None , lowerCAmelCase__ :List[Any]=-1 , lowerCAmelCase__ :Union[str, Any]=False , ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Dict = self.num_layers
try:
snake_case_ : Optional[Any] = self.roberta(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , )
snake_case_ : str = outputs[1]
snake_case_ : Any = self.dropout(lowerCAmelCase__ )
snake_case_ : str = self.classifier(lowerCAmelCase__ )
snake_case_ : Optional[int] = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
snake_case_ : str = e.message
snake_case_ : Any = e.exit_layer
snake_case_ : List[Any] = outputs[0]
if not self.training:
snake_case_ : Tuple = entropy(lowerCAmelCase__ )
snake_case_ : Any = []
snake_case_ : Optional[Any] = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
snake_case_ : Optional[Any] = MSELoss()
snake_case_ : str = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
snake_case_ : Tuple = CrossEntropyLoss()
snake_case_ : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
snake_case_ : Union[str, Any] = []
for highway_exit in outputs[-1]:
snake_case_ : Optional[Any] = highway_exit[0]
if not self.training:
highway_logits_all.append(lowerCAmelCase__ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
snake_case_ : Tuple = MSELoss()
snake_case_ : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
snake_case_ : Dict = CrossEntropyLoss()
snake_case_ : Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(lowerCAmelCase__ )
if train_highway:
snake_case_ : Any = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
snake_case_ : Union[str, Any] = (loss,) + outputs
if not self.training:
snake_case_ : Tuple = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
snake_case_ : Union[str, Any] = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 656 |
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]:
"""simple docstring"""
if dataset.ndim != value_array.ndim:
snake_case_ : int = (
"Wrong input data's dimensions... "
F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}'''
)
raise ValueError(__magic_name__ )
try:
if dataset.shape[1] != value_array.shape[1]:
snake_case_ : Dict = (
"Wrong input data's shape... "
F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}'''
)
raise ValueError(__magic_name__ )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("Wrong shape" )
if dataset.dtype != value_array.dtype:
snake_case_ : Dict = (
"Input data have different datatype... "
F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}'''
)
raise TypeError(__magic_name__ )
snake_case_ : Optional[int] = []
for value in value_array:
snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] )
snake_case_ : int = dataset[0].tolist()
for dataset_value in dataset[1:]:
snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ )
if dist > temp_dist:
snake_case_ : Tuple = temp_dist
snake_case_ : Optional[int] = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 656 | 1 |
'''simple docstring'''
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__lowerCamelCase : Union[str, Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class A_ (datasets.BuilderConfig ):
"""simple docstring"""
a__ = None
a__ = "utf-8"
a__ = None
a__ = None
a__ = True # deprecated
a__ = None # deprecated
a__ = 10 << 20 # 10MB
a__ = None
class A_ (datasets.ArrowBasedBuilder ):
"""simple docstring"""
a__ = JsonConfig
def _A ( self :Optional[int] ) -> str:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" )
snake_case_ : Any = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." )
if self.config.newlines_in_values is not None:
raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" )
return datasets.DatasetInfo(features=self.config.features )
def _A ( self :List[Any] , lowerCAmelCase__ :List[Any] ) -> int:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
snake_case_ : Dict = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
snake_case_ : List[str] = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : Any = [files]
snake_case_ : Optional[int] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
snake_case_ : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : Union[str, Any] = [files]
snake_case_ : Dict = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
snake_case_ : Optional[int] = self.config.features.arrow_schema.field(lowerCAmelCase__ ).type
snake_case_ : Dict = pa_table.append_column(lowerCAmelCase__ , pa.array([None] * len(lowerCAmelCase__ ) , type=lowerCAmelCase__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
snake_case_ : List[str] = table_cast(lowerCAmelCase__ , self.config.features.arrow_schema )
return pa_table
def _A ( self :str , lowerCAmelCase__ :Optional[int] ) -> int:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(lowerCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
snake_case_ : Optional[Any] = json.load(lowerCAmelCase__ )
# We keep only the field we are interested in
snake_case_ : Dict = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(lowerCAmelCase__ , (list, tuple) ):
snake_case_ : Optional[Any] = set().union(*[row.keys() for row in dataset] )
snake_case_ : Any = {col: [row.get(lowerCAmelCase__ ) for row in dataset] for col in keys}
else:
snake_case_ : str = dataset
snake_case_ : List[str] = pa.Table.from_pydict(lowerCAmelCase__ )
yield file_idx, self._cast_table(lowerCAmelCase__ )
# If the file has one json object per line
else:
with open(lowerCAmelCase__ , "rb" ) as f:
snake_case_ : Union[str, Any] = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
snake_case_ : List[str] = max(self.config.chunksize // 32 , 16 << 10 )
snake_case_ : Any = (
self.config.encoding_errors if self.config.encoding_errors is not None else "strict"
)
while True:
snake_case_ : Dict = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(lowerCAmelCase__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
snake_case_ : Union[str, Any] = batch.decode(self.config.encoding , errors=lowerCAmelCase__ ).encode("utf-8" )
try:
while True:
try:
snake_case_ : Dict = paj.read_json(
io.BytesIO(lowerCAmelCase__ ) , read_options=paj.ReadOptions(block_size=lowerCAmelCase__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(lowerCAmelCase__ , pa.ArrowInvalid )
and "straddling" not in str(lowerCAmelCase__ )
or block_size > len(lowerCAmelCase__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'''Batch of {len(lowerCAmelCase__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
lowerCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
snake_case_ : int = json.load(lowerCAmelCase__ )
except json.JSONDecodeError:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # list is the only sequence type supported in JSON
try:
snake_case_ : Union[str, Any] = set().union(*[row.keys() for row in dataset] )
snake_case_ : str = {col: [row.get(lowerCAmelCase__ ) for row in dataset] for col in keys}
snake_case_ : Optional[int] = pa.Table.from_pydict(lowerCAmelCase__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' )
raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None
yield file_idx, self._cast_table(lowerCAmelCase__ )
break
else:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' )
raise ValueError(
F'''Not able to read records in the JSON file at {file}. '''
F'''You should probably indicate the field of the JSON file containing your records. '''
F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '''
F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
batch_idx += 1
| 656 |
'''simple docstring'''
import fire
from utils import calculate_rouge, save_json
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()]
snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )]
snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ )
if save_path is not None:
save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 656 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase : List[str] = logging.get_logger(__name__)
__lowerCamelCase : Dict = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class A_ (a_ ):
"""simple docstring"""
a__ = '''speech_to_text'''
a__ = ['''past_key_values''']
a__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=10_000 , lowerCAmelCase__ :Optional[Any]=12 , lowerCAmelCase__ :Tuple=2_048 , lowerCAmelCase__ :Optional[int]=4 , lowerCAmelCase__ :Optional[int]=6 , lowerCAmelCase__ :Union[str, Any]=2_048 , lowerCAmelCase__ :Optional[int]=4 , lowerCAmelCase__ :int=0.0 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :str="relu" , lowerCAmelCase__ :Dict=256 , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :List[str]=0.0 , lowerCAmelCase__ :List[Any]=0.0 , lowerCAmelCase__ :int=0.0_2 , lowerCAmelCase__ :int=2 , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Optional[Any]=1 , lowerCAmelCase__ :Dict=0 , lowerCAmelCase__ :Union[str, Any]=2 , lowerCAmelCase__ :Optional[int]=6_000 , lowerCAmelCase__ :int=1_024 , lowerCAmelCase__ :Union[str, Any]=2 , lowerCAmelCase__ :List[Any]=(5, 5) , lowerCAmelCase__ :Optional[Any]=1_024 , lowerCAmelCase__ :Union[str, Any]=80 , lowerCAmelCase__ :int=1 , **lowerCAmelCase__ :Tuple , ) -> Dict:
'''simple docstring'''
snake_case_ : int = vocab_size
snake_case_ : str = d_model
snake_case_ : Optional[Any] = encoder_ffn_dim
snake_case_ : Union[str, Any] = encoder_layers
snake_case_ : str = encoder_attention_heads
snake_case_ : Optional[int] = decoder_ffn_dim
snake_case_ : Optional[int] = decoder_layers
snake_case_ : Optional[Any] = decoder_attention_heads
snake_case_ : int = dropout
snake_case_ : List[Any] = attention_dropout
snake_case_ : Optional[int] = activation_dropout
snake_case_ : List[Any] = activation_function
snake_case_ : Optional[int] = init_std
snake_case_ : str = encoder_layerdrop
snake_case_ : Optional[int] = decoder_layerdrop
snake_case_ : List[Any] = use_cache
snake_case_ : List[str] = encoder_layers
snake_case_ : str = scale_embedding # scale factor will be sqrt(d_model) if True
snake_case_ : Dict = max_source_positions
snake_case_ : Optional[int] = max_target_positions
snake_case_ : Dict = num_conv_layers
snake_case_ : Tuple = list(lowerCAmelCase__ )
snake_case_ : str = conv_channels
snake_case_ : int = input_feat_per_channel
snake_case_ : List[str] = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` "
F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
super().__init__(
pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
| 656 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
__lowerCamelCase : Optional[Any] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
f'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
f'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''),
('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''),
('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''),
('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''),
('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''),
('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''),
('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''),
('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''),
('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''),
('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''),
]
)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int:
"""simple docstring"""
snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ )
snake_case_ : Any = val
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Any = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" )
snake_case_ : int = value
else:
snake_case_ : int = value
return new_state_dict
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]:
"""simple docstring"""
snake_case_ : str = ""
if is_panoptic:
snake_case_ : Dict = "conditional_detr."
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case_ : Tuple = in_proj_weight[:256, :]
snake_case_ : List[Any] = in_proj_bias[:256]
snake_case_ : Optional[Any] = in_proj_weight[256:512, :]
snake_case_ : Optional[int] = in_proj_bias[256:512]
snake_case_ : Optional[int] = in_proj_weight[-256:, :]
snake_case_ : str = in_proj_bias[-256:]
def __UpperCAmelCase ( )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]:
"""simple docstring"""
snake_case_ : Optional[Any] = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
snake_case_ : Optional[Any] = "resnet101"
if "dc5" in model_name:
snake_case_ : List[str] = True
snake_case_ : Tuple = "panoptic" in model_name
if is_panoptic:
snake_case_ : List[Any] = 250
else:
snake_case_ : Optional[Any] = 91
snake_case_ : Optional[int] = "huggingface/label-files"
snake_case_ : Dict = "coco-detection-id2label.json"
snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) )
snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()}
snake_case_ : int = idalabel
snake_case_ : Dict = {v: k for k, v in idalabel.items()}
# load image processor
snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection"
snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ )
# prepare image
snake_case_ : str = prepare_img()
snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" )
snake_case_ : Union[str, Any] = encoding["pixel_values"]
logger.info(F'''Converting model {model_name}...''' )
# load original model from torch hub
snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval()
snake_case_ : Any = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
snake_case_ : Any = "conditional_detr." + src
rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ )
snake_case_ : Tuple = rename_backbone_keys(__magic_name__ )
# query, key and value matrices need special treatment
read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
snake_case_ : int = "conditional_detr.model." if is_panoptic else "model."
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("conditional_detr" )
and not key.startswith("class_labels_classifier" )
and not key.startswith("bbox_predictor" )
):
snake_case_ : Any = state_dict.pop(__magic_name__ )
snake_case_ : Optional[int] = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
snake_case_ : Tuple = state_dict.pop(__magic_name__ )
snake_case_ : Any = val
elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ):
continue
else:
snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ )
snake_case_ : List[Any] = val
else:
if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ):
snake_case_ : Any = state_dict.pop(__magic_name__ )
snake_case_ : List[Any] = val
# finally, create HuggingFace model and load state dict
snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ )
model.load_state_dict(__magic_name__ )
model.eval()
model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" )
# verify our conversion
snake_case_ : Dict = conditional_detr(__magic_name__ )
snake_case_ : Union[str, Any] = model(__magic_name__ )
assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 )
assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 )
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
model.save_pretrained(__magic_name__ )
image_processor.save_pretrained(__magic_name__ )
if __name__ == "__main__":
__lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''conditional_detr_resnet50''',
type=str,
help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
__lowerCamelCase : int = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 656 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
__lowerCamelCase : Union[str, Any] = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class A_ (a_ ):
"""simple docstring"""
a__ = '''tapas'''
def __init__( self :Tuple , lowerCAmelCase__ :Union[str, Any]=30_522 , lowerCAmelCase__ :Tuple=768 , lowerCAmelCase__ :Optional[Any]=12 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Optional[int]=3_072 , lowerCAmelCase__ :Union[str, Any]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[Any]=[3, 256, 256, 2, 256, 256, 10] , lowerCAmelCase__ :Tuple=0.0_2 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Tuple=1_0.0 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :str=1.0 , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[Any]=1.0 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Any=1.0 , lowerCAmelCase__ :List[Any]=1.0 , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :int=False , lowerCAmelCase__ :Optional[Any]="ratio" , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :int=64 , lowerCAmelCase__ :Union[str, Any]=32 , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :int=False , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Optional[int]=None , **lowerCAmelCase__ :int , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
snake_case_ : Tuple = vocab_size
snake_case_ : List[Any] = hidden_size
snake_case_ : str = num_hidden_layers
snake_case_ : List[Any] = num_attention_heads
snake_case_ : Optional[int] = hidden_act
snake_case_ : Dict = intermediate_size
snake_case_ : List[Any] = hidden_dropout_prob
snake_case_ : Dict = attention_probs_dropout_prob
snake_case_ : Optional[int] = max_position_embeddings
snake_case_ : Union[str, Any] = type_vocab_sizes
snake_case_ : Optional[int] = initializer_range
snake_case_ : int = layer_norm_eps
# Fine-tuning task hyperparameters
snake_case_ : Dict = positive_label_weight
snake_case_ : List[str] = num_aggregation_labels
snake_case_ : Union[str, Any] = aggregation_loss_weight
snake_case_ : Tuple = use_answer_as_supervision
snake_case_ : Optional[Any] = answer_loss_importance
snake_case_ : Dict = use_normalized_answer_loss
snake_case_ : Any = huber_loss_delta
snake_case_ : Optional[int] = temperature
snake_case_ : int = aggregation_temperature
snake_case_ : Union[str, Any] = use_gumbel_for_cells
snake_case_ : List[Any] = use_gumbel_for_aggregation
snake_case_ : Optional[Any] = average_approximation_function
snake_case_ : Optional[int] = cell_selection_preference
snake_case_ : Union[str, Any] = answer_loss_cutoff
snake_case_ : List[str] = max_num_rows
snake_case_ : List[Any] = max_num_columns
snake_case_ : str = average_logits_per_cell
snake_case_ : List[str] = select_one_column
snake_case_ : List[str] = allow_empty_column_selection
snake_case_ : Dict = init_cell_selection_weights_to_zero
snake_case_ : int = reset_position_index_per_cell
snake_case_ : Optional[Any] = disable_per_token_loss
# Aggregation hyperparameters
snake_case_ : List[str] = aggregation_labels
snake_case_ : List[Any] = no_aggregation_label_index
if isinstance(self.aggregation_labels , lowerCAmelCase__ ):
snake_case_ : Tuple = {int(lowerCAmelCase__ ): v for k, v in aggregation_labels.items()}
| 656 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :Any ) -> str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _A ( self :List[Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Any = 1
snake_case_ : Dict = 3
snake_case_ : Union[str, Any] = (32, 32)
snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
return image
@property
def _A ( self :Optional[int] ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : List[str] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def _A ( self :Dict ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : Optional[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def _A ( self :Dict ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : str = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , )
return RobertaSeriesModelWithTransformation(lowerCAmelCase__ )
@property
def _A ( self :Any ) -> str:
'''simple docstring'''
def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ):
class A_ :
"""simple docstring"""
def __init__( self :Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case_ : str = torch.ones([0] )
def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple:
'''simple docstring'''
self.pixel_values.to(lowerCAmelCase__ )
return self
return Out()
return extract
def _A ( self :int ) -> Dict:
'''simple docstring'''
snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator
snake_case_ : str = self.dummy_cond_unet
snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
snake_case_ : Dict = self.dummy_vae
snake_case_ : Dict = self.dummy_text_encoder
snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
snake_case_ : str = 77
snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ )
snake_case_ : Tuple = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ )
snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ )
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
snake_case_ : Dict = "A painting of a squirrel eating a burger"
snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
snake_case_ : Dict = alt_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , )
snake_case_ : Any = output.images
snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
snake_case_ : Optional[Any] = alt_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0]
snake_case_ : Tuple = image[0, -3:, -3:, -1]
snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def _A ( self :int ) -> List[str]:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.dummy_cond_unet
snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
snake_case_ : int = self.dummy_vae
snake_case_ : List[Any] = self.dummy_text_encoder
snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
snake_case_ : int = 77
snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ )
# put models in fp16
snake_case_ : Optional[Any] = unet.half()
snake_case_ : Tuple = vae.half()
snake_case_ : List[str] = bert.half()
# make sure here that pndm scheduler skips prk
snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ )
snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ )
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
snake_case_ : List[Any] = "A painting of a squirrel eating a burger"
snake_case_ : str = torch.manual_seed(0 )
snake_case_ : Any = alt_pipe(
[prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def _A ( self :Optional[int] ) -> Any:
'''simple docstring'''
snake_case_ : Union[str, Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
# resize to resolution that is divisible by 8 but not 16 or 32
snake_case_ : str = init_image.resize((760, 504) )
snake_case_ : Optional[Any] = "BAAI/AltDiffusion"
snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained(
lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
pipe.enable_attention_slicing()
snake_case_ : Tuple = "A fantasy landscape, trending on artstation"
snake_case_ : int = torch.manual_seed(0 )
snake_case_ : List[str] = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , )
snake_case_ : str = output.images[0]
snake_case_ : List[Any] = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _A ( self :str ) -> Any:
'''simple docstring'''
snake_case_ : Optional[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
snake_case_ : List[Any] = init_image.resize((768, 512) )
snake_case_ : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" )
snake_case_ : Any = "BAAI/AltDiffusion"
snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained(
lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
pipe.enable_attention_slicing()
snake_case_ : Tuple = "A fantasy landscape, trending on artstation"
snake_case_ : Tuple = torch.manual_seed(0 )
snake_case_ : List[Any] = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , )
snake_case_ : Optional[int] = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 656 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
__lowerCamelCase : str = {
'''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''',
'''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''',
'''kssteven/ibert-roberta-large-mnli''': (
'''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json'''
),
}
class A_ (a_ ):
"""simple docstring"""
a__ = '''ibert'''
def __init__( self :str , lowerCAmelCase__ :Dict=30_522 , lowerCAmelCase__ :str=768 , lowerCAmelCase__ :List[str]=12 , lowerCAmelCase__ :Optional[Any]=12 , lowerCAmelCase__ :Any=3_072 , lowerCAmelCase__ :int="gelu" , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :int=512 , lowerCAmelCase__ :List[str]=2 , lowerCAmelCase__ :Any=0.0_2 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :Dict=1 , lowerCAmelCase__ :List[str]=0 , lowerCAmelCase__ :List[Any]=2 , lowerCAmelCase__ :List[Any]="absolute" , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :Dict="none" , **lowerCAmelCase__ :Any , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
snake_case_ : List[str] = vocab_size
snake_case_ : Optional[int] = hidden_size
snake_case_ : Optional[Any] = num_hidden_layers
snake_case_ : Tuple = num_attention_heads
snake_case_ : List[Any] = hidden_act
snake_case_ : Optional[int] = intermediate_size
snake_case_ : Optional[int] = hidden_dropout_prob
snake_case_ : Union[str, Any] = attention_probs_dropout_prob
snake_case_ : List[Any] = max_position_embeddings
snake_case_ : Dict = type_vocab_size
snake_case_ : Union[str, Any] = initializer_range
snake_case_ : Dict = layer_norm_eps
snake_case_ : List[str] = position_embedding_type
snake_case_ : Dict = quant_mode
snake_case_ : List[Any] = force_dequant
class A_ (a_ ):
"""simple docstring"""
@property
def _A ( self :Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
snake_case_ : Tuple = {0: "batch", 1: "choice", 2: "sequence"}
else:
snake_case_ : Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 656 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class A_ (unittest.TestCase ):
"""simple docstring"""
a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
a__ = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any:
'''simple docstring'''
snake_case_ : Optional[Any] = ZeroShotClassificationPipeline(
model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
# No kwarg
snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" )
self.assertEqual(
lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 )
snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] )
self.assertEqual(
lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 )
snake_case_ : str = classifier(
"Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
# https://github.com/huggingface/transformers/issues/13846
snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] )
self.assertEqual(
lowerCAmelCase__ , [
{"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]}
for i in range(1 )
] , )
snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] )
self.assertEqual(
lowerCAmelCase__ , [
{"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]}
for i in range(2 )
] , )
with self.assertRaises(lowerCAmelCase__ ):
classifier("" , candidate_labels="politics" )
with self.assertRaises(lowerCAmelCase__ ):
classifier(lowerCAmelCase__ , candidate_labels="politics" )
with self.assertRaises(lowerCAmelCase__ ):
classifier("Who are you voting for in 2020?" , candidate_labels="" )
with self.assertRaises(lowerCAmelCase__ ):
classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ )
with self.assertRaises(lowerCAmelCase__ ):
classifier(
"Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , )
with self.assertRaises(lowerCAmelCase__ ):
classifier(
"Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , )
self.run_entailment_id(lowerCAmelCase__ )
def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : int = zero_shot_classifier.model.config
snake_case_ : Optional[int] = config.labelaid
snake_case_ : Tuple = zero_shot_classifier.entailment_id
snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
snake_case_ : List[str] = original_labelaid
self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id )
@require_torch
def _A ( self :Tuple ) -> Any:
'''simple docstring'''
snake_case_ : List[Any] = pipeline(
"zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
"Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] )
@require_torch
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Union[str, Any] = pipeline(
"zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , )
snake_case_ : int = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["science", "public health", "politics"],
"scores": [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@require_tf
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
snake_case_ : List[str] = pipeline(
"zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , )
snake_case_ : Optional[int] = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["science", "public health", "politics"],
"scores": [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@slow
@require_torch
def _A ( self :Union[str, Any] ) -> int:
'''simple docstring'''
snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" )
snake_case_ : str = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["politics", "public health", "science"],
"scores": [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
snake_case_ : Optional[int] = zero_shot_classifier(
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"
" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"
" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"
" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"
" machine translation tasks show these models to be superior in quality while being more parallelizable"
" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"
" English-to-German translation task, improving over the existing best results, including ensembles by"
" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"
" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"
" fraction of the training costs of the best models from the literature. We show that the Transformer"
" generalizes well to other tasks by applying it successfully to English constituency parsing both with"
" large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": (
"The dominant sequence transduction models are based on complex recurrent or convolutional neural"
" networks in an encoder-decoder configuration. The best performing models also connect the"
" encoder and decoder through an attention mechanism. We propose a new simple network"
" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"
" and convolutions entirely. Experiments on two machine translation tasks show these models to be"
" superior in quality while being more parallelizable and requiring significantly less time to"
" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"
" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"
" English-to-French translation task, our model establishes a new single-model state-of-the-art"
" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"
" costs of the best models from the literature. We show that the Transformer generalizes well to"
" other tasks by applying it successfully to English constituency parsing both with large and"
" limited training data."
),
"labels": ["translation", "machine learning", "vision", "statistics"],
"scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
@slow
@require_tf
def _A ( self :List[str] ) -> str:
'''simple docstring'''
snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" )
snake_case_ : Optional[Any] = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["politics", "public health", "science"],
"scores": [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
snake_case_ : Tuple = zero_shot_classifier(
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"
" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"
" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"
" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"
" machine translation tasks show these models to be superior in quality while being more parallelizable"
" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"
" English-to-German translation task, improving over the existing best results, including ensembles by"
" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"
" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"
" fraction of the training costs of the best models from the literature. We show that the Transformer"
" generalizes well to other tasks by applying it successfully to English constituency parsing both with"
" large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": (
"The dominant sequence transduction models are based on complex recurrent or convolutional neural"
" networks in an encoder-decoder configuration. The best performing models also connect the"
" encoder and decoder through an attention mechanism. We propose a new simple network"
" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"
" and convolutions entirely. Experiments on two machine translation tasks show these models to be"
" superior in quality while being more parallelizable and requiring significantly less time to"
" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"
" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"
" English-to-French translation task, our model establishes a new single-model state-of-the-art"
" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"
" costs of the best models from the literature. We show that the Transformer generalizes well to"
" other tasks by applying it successfully to English constituency parsing both with large and"
" limited training data."
),
"labels": ["translation", "machine learning", "vision", "statistics"],
"scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
| 656 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCamelCase : List[Any] = {
'''configuration_blenderbot''': [
'''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BlenderbotConfig''',
'''BlenderbotOnnxConfig''',
],
'''tokenization_blenderbot''': ['''BlenderbotTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : int = ['''BlenderbotTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Union[str, Any] = [
'''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BlenderbotForCausalLM''',
'''BlenderbotForConditionalGeneration''',
'''BlenderbotModel''',
'''BlenderbotPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[str] = [
'''TFBlenderbotForConditionalGeneration''',
'''TFBlenderbotModel''',
'''TFBlenderbotPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : int = [
'''FlaxBlenderbotForConditionalGeneration''',
'''FlaxBlenderbotModel''',
'''FlaxBlenderbotPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 656 |
'''simple docstring'''
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''):
raise Exception('''requires fairseq >= 1.0.0a''')
logging.set_verbosity_info()
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip'''
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ )
roberta.eval() # disable dropout
snake_case_ : Dict = roberta.model.encoder.sentence_encoder
snake_case_ : List[str] = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,)
if classification_head:
snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our RoBERTa config:" ,__magic_name__ )
snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ )
model.eval()
# Now let's copy all the weights.
# Embeddings
snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight
snake_case_ : int = roberta_sent_encoder.embed_positions.weight
snake_case_ : Union[str, Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight
snake_case_ : str = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
snake_case_ : BertLayer = model.roberta.encoder.layer[i]
snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
snake_case_ : RobertaAttention = layer.attention
snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight
snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias
# self attention
snake_case_ : BertSelfAttention = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight
snake_case_ : Any = roberta_layer.self_attn.q_proj.bias
snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight
snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias
snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight
snake_case_ : Any = roberta_layer.self_attn.v_proj.bias
# self-attention output
snake_case_ : BertSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight
snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
snake_case_ : int = roberta_layer.final_layer_norm.weight
snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias
# intermediate
snake_case_ : BertIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
snake_case_ : List[str] = roberta_layer.fca.weight
snake_case_ : List[Any] = roberta_layer.fca.bias
# output
snake_case_ : BertOutput = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
snake_case_ : Any = roberta_layer.fca.weight
snake_case_ : Any = roberta_layer.fca.bias
# end of layer
if classification_head:
snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight
snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias
snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight
snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight
snake_case_ : int = roberta.model.encoder.lm_head.dense.bias
snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight
snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias
snake_case_ : int = roberta.model.encoder.lm_head.weight
snake_case_ : List[str] = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1
snake_case_ : Union[str, Any] = model(__magic_name__ )[0]
if classification_head:
snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) )
else:
snake_case_ : List[str] = roberta.model(__magic_name__ )[0]
print(our_output.shape ,their_output.shape )
snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 )
print("Do both models output the same tensors?" ,"🔥" if success else "💩" )
if not success:
raise Exception("Something went wRoNg" )
pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowerCamelCase : Tuple = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 656 | 1 |
'''simple docstring'''
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
__lowerCamelCase : Dict = '''\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
'''
__lowerCamelCase : Dict = '''\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
'''
__lowerCamelCase : Optional[Any] = '''
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: "c" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric(\'mauve\')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :List[Any] ) -> int:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[
"https://arxiv.org/abs/2102.01454",
"https://github.com/krishnap25/mauve",
] , )
def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :int=None , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :int="auto" , lowerCAmelCase__ :Optional[int]=-1 , lowerCAmelCase__ :Union[str, Any]=0.9 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :Optional[int]=500 , lowerCAmelCase__ :Optional[Any]="gpt2-large" , lowerCAmelCase__ :str=-1 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Union[str, Any]=25 , lowerCAmelCase__ :Optional[int]=5 , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :Dict=25 , ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = compute_mauve(
p_text=lowerCAmelCase__ , q_text=lowerCAmelCase__ , p_features=lowerCAmelCase__ , q_features=lowerCAmelCase__ , p_tokens=lowerCAmelCase__ , q_tokens=lowerCAmelCase__ , num_buckets=lowerCAmelCase__ , pca_max_data=lowerCAmelCase__ , kmeans_explained_var=lowerCAmelCase__ , kmeans_num_redo=lowerCAmelCase__ , kmeans_max_iter=lowerCAmelCase__ , featurize_model_name=lowerCAmelCase__ , device_id=lowerCAmelCase__ , max_text_length=lowerCAmelCase__ , divergence_curve_discretization_size=lowerCAmelCase__ , mauve_scaling_factor=lowerCAmelCase__ , verbose=lowerCAmelCase__ , seed=lowerCAmelCase__ , )
return out
| 656 |
'''simple docstring'''
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]:
"""simple docstring"""
snake_case_ : str = False
snake_case_ : int = False
if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ):
snake_case_ : Any = True
elif "IPython" in sys.modules:
snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() )
try:
snake_case_ : Any = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' )
if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside "
"your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`." )
if num_processes is None:
snake_case_ : Tuple = 8
snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" )
print(F'''Launching a training on {num_processes} TPU cores.''' )
xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print("Launching training on one GPU." )
else:
print("Launching training on one CPU." )
function(*__magic_name__ )
else:
if num_processes is None:
raise ValueError(
"You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized "
"inside your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`." )
if torch.cuda.is_initialized():
raise ValueError(
"To launch a multi-GPU training from your notebook, you need to avoid running any instruction "
"using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA "
"function." )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ):
snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" )
print(F'''Launching training on {num_processes} GPUs.''' )
try:
start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
"CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. "
"This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
"Please review your imports and test them when running the `notebook_launcher()` to identify "
"which one is problematic." ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
snake_case_ : Any = "1"
print("Launching training on MPS." )
elif torch.cuda.is_available():
print("Launching training on one GPU." )
else:
print("Launching training on CPU." )
function(*__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict:
"""simple docstring"""
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,):
snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ )
start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
| 656 | 1 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A_ :
"""simple docstring"""
def __init__( self :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str]=13 , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple=2 , lowerCAmelCase__ :Tuple=3 , lowerCAmelCase__ :Dict=16 , lowerCAmelCase__ :Optional[int]=[32, 64, 128] , lowerCAmelCase__ :int=[1, 2, 1] , lowerCAmelCase__ :Union[str, Any]=[2, 2, 4] , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :Tuple=2.0 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :List[str]=0.0 , lowerCAmelCase__ :List[Any]=0.0 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :Any="gelu" , lowerCAmelCase__ :int=False , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Optional[int]=0.0_2 , lowerCAmelCase__ :str=1E-5 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :Union[str, Any]=10 , lowerCAmelCase__ :Dict=8 , lowerCAmelCase__ :Optional[int]=["stage1", "stage2"] , lowerCAmelCase__ :Union[str, Any]=[1, 2] , ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = parent
snake_case_ : Dict = batch_size
snake_case_ : str = image_size
snake_case_ : Dict = patch_size
snake_case_ : Union[str, Any] = num_channels
snake_case_ : Optional[int] = embed_dim
snake_case_ : List[Any] = hidden_sizes
snake_case_ : Optional[int] = depths
snake_case_ : Tuple = num_heads
snake_case_ : str = window_size
snake_case_ : List[Any] = mlp_ratio
snake_case_ : List[Any] = qkv_bias
snake_case_ : List[str] = hidden_dropout_prob
snake_case_ : Optional[Any] = attention_probs_dropout_prob
snake_case_ : Tuple = drop_path_rate
snake_case_ : Union[str, Any] = hidden_act
snake_case_ : Optional[int] = use_absolute_embeddings
snake_case_ : str = patch_norm
snake_case_ : Optional[int] = layer_norm_eps
snake_case_ : Union[str, Any] = initializer_range
snake_case_ : str = is_training
snake_case_ : Any = scope
snake_case_ : Optional[int] = use_labels
snake_case_ : Dict = type_sequence_label_size
snake_case_ : Optional[Any] = encoder_stride
snake_case_ : str = out_features
snake_case_ : List[str] = out_indices
def _A ( self :int ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ : List[str] = None
if self.use_labels:
snake_case_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ : Dict = self.get_config()
return config, pixel_values, labels
def _A ( self :str ) -> Optional[int]:
'''simple docstring'''
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _A ( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : int = FocalNetModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : int = model(lowerCAmelCase__ )
snake_case_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
snake_case_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _A ( self :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Any ) -> int:
'''simple docstring'''
snake_case_ : int = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : Optional[int] = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
snake_case_ : str = None
snake_case_ : Optional[int] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : Any = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _A ( self :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int ) -> Tuple:
'''simple docstring'''
snake_case_ : Any = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : str = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
snake_case_ : Optional[Any] = 1
snake_case_ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ : Tuple = model(lowerCAmelCase__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _A ( self :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.type_sequence_label_size
snake_case_ : Any = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : Optional[int] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
snake_case_ : Tuple = 1
snake_case_ : List[str] = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ : int = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _A ( self :List[Any] ) -> int:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.prepare_config_and_inputs()
snake_case_, snake_case_, snake_case_ : List[str] = config_and_inputs
snake_case_ : Union[str, Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class A_ (a_ , a_ , unittest.TestCase ):
"""simple docstring"""
a__ = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
a__ = (
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
a__ = False
a__ = False
a__ = False
a__ = False
a__ = False
def _A ( self :Any ) -> Any:
'''simple docstring'''
snake_case_ : Union[str, Any] = FocalNetModelTester(self )
snake_case_ : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ )
def _A ( self :Dict ) -> Dict:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _A ( self :List[Any] ) -> Any:
'''simple docstring'''
return
def _A ( self :Optional[int] ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _A ( self :List[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCAmelCase__ )
def _A ( self :str ) -> Tuple:
'''simple docstring'''
snake_case_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ )
def _A ( self :Any ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@unittest.skip(reason="FocalNet does not use inputs_embeds" )
def _A ( self :Tuple ) -> Any:
'''simple docstring'''
pass
@unittest.skip(reason="FocalNet does not use feedforward chunking" )
def _A ( self :Any ) -> List[str]:
'''simple docstring'''
pass
def _A ( self :Tuple ) -> List[Any]:
'''simple docstring'''
snake_case_, snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
snake_case_ : str = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case_ : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def _A ( self :List[Any] ) -> Optional[Any]:
'''simple docstring'''
snake_case_, snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
snake_case_ : int = model_class(lowerCAmelCase__ )
snake_case_ : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ : Optional[int] = [*signature.parameters.keys()]
snake_case_ : List[str] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def _A ( self :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
snake_case_ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
snake_case_ : int = outputs.hidden_states
snake_case_ : Dict = getattr(
self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# FocalNet has a different seq_length
snake_case_ : Tuple = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
snake_case_ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
snake_case_ : List[str] = outputs.reshaped_hidden_states
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
snake_case_, snake_case_, snake_case_, snake_case_ : Union[str, Any] = reshaped_hidden_states[0].shape
snake_case_ : Union[str, Any] = (
reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _A ( self :Optional[int] ) -> Dict:
'''simple docstring'''
snake_case_, snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
snake_case_ : Tuple = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ : Tuple = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _A ( self :Optional[Any] ) -> Dict:
'''simple docstring'''
snake_case_, snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[Any] = 3
snake_case_ : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
snake_case_ : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
snake_case_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
snake_case_ : List[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
snake_case_ : Union[str, Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ : Union[str, Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
@slow
def _A ( self :Optional[Any] ) -> str:
'''simple docstring'''
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ : Any = FocalNetModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> Tuple:
'''simple docstring'''
snake_case_, snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Tuple = _config_zero_init(lowerCAmelCase__ )
for model_class in self.all_model_classes:
snake_case_ : str = model_class(config=lowerCAmelCase__ )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@require_vision
@require_torch
class A_ (unittest.TestCase ):
"""simple docstring"""
@cached_property
def _A ( self :Tuple ) -> int:
'''simple docstring'''
return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None
@slow
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[str] = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(lowerCAmelCase__ )
snake_case_ : str = self.default_image_processor
snake_case_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
snake_case_ : Any = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
snake_case_ : str = model(**lowerCAmelCase__ )
# verify the logits
snake_case_ : List[str] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
snake_case_ : Tuple = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 )
@require_torch
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = (FocalNetBackbone,) if is_torch_available() else ()
a__ = FocalNetConfig
a__ = False
def _A ( self :Any ) -> List[Any]:
'''simple docstring'''
snake_case_ : Any = FocalNetModelTester(self )
| 656 |
'''simple docstring'''
from collections import deque
from math import floor
from random import random
from time import time
class A_ :
"""simple docstring"""
def __init__( self :Dict ) -> List[str]:
'''simple docstring'''
snake_case_ : int = {}
def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
snake_case_ : Optional[int] = [[w, v]]
if not self.graph.get(lowerCAmelCase__ ):
snake_case_ : Dict = []
def _A ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
return list(self.graph )
def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(lowerCAmelCase__ )
def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str:
'''simple docstring'''
if s == d:
return []
snake_case_ : str = []
snake_case_ : Optional[int] = []
if s == -2:
snake_case_ : List[Any] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Dict = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : str = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(lowerCAmelCase__ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[Any] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return visited
def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int:
'''simple docstring'''
if c == -1:
snake_case_ : Any = floor(random() * 10_000 ) + 10
for i in range(lowerCAmelCase__ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
snake_case_ : Optional[Any] = floor(random() * c ) + 1
if n != i:
self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 )
def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict:
'''simple docstring'''
snake_case_ : Union[str, Any] = deque()
snake_case_ : Optional[Any] = []
if s == -2:
snake_case_ : Tuple = list(self.graph )[0]
d.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
while d:
snake_case_ : Optional[int] = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Tuple = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]:
'''simple docstring'''
return len(self.graph[u] )
def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : str = []
snake_case_ : str = []
if s == -2:
snake_case_ : Optional[Any] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : int = s
snake_case_ : Optional[int] = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[Any] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : List[str] = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(lowerCAmelCase__ ) != 0:
snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Union[str, Any] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return sorted_nodes
def _A ( self :Dict ) -> Any:
'''simple docstring'''
snake_case_ : Dict = []
snake_case_ : Any = []
snake_case_ : str = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Optional[int] = -2
snake_case_ : Any = []
snake_case_ : List[Any] = s
snake_case_ : int = False
snake_case_ : Optional[int] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Any = len(lowerCAmelCase__ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : Optional[int] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Optional[Any] = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : str = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : List[str] = s
snake_case_ : Optional[int] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return list(lowerCAmelCase__ )
def _A ( self :Tuple ) -> List[str]:
'''simple docstring'''
snake_case_ : List[Any] = []
snake_case_ : Tuple = []
snake_case_ : List[str] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : str = -2
snake_case_ : List[str] = []
snake_case_ : List[Any] = s
snake_case_ : List[str] = False
snake_case_ : Dict = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Any = len(lowerCAmelCase__ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Tuple = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[int] = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : int = s
snake_case_ : Union[str, Any] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return False
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str:
'''simple docstring'''
snake_case_ : Optional[int] = time()
self.dfs(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : Optional[Any] = time()
return end - begin
def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Any = time()
self.bfs(lowerCAmelCase__ )
snake_case_ : Any = time()
return end - begin
class A_ :
"""simple docstring"""
def __init__( self :Tuple ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[Any] = {}
def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
snake_case_ : str = [[w, v]]
# add the other way
if self.graph.get(lowerCAmelCase__ ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
snake_case_ : List[str] = [[w, u]]
def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(lowerCAmelCase__ )
# the other way round
if self.graph.get(lowerCAmelCase__ ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(lowerCAmelCase__ )
def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int:
'''simple docstring'''
if s == d:
return []
snake_case_ : Any = []
snake_case_ : Dict = []
if s == -2:
snake_case_ : Optional[int] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Tuple = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[str] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(lowerCAmelCase__ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : str = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return visited
def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]:
'''simple docstring'''
if c == -1:
snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10
for i in range(lowerCAmelCase__ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
snake_case_ : str = floor(random() * c ) + 1
if n != i:
self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 )
def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]:
'''simple docstring'''
snake_case_ : List[str] = deque()
snake_case_ : Optional[Any] = []
if s == -2:
snake_case_ : List[Any] = list(self.graph )[0]
d.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
while d:
snake_case_ : Optional[int] = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return len(self.graph[u] )
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
snake_case_ : Any = []
snake_case_ : Optional[Any] = []
snake_case_ : Optional[Any] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Tuple = -2
snake_case_ : Optional[int] = []
snake_case_ : Tuple = s
snake_case_ : Optional[Any] = False
snake_case_ : Optional[int] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : Optional[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : Tuple = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Optional[int] = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[int] = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : List[Any] = s
snake_case_ : Dict = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return list(lowerCAmelCase__ )
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Optional[Any] = []
snake_case_ : int = []
snake_case_ : List[str] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Tuple = -2
snake_case_ : int = []
snake_case_ : int = s
snake_case_ : Optional[Any] = False
snake_case_ : List[Any] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : Union[str, Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : Optional[Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Optional[Any] = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[int] = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = s
snake_case_ : Tuple = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return False
def _A ( self :Any ) -> Tuple:
'''simple docstring'''
return list(self.graph )
def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str:
'''simple docstring'''
snake_case_ : List[str] = time()
self.dfs(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : List[Any] = time()
return end - begin
def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int:
'''simple docstring'''
snake_case_ : List[str] = time()
self.bfs(lowerCAmelCase__ )
snake_case_ : Tuple = time()
return end - begin
| 656 | 1 |
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 )
snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 )
snake_case_ : Tuple = Accelerator()
snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ )
try:
pickle.loads(pickle.dumps(lowerCAmelCase__ ) )
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 656 |
'''simple docstring'''
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
__lowerCamelCase : List[str] = re.compile(R'''\s+''')
def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]:
"""simple docstring"""
return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()}
def __UpperCAmelCase ( __magic_name__ )-> str:
"""simple docstring"""
snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()]
return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )}
def __UpperCAmelCase ( __magic_name__ )-> int:
"""simple docstring"""
snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] )
return {"alpha_frac": alpha_frac}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple:
"""simple docstring"""
if example["hash"] in uniques:
uniques.remove(example["hash"] )
return True
else:
return False
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple:
"""simple docstring"""
snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"]
snake_case_ : Optional[Any] = example["content"].splitlines()
for _, line in zip(range(__magic_name__ ) ,__magic_name__ ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]:
"""simple docstring"""
snake_case_ : str = ["unit tests", "test file", "configuration file"]
snake_case_ : int = example["content"].splitlines()
snake_case_ : Optional[Any] = 0
snake_case_ : Any = 0
# first test
for _, line in zip(range(__magic_name__ ) ,__magic_name__ ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
snake_case_ : Tuple = example["content"].count("\n" )
snake_case_ : int = int(coeff * nlines )
for line in lines:
count_config += line.lower().count("config" )
count_test += line.lower().count("test" )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def __UpperCAmelCase ( __magic_name__ )-> str:
"""simple docstring"""
snake_case_ : List[Any] = ["def ", "class ", "for ", "while "]
snake_case_ : Optional[Any] = example["content"].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]:
"""simple docstring"""
snake_case_ : Tuple = example["content"].splitlines()
snake_case_ : Tuple = 0
for line in lines:
counter += line.lower().count("=" )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"]
snake_case_ : int = len(example["content"] ) / len(__magic_name__ )
return {"ratio": ratio}
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Union[str, Any] = {}
results.update(get_hash(__magic_name__ ) )
results.update(line_stats(__magic_name__ ) )
results.update(alpha_stats(__magic_name__ ) )
results.update(char_token_ratio(__magic_name__ ) )
results.update(is_autogenerated(__magic_name__ ) )
results.update(is_config_or_test(__magic_name__ ) )
results.update(has_no_keywords(__magic_name__ ) )
results.update(has_few_assignments(__magic_name__ ) )
return results
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple:
"""simple docstring"""
if not check_uniques(__magic_name__ ,__magic_name__ ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def __UpperCAmelCase ( __magic_name__ )-> Dict:
"""simple docstring"""
with open(__magic_name__ ,"rb" ) as f_in:
with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out:
shutil.copyfileobj(__magic_name__ ,__magic_name__ )
os.unlink(__magic_name__ )
# Settings
__lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments)
__lowerCamelCase : str = parser.parse_args()
if args.num_workers is None:
__lowerCamelCase : List[Any] = multiprocessing.cpu_count()
__lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
__lowerCamelCase : Any = time.time()
__lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''')
print(f'''Time to load dataset: {time.time()-t_start:.2f}''')
# Run preprocessing
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers)
print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''')
# Deduplicate hashes
__lowerCamelCase : Any = set(ds.unique('''hash'''))
__lowerCamelCase : Optional[int] = len(uniques) / len(ds)
print(f'''Fraction of duplicates: {1-frac:.2%}''')
# Deduplicate data and apply heuristics
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args})
print(f'''Time to filter dataset: {time.time()-t_start:.2f}''')
print(f'''Size of filtered dataset: {len(ds_filter)}''')
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''')
print(f'''Size of deduplicate dataset: {len(ds_filter)}''')
# Save data in batches of samples_per_file
__lowerCamelCase : List[Any] = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / '''duplicate_clusters.json''', '''w''') as f:
json.dump(duplicate_clusters, f)
__lowerCamelCase : List[str] = output_dir / '''data'''
data_dir.mkdir(exist_ok=True)
__lowerCamelCase : int = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
__lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''')
__lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
| 656 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[Any]:
"""simple docstring"""
snake_case_ : Optional[int] = [0 for i in range(r + 1 )]
# nc0 = 1
snake_case_ : Tuple = 1
for i in range(1 ,n + 1 ):
# to compute current row from previous row.
snake_case_ : Union[str, Any] = min(__magic_name__ ,__magic_name__ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 656 |
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 )
snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 )
snake_case_ : Tuple = Accelerator()
snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ )
try:
pickle.loads(pickle.dumps(lowerCAmelCase__ ) )
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 656 | 1 |
'''simple docstring'''
import comet # From: unbabel-comet
import torch
import datasets
__lowerCamelCase : Optional[int] = datasets.logging.get_logger(__name__)
__lowerCamelCase : Optional[Any] = '''\
@inproceedings{rei-EtAl:2020:WMT,
author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},
title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},
booktitle = {Proceedings of the Fifth Conference on Machine Translation},
month = {November},
year = {2020},
address = {Online},
publisher = {Association for Computational Linguistics},
pages = {909--918},
}
@inproceedings{rei-etal-2020-comet,
title = "{COMET}: A Neural Framework for {MT} Evaluation",
author = "Rei, Ricardo and
Stewart, Craig and
Farinha, Ana C and
Lavie, Alon",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",
pages = "2685--2702",
}
'''
__lowerCamelCase : List[Any] = '''\
Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).
With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.
See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.
'''
__lowerCamelCase : List[str] = '''
COMET score.
Args:
`sources` (list of str): Source sentences
`predictions` (list of str): candidate translations
`references` (list of str): reference translations
`cuda` (bool): If set to True, runs COMET using GPU
`show_progress` (bool): Shows progress
`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.
Returns:
`samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.
`scores`: List of scores.
Examples:
>>> comet_metric = datasets.load_metric(\'comet\')
>>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use
>>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]
>>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]
>>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]
>>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)
>>> print([round(v, 2) for v in results["scores"]])
[0.19, 0.92]
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :Any ) -> List[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"sources": datasets.Value("string" , id="sequence" ),
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[
"https://github.com/Unbabel/COMET",
"https://www.aclweb.org/anthology/2020.emnlp-main.213/",
"http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6",
] , )
def _A ( self :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int:
'''simple docstring'''
if self.config_name == "default":
snake_case_ : Any = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) )
else:
snake_case_ : Optional[Any] = comet.load_from_checkpoint(comet.download_model(self.config_name ) )
def _A ( self :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Optional[int]=False ) -> str:
'''simple docstring'''
if gpus is None:
snake_case_ : int = 1 if torch.cuda.is_available() else 0
snake_case_ : str = {"src": sources, "mt": predictions, "ref": references}
snake_case_ : Optional[Any] = [dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) for t in zip(*data.values() )]
snake_case_, snake_case_ : Dict = self.scorer.predict(lowerCAmelCase__ , gpus=lowerCAmelCase__ , progress_bar=lowerCAmelCase__ )
return {"mean_score": mean_score, "scores": scores}
| 656 |
'''simple docstring'''
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__lowerCamelCase : Any = '''src/transformers'''
# This is to make sure the transformers module imported is the one in the repo.
__lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS)
__lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''')
__lowerCamelCase : Any = {
'''DecisionTransformerConfig''',
'''EncoderDecoderConfig''',
'''MusicgenConfig''',
'''RagConfig''',
'''SpeechEncoderDecoderConfig''',
'''TimmBackboneConfig''',
'''VisionEncoderDecoderConfig''',
'''VisionTextDualEncoderConfig''',
'''LlamaConfig''',
}
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
snake_case_ : Tuple = None
# source code of `config_class`
snake_case_ : List[Any] = inspect.getsource(__magic_name__ )
snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith("/" ):
snake_case_ : Optional[Any] = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
snake_case_ : str = F'''https://huggingface.co/{ckpt_name}'''
if ckpt_link == ckpt_link_from_name:
snake_case_ : Dict = ckpt_name
break
return checkpoint
def __UpperCAmelCase ( )-> Dict:
"""simple docstring"""
snake_case_ : Optional[int] = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ )
snake_case_ : Union[str, Any] = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(__magic_name__ )
if len(__magic_name__ ) > 0:
snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) )
raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 656 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[int]:
"""simple docstring"""
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(__magic_name__ ,int(b / 2 ) ) * actual_power(__magic_name__ ,int(b / 2 ) )
else:
return a * actual_power(__magic_name__ ,int(b / 2 ) ) * actual_power(__magic_name__ ,int(b / 2 ) )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
if b < 0:
return 1 / actual_power(__magic_name__ ,__magic_name__ )
return actual_power(__magic_name__ ,__magic_name__ )
if __name__ == "__main__":
print(power(-2, -3))
| 656 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase : List[str] = logging.get_logger(__name__)
__lowerCamelCase : int = {
'''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class A_ (a_ ):
"""simple docstring"""
a__ = '''cvt'''
def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
snake_case_ : int = num_channels
snake_case_ : int = patch_sizes
snake_case_ : Optional[Any] = patch_stride
snake_case_ : Dict = patch_padding
snake_case_ : Tuple = embed_dim
snake_case_ : Optional[int] = num_heads
snake_case_ : Union[str, Any] = depth
snake_case_ : Optional[int] = mlp_ratio
snake_case_ : Tuple = attention_drop_rate
snake_case_ : str = drop_rate
snake_case_ : Tuple = drop_path_rate
snake_case_ : Any = qkv_bias
snake_case_ : Union[str, Any] = cls_token
snake_case_ : int = qkv_projection_method
snake_case_ : Any = kernel_qkv
snake_case_ : Union[str, Any] = padding_kv
snake_case_ : str = stride_kv
snake_case_ : Dict = padding_q
snake_case_ : Tuple = stride_q
snake_case_ : Any = initializer_range
snake_case_ : Any = layer_norm_eps
| 656 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__lowerCamelCase : Any = {'''tokenization_byt5''': ['''ByT5Tokenizer''']}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
__lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 656 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
__lowerCamelCase : str = '''\
@inproceedings{snover-etal-2006-study,
title = "A Study of Translation Edit Rate with Targeted Human Annotation",
author = "Snover, Matthew and
Dorr, Bonnie and
Schwartz, Rich and
Micciulla, Linnea and
Makhoul, John",
booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",
month = aug # " 8-12",
year = "2006",
address = "Cambridge, Massachusetts, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2006.amta-papers.25",
pages = "223--231",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__lowerCamelCase : Dict = '''\
TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a
hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu
(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found
here: https://github.com/jhclark/tercom.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.
'''
__lowerCamelCase : int = '''
Produces TER scores alongside the number of edits and reference length.
Args:
predictions (list of str): The system stream (a sequence of segments).
references (list of list of str): A list of one or more reference streams (each a sequence of segments).
normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,
as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.
Only applies if `normalized = True`. Defaults to `False`.
case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.
Returns:
\'score\' (float): TER score (num_edits / sum_ref_lengths * 100)
\'num_edits\' (int): The cumulative number of edits
\'ref_length\' (float): The cumulative average reference length
Examples:
Example 1:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}
Example 2:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}
Example 3:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... normalized=True,
... case_sensitive=True)
>>> print(results)
{\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}
Example 4:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}
Example 5:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
if version.parse(scb.__version__ ) < version.parse("1.4.12" ):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
"You can install it with `pip install \"sacrebleu>=1.4.12\"`." )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[
"https://github.com/jhclark/tercom",
] , )
def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[str] = len(references[0] )
if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )]
snake_case_ : List[str] = TER(
normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , )
snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ )
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 656 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class A_ :
"""simple docstring"""
def __init__( self :Union[str, Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :float = 0 ) -> None:
'''simple docstring'''
snake_case_, snake_case_ : str = row, column
snake_case_ : Dict = [[default_value for c in range(lowerCAmelCase__ )] for r in range(lowerCAmelCase__ )]
def __str__( self :Optional[Any] ) -> str:
'''simple docstring'''
snake_case_ : str = F'''Matrix consist of {self.row} rows and {self.column} columns\n'''
# Make string identifier
snake_case_ : Any = 0
for row_vector in self.array:
for obj in row_vector:
snake_case_ : Dict = max(lowerCAmelCase__ , len(str(lowerCAmelCase__ ) ) )
snake_case_ : str = F'''%{max_element_length}s'''
# Make string and return
def single_line(lowerCAmelCase__ :list[float] ) -> str:
nonlocal string_format_identifier
snake_case_ : Tuple = "["
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(lowerCAmelCase__ ) for row_vector in self.array )
return s
def __repr__( self :Tuple ) -> str:
'''simple docstring'''
return str(self )
def _A ( self :List[Any] , lowerCAmelCase__ :tuple[int, int] ) -> bool:
'''simple docstring'''
if not (isinstance(lowerCAmelCase__ , (list, tuple) ) and len(lowerCAmelCase__ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self :Optional[Any] , lowerCAmelCase__ :tuple[int, int] ) -> Any:
'''simple docstring'''
assert self.validate_indicies(lowerCAmelCase__ )
return self.array[loc[0]][loc[1]]
def __setitem__( self :Tuple , lowerCAmelCase__ :tuple[int, int] , lowerCAmelCase__ :float ) -> None:
'''simple docstring'''
assert self.validate_indicies(lowerCAmelCase__ )
snake_case_ : Any = value
def __add__( self :Dict , lowerCAmelCase__ :Matrix ) -> Matrix:
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
assert self.row == another.row and self.column == another.column
# Add
snake_case_ : str = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
snake_case_ : Optional[int] = self[r, c] + another[r, c]
return result
def __neg__( self :int ) -> Matrix:
'''simple docstring'''
snake_case_ : Union[str, Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
snake_case_ : Any = -self[r, c]
return result
def __sub__( self :Dict , lowerCAmelCase__ :Matrix ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self :Optional[int] , lowerCAmelCase__ :int | float | Matrix ) -> Matrix:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , (int, float) ): # Scalar multiplication
snake_case_ : List[Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
snake_case_ : Dict = self[r, c] * another
return result
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # Matrix multiplication
assert self.column == another.row
snake_case_ : Any = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
snake_case_ : List[Any] = F'''Unsupported type given for another ({type(lowerCAmelCase__ )})'''
raise TypeError(lowerCAmelCase__ )
def _A ( self :Optional[int] ) -> Matrix:
'''simple docstring'''
snake_case_ : str = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
snake_case_ : Union[str, Any] = self[r, c]
return result
def _A ( self :Dict , lowerCAmelCase__ :Matrix , lowerCAmelCase__ :Matrix ) -> Any:
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
snake_case_ : Dict = v.transpose()
snake_case_ : int = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def __UpperCAmelCase ( )-> None:
"""simple docstring"""
snake_case_ : Dict = Matrix(3 ,3 ,0 )
for i in range(3 ):
snake_case_ : Any = 1
print(F'''a^(-1) is {ainv}''' )
# u, v
snake_case_ : int = Matrix(3 ,1 ,0 )
snake_case_, snake_case_, snake_case_ : Optional[Any] = 1, 2, -3
snake_case_ : Dict = Matrix(3 ,1 ,0 )
snake_case_, snake_case_, snake_case_ : Optional[Any] = 4, -2, 5
print(F'''u is {u}''' )
print(F'''v is {v}''' )
print(F'''uv^T is {u * v.transpose()}''' )
# Sherman Morrison
print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(__magic_name__ ,__magic_name__ )}''' )
def __UpperCAmelCase ( )-> None:
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 656 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Any = {
"repo_name": ["test_repo1", "test_repo2", "test_repo3"],
"path": ["test_1.py", "test_2.py", "unit_test.py"],
"content": ["a " * 20, "a " * 30, "b " * 7],
}
snake_case_ : int = Dataset.from_dict(__magic_name__ )
return dataset
class A_ (a_ ):
"""simple docstring"""
def _A ( self :List[str] ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = get_dataset()
snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[int] = get_dataset()
snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 2 )
print(lowerCAmelCase__ )
self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 )
self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
| 656 | 1 |
'''simple docstring'''
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__lowerCamelCase : List[Any] = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__lowerCamelCase : Dict = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__lowerCamelCase : List[str] = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
def remove_articles(__magic_name__ ):
snake_case_ : List[Any] = re.compile(r"\b(a|an|the)\b" ,re.UNICODE )
return re.sub(__magic_name__ ," " ,__magic_name__ )
def white_space_fix(__magic_name__ ):
return " ".join(text.split() )
def remove_punc(__magic_name__ ):
snake_case_ : Tuple = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__magic_name__ ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__magic_name__ ) ) ) )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Dict:
"""simple docstring"""
return int(normalize_answer(__magic_name__ ) == normalize_answer(__magic_name__ ) )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[int]:
"""simple docstring"""
snake_case_ : Optional[Any] = [any(compute_exact(__magic_name__ ,__magic_name__ ) for ref in refs ) for pred, refs in zip(__magic_name__ ,__magic_name__ )]
return (sum(__magic_name__ ) / len(__magic_name__ )) * 100
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> str:
"""simple docstring"""
snake_case_ : Dict = [rgram for rgrams in rgramslist for rgram in rgrams]
snake_case_ : Any = Counter(__magic_name__ )
snake_case_ : Tuple = Counter(__magic_name__ )
snake_case_ : Optional[Any] = Counter()
for sgram, scount in sgramcounter.items():
snake_case_ : Tuple = scount * numref
snake_case_ : List[str] = Counter(__magic_name__ )
snake_case_ : Tuple = Counter()
for cgram, ccount in cgramcounter.items():
snake_case_ : Any = ccount * numref
# KEEP
snake_case_ : Optional[int] = sgramcounter_rep & cgramcounter_rep
snake_case_ : str = keepgramcounter_rep & rgramcounter
snake_case_ : str = sgramcounter_rep & rgramcounter
snake_case_ : str = 0
snake_case_ : List[Any] = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
snake_case_ : int = 1
snake_case_ : Tuple = 1
if len(__magic_name__ ) > 0:
snake_case_ : Optional[Any] = keeptmpscorea / len(__magic_name__ )
if len(__magic_name__ ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
snake_case_ : Optional[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() )
snake_case_ : Any = 0
if keepscore_precision > 0 or keepscore_recall > 0:
snake_case_ : Optional[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
snake_case_ : Optional[int] = sgramcounter_rep - cgramcounter_rep
snake_case_ : Optional[Any] = delgramcounter_rep - rgramcounter
snake_case_ : int = sgramcounter_rep - rgramcounter
snake_case_ : Dict = 0
snake_case_ : Union[str, Any] = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
snake_case_ : Dict = 1
if len(__magic_name__ ) > 0:
snake_case_ : Any = deltmpscorea / len(__magic_name__ )
# ADDITION
snake_case_ : Dict = set(__magic_name__ ) - set(__magic_name__ )
snake_case_ : Optional[int] = set(__magic_name__ ) & set(__magic_name__ )
snake_case_ : Dict = set(__magic_name__ ) - set(__magic_name__ )
snake_case_ : int = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
snake_case_ : Dict = 1
snake_case_ : Optional[Any] = 1
if len(__magic_name__ ) > 0:
snake_case_ : Union[str, Any] = addtmpscore / len(__magic_name__ )
if len(__magic_name__ ) > 0:
snake_case_ : str = addtmpscore / len(__magic_name__ )
snake_case_ : Optional[int] = 0
if addscore_precision > 0 or addscore_recall > 0:
snake_case_ : int = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Union[str, Any] = len(__magic_name__ )
snake_case_ : Any = ssent.split(" " )
snake_case_ : Dict = csent.split(" " )
snake_case_ : int = []
snake_case_ : Tuple = []
snake_case_ : Union[str, Any] = []
snake_case_ : int = []
snake_case_ : int = []
snake_case_ : int = []
snake_case_ : str = []
snake_case_ : str = []
snake_case_ : List[str] = []
snake_case_ : List[Any] = []
for rsent in rsents:
snake_case_ : Optional[Any] = rsent.split(" " )
snake_case_ : Union[str, Any] = []
snake_case_ : List[str] = []
snake_case_ : Union[str, Any] = []
ragramslist.append(__magic_name__ )
for i in range(0 ,len(__magic_name__ ) - 1 ):
if i < len(__magic_name__ ) - 1:
snake_case_ : Tuple = ragrams[i] + " " + ragrams[i + 1]
ragrams.append(__magic_name__ )
if i < len(__magic_name__ ) - 2:
snake_case_ : int = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2]
ragrams.append(__magic_name__ )
if i < len(__magic_name__ ) - 3:
snake_case_ : str = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3]
ragrams.append(__magic_name__ )
ragramslist.append(__magic_name__ )
ragramslist.append(__magic_name__ )
ragramslist.append(__magic_name__ )
for i in range(0 ,len(__magic_name__ ) - 1 ):
if i < len(__magic_name__ ) - 1:
snake_case_ : Optional[Any] = sagrams[i] + " " + sagrams[i + 1]
sagrams.append(__magic_name__ )
if i < len(__magic_name__ ) - 2:
snake_case_ : Optional[Any] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2]
sagrams.append(__magic_name__ )
if i < len(__magic_name__ ) - 3:
snake_case_ : List[str] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3]
sagrams.append(__magic_name__ )
for i in range(0 ,len(__magic_name__ ) - 1 ):
if i < len(__magic_name__ ) - 1:
snake_case_ : List[Any] = cagrams[i] + " " + cagrams[i + 1]
cagrams.append(__magic_name__ )
if i < len(__magic_name__ ) - 2:
snake_case_ : str = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2]
cagrams.append(__magic_name__ )
if i < len(__magic_name__ ) - 3:
snake_case_ : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3]
cagrams.append(__magic_name__ )
((snake_case_), (snake_case_), (snake_case_)) : Optional[Any] = SARIngram(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )
((snake_case_), (snake_case_), (snake_case_)) : Union[str, Any] = SARIngram(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )
((snake_case_), (snake_case_), (snake_case_)) : str = SARIngram(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )
((snake_case_), (snake_case_), (snake_case_)) : Union[str, Any] = SARIngram(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )
snake_case_ : Any = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
snake_case_ : Any = sum([delascore, delascore, delascore, delascore] ) / 4
snake_case_ : Optional[int] = sum([addascore, addascore, addascore, addascore] ) / 4
snake_case_ : List[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = True ,__magic_name__ = "13a" ,__magic_name__ = True )-> List[str]:
"""simple docstring"""
if lowercase:
snake_case_ : List[str] = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
snake_case_ : str = sacrebleu.metrics.bleu._get_tokenizer(__magic_name__ )()(__magic_name__ )
else:
snake_case_ : List[str] = sacrebleu.TOKENIZERS[tokenizer]()(__magic_name__ )
elif tokenizer == "moses":
snake_case_ : Union[str, Any] = sacremoses.MosesTokenizer().tokenize(__magic_name__ ,return_str=__magic_name__ ,escape=__magic_name__ )
elif tokenizer == "penn":
snake_case_ : Any = sacremoses.MosesTokenizer().penn_tokenize(__magic_name__ ,return_str=__magic_name__ )
else:
snake_case_ : Union[str, Any] = sentence
if not return_str:
snake_case_ : List[Any] = normalized_sent.split()
return normalized_sent
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int:
"""simple docstring"""
if not (len(__magic_name__ ) == len(__magic_name__ ) == len(__magic_name__ )):
raise ValueError("Sources length must match predictions and references lengths." )
snake_case_ : Union[str, Any] = 0
for src, pred, refs in zip(__magic_name__ ,__magic_name__ ,__magic_name__ ):
sari_score += SARIsent(normalize(__magic_name__ ) ,normalize(__magic_name__ ) ,[normalize(__magic_name__ ) for sent in refs] )
snake_case_ : str = sari_score / len(__magic_name__ )
return 100 * sari_score
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__="exp" ,__magic_name__=None ,__magic_name__=False ,__magic_name__=False ,__magic_name__=False ,)-> Union[str, Any]:
"""simple docstring"""
snake_case_ : str = len(references[0] )
if any(len(__magic_name__ ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
snake_case_ : List[Any] = [[refs[i] for refs in references] for i in range(__magic_name__ )]
snake_case_ : List[Any] = sacrebleu.corpus_bleu(
__magic_name__ ,__magic_name__ ,smooth_method=__magic_name__ ,smooth_value=__magic_name__ ,force=__magic_name__ ,lowercase=__magic_name__ ,use_effective_order=__magic_name__ ,)
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :Optional[Any] ) -> List[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=[
"https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py",
"https://github.com/cocoxu/simplification/blob/master/SARI.py",
"https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py",
"https://github.com/mjpost/sacreBLEU",
] , reference_urls=[
"https://www.aclweb.org/anthology/Q16-1029.pdf",
"https://github.com/mjpost/sacreBLEU",
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :str ) -> Any:
'''simple docstring'''
snake_case_ : Optional[int] = {}
result.update({"sari": compute_sari(sources=lowerCAmelCase__ , predictions=lowerCAmelCase__ , references=lowerCAmelCase__ )} )
result.update({"sacrebleu": compute_sacrebleu(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ )} )
result.update({"exact": compute_em(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ )} )
return result
| 656 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable
__lowerCamelCase : Dict = {
'''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''],
'''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : int = [
'''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTNeoXJapaneseForCausalLM''',
'''GPTNeoXJapaneseLayer''',
'''GPTNeoXJapaneseModel''',
'''GPTNeoXJapanesePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox_japanese import (
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
else:
import sys
__lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 656 | 1 |
'''simple docstring'''
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
__lowerCamelCase : List[str] = re.compile(R'''\s+''')
def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]:
"""simple docstring"""
return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()}
def __UpperCAmelCase ( __magic_name__ )-> str:
"""simple docstring"""
snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()]
return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )}
def __UpperCAmelCase ( __magic_name__ )-> int:
"""simple docstring"""
snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] )
return {"alpha_frac": alpha_frac}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple:
"""simple docstring"""
if example["hash"] in uniques:
uniques.remove(example["hash"] )
return True
else:
return False
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple:
"""simple docstring"""
snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"]
snake_case_ : Optional[Any] = example["content"].splitlines()
for _, line in zip(range(__magic_name__ ) ,__magic_name__ ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]:
"""simple docstring"""
snake_case_ : str = ["unit tests", "test file", "configuration file"]
snake_case_ : int = example["content"].splitlines()
snake_case_ : Optional[Any] = 0
snake_case_ : Any = 0
# first test
for _, line in zip(range(__magic_name__ ) ,__magic_name__ ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
snake_case_ : Tuple = example["content"].count("\n" )
snake_case_ : int = int(coeff * nlines )
for line in lines:
count_config += line.lower().count("config" )
count_test += line.lower().count("test" )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def __UpperCAmelCase ( __magic_name__ )-> str:
"""simple docstring"""
snake_case_ : List[Any] = ["def ", "class ", "for ", "while "]
snake_case_ : Optional[Any] = example["content"].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]:
"""simple docstring"""
snake_case_ : Tuple = example["content"].splitlines()
snake_case_ : Tuple = 0
for line in lines:
counter += line.lower().count("=" )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"]
snake_case_ : int = len(example["content"] ) / len(__magic_name__ )
return {"ratio": ratio}
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Union[str, Any] = {}
results.update(get_hash(__magic_name__ ) )
results.update(line_stats(__magic_name__ ) )
results.update(alpha_stats(__magic_name__ ) )
results.update(char_token_ratio(__magic_name__ ) )
results.update(is_autogenerated(__magic_name__ ) )
results.update(is_config_or_test(__magic_name__ ) )
results.update(has_no_keywords(__magic_name__ ) )
results.update(has_few_assignments(__magic_name__ ) )
return results
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple:
"""simple docstring"""
if not check_uniques(__magic_name__ ,__magic_name__ ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def __UpperCAmelCase ( __magic_name__ )-> Dict:
"""simple docstring"""
with open(__magic_name__ ,"rb" ) as f_in:
with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out:
shutil.copyfileobj(__magic_name__ ,__magic_name__ )
os.unlink(__magic_name__ )
# Settings
__lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments)
__lowerCamelCase : str = parser.parse_args()
if args.num_workers is None:
__lowerCamelCase : List[Any] = multiprocessing.cpu_count()
__lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
__lowerCamelCase : Any = time.time()
__lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''')
print(f'''Time to load dataset: {time.time()-t_start:.2f}''')
# Run preprocessing
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers)
print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''')
# Deduplicate hashes
__lowerCamelCase : Any = set(ds.unique('''hash'''))
__lowerCamelCase : Optional[int] = len(uniques) / len(ds)
print(f'''Fraction of duplicates: {1-frac:.2%}''')
# Deduplicate data and apply heuristics
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args})
print(f'''Time to filter dataset: {time.time()-t_start:.2f}''')
print(f'''Size of filtered dataset: {len(ds_filter)}''')
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''')
print(f'''Size of deduplicate dataset: {len(ds_filter)}''')
# Save data in batches of samples_per_file
__lowerCamelCase : List[Any] = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / '''duplicate_clusters.json''', '''w''') as f:
json.dump(duplicate_clusters, f)
__lowerCamelCase : List[str] = output_dir / '''data'''
data_dir.mkdir(exist_ok=True)
__lowerCamelCase : int = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
__lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''')
__lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
| 656 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ )-> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ):
raise ValueError("Length must be a positive integer." )
return [n * (2 * n - 1) for n in range(__magic_name__ )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 656 | 1 |
'''simple docstring'''
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
__lowerCamelCase : List[str] = '''scheduler_config.json'''
class A_ (a_ ):
"""simple docstring"""
a__ = 1
a__ = 2
a__ = 3
a__ = 4
a__ = 5
@dataclass
class A_ (a_ ):
"""simple docstring"""
a__ = 42
class A_ :
"""simple docstring"""
a__ = SCHEDULER_CONFIG_NAME
a__ = ['''dtype''']
a__ = []
a__ = True
@classmethod
def _A ( cls :Dict , lowerCAmelCase__ :Dict[str, Any] = None , lowerCAmelCase__ :Optional[str] = None , lowerCAmelCase__ :Tuple=False , **lowerCAmelCase__ :Optional[int] , ) -> Dict:
'''simple docstring'''
snake_case_, snake_case_ : int = cls.load_config(
pretrained_model_name_or_path=lowerCAmelCase__ , subfolder=lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ , )
snake_case_, snake_case_ : Optional[int] = cls.from_config(lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ )
if hasattr(lowerCAmelCase__ , "create_state" ) and getattr(lowerCAmelCase__ , "has_state" , lowerCAmelCase__ ):
snake_case_ : Optional[Any] = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def _A ( self :Dict , lowerCAmelCase__ :Union[str, os.PathLike] , lowerCAmelCase__ :bool = False , **lowerCAmelCase__ :int ) -> Any:
'''simple docstring'''
self.save_config(save_directory=lowerCAmelCase__ , push_to_hub=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _A ( self :Optional[int] ) -> Optional[int]:
'''simple docstring'''
return self._get_compatibles()
@classmethod
def _A ( cls :Union[str, Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Any = list(set([cls.__name__] + cls._compatibles ) )
snake_case_ : int = importlib.import_module(__name__.split("." )[0] )
snake_case_ : Union[str, Any] = [
getattr(lowerCAmelCase__ , lowerCAmelCase__ ) for c in compatible_classes_str if hasattr(lowerCAmelCase__ , lowerCAmelCase__ )
]
return compatible_classes
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> jnp.ndarray:
"""simple docstring"""
assert len(__magic_name__ ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__magic_name__ ) - x.ndim) ) ,__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=0.999 ,__magic_name__=jnp.floataa )-> jnp.ndarray:
"""simple docstring"""
def alpha_bar(__magic_name__ ):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2
snake_case_ : str = []
for i in range(__magic_name__ ):
snake_case_ : Optional[Any] = i / num_diffusion_timesteps
snake_case_ : List[Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(__magic_name__ ) / alpha_bar(__magic_name__ ) ,__magic_name__ ) )
return jnp.array(__magic_name__ ,dtype=__magic_name__ )
@flax.struct.dataclass
class A_ :
"""simple docstring"""
a__ = 42
a__ = 42
a__ = 42
@classmethod
def _A ( cls :str , lowerCAmelCase__ :Tuple ) -> Dict:
'''simple docstring'''
snake_case_ : List[Any] = scheduler.config
if config.trained_betas is not None:
snake_case_ : List[Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
snake_case_ : Optional[Any] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
snake_case_ : Union[str, Any] = (
jnp.linspace(
config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
snake_case_ : Any = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype )
else:
raise NotImplementedError(
F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' )
snake_case_ : List[Any] = 1.0 - betas
snake_case_ : Any = jnp.cumprod(lowerCAmelCase__ , axis=0 )
return cls(
alphas=lowerCAmelCase__ , betas=lowerCAmelCase__ , alphas_cumprod=lowerCAmelCase__ , )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> Any:
"""simple docstring"""
snake_case_ : int = state.alphas_cumprod
snake_case_ : Optional[int] = alphas_cumprod[timesteps] ** 0.5
snake_case_ : Dict = sqrt_alpha_prod.flatten()
snake_case_ : str = broadcast_to_shape_from_left(__magic_name__ ,original_samples.shape )
snake_case_ : List[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5
snake_case_ : int = sqrt_one_minus_alpha_prod.flatten()
snake_case_ : List[Any] = broadcast_to_shape_from_left(__magic_name__ ,original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> int:
"""simple docstring"""
snake_case_, snake_case_ : Union[str, Any] = get_sqrt_alpha_prod(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )
snake_case_ : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> Union[str, Any]:
"""simple docstring"""
snake_case_, snake_case_ : Tuple = get_sqrt_alpha_prod(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )
snake_case_ : Optional[Any] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 656 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __UpperCAmelCase ( __magic_name__=None )-> List[str]:
"""simple docstring"""
if subparsers is not None:
snake_case_ : List[str] = subparsers.add_parser("test" )
else:
snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" ,default=__magic_name__ ,help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) ,)
if subparsers is not None:
parser.set_defaults(func=__magic_name__ )
return parser
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
snake_case_ : str = script_name
else:
snake_case_ : Any = F'''--config_file={args.config_file} {script_name}'''
snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split()
snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Dict = test_command_parser()
snake_case_ : Dict = parser.parse_args()
test_command(__magic_name__ )
if __name__ == "__main__":
main()
| 656 | 1 |
'''simple docstring'''
import json
import os
from pathlib import Path
import pytest
from datasets.download.download_config import DownloadConfig
from datasets.download.download_manager import DownloadManager
from datasets.utils.file_utils import hash_url_to_filename
__lowerCamelCase : List[Any] = '''http://www.mocksite.com/file1.txt'''
__lowerCamelCase : Dict = '''"text": ["foo", "foo"]'''
__lowerCamelCase : str = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8'''
class A_ :
"""simple docstring"""
a__ = 200
a__ = {'''Content-Length''': '''100'''}
a__ = {}
def _A ( self :Dict , **lowerCAmelCase__ :Optional[int] ) -> List[Any]:
'''simple docstring'''
return [bytes(lowerCAmelCase__ , "utf-8" )]
def __UpperCAmelCase ( *__magic_name__ ,**__magic_name__ )-> str:
"""simple docstring"""
return MockResponse()
@pytest.mark.parametrize("urls_type" ,[str, list, dict] )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Dict:
"""simple docstring"""
import requests
monkeypatch.setattr(__magic_name__ ,"request" ,__magic_name__ )
snake_case_ : Any = URL
if issubclass(__magic_name__ ,__magic_name__ ):
snake_case_ : Dict = url
elif issubclass(__magic_name__ ,__magic_name__ ):
snake_case_ : Optional[Any] = [url]
elif issubclass(__magic_name__ ,__magic_name__ ):
snake_case_ : Tuple = {"train": url}
snake_case_ : Optional[Any] = "dummy"
snake_case_ : Dict = "downloads"
snake_case_ : int = tmp_path
snake_case_ : List[str] = DownloadConfig(
cache_dir=os.path.join(__magic_name__ ,__magic_name__ ) ,use_etag=__magic_name__ ,)
snake_case_ : List[Any] = DownloadManager(dataset_name=__magic_name__ ,download_config=__magic_name__ )
snake_case_ : Any = dl_manager.download(__magic_name__ )
snake_case_ : int = urls
for downloaded_paths in [downloaded_paths]:
if isinstance(__magic_name__ ,__magic_name__ ):
snake_case_ : int = [downloaded_paths]
snake_case_ : int = [urls]
elif isinstance(__magic_name__ ,__magic_name__ ):
assert "train" in downloaded_paths.keys()
snake_case_ : Tuple = downloaded_paths.values()
snake_case_ : List[str] = urls.values()
assert downloaded_paths
for downloaded_path, input_url in zip(__magic_name__ ,__magic_name__ ):
assert downloaded_path == dl_manager.downloaded_paths[input_url]
snake_case_ : Union[str, Any] = Path(__magic_name__ )
snake_case_ : Tuple = downloaded_path.parts
assert parts[-1] == HASH
assert parts[-2] == cache_subdir
assert downloaded_path.exists()
snake_case_ : List[Any] = downloaded_path.read_text()
assert content == CONTENT
snake_case_ : Tuple = downloaded_path.with_suffix(".json" )
assert metadata_downloaded_path.exists()
snake_case_ : str = json.loads(metadata_downloaded_path.read_text() )
assert metadata_content == {"url": URL, "etag": None}
@pytest.mark.parametrize("paths_type" ,[str, list, dict] )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Dict:
"""simple docstring"""
snake_case_ : Tuple = str(__magic_name__ )
if issubclass(__magic_name__ ,__magic_name__ ):
snake_case_ : Optional[Any] = filename
elif issubclass(__magic_name__ ,__magic_name__ ):
snake_case_ : str = [filename]
elif issubclass(__magic_name__ ,__magic_name__ ):
snake_case_ : List[Any] = {"train": filename}
snake_case_ : str = "dummy"
snake_case_ : int = xz_file.parent
snake_case_ : str = "extracted"
snake_case_ : Optional[Any] = DownloadConfig(
cache_dir=__magic_name__ ,use_etag=__magic_name__ ,)
snake_case_ : str = DownloadManager(dataset_name=__magic_name__ ,download_config=__magic_name__ )
snake_case_ : int = dl_manager.extract(__magic_name__ )
snake_case_ : int = paths
for extracted_paths in [extracted_paths]:
if isinstance(__magic_name__ ,__magic_name__ ):
snake_case_ : List[str] = [extracted_paths]
snake_case_ : int = [paths]
elif isinstance(__magic_name__ ,__magic_name__ ):
assert "train" in extracted_paths.keys()
snake_case_ : List[Any] = extracted_paths.values()
snake_case_ : Optional[Any] = paths.values()
assert extracted_paths
for extracted_path, input_path in zip(__magic_name__ ,__magic_name__ ):
assert extracted_path == dl_manager.extracted_paths[input_path]
snake_case_ : str = Path(__magic_name__ )
snake_case_ : int = extracted_path.parts
assert parts[-1] == hash_url_to_filename(__magic_name__ ,etag=__magic_name__ )
assert parts[-2] == extracted_subdir
assert extracted_path.exists()
snake_case_ : Union[str, Any] = extracted_path.read_text()
snake_case_ : Dict = text_file.read_text()
assert extracted_file_content == expected_file_content
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]:
"""simple docstring"""
assert path.endswith(".jsonl" )
for num_items, line in enumerate(__magic_name__ ,start=1 ):
snake_case_ : Union[str, Any] = json.loads(line.decode("utf-8" ) )
assert item.keys() == {"col_1", "col_2", "col_3"}
assert num_items == 4
@pytest.mark.parametrize("archive_jsonl" ,["tar_jsonl_path", "zip_jsonl_path"] )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : List[str] = request.getfixturevalue(__magic_name__ )
snake_case_ : Dict = DownloadManager()
for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__magic_name__ ) ,start=1 ):
_test_jsonl(__magic_name__ ,__magic_name__ )
assert num_jsonl == 2
@pytest.mark.parametrize("archive_nested_jsonl" ,["tar_nested_jsonl_path", "zip_nested_jsonl_path"] )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Any:
"""simple docstring"""
snake_case_ : Optional[Any] = request.getfixturevalue(__magic_name__ )
snake_case_ : List[str] = DownloadManager()
for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__magic_name__ ) ,start=1 ):
for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__magic_name__ ) ,start=1 ):
_test_jsonl(__magic_name__ ,__magic_name__ )
assert num_tar == 1
assert num_jsonl == 2
def __UpperCAmelCase ( __magic_name__ )-> List[str]:
"""simple docstring"""
snake_case_ : Union[str, Any] = DownloadManager()
for num_file, file in enumerate(dl_manager.iter_files(__magic_name__ ) ,start=1 ):
assert os.path.basename(__magic_name__ ) == ("test.txt" if num_file == 1 else "train.txt")
assert num_file == 2
| 656 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCamelCase : str = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
__lowerCamelCase : int = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
__lowerCamelCase : List[str] = R'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , )
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 656 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__lowerCamelCase : List[Any] = {
'''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''],
'''processing_layoutlmv2''': ['''LayoutLMv2Processor'''],
'''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Union[str, Any] = ['''LayoutLMv2TokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor''']
__lowerCamelCase : Union[str, Any] = ['''LayoutLMv2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : str = [
'''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LayoutLMv2ForQuestionAnswering''',
'''LayoutLMv2ForSequenceClassification''',
'''LayoutLMv2ForTokenClassification''',
'''LayoutLMv2Layer''',
'''LayoutLMv2Model''',
'''LayoutLMv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 656 |
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
__lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
__lowerCamelCase : str = 128022
__lowerCamelCase : List[Any] = 128028
@require_sentencepiece
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = MaMaaaTokenizer
a__ = False
a__ = False
a__ = True
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
super().setUp()
snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
snake_case_ : Optional[int] = Path(self.tmpdirname )
save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] )
snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str:
'''simple docstring'''
return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]:
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def _A ( self :List[str] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : str = "</s>"
snake_case_ : Union[str, Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.get_tokenizer()
snake_case_ : Any = list(tokenizer.get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "</s>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "<s>" )
self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) )
@unittest.skip("Skip this test while all models are still to be uploaded." )
def _A ( self :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def _A ( self :Optional[int] ) -> int:
'''simple docstring'''
snake_case_ : int = self.get_tokenizer()
snake_case_ : List[str] = tokenizer.tokenize("This is a test" )
self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , )
snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] )
self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , "This is a test" )
@slow
def _A ( self :Any ) -> List[Any]:
'''simple docstring'''
snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , )
@require_torch
@require_sentencepiece
@require_tokenizers
class A_ (unittest.TestCase ):
"""simple docstring"""
a__ = '''facebook/m2m100_418M'''
a__ = [
'''In my opinion, there are two levels of response from the French government.''',
'''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''',
]
a__ = [
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
]
# fmt: off
a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2]
@classmethod
def _A ( cls :str ) -> int:
'''simple docstring'''
snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="en" , tgt_lang="fr" )
snake_case_ : List[str] = 1
return cls
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 )
self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 )
self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 )
self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 )
def _A ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.tokenizer.get_vocab()
self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size )
self.assertEqual(vocab["<unk>"] , 3 )
self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ )
def _A ( self :Any ) -> Dict:
'''simple docstring'''
snake_case_ : List[str] = "en"
snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
# fmt: off
snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2]
# fmt: on
snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def _A ( self :Tuple ) -> Tuple:
'''simple docstring'''
snake_case_ : Union[str, Any] = tempfile.mkdtemp()
snake_case_ : int = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(lowerCAmelCase__ )
snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ )
@require_torch
def _A ( self :Optional[Any] ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = "en"
snake_case_ : Tuple = "fr"
snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" )
snake_case_ : Dict = shift_tokens_right(
batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id )
for k in batch:
snake_case_ : str = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : List[str] = "mr"
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
snake_case_ : int = "zh"
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
@require_torch
def _A ( self :str ) -> int:
'''simple docstring'''
snake_case_ : Dict = "mr"
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
snake_case_ : Tuple = "zh"
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
@require_torch
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# en_XX, A, test, EOS
"input_ids": [[128_022, 58, 4_183, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 128_006,
} , )
| 656 | 1 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class A_ (a_ , a_ , unittest.TestCase ):
"""simple docstring"""
a__ = IFImgaImgSuperResolutionPipeline
a__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''}
a__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} )
a__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def _A ( self :Tuple ) -> List[Any]:
'''simple docstring'''
return self._get_superresolution_dummy_components()
def _A ( self :Union[str, Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any]=0 ) -> str:
'''simple docstring'''
if str(lowerCAmelCase__ ).startswith("mps" ):
snake_case_ : Union[str, Any] = torch.manual_seed(lowerCAmelCase__ )
else:
snake_case_ : Optional[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
snake_case_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
snake_case_ : List[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
snake_case_ : str = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _A ( self :Tuple ) -> List[Any]:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def _A ( self :str ) -> Tuple:
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def _A ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1E-1 )
def _A ( self :Dict ) -> Union[str, Any]:
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def _A ( self :Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
self._test_save_load_local()
def _A ( self :Dict ) -> Tuple:
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 656 |
'''simple docstring'''
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__lowerCamelCase : str = '''.'''
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
__lowerCamelCase : Tuple = [
'''Assert''',
'''AssignVariableOp''',
'''EmptyTensorList''',
'''MergeV2Checkpoints''',
'''ReadVariableOp''',
'''ResourceGather''',
'''RestoreV2''',
'''SaveV2''',
'''ShardedFilename''',
'''StatefulPartitionedCall''',
'''StaticRegexFullMatch''',
'''VarHandleOp''',
]
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]:
"""simple docstring"""
snake_case_ : Tuple = SavedModel()
snake_case_ : Dict = []
with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f:
snake_case_ : Dict = json.load(__magic_name__ )["opsets"]
for i in range(1 ,opset + 1 ):
onnx_ops.extend(onnx_opsets[str(__magic_name__ )] )
with open(__magic_name__ ,"rb" ) as f:
saved_model.ParseFromString(f.read() )
snake_case_ : Tuple = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
snake_case_ : str = sorted(__magic_name__ )
snake_case_ : Optional[int] = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(__magic_name__ )
if strict and len(__magic_name__ ) > 0:
raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops )
elif len(__magic_name__ ) > 0:
print(F'''Found the following incompatible ops for the opset {opset}:''' )
print(*__magic_name__ ,sep="\n" )
else:
print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser()
parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''')
parser.add_argument(
'''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.'''
)
parser.add_argument(
'''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.'''
)
parser.add_argument(
'''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)'''
)
__lowerCamelCase : Dict = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 656 | 1 |
'''simple docstring'''
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
__lowerCamelCase : Dict = (
'''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate '''
'''library. You can have a look at this example script for pointers: '''
'''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py'''
)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Union[str, Any]:
"""simple docstring"""
warnings.warn(__magic_name__ ,__magic_name__ )
requires_backends(__magic_name__ ,"sklearn" )
return (preds == labels).mean()
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Dict:
"""simple docstring"""
warnings.warn(__magic_name__ ,__magic_name__ )
requires_backends(__magic_name__ ,"sklearn" )
snake_case_ : int = simple_accuracy(__magic_name__ ,__magic_name__ )
snake_case_ : Any = fa_score(y_true=__magic_name__ ,y_pred=__magic_name__ )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str:
"""simple docstring"""
warnings.warn(__magic_name__ ,__magic_name__ )
requires_backends(__magic_name__ ,"sklearn" )
snake_case_ : Dict = pearsonr(__magic_name__ ,__magic_name__ )[0]
snake_case_ : Dict = spearmanr(__magic_name__ ,__magic_name__ )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
warnings.warn(__magic_name__ ,__magic_name__ )
requires_backends(__magic_name__ ,"sklearn" )
assert len(__magic_name__ ) == len(__magic_name__ ), F'''Predictions and labels have mismatched lengths {len(__magic_name__ )} and {len(__magic_name__ )}'''
if task_name == "cola":
return {"mcc": matthews_corrcoef(__magic_name__ ,__magic_name__ )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(__magic_name__ ,__magic_name__ )}
elif task_name == "mrpc":
return acc_and_fa(__magic_name__ ,__magic_name__ )
elif task_name == "sts-b":
return pearson_and_spearman(__magic_name__ ,__magic_name__ )
elif task_name == "qqp":
return acc_and_fa(__magic_name__ ,__magic_name__ )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(__magic_name__ ,__magic_name__ )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(__magic_name__ ,__magic_name__ )}
elif task_name == "qnli":
return {"acc": simple_accuracy(__magic_name__ ,__magic_name__ )}
elif task_name == "rte":
return {"acc": simple_accuracy(__magic_name__ ,__magic_name__ )}
elif task_name == "wnli":
return {"acc": simple_accuracy(__magic_name__ ,__magic_name__ )}
elif task_name == "hans":
return {"acc": simple_accuracy(__magic_name__ ,__magic_name__ )}
else:
raise KeyError(__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> str:
"""simple docstring"""
warnings.warn(__magic_name__ ,__magic_name__ )
requires_backends(__magic_name__ ,"sklearn" )
if len(__magic_name__ ) != len(__magic_name__ ):
raise ValueError(F'''Predictions and labels have mismatched lengths {len(__magic_name__ )} and {len(__magic_name__ )}''' )
if task_name == "xnli":
return {"acc": simple_accuracy(__magic_name__ ,__magic_name__ )}
else:
raise KeyError(__magic_name__ )
| 656 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
__lowerCamelCase : List[str] = ['''names''', '''prefix''']
__lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols''']
__lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines''']
__lowerCamelCase : Optional[Any] = ['''date_format''']
@dataclass
class A_ (datasets.BuilderConfig ):
"""simple docstring"""
a__ = ","
a__ = None
a__ = "infer"
a__ = None
a__ = None
a__ = None
a__ = None
a__ = None
a__ = True
a__ = None
a__ = None
a__ = None
a__ = None
a__ = False
a__ = None
a__ = None
a__ = None
a__ = True
a__ = True
a__ = False
a__ = True
a__ = None
a__ = "."
a__ = None
a__ = '"'
a__ = 0
a__ = None
a__ = None
a__ = None
a__ = None
a__ = True
a__ = True
a__ = 0
a__ = True
a__ = False
a__ = None
a__ = 10000
a__ = None
a__ = "strict"
a__ = "error"
a__ = None
def _A ( self :List[str] ) -> Any:
'''simple docstring'''
if self.delimiter is not None:
snake_case_ : Tuple = self.delimiter
if self.column_names is not None:
snake_case_ : List[Any] = self.column_names
@property
def _A ( self :Optional[Any] ) -> int:
'''simple docstring'''
snake_case_ : Optional[int] = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A_ (datasets.ArrowBasedBuilder ):
"""simple docstring"""
a__ = CsvConfig
def _A ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
snake_case_ : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : List[str] = [files]
snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
snake_case_ : str = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : str = [files]
snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table:
'''simple docstring'''
if self.config.features is not None:
snake_case_ : int = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
snake_case_ : str = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' )
raise
| 656 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> None:
"""simple docstring"""
snake_case_ : List[Any] = len(__magic_name__ )
print("The following activities are selected:" )
# The first activity is always selected
snake_case_ : str = 0
print(__magic_name__ ,end="," )
# Consider rest of the activities
for j in range(__magic_name__ ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(__magic_name__ ,end="," )
snake_case_ : Optional[Any] = j
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCamelCase : int = [1, 3, 0, 5, 8, 5]
__lowerCamelCase : Any = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 656 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = MgpstrTokenizer
a__ = False
a__ = {}
a__ = False
def _A ( self :List[str] ) -> List[str]:
'''simple docstring'''
super().setUp()
# fmt: off
snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str:
'''simple docstring'''
snake_case_ : Dict = "tester"
snake_case_ : Tuple = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def _A ( self :Dict ) -> str:
'''simple docstring'''
pass
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_ : Tuple = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def _A ( self :int ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ )
snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def _A ( self :Union[str, Any] ) -> Any:
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def _A ( self :int ) -> Dict:
'''simple docstring'''
pass
| 656 | 1 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Any:
"""simple docstring"""
snake_case_ : Union[str, Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=False )-> List[str]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
snake_case_ : Dict = ""
else:
snake_case_ : Tuple = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case_ : Tuple = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' )
snake_case_ : Tuple = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case_ : List[Any] = in_proj_weight[
: config.hidden_size, :
]
snake_case_ : str = in_proj_bias[: config.hidden_size]
snake_case_ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case_ : str = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case_ : int = in_proj_weight[
-config.hidden_size :, :
]
snake_case_ : Optional[int] = in_proj_bias[-config.hidden_size :]
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Union[str, Any] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(__magic_name__ ,__magic_name__ )
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
snake_case_ : str = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(__magic_name__ ,__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Dict = dct.pop(__magic_name__ )
snake_case_ : Optional[int] = val
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Union[str, Any]:
"""simple docstring"""
snake_case_ : Tuple = ViTMSNConfig()
snake_case_ : Optional[Any] = 1000
snake_case_ : Any = "datasets/huggingface/label-files"
snake_case_ : Tuple = "imagenet-1k-id2label.json"
snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ) ,"r" ) )
snake_case_ : List[str] = {int(__magic_name__ ): v for k, v in idalabel.items()}
snake_case_ : Optional[int] = idalabel
snake_case_ : Tuple = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
snake_case_ : int = 384
snake_case_ : Dict = 1536
snake_case_ : int = 6
elif "l16" in checkpoint_url:
snake_case_ : List[Any] = 1024
snake_case_ : Dict = 4096
snake_case_ : Optional[Any] = 24
snake_case_ : int = 16
snake_case_ : Union[str, Any] = 0.1
elif "b4" in checkpoint_url:
snake_case_ : Dict = 4
elif "l7" in checkpoint_url:
snake_case_ : List[str] = 7
snake_case_ : Tuple = 1024
snake_case_ : Any = 4096
snake_case_ : Optional[Any] = 24
snake_case_ : Dict = 16
snake_case_ : str = 0.1
snake_case_ : Tuple = ViTMSNModel(__magic_name__ )
snake_case_ : Tuple = torch.hub.load_state_dict_from_url(__magic_name__ ,map_location="cpu" )["target_encoder"]
snake_case_ : str = ViTImageProcessor(size=config.image_size )
remove_projection_head(__magic_name__ )
snake_case_ : Optional[Any] = create_rename_keys(__magic_name__ ,base_model=__magic_name__ )
for src, dest in rename_keys:
rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ )
read_in_q_k_v(__magic_name__ ,__magic_name__ ,base_model=__magic_name__ )
model.load_state_dict(__magic_name__ )
model.eval()
snake_case_ : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
snake_case_ : Union[str, Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw )
snake_case_ : Optional[Any] = ViTImageProcessor(
size=config.image_size ,image_mean=__magic_name__ ,image_std=__magic_name__ )
snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
snake_case_ : Dict = model(**__magic_name__ )
snake_case_ : Optional[int] = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
snake_case_ : int = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
snake_case_ : Optional[Any] = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
snake_case_ : int = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
snake_case_ : Tuple = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
snake_case_ : Any = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] ,__magic_name__ ,atol=1E-4 )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__magic_name__ )
if __name__ == "__main__":
__lowerCamelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
__lowerCamelCase : Any = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 656 |
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]:
"""simple docstring"""
if dataset.ndim != value_array.ndim:
snake_case_ : int = (
"Wrong input data's dimensions... "
F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}'''
)
raise ValueError(__magic_name__ )
try:
if dataset.shape[1] != value_array.shape[1]:
snake_case_ : Dict = (
"Wrong input data's shape... "
F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}'''
)
raise ValueError(__magic_name__ )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("Wrong shape" )
if dataset.dtype != value_array.dtype:
snake_case_ : Dict = (
"Input data have different datatype... "
F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}'''
)
raise TypeError(__magic_name__ )
snake_case_ : Optional[int] = []
for value in value_array:
snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] )
snake_case_ : int = dataset[0].tolist()
for dataset_value in dataset[1:]:
snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ )
if dist > temp_dist:
snake_case_ : Tuple = temp_dist
snake_case_ : Optional[int] = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 656 | 1 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase : Any = logging.get_logger(__name__)
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
snake_case_ : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
snake_case_ : List[str] = key.replace("module.encoder" ,"glpn.encoder" )
if key.startswith("module.decoder" ):
snake_case_ : int = key.replace("module.decoder" ,"decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
snake_case_ : Union[str, Any] = key[key.find("patch_embed" ) + len("patch_embed" )]
snake_case_ : Dict = key.replace(F'''patch_embed{idx}''' ,F'''patch_embeddings.{int(__magic_name__ )-1}''' )
if "norm" in key:
snake_case_ : Dict = key.replace("norm" ,"layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
snake_case_ : int = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
snake_case_ : Tuple = key.replace(F'''layer_norm{idx}''' ,F'''layer_norm.{int(__magic_name__ )-1}''' )
if "layer_norm1" in key:
snake_case_ : Any = key.replace("layer_norm1" ,"layer_norm_1" )
if "layer_norm2" in key:
snake_case_ : Any = key.replace("layer_norm2" ,"layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
snake_case_ : str = key[key.find("block" ) + len("block" )]
snake_case_ : Tuple = key.replace(F'''block{idx}''' ,F'''block.{int(__magic_name__ )-1}''' )
if "attn.q" in key:
snake_case_ : Any = key.replace("attn.q" ,"attention.self.query" )
if "attn.proj" in key:
snake_case_ : Tuple = key.replace("attn.proj" ,"attention.output.dense" )
if "attn" in key:
snake_case_ : Optional[int] = key.replace("attn" ,"attention.self" )
if "fc1" in key:
snake_case_ : Dict = key.replace("fc1" ,"dense1" )
if "fc2" in key:
snake_case_ : Any = key.replace("fc2" ,"dense2" )
if "linear_pred" in key:
snake_case_ : List[str] = key.replace("linear_pred" ,"classifier" )
if "linear_fuse" in key:
snake_case_ : Dict = key.replace("linear_fuse.conv" ,"linear_fuse" )
snake_case_ : Any = key.replace("linear_fuse.bn" ,"batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
snake_case_ : Optional[Any] = key[key.find("linear_c" ) + len("linear_c" )]
snake_case_ : Union[str, Any] = key.replace(F'''linear_c{idx}''' ,F'''linear_c.{int(__magic_name__ )-1}''' )
if "bot_conv" in key:
snake_case_ : Union[str, Any] = key.replace("bot_conv" ,"0.convolution" )
if "skip_conv1" in key:
snake_case_ : Any = key.replace("skip_conv1" ,"1.convolution" )
if "skip_conv2" in key:
snake_case_ : List[str] = key.replace("skip_conv2" ,"2.convolution" )
if "fusion1" in key:
snake_case_ : Union[str, Any] = key.replace("fusion1" ,"1.fusion" )
if "fusion2" in key:
snake_case_ : Optional[Any] = key.replace("fusion2" ,"2.fusion" )
if "fusion3" in key:
snake_case_ : int = key.replace("fusion3" ,"3.fusion" )
if "fusion" in key and "conv" in key:
snake_case_ : List[Any] = key.replace("conv" ,"convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
snake_case_ : Optional[int] = key.replace("module.last_layer_depth" ,"head.head" )
snake_case_ : List[str] = value
return new_state_dict
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple:
"""simple docstring"""
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
snake_case_ : Optional[int] = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' )
snake_case_ : Optional[Any] = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
snake_case_ : str = kv_weight[
: config.hidden_sizes[i], :
]
snake_case_ : Dict = kv_bias[: config.hidden_sizes[i]]
snake_case_ : Optional[Any] = kv_weight[
config.hidden_sizes[i] :, :
]
snake_case_ : Any = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( )-> List[str]:
"""simple docstring"""
snake_case_ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg"
snake_case_ : List[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=False ,__magic_name__=None )-> List[str]:
"""simple docstring"""
snake_case_ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] ,decoder_hidden_size=64 ,depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
snake_case_ : Optional[int] = GLPNImageProcessor()
# prepare image
snake_case_ : Any = prepare_img()
snake_case_ : Any = image_processor(images=__magic_name__ ,return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
snake_case_ : Optional[int] = torch.load(__magic_name__ ,map_location=torch.device("cpu" ) )
# rename keys
snake_case_ : List[str] = rename_keys(__magic_name__ )
# key and value matrices need special treatment
read_in_k_v(__magic_name__ ,__magic_name__ )
# create HuggingFace model and load state dict
snake_case_ : str = GLPNForDepthEstimation(__magic_name__ )
model.load_state_dict(__magic_name__ )
model.eval()
# forward pass
snake_case_ : Union[str, Any] = model(__magic_name__ )
snake_case_ : int = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
snake_case_ : Dict = torch.tensor(
[[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] )
elif "kitti" in model_name:
snake_case_ : List[Any] = torch.tensor(
[[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] )
else:
raise ValueError(F'''Unknown model name: {model_name}''' )
snake_case_ : Tuple = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] ,__magic_name__ ,atol=1E-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(__magic_name__ ,__magic_name__ ) ,organization="nielsr" ,commit_message="Add model" ,use_temp_dir=__magic_name__ ,)
image_processor.push_to_hub(
repo_path_or_name=Path(__magic_name__ ,__magic_name__ ) ,organization="nielsr" ,commit_message="Add image processor" ,use_temp_dir=__magic_name__ ,)
if __name__ == "__main__":
__lowerCamelCase : List[str] = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''',
default=None,
type=str,
help='''Path to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.'''
)
parser.add_argument(
'''--model_name''',
default='''glpn-kitti''',
type=str,
help='''Name of the model in case you\'re pushing to the hub.''',
)
__lowerCamelCase : str = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 656 |
'''simple docstring'''
import fire
from utils import calculate_rouge, save_json
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()]
snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )]
snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ )
if save_path is not None:
save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 656 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__lowerCamelCase : Dict = logging.get_logger(__name__)
__lowerCamelCase : Any = '''▁'''
__lowerCamelCase : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''}
__lowerCamelCase : Optional[int] = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
__lowerCamelCase : Any = {
'''facebook/xglm-564M''': 2048,
}
class A_ (a_ ):
"""simple docstring"""
a__ = VOCAB_FILES_NAMES
a__ = PRETRAINED_VOCAB_FILES_MAP
a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ = ['''input_ids''', '''attention_mask''']
def __init__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int="<s>" , lowerCAmelCase__ :Dict="</s>" , lowerCAmelCase__ :str="</s>" , lowerCAmelCase__ :Union[str, Any]="<s>" , lowerCAmelCase__ :Optional[int]="<unk>" , lowerCAmelCase__ :Union[str, Any]="<pad>" , lowerCAmelCase__ :Optional[Dict[str, Any]] = None , **lowerCAmelCase__ :List[Any] , ) -> None:
'''simple docstring'''
snake_case_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
snake_case_ : Dict = 7
snake_case_ : Dict = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )]
snake_case_ : Optional[Any] = kwargs.get("additional_special_tokens" , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
snake_case_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowerCAmelCase__ ) )
snake_case_ : int = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
snake_case_ : Optional[int] = 1
# Mimic fairseq token-to-id alignment for the first 4 token
snake_case_ : int = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
snake_case_ : Optional[int] = len(self.sp_model )
snake_case_ : int = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(lowerCAmelCase__ )
snake_case_ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self :Optional[int] ) -> List[Any]:
'''simple docstring'''
snake_case_ : Dict = self.__dict__.copy()
snake_case_ : Tuple = None
snake_case_ : List[str] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self :Dict , lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
snake_case_ : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
snake_case_ : Dict = {}
snake_case_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _A ( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
snake_case_ : Optional[Any] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def _A ( self :Optional[int] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ ))
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ ))
def _A ( self :Optional[int] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
snake_case_ : List[str] = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def _A ( self :Dict ) -> Optional[Any]:
'''simple docstring'''
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def _A ( self :Dict ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Dict = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _A ( self :int , lowerCAmelCase__ :str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def _A ( self :Union[str, Any] , lowerCAmelCase__ :Optional[Any] ) -> Tuple:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
snake_case_ : Dict = self.sp_model.PieceToId(lowerCAmelCase__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _A ( self :List[str] , lowerCAmelCase__ :Tuple ) -> List[str]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _A ( self :Tuple , lowerCAmelCase__ :Optional[int] ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = "".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , " " ).strip()
return out_string
def _A ( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case_ : int = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , "wb" ) as fi:
snake_case_ : Any = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
| 656 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
__lowerCamelCase : Optional[Any] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
f'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
f'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''),
('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''),
('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''),
('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''),
('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''),
('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''),
('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''),
('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''),
('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''),
('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''),
]
)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int:
"""simple docstring"""
snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ )
snake_case_ : Any = val
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Any = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" )
snake_case_ : int = value
else:
snake_case_ : int = value
return new_state_dict
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]:
"""simple docstring"""
snake_case_ : str = ""
if is_panoptic:
snake_case_ : Dict = "conditional_detr."
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case_ : Tuple = in_proj_weight[:256, :]
snake_case_ : List[Any] = in_proj_bias[:256]
snake_case_ : Optional[Any] = in_proj_weight[256:512, :]
snake_case_ : Optional[int] = in_proj_bias[256:512]
snake_case_ : Optional[int] = in_proj_weight[-256:, :]
snake_case_ : str = in_proj_bias[-256:]
def __UpperCAmelCase ( )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]:
"""simple docstring"""
snake_case_ : Optional[Any] = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
snake_case_ : Optional[Any] = "resnet101"
if "dc5" in model_name:
snake_case_ : List[str] = True
snake_case_ : Tuple = "panoptic" in model_name
if is_panoptic:
snake_case_ : List[Any] = 250
else:
snake_case_ : Optional[Any] = 91
snake_case_ : Optional[int] = "huggingface/label-files"
snake_case_ : Dict = "coco-detection-id2label.json"
snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) )
snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()}
snake_case_ : int = idalabel
snake_case_ : Dict = {v: k for k, v in idalabel.items()}
# load image processor
snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection"
snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ )
# prepare image
snake_case_ : str = prepare_img()
snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" )
snake_case_ : Union[str, Any] = encoding["pixel_values"]
logger.info(F'''Converting model {model_name}...''' )
# load original model from torch hub
snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval()
snake_case_ : Any = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
snake_case_ : Any = "conditional_detr." + src
rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ )
snake_case_ : Tuple = rename_backbone_keys(__magic_name__ )
# query, key and value matrices need special treatment
read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
snake_case_ : int = "conditional_detr.model." if is_panoptic else "model."
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("conditional_detr" )
and not key.startswith("class_labels_classifier" )
and not key.startswith("bbox_predictor" )
):
snake_case_ : Any = state_dict.pop(__magic_name__ )
snake_case_ : Optional[int] = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
snake_case_ : Tuple = state_dict.pop(__magic_name__ )
snake_case_ : Any = val
elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ):
continue
else:
snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ )
snake_case_ : List[Any] = val
else:
if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ):
snake_case_ : Any = state_dict.pop(__magic_name__ )
snake_case_ : List[Any] = val
# finally, create HuggingFace model and load state dict
snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ )
model.load_state_dict(__magic_name__ )
model.eval()
model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" )
# verify our conversion
snake_case_ : Dict = conditional_detr(__magic_name__ )
snake_case_ : Union[str, Any] = model(__magic_name__ )
assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 )
assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 )
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
model.save_pretrained(__magic_name__ )
image_processor.save_pretrained(__magic_name__ )
if __name__ == "__main__":
__lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''conditional_detr_resnet50''',
type=str,
help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
__lowerCamelCase : int = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 656 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class A_ (a_ ):
"""simple docstring"""
def _A ( self :Any ) -> int:
'''simple docstring'''
snake_case_ : Optional[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(lowerCAmelCase__ , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(lowerCAmelCase__ , "num_attention_heads" ) )
self.parent.assertTrue(hasattr(lowerCAmelCase__ , "num_encoder_blocks" ) )
class A_ :
"""simple docstring"""
def __init__( self :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :int=64 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :List[Any]=4 , lowerCAmelCase__ :Dict=[2, 2, 2, 2] , lowerCAmelCase__ :Any=[8, 4, 2, 1] , lowerCAmelCase__ :Dict=[16, 32, 64, 128] , lowerCAmelCase__ :Union[str, Any]=[1, 4, 8, 16] , lowerCAmelCase__ :Dict=[1, 2, 4, 8] , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Any="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :Dict=0.0_2 , lowerCAmelCase__ :str=3 , lowerCAmelCase__ :Optional[int]=None , ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Optional[int] = parent
snake_case_ : List[Any] = batch_size
snake_case_ : List[Any] = image_size
snake_case_ : Optional[Any] = num_channels
snake_case_ : List[str] = num_encoder_blocks
snake_case_ : Optional[int] = sr_ratios
snake_case_ : Dict = depths
snake_case_ : List[str] = hidden_sizes
snake_case_ : Dict = downsampling_rates
snake_case_ : Optional[int] = num_attention_heads
snake_case_ : Optional[Any] = is_training
snake_case_ : str = use_labels
snake_case_ : List[str] = hidden_act
snake_case_ : str = hidden_dropout_prob
snake_case_ : str = attention_probs_dropout_prob
snake_case_ : int = initializer_range
snake_case_ : Union[str, Any] = num_labels
snake_case_ : Dict = scope
def _A ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
snake_case_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ : Optional[int] = None
if self.use_labels:
snake_case_ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
snake_case_ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def _A ( self :int ) -> int:
'''simple docstring'''
return SegformerConfig(
image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Any = SegformerModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : Tuple = model(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) )
def _A ( self :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> Optional[int]:
'''simple docstring'''
snake_case_ : str = self.num_labels
snake_case_ : int = SegformerForSemanticSegmentation(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : str = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
snake_case_ : str = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
self.parent.assertGreater(result.loss , 0.0 )
def _A ( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Dict = 1
snake_case_ : Optional[int] = SegformerForSemanticSegmentation(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : Optional[Any] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowerCAmelCase__ )
snake_case_ : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertGreater(result.loss , 0.0 )
def _A ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case_ : List[str] = self.prepare_config_and_inputs()
snake_case_, snake_case_, snake_case_ : Optional[int] = config_and_inputs
snake_case_ : Tuple = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class A_ (a_ , a_ , unittest.TestCase ):
"""simple docstring"""
a__ = (
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
a__ = (
{
'''feature-extraction''': SegformerModel,
'''image-classification''': SegformerForImageClassification,
'''image-segmentation''': SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
a__ = True
a__ = False
a__ = False
a__ = False
def _A ( self :List[str] ) -> int:
'''simple docstring'''
snake_case_ : Union[str, Any] = SegformerModelTester(self )
snake_case_ : Union[str, Any] = SegformerConfigTester(self , config_class=lowerCAmelCase__ )
def _A ( self :Tuple ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def _A ( self :str ) -> str:
'''simple docstring'''
snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _A ( self :List[str] ) -> str:
'''simple docstring'''
snake_case_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*lowerCAmelCase__ )
@unittest.skip("SegFormer does not use inputs_embeds" )
def _A ( self :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
pass
@unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" )
def _A ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
pass
def _A ( self :Tuple ) -> Optional[int]:
'''simple docstring'''
snake_case_, snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[Any] = model_class(lowerCAmelCase__ )
snake_case_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ : int = [*signature.parameters.keys()]
snake_case_ : List[Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def _A ( self :List[str] ) -> Optional[int]:
'''simple docstring'''
snake_case_, snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = True
for model_class in self.all_model_classes:
snake_case_ : Dict = True
snake_case_ : List[Any] = False
snake_case_ : Optional[int] = True
snake_case_ : Optional[int] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
snake_case_ : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
snake_case_ : Dict = outputs.attentions
snake_case_ : List[str] = sum(self.model_tester.depths )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
snake_case_ : Any = True
snake_case_ : Union[str, Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
snake_case_ : str = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
snake_case_ : List[str] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# verify the first attentions (first block, first layer)
snake_case_ : List[str] = (self.model_tester.image_size // 4) ** 2
snake_case_ : int = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
# verify the last attentions (last block, last layer)
snake_case_ : int = (self.model_tester.image_size // 32) ** 2
snake_case_ : int = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , )
snake_case_ : Union[str, Any] = len(lowerCAmelCase__ )
# Check attention is always last and order is fine
snake_case_ : Dict = True
snake_case_ : List[Any] = True
snake_case_ : int = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
snake_case_ : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) )
snake_case_ : Optional[Any] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# verify the first attentions (first block, first layer)
snake_case_ : Dict = (self.model_tester.image_size // 4) ** 2
snake_case_ : List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
def _A ( self :Any ) -> Optional[int]:
'''simple docstring'''
def check_hidden_states_output(lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] ):
snake_case_ : str = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
snake_case_ : Any = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
snake_case_ : int = outputs.hidden_states
snake_case_ : Optional[int] = self.model_tester.num_encoder_blocks
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
snake_case_, snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : Any = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ : Tuple = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
if not self.model_tester.is_training:
return
snake_case_, snake_case_ : str = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Any = True
for model_class in self.all_model_classes:
if model_class in get_values(lowerCAmelCase__ ):
continue
snake_case_ : Optional[int] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.train()
snake_case_ : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
snake_case_ : Optional[Any] = model(**lowerCAmelCase__ ).loss
loss.backward()
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _A ( self :Optional[int] ) -> Dict:
'''simple docstring'''
pass
@slow
def _A ( self :List[Any] ) -> str:
'''simple docstring'''
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ : Optional[int] = SegformerModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class A_ (unittest.TestCase ):
"""simple docstring"""
@slow
def _A ( self :List[str] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : List[str] = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ )
snake_case_ : Tuple = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to(
lowerCAmelCase__ )
snake_case_ : int = prepare_img()
snake_case_ : str = image_processor(images=lowerCAmelCase__ , return_tensors="pt" )
snake_case_ : int = encoded_inputs.pixel_values.to(lowerCAmelCase__ )
with torch.no_grad():
snake_case_ : Tuple = model(lowerCAmelCase__ )
snake_case_ : Tuple = torch.Size((1, model.config.num_labels, 128, 128) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
snake_case_ : List[Any] = torch.tensor(
[
[[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]],
[[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]],
[[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]],
] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
@slow
def _A ( self :int ) -> Dict:
'''simple docstring'''
snake_case_ : Union[str, Any] = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ )
snake_case_ : List[Any] = SegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(lowerCAmelCase__ )
snake_case_ : Any = prepare_img()
snake_case_ : str = image_processor(images=lowerCAmelCase__ , return_tensors="pt" )
snake_case_ : List[Any] = encoded_inputs.pixel_values.to(lowerCAmelCase__ )
with torch.no_grad():
snake_case_ : List[str] = model(lowerCAmelCase__ )
snake_case_ : List[str] = torch.Size((1, model.config.num_labels, 128, 128) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
snake_case_ : List[Any] = torch.tensor(
[
[[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]],
[[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]],
[[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]],
] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1E-1 ) )
@slow
def _A ( self :Any ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Optional[int] = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ )
snake_case_ : List[str] = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to(
lowerCAmelCase__ )
snake_case_ : Tuple = prepare_img()
snake_case_ : str = image_processor(images=lowerCAmelCase__ , return_tensors="pt" )
snake_case_ : Optional[int] = encoded_inputs.pixel_values.to(lowerCAmelCase__ )
with torch.no_grad():
snake_case_ : Union[str, Any] = model(lowerCAmelCase__ )
snake_case_ : Tuple = outputs.logits.detach().cpu()
snake_case_ : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ , target_sizes=[(500, 300)] )
snake_case_ : Optional[Any] = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , lowerCAmelCase__ )
snake_case_ : Dict = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ )
snake_case_ : Optional[Any] = torch.Size((128, 128) )
self.assertEqual(segmentation[0].shape , lowerCAmelCase__ )
| 656 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :Any ) -> str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _A ( self :List[Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Any = 1
snake_case_ : Dict = 3
snake_case_ : Union[str, Any] = (32, 32)
snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
return image
@property
def _A ( self :Optional[int] ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : List[str] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def _A ( self :Dict ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : Optional[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def _A ( self :Dict ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : str = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , )
return RobertaSeriesModelWithTransformation(lowerCAmelCase__ )
@property
def _A ( self :Any ) -> str:
'''simple docstring'''
def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ):
class A_ :
"""simple docstring"""
def __init__( self :Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case_ : str = torch.ones([0] )
def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple:
'''simple docstring'''
self.pixel_values.to(lowerCAmelCase__ )
return self
return Out()
return extract
def _A ( self :int ) -> Dict:
'''simple docstring'''
snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator
snake_case_ : str = self.dummy_cond_unet
snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
snake_case_ : Dict = self.dummy_vae
snake_case_ : Dict = self.dummy_text_encoder
snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
snake_case_ : str = 77
snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ )
snake_case_ : Tuple = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ )
snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ )
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
snake_case_ : Dict = "A painting of a squirrel eating a burger"
snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
snake_case_ : Dict = alt_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , )
snake_case_ : Any = output.images
snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
snake_case_ : Optional[Any] = alt_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0]
snake_case_ : Tuple = image[0, -3:, -3:, -1]
snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def _A ( self :int ) -> List[str]:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.dummy_cond_unet
snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
snake_case_ : int = self.dummy_vae
snake_case_ : List[Any] = self.dummy_text_encoder
snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
snake_case_ : int = 77
snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ )
# put models in fp16
snake_case_ : Optional[Any] = unet.half()
snake_case_ : Tuple = vae.half()
snake_case_ : List[str] = bert.half()
# make sure here that pndm scheduler skips prk
snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ )
snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ )
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
snake_case_ : List[Any] = "A painting of a squirrel eating a burger"
snake_case_ : str = torch.manual_seed(0 )
snake_case_ : Any = alt_pipe(
[prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def _A ( self :Optional[int] ) -> Any:
'''simple docstring'''
snake_case_ : Union[str, Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
# resize to resolution that is divisible by 8 but not 16 or 32
snake_case_ : str = init_image.resize((760, 504) )
snake_case_ : Optional[Any] = "BAAI/AltDiffusion"
snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained(
lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
pipe.enable_attention_slicing()
snake_case_ : Tuple = "A fantasy landscape, trending on artstation"
snake_case_ : int = torch.manual_seed(0 )
snake_case_ : List[str] = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , )
snake_case_ : str = output.images[0]
snake_case_ : List[Any] = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _A ( self :str ) -> Any:
'''simple docstring'''
snake_case_ : Optional[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
snake_case_ : List[Any] = init_image.resize((768, 512) )
snake_case_ : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" )
snake_case_ : Any = "BAAI/AltDiffusion"
snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained(
lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
pipe.enable_attention_slicing()
snake_case_ : Tuple = "A fantasy landscape, trending on artstation"
snake_case_ : Tuple = torch.manual_seed(0 )
snake_case_ : List[Any] = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , )
snake_case_ : Optional[int] = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 656 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int:
"""simple docstring"""
def count_of_possible_combinations(__magic_name__ ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int:
"""simple docstring"""
def count_of_possible_combinations_with_dp_array(
__magic_name__ ,__magic_name__ ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
snake_case_ : Any = sum(
count_of_possible_combinations_with_dp_array(target - item ,__magic_name__ )
for item in array )
snake_case_ : List[Any] = answer
return answer
snake_case_ : List[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(__magic_name__ ,__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int:
"""simple docstring"""
snake_case_ : Union[str, Any] = [0] * (target + 1)
snake_case_ : str = 1
for i in range(1 ,target + 1 ):
for j in range(__magic_name__ ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCamelCase : Tuple = 3
__lowerCamelCase : Optional[int] = 5
__lowerCamelCase : str = [1, 2, 5]
print(combination_sum_iv(n, array, target))
| 656 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class A_ (unittest.TestCase ):
"""simple docstring"""
a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
a__ = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any:
'''simple docstring'''
snake_case_ : Optional[Any] = ZeroShotClassificationPipeline(
model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
# No kwarg
snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" )
self.assertEqual(
lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 )
snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] )
self.assertEqual(
lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 )
snake_case_ : str = classifier(
"Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" )
self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} )
# https://github.com/huggingface/transformers/issues/13846
snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] )
self.assertEqual(
lowerCAmelCase__ , [
{"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]}
for i in range(1 )
] , )
snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] )
self.assertEqual(
lowerCAmelCase__ , [
{"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]}
for i in range(2 )
] , )
with self.assertRaises(lowerCAmelCase__ ):
classifier("" , candidate_labels="politics" )
with self.assertRaises(lowerCAmelCase__ ):
classifier(lowerCAmelCase__ , candidate_labels="politics" )
with self.assertRaises(lowerCAmelCase__ ):
classifier("Who are you voting for in 2020?" , candidate_labels="" )
with self.assertRaises(lowerCAmelCase__ ):
classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ )
with self.assertRaises(lowerCAmelCase__ ):
classifier(
"Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , )
with self.assertRaises(lowerCAmelCase__ ):
classifier(
"Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , )
self.run_entailment_id(lowerCAmelCase__ )
def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : int = zero_shot_classifier.model.config
snake_case_ : Optional[int] = config.labelaid
snake_case_ : Tuple = zero_shot_classifier.entailment_id
snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
snake_case_ : List[str] = original_labelaid
self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id )
@require_torch
def _A ( self :Tuple ) -> Any:
'''simple docstring'''
snake_case_ : List[Any] = pipeline(
"zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
"Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] )
@require_torch
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Union[str, Any] = pipeline(
"zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , )
snake_case_ : int = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["science", "public health", "politics"],
"scores": [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@require_tf
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
snake_case_ : List[str] = pipeline(
"zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , )
snake_case_ : Optional[int] = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["science", "public health", "politics"],
"scores": [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@slow
@require_torch
def _A ( self :Union[str, Any] ) -> int:
'''simple docstring'''
snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" )
snake_case_ : str = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["politics", "public health", "science"],
"scores": [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
snake_case_ : Optional[int] = zero_shot_classifier(
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"
" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"
" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"
" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"
" machine translation tasks show these models to be superior in quality while being more parallelizable"
" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"
" English-to-German translation task, improving over the existing best results, including ensembles by"
" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"
" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"
" fraction of the training costs of the best models from the literature. We show that the Transformer"
" generalizes well to other tasks by applying it successfully to English constituency parsing both with"
" large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": (
"The dominant sequence transduction models are based on complex recurrent or convolutional neural"
" networks in an encoder-decoder configuration. The best performing models also connect the"
" encoder and decoder through an attention mechanism. We propose a new simple network"
" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"
" and convolutions entirely. Experiments on two machine translation tasks show these models to be"
" superior in quality while being more parallelizable and requiring significantly less time to"
" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"
" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"
" English-to-French translation task, our model establishes a new single-model state-of-the-art"
" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"
" costs of the best models from the literature. We show that the Transformer generalizes well to"
" other tasks by applying it successfully to English constituency parsing both with large and"
" limited training data."
),
"labels": ["translation", "machine learning", "vision", "statistics"],
"scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
@slow
@require_tf
def _A ( self :List[str] ) -> str:
'''simple docstring'''
snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" )
snake_case_ : Optional[Any] = zero_shot_classifier(
"Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": "Who are you voting for in 2020?",
"labels": ["politics", "public health", "science"],
"scores": [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
snake_case_ : Tuple = zero_shot_classifier(
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"
" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"
" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"
" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"
" machine translation tasks show these models to be superior in quality while being more parallelizable"
" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"
" English-to-German translation task, improving over the existing best results, including ensembles by"
" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"
" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"
" fraction of the training costs of the best models from the literature. We show that the Transformer"
" generalizes well to other tasks by applying it successfully to English constituency parsing both with"
" large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
"sequence": (
"The dominant sequence transduction models are based on complex recurrent or convolutional neural"
" networks in an encoder-decoder configuration. The best performing models also connect the"
" encoder and decoder through an attention mechanism. We propose a new simple network"
" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"
" and convolutions entirely. Experiments on two machine translation tasks show these models to be"
" superior in quality while being more parallelizable and requiring significantly less time to"
" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"
" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"
" English-to-French translation task, our model establishes a new single-model state-of-the-art"
" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"
" costs of the best models from the literature. We show that the Transformer generalizes well to"
" other tasks by applying it successfully to English constituency parsing both with large and"
" limited training data."
),
"labels": ["translation", "machine learning", "vision", "statistics"],
"scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
| 656 | 1 |
'''simple docstring'''
import gc
import unittest
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
from diffusers.utils import is_flax_available, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :int ) -> Dict:
'''simple docstring'''
super().tearDown()
gc.collect()
def _A ( self :Union[str, Any] ) -> List[Any]:
'''simple docstring'''
snake_case_, snake_case_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2" , revision="bf16" , dtype=jnp.bfloataa , )
snake_case_ : Tuple = "A painting of a squirrel eating a burger"
snake_case_ : Tuple = jax.device_count()
snake_case_ : Dict = num_samples * [prompt]
snake_case_ : Tuple = sd_pipe.prepare_inputs(lowerCAmelCase__ )
snake_case_ : str = replicate(lowerCAmelCase__ )
snake_case_ : Dict = shard(lowerCAmelCase__ )
snake_case_ : Any = jax.random.PRNGKey(0 )
snake_case_ : List[str] = jax.random.split(lowerCAmelCase__ , jax.device_count() )
snake_case_ : Optional[int] = sd_pipe(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , num_inference_steps=25 , jit=lowerCAmelCase__ )[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
snake_case_ : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
snake_case_ : Optional[Any] = images[0, 253:256, 253:256, -1]
snake_case_ : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
snake_case_ : Dict = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] )
print(F'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
def _A ( self :Optional[Any] ) -> str:
'''simple docstring'''
snake_case_ : Any = "stabilityai/stable-diffusion-2"
snake_case_, snake_case_ : Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase__ , subfolder="scheduler" )
snake_case_, snake_case_ : int = FlaxStableDiffusionPipeline.from_pretrained(
lowerCAmelCase__ , scheduler=lowerCAmelCase__ , revision="bf16" , dtype=jnp.bfloataa , )
snake_case_ : int = scheduler_params
snake_case_ : Optional[Any] = "A painting of a squirrel eating a burger"
snake_case_ : List[Any] = jax.device_count()
snake_case_ : List[str] = num_samples * [prompt]
snake_case_ : List[Any] = sd_pipe.prepare_inputs(lowerCAmelCase__ )
snake_case_ : List[Any] = replicate(lowerCAmelCase__ )
snake_case_ : List[Any] = shard(lowerCAmelCase__ )
snake_case_ : int = jax.random.PRNGKey(0 )
snake_case_ : List[Any] = jax.random.split(lowerCAmelCase__ , jax.device_count() )
snake_case_ : Optional[int] = sd_pipe(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , num_inference_steps=25 , jit=lowerCAmelCase__ )[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
snake_case_ : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
snake_case_ : List[str] = images[0, 253:256, 253:256, -1]
snake_case_ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) )
snake_case_ : Dict = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] )
print(F'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 656 |
'''simple docstring'''
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''):
raise Exception('''requires fairseq >= 1.0.0a''')
logging.set_verbosity_info()
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip'''
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ )
roberta.eval() # disable dropout
snake_case_ : Dict = roberta.model.encoder.sentence_encoder
snake_case_ : List[str] = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,)
if classification_head:
snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our RoBERTa config:" ,__magic_name__ )
snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ )
model.eval()
# Now let's copy all the weights.
# Embeddings
snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight
snake_case_ : int = roberta_sent_encoder.embed_positions.weight
snake_case_ : Union[str, Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight
snake_case_ : str = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
snake_case_ : BertLayer = model.roberta.encoder.layer[i]
snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
snake_case_ : RobertaAttention = layer.attention
snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight
snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias
# self attention
snake_case_ : BertSelfAttention = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight
snake_case_ : Any = roberta_layer.self_attn.q_proj.bias
snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight
snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias
snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight
snake_case_ : Any = roberta_layer.self_attn.v_proj.bias
# self-attention output
snake_case_ : BertSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight
snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
snake_case_ : int = roberta_layer.final_layer_norm.weight
snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias
# intermediate
snake_case_ : BertIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
snake_case_ : List[str] = roberta_layer.fca.weight
snake_case_ : List[Any] = roberta_layer.fca.bias
# output
snake_case_ : BertOutput = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
snake_case_ : Any = roberta_layer.fca.weight
snake_case_ : Any = roberta_layer.fca.bias
# end of layer
if classification_head:
snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight
snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias
snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight
snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight
snake_case_ : int = roberta.model.encoder.lm_head.dense.bias
snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight
snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias
snake_case_ : int = roberta.model.encoder.lm_head.weight
snake_case_ : List[str] = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1
snake_case_ : Union[str, Any] = model(__magic_name__ )[0]
if classification_head:
snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) )
else:
snake_case_ : List[str] = roberta.model(__magic_name__ )[0]
print(our_output.shape ,their_output.shape )
snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 )
print("Do both models output the same tensors?" ,"🔥" if success else "💩" )
if not success:
raise Exception("Something went wRoNg" )
pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowerCamelCase : Tuple = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 656 | 1 |
'''simple docstring'''
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class A_ :
"""simple docstring"""
def __init__( self :Optional[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Any=13 , lowerCAmelCase__ :Optional[Any]=7 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :int=5 , lowerCAmelCase__ :Union[str, Any]=4 , lowerCAmelCase__ :Union[str, Any]=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :List[str]=50 , lowerCAmelCase__ :int=0.0_2 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=None , ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[Any] = parent
snake_case_ : Any = batch_size
snake_case_ : int = seq_length
snake_case_ : Dict = is_training
snake_case_ : str = use_input_mask
snake_case_ : Any = vocab_size
snake_case_ : List[str] = hidden_size
snake_case_ : Tuple = num_hidden_layers
snake_case_ : Optional[int] = num_attention_heads
snake_case_ : List[Any] = intermediate_size
snake_case_ : Optional[int] = hidden_act
snake_case_ : Tuple = hidden_dropout_prob
snake_case_ : Optional[Any] = attention_probs_dropout_prob
snake_case_ : Union[str, Any] = max_position_embeddings
snake_case_ : str = initializer_range
snake_case_ : Dict = use_labels
snake_case_ : List[str] = scope
def _A ( self :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ : List[Any] = None
if self.use_input_mask:
snake_case_ : str = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def _A ( self :str ) -> List[str]:
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
def _A ( self :Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
(
(
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
),
) : List[str] = self.prepare_config_and_inputs()
snake_case_ : Any = True
snake_case_ : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , **lowerCAmelCase__ :Dict , ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Optional[int] = BertGenerationEncoder(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
snake_case_ : Any = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Optional[Any] , ) -> int:
'''simple docstring'''
snake_case_ : str = True
snake_case_ : Tuple = BertGenerationEncoder(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : List[str] = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , )
snake_case_ : List[str] = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _A ( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[int] , **lowerCAmelCase__ :int , ) -> Tuple:
'''simple docstring'''
snake_case_ : Tuple = True
snake_case_ : str = True
snake_case_ : Union[str, Any] = BertGenerationDecoder(config=lowerCAmelCase__ ).to(lowerCAmelCase__ ).eval()
# first forward pass
snake_case_ : Dict = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , )
snake_case_ : List[str] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
snake_case_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case_ : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
snake_case_ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ : str = torch.cat([input_mask, next_mask] , dim=-1 )
snake_case_ : str = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0]
snake_case_ : List[Any] = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0]
# select random slice
snake_case_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case_ : List[str] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) )
def _A ( self :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int , *lowerCAmelCase__ :Optional[Any] , ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Dict = BertGenerationDecoder(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
snake_case_ : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _A ( self :Tuple ) -> List[Any]:
'''simple docstring'''
snake_case_, snake_case_, snake_case_, snake_case_ : int = self.prepare_config_and_inputs()
snake_case_ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A_ (a_ , a_ , a_ , unittest.TestCase ):
"""simple docstring"""
a__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
a__ = (BertGenerationDecoder,) if is_torch_available() else ()
a__ = (
{'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder}
if is_torch_available()
else {}
)
def _A ( self :int ) -> str:
'''simple docstring'''
snake_case_ : List[str] = BertGenerationEncoderTester(self )
snake_case_ : str = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 )
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _A ( self :int ) -> List[Any]:
'''simple docstring'''
snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
snake_case_, snake_case_, snake_case_, snake_case_ : str = self.model_tester.prepare_config_and_inputs()
snake_case_ : int = "bert"
self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _A ( self :List[str] ) -> Any:
'''simple docstring'''
snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase__ )
def _A ( self :List[Any] ) -> Dict:
'''simple docstring'''
snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCAmelCase__ )
def _A ( self :Optional[Any] ) -> Any:
'''simple docstring'''
(
(
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
),
) : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
snake_case_ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
def _A ( self :Optional[Any] ) -> Dict:
'''simple docstring'''
snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase__ )
@slow
def _A ( self :Optional[Any] ) -> str:
'''simple docstring'''
snake_case_ : int = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
self.assertIsNotNone(lowerCAmelCase__ )
@require_torch
class A_ (unittest.TestCase ):
"""simple docstring"""
@slow
def _A ( self :int ) -> int:
'''simple docstring'''
snake_case_ : Optional[int] = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
snake_case_ : str = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]] )
with torch.no_grad():
snake_case_ : Optional[Any] = model(lowerCAmelCase__ )[0]
snake_case_ : Optional[int] = torch.Size([1, 8, 1_024] )
self.assertEqual(output.shape , lowerCAmelCase__ )
snake_case_ : str = torch.tensor(
[[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
@require_torch
class A_ (unittest.TestCase ):
"""simple docstring"""
@slow
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
snake_case_ : str = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
snake_case_ : Optional[Any] = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]] )
with torch.no_grad():
snake_case_ : List[Any] = model(lowerCAmelCase__ )[0]
snake_case_ : Optional[Any] = torch.Size([1, 8, 50_358] )
self.assertEqual(output.shape , lowerCAmelCase__ )
snake_case_ : Optional[Any] = torch.tensor(
[[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
| 656 |
'''simple docstring'''
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]:
"""simple docstring"""
snake_case_ : str = False
snake_case_ : int = False
if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ):
snake_case_ : Any = True
elif "IPython" in sys.modules:
snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() )
try:
snake_case_ : Any = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' )
if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside "
"your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`." )
if num_processes is None:
snake_case_ : Tuple = 8
snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" )
print(F'''Launching a training on {num_processes} TPU cores.''' )
xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print("Launching training on one GPU." )
else:
print("Launching training on one CPU." )
function(*__magic_name__ )
else:
if num_processes is None:
raise ValueError(
"You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized "
"inside your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`." )
if torch.cuda.is_initialized():
raise ValueError(
"To launch a multi-GPU training from your notebook, you need to avoid running any instruction "
"using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA "
"function." )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ):
snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" )
print(F'''Launching training on {num_processes} GPUs.''' )
try:
start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
"CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. "
"This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
"Please review your imports and test them when running the `notebook_launcher()` to identify "
"which one is problematic." ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
snake_case_ : Any = "1"
print("Launching training on MPS." )
elif torch.cuda.is_available():
print("Launching training on one GPU." )
else:
print("Launching training on CPU." )
function(*__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict:
"""simple docstring"""
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,):
snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ )
start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
| 656 | 1 |
'''simple docstring'''
from __future__ import annotations
from scipy.special import comb # type: ignore
class A_ :
"""simple docstring"""
def __init__( self :str , lowerCAmelCase__ :list[tuple[float, float]] ) -> str:
'''simple docstring'''
snake_case_ : Any = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
snake_case_ : Optional[Any] = len(lowerCAmelCase__ ) - 1
def _A ( self :int , lowerCAmelCase__ :float ) -> list[float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
snake_case_ : list[float] = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , lowerCAmelCase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(lowerCAmelCase__ ) , 5 ) == 1
return output_values
def _A ( self :List[Any] , lowerCAmelCase__ :float ) -> tuple[float, float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
snake_case_ : Optional[int] = self.basis_function(lowerCAmelCase__ )
snake_case_ : Any = 0.0
snake_case_ : str = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def _A ( self :Tuple , lowerCAmelCase__ :float = 0.0_1 ) -> Union[str, Any]:
'''simple docstring'''
from matplotlib import pyplot as plt # type: ignore
snake_case_ : list[float] = [] # x coordinates of points to plot
snake_case_ : list[float] = [] # y coordinates of points to plot
snake_case_ : Optional[int] = 0.0
while t <= 1:
snake_case_ : Optional[int] = self.bezier_curve_function(lowerCAmelCase__ )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
snake_case_ : str = [i[0] for i in self.list_of_points]
snake_case_ : int = [i[1] for i in self.list_of_points]
plt.plot(
lowerCAmelCase__ , lowerCAmelCase__ , color="blue" , label="Curve of Degree " + str(self.degree ) , )
plt.scatter(lowerCAmelCase__ , lowerCAmelCase__ , color="red" , label="Control Points" )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 656 |
'''simple docstring'''
from collections import deque
from math import floor
from random import random
from time import time
class A_ :
"""simple docstring"""
def __init__( self :Dict ) -> List[str]:
'''simple docstring'''
snake_case_ : int = {}
def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
snake_case_ : Optional[int] = [[w, v]]
if not self.graph.get(lowerCAmelCase__ ):
snake_case_ : Dict = []
def _A ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
return list(self.graph )
def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(lowerCAmelCase__ )
def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str:
'''simple docstring'''
if s == d:
return []
snake_case_ : str = []
snake_case_ : Optional[int] = []
if s == -2:
snake_case_ : List[Any] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Dict = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : str = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(lowerCAmelCase__ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[Any] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return visited
def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int:
'''simple docstring'''
if c == -1:
snake_case_ : Any = floor(random() * 10_000 ) + 10
for i in range(lowerCAmelCase__ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
snake_case_ : Optional[Any] = floor(random() * c ) + 1
if n != i:
self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 )
def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict:
'''simple docstring'''
snake_case_ : Union[str, Any] = deque()
snake_case_ : Optional[Any] = []
if s == -2:
snake_case_ : Tuple = list(self.graph )[0]
d.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
while d:
snake_case_ : Optional[int] = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Tuple = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]:
'''simple docstring'''
return len(self.graph[u] )
def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : str = []
snake_case_ : str = []
if s == -2:
snake_case_ : Optional[Any] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : int = s
snake_case_ : Optional[int] = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[Any] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : List[str] = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(lowerCAmelCase__ ) != 0:
snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Union[str, Any] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return sorted_nodes
def _A ( self :Dict ) -> Any:
'''simple docstring'''
snake_case_ : Dict = []
snake_case_ : Any = []
snake_case_ : str = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Optional[int] = -2
snake_case_ : Any = []
snake_case_ : List[Any] = s
snake_case_ : int = False
snake_case_ : Optional[int] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Any = len(lowerCAmelCase__ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : Optional[int] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Optional[Any] = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : str = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : List[str] = s
snake_case_ : Optional[int] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return list(lowerCAmelCase__ )
def _A ( self :Tuple ) -> List[str]:
'''simple docstring'''
snake_case_ : List[Any] = []
snake_case_ : Tuple = []
snake_case_ : List[str] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : str = -2
snake_case_ : List[str] = []
snake_case_ : List[Any] = s
snake_case_ : List[str] = False
snake_case_ : Dict = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Any = len(lowerCAmelCase__ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Tuple = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[int] = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : int = s
snake_case_ : Union[str, Any] = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return False
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str:
'''simple docstring'''
snake_case_ : Optional[int] = time()
self.dfs(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : Optional[Any] = time()
return end - begin
def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Any = time()
self.bfs(lowerCAmelCase__ )
snake_case_ : Any = time()
return end - begin
class A_ :
"""simple docstring"""
def __init__( self :Tuple ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[Any] = {}
def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
snake_case_ : str = [[w, v]]
# add the other way
if self.graph.get(lowerCAmelCase__ ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
snake_case_ : List[str] = [[w, u]]
def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
if self.graph.get(lowerCAmelCase__ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(lowerCAmelCase__ )
# the other way round
if self.graph.get(lowerCAmelCase__ ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(lowerCAmelCase__ )
def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int:
'''simple docstring'''
if s == d:
return []
snake_case_ : Any = []
snake_case_ : Dict = []
if s == -2:
snake_case_ : Optional[int] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Tuple = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : List[str] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(lowerCAmelCase__ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : str = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return visited
def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]:
'''simple docstring'''
if c == -1:
snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10
for i in range(lowerCAmelCase__ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
snake_case_ : str = floor(random() * c ) + 1
if n != i:
self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 )
def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]:
'''simple docstring'''
snake_case_ : List[str] = deque()
snake_case_ : Optional[Any] = []
if s == -2:
snake_case_ : List[Any] = list(self.graph )[0]
d.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
while d:
snake_case_ : Optional[int] = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return len(self.graph[u] )
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
snake_case_ : Any = []
snake_case_ : Optional[Any] = []
snake_case_ : Optional[Any] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Tuple = -2
snake_case_ : Optional[int] = []
snake_case_ : Tuple = s
snake_case_ : Optional[Any] = False
snake_case_ : Optional[int] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : Optional[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : Tuple = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Optional[int] = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[int] = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : List[Any] = s
snake_case_ : Dict = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return list(lowerCAmelCase__ )
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : Optional[Any] = []
snake_case_ : int = []
snake_case_ : List[str] = list(self.graph )[0]
stack.append(lowerCAmelCase__ )
visited.append(lowerCAmelCase__ )
snake_case_ : Tuple = -2
snake_case_ : int = []
snake_case_ : int = s
snake_case_ : Optional[Any] = False
snake_case_ : List[Any] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
snake_case_ : Union[str, Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
snake_case_ : Optional[Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
snake_case_ : Optional[Any] = True
if len(lowerCAmelCase__ ) != 0:
snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1]
else:
snake_case_ : Optional[int] = False
indirect_parents.append(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = s
snake_case_ : Tuple = ss
# check if se have reached the starting point
if len(lowerCAmelCase__ ) == 0:
return False
def _A ( self :Any ) -> Tuple:
'''simple docstring'''
return list(self.graph )
def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str:
'''simple docstring'''
snake_case_ : List[str] = time()
self.dfs(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : List[Any] = time()
return end - begin
def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int:
'''simple docstring'''
snake_case_ : List[str] = time()
self.bfs(lowerCAmelCase__ )
snake_case_ : Tuple = time()
return end - begin
| 656 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> int:
"""simple docstring"""
if depth < 0:
raise ValueError("Depth cannot be less than 0" )
if len(__magic_name__ ) == 0:
raise ValueError("Scores cannot be empty" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 ,node_index * 2 ,__magic_name__ ,__magic_name__ ,__magic_name__ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,__magic_name__ ,__magic_name__ ,__magic_name__ ) ,)
return min(
minimax(depth + 1 ,node_index * 2 ,__magic_name__ ,__magic_name__ ,__magic_name__ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,__magic_name__ ,__magic_name__ ,__magic_name__ ) ,)
def __UpperCAmelCase ( )-> None:
"""simple docstring"""
snake_case_ : Tuple = [90, 23, 6, 33, 21, 65, 123, 3_4423]
snake_case_ : Optional[int] = math.log(len(__magic_name__ ) ,2 )
print("Optimal value : " ,end="" )
print(minimax(0 ,0 ,__magic_name__ ,__magic_name__ ,__magic_name__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 656 |
'''simple docstring'''
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
__lowerCamelCase : List[str] = re.compile(R'''\s+''')
def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]:
"""simple docstring"""
return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()}
def __UpperCAmelCase ( __magic_name__ )-> str:
"""simple docstring"""
snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()]
return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )}
def __UpperCAmelCase ( __magic_name__ )-> int:
"""simple docstring"""
snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] )
return {"alpha_frac": alpha_frac}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple:
"""simple docstring"""
if example["hash"] in uniques:
uniques.remove(example["hash"] )
return True
else:
return False
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple:
"""simple docstring"""
snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"]
snake_case_ : Optional[Any] = example["content"].splitlines()
for _, line in zip(range(__magic_name__ ) ,__magic_name__ ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]:
"""simple docstring"""
snake_case_ : str = ["unit tests", "test file", "configuration file"]
snake_case_ : int = example["content"].splitlines()
snake_case_ : Optional[Any] = 0
snake_case_ : Any = 0
# first test
for _, line in zip(range(__magic_name__ ) ,__magic_name__ ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
snake_case_ : Tuple = example["content"].count("\n" )
snake_case_ : int = int(coeff * nlines )
for line in lines:
count_config += line.lower().count("config" )
count_test += line.lower().count("test" )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def __UpperCAmelCase ( __magic_name__ )-> str:
"""simple docstring"""
snake_case_ : List[Any] = ["def ", "class ", "for ", "while "]
snake_case_ : Optional[Any] = example["content"].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]:
"""simple docstring"""
snake_case_ : Tuple = example["content"].splitlines()
snake_case_ : Tuple = 0
for line in lines:
counter += line.lower().count("=" )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"]
snake_case_ : int = len(example["content"] ) / len(__magic_name__ )
return {"ratio": ratio}
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Union[str, Any] = {}
results.update(get_hash(__magic_name__ ) )
results.update(line_stats(__magic_name__ ) )
results.update(alpha_stats(__magic_name__ ) )
results.update(char_token_ratio(__magic_name__ ) )
results.update(is_autogenerated(__magic_name__ ) )
results.update(is_config_or_test(__magic_name__ ) )
results.update(has_no_keywords(__magic_name__ ) )
results.update(has_few_assignments(__magic_name__ ) )
return results
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple:
"""simple docstring"""
if not check_uniques(__magic_name__ ,__magic_name__ ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def __UpperCAmelCase ( __magic_name__ )-> Dict:
"""simple docstring"""
with open(__magic_name__ ,"rb" ) as f_in:
with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out:
shutil.copyfileobj(__magic_name__ ,__magic_name__ )
os.unlink(__magic_name__ )
# Settings
__lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments)
__lowerCamelCase : str = parser.parse_args()
if args.num_workers is None:
__lowerCamelCase : List[Any] = multiprocessing.cpu_count()
__lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
__lowerCamelCase : Any = time.time()
__lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''')
print(f'''Time to load dataset: {time.time()-t_start:.2f}''')
# Run preprocessing
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers)
print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''')
# Deduplicate hashes
__lowerCamelCase : Any = set(ds.unique('''hash'''))
__lowerCamelCase : Optional[int] = len(uniques) / len(ds)
print(f'''Fraction of duplicates: {1-frac:.2%}''')
# Deduplicate data and apply heuristics
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args})
print(f'''Time to filter dataset: {time.time()-t_start:.2f}''')
print(f'''Size of filtered dataset: {len(ds_filter)}''')
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
__lowerCamelCase : List[str] = time.time()
__lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''')
print(f'''Size of deduplicate dataset: {len(ds_filter)}''')
# Save data in batches of samples_per_file
__lowerCamelCase : List[Any] = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / '''duplicate_clusters.json''', '''w''') as f:
json.dump(duplicate_clusters, f)
__lowerCamelCase : List[str] = output_dir / '''data'''
data_dir.mkdir(exist_ok=True)
__lowerCamelCase : int = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
__lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''')
__lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
| 656 | 1 |
'''simple docstring'''
__lowerCamelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.609_344,
"knot": 1.852,
}
__lowerCamelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 0.277_777_778,
"mph": 0.621_371_192,
"knot": 0.539_956_803,
}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
snake_case_ : str = (
F'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n'''
F'''Valid values are: {', '.join(__magic_name__ )}'''
)
raise ValueError(__magic_name__ )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] ,3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 656 |
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class A_ (unittest.TestCase ):
"""simple docstring"""
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 )
snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 )
snake_case_ : Tuple = Accelerator()
snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ )
try:
pickle.loads(pickle.dumps(lowerCAmelCase__ ) )
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 656 | 1 |
'''simple docstring'''
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class A_ (a_ ):
"""simple docstring"""
a__ = DistilBertTokenizer
a__ = DistilBertTokenizerFast
a__ = True
@slow
def _A ( self :str ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[str] = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" )
snake_case_ : str = tokenizer.encode("sequence builders" , add_special_tokens=lowerCAmelCase__ )
snake_case_ : int = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCAmelCase__ )
snake_case_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ )
snake_case_ : Any = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 656 |
'''simple docstring'''
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__lowerCamelCase : Any = '''src/transformers'''
# This is to make sure the transformers module imported is the one in the repo.
__lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS)
__lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''')
__lowerCamelCase : Any = {
'''DecisionTransformerConfig''',
'''EncoderDecoderConfig''',
'''MusicgenConfig''',
'''RagConfig''',
'''SpeechEncoderDecoderConfig''',
'''TimmBackboneConfig''',
'''VisionEncoderDecoderConfig''',
'''VisionTextDualEncoderConfig''',
'''LlamaConfig''',
}
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
snake_case_ : Tuple = None
# source code of `config_class`
snake_case_ : List[Any] = inspect.getsource(__magic_name__ )
snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith("/" ):
snake_case_ : Optional[Any] = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
snake_case_ : str = F'''https://huggingface.co/{ckpt_name}'''
if ckpt_link == ckpt_link_from_name:
snake_case_ : Dict = ckpt_name
break
return checkpoint
def __UpperCAmelCase ( )-> Dict:
"""simple docstring"""
snake_case_ : Optional[int] = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ )
snake_case_ : Union[str, Any] = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(__magic_name__ )
if len(__magic_name__ ) > 0:
snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) )
raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 656 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError("both inputs must be positive integers" )
snake_case_ : str = str(bin(__magic_name__ ) )
binary_number += "0" * shift_amount
return binary_number
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError("both inputs must be positive integers" )
snake_case_ : int = str(bin(__magic_name__ ) )[2:]
if shift_amount >= len(__magic_name__ ):
return "0b0"
snake_case_ : Dict = binary_number[: len(__magic_name__ ) - shift_amount]
return "0b" + shifted_binary_number
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str:
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
snake_case_ : Union[str, Any] = "0" + str(bin(__magic_name__ ) ).strip("-" )[2:]
else: # Get binary (2's complement) representation of negative number
snake_case_ : Union[str, Any] = len(bin(__magic_name__ )[3:] ) # Find 2's complement of number
snake_case_ : Any = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:]
snake_case_ : int = (
"1" + "0" * (binary_number_length - len(__magic_name__ )) + binary_number
)
if shift_amount >= len(__magic_name__ ):
return "0b" + binary_number[0] * len(__magic_name__ )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__magic_name__ ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 656 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase : List[str] = logging.get_logger(__name__)
__lowerCamelCase : int = {
'''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class A_ (a_ ):
"""simple docstring"""
a__ = '''cvt'''
def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
snake_case_ : int = num_channels
snake_case_ : int = patch_sizes
snake_case_ : Optional[Any] = patch_stride
snake_case_ : Dict = patch_padding
snake_case_ : Tuple = embed_dim
snake_case_ : Optional[int] = num_heads
snake_case_ : Union[str, Any] = depth
snake_case_ : Optional[int] = mlp_ratio
snake_case_ : Tuple = attention_drop_rate
snake_case_ : str = drop_rate
snake_case_ : Tuple = drop_path_rate
snake_case_ : Any = qkv_bias
snake_case_ : Union[str, Any] = cls_token
snake_case_ : int = qkv_projection_method
snake_case_ : Any = kernel_qkv
snake_case_ : Union[str, Any] = padding_kv
snake_case_ : str = stride_kv
snake_case_ : Dict = padding_q
snake_case_ : Tuple = stride_q
snake_case_ : Any = initializer_range
snake_case_ : Any = layer_norm_eps
| 656 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=a_ )
class A_ (a_ ):
"""simple docstring"""
a__ = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
a__ = Features({'''image''': Image()} )
a__ = Features({'''labels''': ClassLabel} )
a__ = "image"
a__ = "labels"
def _A ( self :Any , lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , lowerCAmelCase__ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
snake_case_ : Dict = copy.deepcopy(self )
snake_case_ : Union[str, Any] = self.label_schema.copy()
snake_case_ : List[str] = features[self.label_column]
snake_case_ : Tuple = label_schema
return task_template
@property
def _A ( self :Tuple ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 656 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
__lowerCamelCase : str = '''\
@inproceedings{snover-etal-2006-study,
title = "A Study of Translation Edit Rate with Targeted Human Annotation",
author = "Snover, Matthew and
Dorr, Bonnie and
Schwartz, Rich and
Micciulla, Linnea and
Makhoul, John",
booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",
month = aug # " 8-12",
year = "2006",
address = "Cambridge, Massachusetts, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2006.amta-papers.25",
pages = "223--231",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__lowerCamelCase : Dict = '''\
TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a
hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu
(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found
here: https://github.com/jhclark/tercom.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.
'''
__lowerCamelCase : int = '''
Produces TER scores alongside the number of edits and reference length.
Args:
predictions (list of str): The system stream (a sequence of segments).
references (list of list of str): A list of one or more reference streams (each a sequence of segments).
normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,
as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.
Only applies if `normalized = True`. Defaults to `False`.
case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.
Returns:
\'score\' (float): TER score (num_edits / sum_ref_lengths * 100)
\'num_edits\' (int): The cumulative number of edits
\'ref_length\' (float): The cumulative average reference length
Examples:
Example 1:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}
Example 2:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}
Example 3:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... normalized=True,
... case_sensitive=True)
>>> print(results)
{\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}
Example 4:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}
Example 5:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
if version.parse(scb.__version__ ) < version.parse("1.4.12" ):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
"You can install it with `pip install \"sacrebleu>=1.4.12\"`." )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[
"https://github.com/jhclark/tercom",
] , )
def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[str] = len(references[0] )
if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )]
snake_case_ : List[str] = TER(
normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , )
snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ )
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 656 | 1 |
'''simple docstring'''
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCamelCase : Optional[Any] = {
'''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''],
'''tokenization_cpmant''': ['''CpmAntTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[str] = [
'''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CpmAntForCausalLM''',
'''CpmAntModel''',
'''CpmAntPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 656 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Any = {
"repo_name": ["test_repo1", "test_repo2", "test_repo3"],
"path": ["test_1.py", "test_2.py", "unit_test.py"],
"content": ["a " * 20, "a " * 30, "b " * 7],
}
snake_case_ : int = Dataset.from_dict(__magic_name__ )
return dataset
class A_ (a_ ):
"""simple docstring"""
def _A ( self :List[str] ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = get_dataset()
snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[int] = get_dataset()
snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 2 )
print(lowerCAmelCase__ )
self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 )
self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
| 656 | 1 |
'''simple docstring'''
__lowerCamelCase : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1000,
"megajoule": 1000000,
"gigajoule": 1000000000,
"wattsecond": 1.0,
"watthour": 3600,
"kilowatthour": 3600000,
"newtonmeter": 1.0,
"calorie_nutr": 4186.8,
"kilocalorie_nutr": 4186800.00,
"electronvolt": 1.6_0217_6634E-19,
"britishthermalunit_it": 1055.05585,
"footpound": 1.355_818,
}
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
snake_case_ : int = (
F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n'''
F'''Valid values are: {', '.join(__magic_name__ )}'''
)
raise ValueError(__magic_name__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 656 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable
__lowerCamelCase : Dict = {
'''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''],
'''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : int = [
'''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTNeoXJapaneseForCausalLM''',
'''GPTNeoXJapaneseLayer''',
'''GPTNeoXJapaneseModel''',
'''GPTNeoXJapanesePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox_japanese import (
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
else:
import sys
__lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 656 | 1 |
'''simple docstring'''
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def __UpperCAmelCase ( __magic_name__ )-> Dict: # picklable for multiprocessing
"""simple docstring"""
return x.sum()
def __UpperCAmelCase ( __magic_name__ )-> List[Any]: # picklable for multiprocessing
"""simple docstring"""
return i + 1
@dataclass
class A_ :
"""simple docstring"""
a__ = 42
a__ = 42
class A_ (a_ ):
"""simple docstring"""
def _A ( self :Dict ) -> Any:
'''simple docstring'''
snake_case_ : List[str] = {}
snake_case_ : Optional[Any] = []
snake_case_ : str = 1
snake_case_ : Optional[int] = [1, 2]
snake_case_ : Optional[int] = {"a": 1, "b": 2}
snake_case_ : List[str] = {"a": [1, 2], "b": [3, 4]}
snake_case_ : Dict = {"a": {"1": 1}, "b": 2}
snake_case_ : Any = {"a": 1, "b": 2, "c": 3, "d": 4}
snake_case_ : Optional[Any] = {}
snake_case_ : Any = []
snake_case_ : List[Any] = 2
snake_case_ : Tuple = [2, 3]
snake_case_ : Any = {"a": 2, "b": 3}
snake_case_ : str = {"a": [2, 3], "b": [4, 5]}
snake_case_ : Optional[int] = {"a": {"1": 2}, "b": 3}
snake_case_ : int = {"a": 2, "b": 3, "c": 4, "d": 5}
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
snake_case_ : Optional[int] = 2
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ )
snake_case_ : List[Any] = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )}
snake_case_ : Union[str, Any] = {"a": 2, "b": 0, "c": 2}
snake_case_ : Dict = {
"a": np.eye(2 ).astype(lowerCAmelCase__ ),
"b": np.zeros(3 ).astype(lowerCAmelCase__ ),
"c": np.ones(2 ).astype(lowerCAmelCase__ ),
}
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , map_numpy=lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(lowerCAmelCase__ , lowerCAmelCase__ , map_numpy=lowerCAmelCase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , map_numpy=lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(lowerCAmelCase__ , lowerCAmelCase__ , map_numpy=lowerCAmelCase__ , num_proc=lowerCAmelCase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(lowerCAmelCase__ ): # can't pickle a local lambda
map_nested(lambda lowerCAmelCase__ : x + 1 , lowerCAmelCase__ , num_proc=lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Union[str, Any] = {"a": 1, "b": 2}
snake_case_ : List[Any] = {"a": 3, "b": 4}
snake_case_ : Optional[int] = {"a": 5, "b": 6}
snake_case_ : Optional[Any] = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) , lowerCAmelCase__ )
def _A ( self :Tuple ) -> str:
'''simple docstring'''
class A_ :
"""simple docstring"""
a__ = '''bar'''
snake_case_ : int = Foo()
self.assertEqual(foo.my_attr , "bar" )
with temporary_assignment(lowerCAmelCase__ , "my_attr" , "BAR" ):
self.assertEqual(foo.my_attr , "BAR" )
self.assertEqual(foo.my_attr , "bar" )
@pytest.mark.parametrize(
"iterable_length, num_proc, expected_num_proc" ,[
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] ,)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int:
"""simple docstring"""
with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch(
"datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool:
snake_case_ : Any = {F'''{i}''': i for i in range(__magic_name__ )}
snake_case_ : Any = map_nested(lambda __magic_name__ : x + 10 ,__magic_name__ ,num_proc=__magic_name__ ,parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class A_ (a_ ):
"""simple docstring"""
@require_tf
def _A ( self :Any ) -> Any:
'''simple docstring'''
import tensorflow as tf
from tensorflow.keras import layers
snake_case_ : List[str] = layers.Dense(2 )
def gen_random_output():
snake_case_ : List[Any] = tf.random.uniform((1, 3) )
return model(lowerCAmelCase__ ).numpy()
with temp_seed(42 , set_tensorflow=lowerCAmelCase__ ):
snake_case_ : Union[str, Any] = gen_random_output()
with temp_seed(42 , set_tensorflow=lowerCAmelCase__ ):
snake_case_ : str = gen_random_output()
snake_case_ : str = gen_random_output()
np.testing.assert_equal(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def _A ( self :Tuple ) -> Any:
'''simple docstring'''
import torch
def gen_random_output():
snake_case_ : Dict = torch.nn.Linear(3 , 2 )
snake_case_ : int = torch.rand(1 , 3 )
return model(lowerCAmelCase__ ).detach().numpy()
with temp_seed(42 , set_pytorch=lowerCAmelCase__ ):
snake_case_ : Any = gen_random_output()
with temp_seed(42 , set_pytorch=lowerCAmelCase__ ):
snake_case_ : Any = gen_random_output()
snake_case_ : Tuple = gen_random_output()
np.testing.assert_equal(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def _A ( self :Any ) -> Tuple:
'''simple docstring'''
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
snake_case_ : List[str] = gen_random_output()
with temp_seed(42 ):
snake_case_ : int = gen_random_output()
snake_case_ : Any = gen_random_output()
np.testing.assert_equal(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize("input_data" ,[{}] )
def __UpperCAmelCase ( __magic_name__ )-> Dict:
"""simple docstring"""
snake_case_ : str = NestedDataStructure(__magic_name__ ).data
assert output_data == input_data
@pytest.mark.parametrize(
"data, expected_output" ,[
({}, []),
([], []),
("foo", ["foo"]),
(["foo", "bar"], ["foo", "bar"]),
([["foo", "bar"]], ["foo", "bar"]),
([[["foo"], ["bar"]]], ["foo", "bar"]),
([[["foo"], "bar"]], ["foo", "bar"]),
({"a": 1, "b": 2}, [1, 2]),
({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]),
({"a": {"1": 1}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": [2]}, [1, 2]),
] ,)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : Any = NestedDataStructure(__magic_name__ ).flatten()
assert output == expected_output
def __UpperCAmelCase ( )-> Union[str, Any]:
"""simple docstring"""
snake_case_ : Tuple = A(x=1 ,y="foobar" )
snake_case_ : Tuple = {"x": 1, "y": "foobar"}
assert asdict(__magic_name__ ) == expected_output
snake_case_ : int = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]}
snake_case_ : str = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]}
assert asdict(__magic_name__ ) == expected_output
with pytest.raises(__magic_name__ ):
asdict([1, A(x=10 ,y="foo" )] )
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
return text.split()
def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]:
"""simple docstring"""
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def __UpperCAmelCase ( )-> Tuple:
"""simple docstring"""
with Pool(2 ) as pool:
snake_case_ : List[Any] = list(iflatmap_unordered(__magic_name__ ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__magic_name__ ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
snake_case_ : List[str] = list(iflatmap_unordered(__magic_name__ ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__magic_name__ ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
snake_case_ : Any = []
for yield_time, content in iflatmap_unordered(
__magic_name__ ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(__magic_name__ )
assert out.count("a" ) == 2
assert out.count("b" ) == 2
assert len(__magic_name__ ) == 4
| 656 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ )-> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ):
raise ValueError("Length must be a positive integer." )
return [n * (2 * n - 1) for n in range(__magic_name__ )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 656 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ = 100_0000 )-> int:
"""simple docstring"""
snake_case_ : Any = set(range(3 ,__magic_name__ ,2 ) )
primes.add(2 )
for p in range(3 ,__magic_name__ ,2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p ,__magic_name__ ,__magic_name__ ) ) )
snake_case_ : Optional[Any] = [float(__magic_name__ ) for n in range(limit + 1 )]
for p in primes:
for n in range(__magic_name__ ,limit + 1 ,__magic_name__ ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 656 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __UpperCAmelCase ( __magic_name__=None )-> List[str]:
"""simple docstring"""
if subparsers is not None:
snake_case_ : List[str] = subparsers.add_parser("test" )
else:
snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" ,default=__magic_name__ ,help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) ,)
if subparsers is not None:
parser.set_defaults(func=__magic_name__ )
return parser
def __UpperCAmelCase ( __magic_name__ )-> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
snake_case_ : str = script_name
else:
snake_case_ : Any = F'''--config_file={args.config_file} {script_name}'''
snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split()
snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Dict = test_command_parser()
snake_case_ : Dict = parser.parse_args()
test_command(__magic_name__ )
if __name__ == "__main__":
main()
| 656 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> bool:
"""simple docstring"""
snake_case_ : List[Any] = len(__magic_name__ )
snake_case_ : List[str] = len(__magic_name__ )
snake_case_ : str = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
snake_case_ : Any = True
for i in range(__magic_name__ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
snake_case_ : str = True
if a[i].islower():
snake_case_ : int = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 656 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCamelCase : str = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
__lowerCamelCase : int = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
__lowerCamelCase : List[str] = R'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ (datasets.Metric ):
"""simple docstring"""
def _A ( self :str ) -> Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , )
def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 656 | 1 |
'''simple docstring'''
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class A_ (a_ , a_ , a_ ):
"""simple docstring"""
a__ = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias''']
@register_to_config
def __init__( self :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :int = 50_257 , lowerCAmelCase__ :int = 1_024 , lowerCAmelCase__ :int = 768 , lowerCAmelCase__ :int = 12 , lowerCAmelCase__ :int = 12 , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :str = "gelu_new" , lowerCAmelCase__ :float = 0.1 , lowerCAmelCase__ :float = 0.1 , lowerCAmelCase__ :float = 0.1 , lowerCAmelCase__ :float = 1E-5 , lowerCAmelCase__ :float = 0.0_2 , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> List[Any]:
'''simple docstring'''
super().__init__()
snake_case_ : str = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'''
F''' `n_embd`: {n_embd} are not equal.''' )
snake_case_ : Any = prefix_inner_dim
snake_case_ : List[Any] = prefix_hidden_dim
snake_case_ : str = (
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
snake_case_ : Optional[int] = (
nn.Linear(self.prefix_hidden_dim , lowerCAmelCase__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
snake_case_ : int = GPTaConfig(
vocab_size=lowerCAmelCase__ , n_positions=lowerCAmelCase__ , n_embd=lowerCAmelCase__ , n_layer=lowerCAmelCase__ , n_head=lowerCAmelCase__ , n_inner=lowerCAmelCase__ , activation_function=lowerCAmelCase__ , resid_pdrop=lowerCAmelCase__ , embd_pdrop=lowerCAmelCase__ , attn_pdrop=lowerCAmelCase__ , layer_norm_epsilon=lowerCAmelCase__ , initializer_range=lowerCAmelCase__ , scale_attn_weights=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , scale_attn_by_inverse_layer_idx=lowerCAmelCase__ , reorder_and_upcast_attn=lowerCAmelCase__ , )
snake_case_ : Dict = GPTaLMHeadModel(lowerCAmelCase__ )
def _A ( self :str , lowerCAmelCase__ :torch.Tensor , lowerCAmelCase__ :torch.Tensor , lowerCAmelCase__ :Optional[torch.Tensor] = None , lowerCAmelCase__ :Optional[torch.Tensor] = None , ) -> int:
'''simple docstring'''
snake_case_ : Dict = self.transformer.transformer.wte(lowerCAmelCase__ )
snake_case_ : List[Any] = self.encode_prefix(lowerCAmelCase__ )
snake_case_ : List[Any] = self.decode_prefix(lowerCAmelCase__ )
snake_case_ : List[str] = torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
snake_case_ : int = self.get_dummy_token(input_ids.shape[0] , input_ids.device )
snake_case_ : Optional[Any] = torch.cat((dummy_token, input_ids) , dim=1 )
snake_case_ : List[str] = self.transformer(inputs_embeds=lowerCAmelCase__ , labels=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def _A ( self :Union[str, Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.device ) -> torch.Tensor:
'''simple docstring'''
return torch.zeros(lowerCAmelCase__ , self.prefix_length , dtype=torch.intaa , device=lowerCAmelCase__ )
def _A ( self :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Dict:
'''simple docstring'''
return self.encode_prefix(lowerCAmelCase__ )
@torch.no_grad()
def _A ( self :Union[str, Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple ) -> str:
'''simple docstring'''
snake_case_ : List[str] = torch.split(lowerCAmelCase__ , 1 , dim=0 )
snake_case_ : Any = []
snake_case_ : int = []
for feature in features:
snake_case_ : Dict = self.decode_prefix(feature.to(lowerCAmelCase__ ) ) # back to the clip feature
# Only support beam search for now
snake_case_, snake_case_ : int = self.generate_beam(
input_embeds=lowerCAmelCase__ , device=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
snake_case_ : List[Any] = torch.stack(lowerCAmelCase__ )
snake_case_ : str = torch.stack(lowerCAmelCase__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :int=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :int = 5 , lowerCAmelCase__ :int = 67 , lowerCAmelCase__ :float = 1.0 , lowerCAmelCase__ :Optional[int] = None , ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = eos_token_id
snake_case_ : str = None
snake_case_ : int = None
snake_case_ : Tuple = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=torch.int )
snake_case_ : Dict = torch.zeros(lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=torch.bool )
if input_embeds is not None:
snake_case_ : List[str] = input_embeds
else:
snake_case_ : List[str] = self.transformer.transformer.wte(lowerCAmelCase__ )
for i in range(lowerCAmelCase__ ):
snake_case_ : Any = self.transformer(inputs_embeds=lowerCAmelCase__ )
snake_case_ : Optional[Any] = outputs.logits
snake_case_ : str = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
snake_case_ : List[str] = logits.softmax(-1 ).log()
if scores is None:
snake_case_, snake_case_ : Optional[Any] = logits.topk(lowerCAmelCase__ , -1 )
snake_case_ : List[str] = generated.expand(lowerCAmelCase__ , *generated.shape[1:] )
snake_case_, snake_case_ : int = next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
snake_case_ : Union[str, Any] = next_tokens
else:
snake_case_ : Optional[Any] = tokens.expand(lowerCAmelCase__ , *tokens.shape[1:] )
snake_case_ : Any = torch.cat((tokens, next_tokens) , dim=1 )
else:
snake_case_ : Tuple = -float(np.inf )
snake_case_ : List[Any] = 0
snake_case_ : Dict = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
snake_case_ : Any = scores_sum / seq_lengths[:, None]
snake_case_, snake_case_ : Dict = scores_sum_average.view(-1 ).topk(lowerCAmelCase__ , -1 )
snake_case_ : Optional[Any] = next_tokens // scores_sum.shape[1]
snake_case_ : Optional[int] = seq_lengths[next_tokens_source]
snake_case_ : Optional[int] = next_tokens % scores_sum.shape[1]
snake_case_ : List[str] = next_tokens.unsqueeze(1 )
snake_case_ : Dict = tokens[next_tokens_source]
snake_case_ : Tuple = torch.cat((tokens, next_tokens) , dim=1 )
snake_case_ : Optional[Any] = generated[next_tokens_source]
snake_case_ : List[str] = scores_sum_average * seq_lengths
snake_case_ : Optional[int] = is_stopped[next_tokens_source]
snake_case_ : List[str] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
snake_case_ : int = torch.cat((generated, next_token_embed) , dim=1 )
snake_case_ : Any = is_stopped + next_tokens.eq(lowerCAmelCase__ ).squeeze()
if is_stopped.all():
break
snake_case_ : List[str] = scores / seq_lengths
snake_case_ : Dict = scores.argsort(descending=lowerCAmelCase__ )
# tokens tensors are already padded to max_seq_length
snake_case_ : int = [tokens[i] for i in order]
snake_case_ : str = torch.stack(lowerCAmelCase__ , dim=0 )
snake_case_ : str = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 656 |
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
__lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
__lowerCamelCase : str = 128022
__lowerCamelCase : List[Any] = 128028
@require_sentencepiece
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = MaMaaaTokenizer
a__ = False
a__ = False
a__ = True
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
super().setUp()
snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
snake_case_ : Optional[int] = Path(self.tmpdirname )
save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] )
snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str:
'''simple docstring'''
return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]:
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def _A ( self :List[str] ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : str = "</s>"
snake_case_ : Union[str, Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.get_tokenizer()
snake_case_ : Any = list(tokenizer.get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "</s>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "<s>" )
self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) )
@unittest.skip("Skip this test while all models are still to be uploaded." )
def _A ( self :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def _A ( self :Optional[int] ) -> int:
'''simple docstring'''
snake_case_ : int = self.get_tokenizer()
snake_case_ : List[str] = tokenizer.tokenize("This is a test" )
self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , )
snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] )
self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , "This is a test" )
@slow
def _A ( self :Any ) -> List[Any]:
'''simple docstring'''
snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , )
@require_torch
@require_sentencepiece
@require_tokenizers
class A_ (unittest.TestCase ):
"""simple docstring"""
a__ = '''facebook/m2m100_418M'''
a__ = [
'''In my opinion, there are two levels of response from the French government.''',
'''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''',
]
a__ = [
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
]
# fmt: off
a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2]
@classmethod
def _A ( cls :str ) -> int:
'''simple docstring'''
snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="en" , tgt_lang="fr" )
snake_case_ : List[str] = 1
return cls
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 )
self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 )
self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 )
self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 )
def _A ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.tokenizer.get_vocab()
self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size )
self.assertEqual(vocab["<unk>"] , 3 )
self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ )
def _A ( self :Any ) -> Dict:
'''simple docstring'''
snake_case_ : List[str] = "en"
snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def _A ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
# fmt: off
snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2]
# fmt: on
snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def _A ( self :Tuple ) -> Tuple:
'''simple docstring'''
snake_case_ : Union[str, Any] = tempfile.mkdtemp()
snake_case_ : int = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(lowerCAmelCase__ )
snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ )
@require_torch
def _A ( self :Optional[Any] ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = "en"
snake_case_ : Tuple = "fr"
snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" )
snake_case_ : Dict = shift_tokens_right(
batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id )
for k in batch:
snake_case_ : str = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def _A ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case_ : List[str] = "mr"
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
snake_case_ : int = "zh"
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
@require_torch
def _A ( self :str ) -> int:
'''simple docstring'''
snake_case_ : Dict = "mr"
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
snake_case_ : Tuple = "zh"
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
@require_torch
def _A ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# en_XX, A, test, EOS
"input_ids": [[128_022, 58, 4_183, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 128_006,
} , )
| 656 | 1 |
'''simple docstring'''
import argparse
import json
import os
import re
import torch
from transformers import BloomConfig, BloomModel
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase : Optional[int] = [
'''word_embeddings_layernorm.weight''',
'''word_embeddings_layernorm.bias''',
'''input_layernorm.weight''',
'''input_layernorm.bias''',
'''post_attention_layernorm.weight''',
'''post_attention_layernorm.bias''',
'''self_attention.dense.bias''',
'''mlp.dense_4h_to_h.bias''',
'''ln_f.weight''',
'''ln_f.bias''',
]
__lowerCamelCase : Dict = [
'''mlp.dense_4h_to_h.weight''',
'''self_attention.dense.weight''',
]
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[int]:
"""simple docstring"""
snake_case_ : Optional[int] = {
"word_embeddings.weight": "word_embeddings.weight",
"word_embeddings.norm.weight": "word_embeddings_layernorm.weight",
"word_embeddings.norm.bias": "word_embeddings_layernorm.bias",
"weight": "ln_f.weight",
"bias": "ln_f.bias",
}
if key in layer_rename_map:
return layer_rename_map[key]
# Handle transformer blocks
snake_case_ : str = int(re.match(r".*layer_(\d*).*" ,__magic_name__ )[1] )
layer_number -= 3
return F'''h.{layer_number}.''' + key
def __UpperCAmelCase ( __magic_name__ )-> Dict:
"""simple docstring"""
if dtype == torch.bool:
return 1 / 8
snake_case_ : str = re.search(r"[^\d](\d+)$" ,str(__magic_name__ ) )
if bit_search is None:
raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' )
snake_case_ : Tuple = int(bit_search.groups()[0] )
return bit_size // 8
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple:
"""simple docstring"""
if bloom_config_file == "":
snake_case_ : str = BloomConfig()
else:
snake_case_ : Tuple = BloomConfig.from_json_file(__magic_name__ )
if shard_model:
snake_case_ : str = os.listdir(__magic_name__ )
snake_case_ : List[str] = sorted(filter(lambda __magic_name__ : s.startswith("layer" ) and "model_00" in s ,__magic_name__ ) )
snake_case_ : List[Any] = {"weight_map": {}, "metadata": {}}
snake_case_ : Union[str, Any] = 0
snake_case_ : Tuple = None
snake_case_ : Optional[Any] = BloomConfig()
for j, file in enumerate(__magic_name__ ):
print("Processing file: {}".format(__magic_name__ ) )
snake_case_ : List[Any] = None
for i in range(__magic_name__ ):
# load all TP files
snake_case_ : List[Any] = file.replace("model_00" ,F'''model_0{i}''' )
snake_case_ : Optional[Any] = torch.load(os.path.join(__magic_name__ ,__magic_name__ ) ,map_location="cpu" )
# Rename keys in the transformers names
snake_case_ : Union[str, Any] = list(temp.keys() )
for key in keys:
snake_case_ : List[str] = temp.pop(__magic_name__ )
if tensors is None:
snake_case_ : Union[str, Any] = temp
else:
for key in tensors.keys():
if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
snake_case_ : Optional[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
snake_case_ : List[Any] = torch.cat([tensors[key], temp[key]] ,dim=__magic_name__ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
snake_case_ : int = tensors[key] / pretraining_tp
torch.save(
__magic_name__ ,os.path.join(
__magic_name__ ,"pytorch_model_{}-of-{}.bin".format(str(j + 1 ).zfill(5 ) ,str(len(__magic_name__ ) ).zfill(5 ) ) ,) ,)
for key in tensors.keys():
snake_case_ : Any = tensors[key]
total_size += value.numel() * get_dtype_size(value.dtype )
if key not in index_dict["weight_map"]:
snake_case_ : int = "pytorch_model_{}-of-{}.bin".format(
str(j + 1 ).zfill(5 ) ,str(len(__magic_name__ ) ).zfill(5 ) )
snake_case_ : int = BloomConfig()
snake_case_ : Dict = pytorch_dump_folder_path + "/" + CONFIG_NAME
snake_case_ : Optional[Any] = total_size
with open(__magic_name__ ,"w" ,encoding="utf-8" ) as f:
f.write(config.to_json_string() )
with open(os.path.join(__magic_name__ ,WEIGHTS_NAME + ".index.json" ) ,"w" ,encoding="utf-8" ) as f:
snake_case_ : Any = json.dumps(__magic_name__ ,indent=2 ,sort_keys=__magic_name__ ) + "\n"
f.write(__magic_name__ )
else:
snake_case_ : Optional[Any] = BloomModel(__magic_name__ )
snake_case_ : str = os.listdir(__magic_name__ )
snake_case_ : Optional[int] = sorted(filter(lambda __magic_name__ : s.startswith("layer" ) and "model_00" in s ,__magic_name__ ) )
snake_case_ : List[Any] = None
for i, file in enumerate(__magic_name__ ):
snake_case_ : Tuple = None
for i in range(__magic_name__ ):
# load all TP files
snake_case_ : Tuple = file.replace("model_00" ,F'''model_0{i}''' )
snake_case_ : Dict = torch.load(os.path.join(__magic_name__ ,__magic_name__ ) ,map_location="cpu" )
# Rename keys in the transformers names
snake_case_ : Tuple = list(temp.keys() )
for key in keys:
snake_case_ : Tuple = temp.pop(__magic_name__ )
if tensors is None:
snake_case_ : str = temp
else:
for key in tensors.keys():
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
snake_case_ : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
snake_case_ : Union[str, Any] = torch.cat([tensors[key], temp[key]] ,dim=__magic_name__ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
snake_case_ : List[str] = tensors[key] / pretraining_tp
snake_case_ : Optional[Any] = model.load_state_dict(__magic_name__ ,strict=__magic_name__ )
assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected'''
if missing_keys is None:
snake_case_ : Dict = set(other_keys.missing_keys )
else:
snake_case_ : Optional[int] = missing_keys.intersection(set(other_keys.missing_keys ) )
assert not missing_keys, F'''The keys {missing_keys} are missing'''
# Save pytorch-model
os.makedirs(__magic_name__ ,exist_ok=__magic_name__ )
snake_case_ : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
snake_case_ : Optional[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' )
if config.torch_dtype is not None:
snake_case_ : int = model.to(config.torch_dtype )
torch.save(model.state_dict() ,__magic_name__ )
print(F'''Save configuration file to {pytorch_config_dump_path}''' )
with open(__magic_name__ ,"w" ,encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--bloom_checkpoint_path''',
default=None,
type=str,
required=True,
help='''Path to the Megatron-LM checkpoint path.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--bloom_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--shard_model''',
action='''store_true''',
help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''',
)
parser.add_argument(
'''--pretraining_tp''',
default=4,
type=int,
help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''',
)
__lowerCamelCase : Union[str, Any] = parser.parse_args()
convert_bloom_checkpoint_to_pytorch(
args.bloom_checkpoint_path,
args.bloom_config_file,
args.pytorch_dump_folder_path,
args.shard_model,
args.pretraining_tp,
)
| 656 |
'''simple docstring'''
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__lowerCamelCase : str = '''.'''
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
__lowerCamelCase : Tuple = [
'''Assert''',
'''AssignVariableOp''',
'''EmptyTensorList''',
'''MergeV2Checkpoints''',
'''ReadVariableOp''',
'''ResourceGather''',
'''RestoreV2''',
'''SaveV2''',
'''ShardedFilename''',
'''StatefulPartitionedCall''',
'''StaticRegexFullMatch''',
'''VarHandleOp''',
]
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]:
"""simple docstring"""
snake_case_ : Tuple = SavedModel()
snake_case_ : Dict = []
with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f:
snake_case_ : Dict = json.load(__magic_name__ )["opsets"]
for i in range(1 ,opset + 1 ):
onnx_ops.extend(onnx_opsets[str(__magic_name__ )] )
with open(__magic_name__ ,"rb" ) as f:
saved_model.ParseFromString(f.read() )
snake_case_ : Tuple = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
snake_case_ : str = sorted(__magic_name__ )
snake_case_ : Optional[int] = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(__magic_name__ )
if strict and len(__magic_name__ ) > 0:
raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops )
elif len(__magic_name__ ) > 0:
print(F'''Found the following incompatible ops for the opset {opset}:''' )
print(*__magic_name__ ,sep="\n" )
else:
print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser()
parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''')
parser.add_argument(
'''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.'''
)
parser.add_argument(
'''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.'''
)
parser.add_argument(
'''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)'''
)
__lowerCamelCase : Dict = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 656 | 1 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def __UpperCAmelCase ( __magic_name__ )-> List[Any]:
"""simple docstring"""
snake_case_ : Union[str, Any] = filter(lambda __magic_name__ : p.requires_grad ,model.parameters() )
snake_case_ : List[str] = sum([np.prod(p.size() ) for p in model_parameters] )
return params
__lowerCamelCase : Optional[Any] = logging.getLogger(__name__)
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Union[str, Any]:
"""simple docstring"""
if metric == "rouge2":
snake_case_ : List[str] = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
snake_case_ : str = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
snake_case_ : str = "{val_avg_em:.4f}-{step_count}"
elif metric == "loss":
snake_case_ : Any = "{val_avg_loss:.4f}-{step_count}"
else:
raise NotImplementedError(
F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
" function." )
snake_case_ : Optional[Any] = ModelCheckpoint(
dirpath=__magic_name__ ,filename=__magic_name__ ,monitor=F'''val_{metric}''' ,mode="max" ,save_top_k=1 ,every_n_epochs=1 ,)
return checkpoint_callback
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[int]:
"""simple docstring"""
return EarlyStopping(
monitor=F'''val_{metric}''' ,mode="min" if "loss" in metric else "max" ,patience=__magic_name__ ,verbose=__magic_name__ ,)
class A_ (pl.Callback ):
"""simple docstring"""
def _A ( self :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :Any ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Optional[int] = {F'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(lowerCAmelCase__ )
@rank_zero_only
def _A ( self :int , lowerCAmelCase__ :pl.Trainer , lowerCAmelCase__ :pl.LightningModule , lowerCAmelCase__ :str , lowerCAmelCase__ :Dict=True ) -> None:
'''simple docstring'''
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
snake_case_ : List[Any] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
snake_case_ : Tuple = Path(pl_module.hparams.output_dir )
if type_path == "test":
snake_case_ : str = od / "test_results.txt"
snake_case_ : List[str] = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
snake_case_ : Dict = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
snake_case_ : Optional[int] = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=lowerCAmelCase__ )
generations_file.parent.mkdir(exist_ok=lowerCAmelCase__ )
with open(lowerCAmelCase__ , "a+" ) as writer:
for key in sorted(lowerCAmelCase__ ):
if key in ["log", "progress_bar", "preds"]:
continue
snake_case_ : Dict = metrics[key]
if isinstance(lowerCAmelCase__ , torch.Tensor ):
snake_case_ : str = val.item()
snake_case_ : Optional[int] = F'''{key}: {val:.6f}\n'''
writer.write(lowerCAmelCase__ )
if not save_generations:
return
if "preds" in metrics:
snake_case_ : str = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(lowerCAmelCase__ )
@rank_zero_only
def _A ( self :Optional[int] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] ) -> Tuple:
'''simple docstring'''
try:
snake_case_ : Dict = pl_module.model.model.num_parameters()
except AttributeError:
snake_case_ : Dict = pl_module.model.num_parameters()
snake_case_ : Optional[Any] = count_trainable_parameters(lowerCAmelCase__ )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} )
@rank_zero_only
def _A ( self :Any , lowerCAmelCase__ :pl.Trainer , lowerCAmelCase__ :pl.LightningModule ) -> int:
'''simple docstring'''
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(lowerCAmelCase__ , lowerCAmelCase__ , "test" )
@rank_zero_only
def _A ( self :Dict , lowerCAmelCase__ :pl.Trainer , lowerCAmelCase__ :Any ) -> Tuple:
'''simple docstring'''
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 656 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
__lowerCamelCase : List[str] = ['''names''', '''prefix''']
__lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols''']
__lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines''']
__lowerCamelCase : Optional[Any] = ['''date_format''']
@dataclass
class A_ (datasets.BuilderConfig ):
"""simple docstring"""
a__ = ","
a__ = None
a__ = "infer"
a__ = None
a__ = None
a__ = None
a__ = None
a__ = None
a__ = True
a__ = None
a__ = None
a__ = None
a__ = None
a__ = False
a__ = None
a__ = None
a__ = None
a__ = True
a__ = True
a__ = False
a__ = True
a__ = None
a__ = "."
a__ = None
a__ = '"'
a__ = 0
a__ = None
a__ = None
a__ = None
a__ = None
a__ = True
a__ = True
a__ = 0
a__ = True
a__ = False
a__ = None
a__ = 10000
a__ = None
a__ = "strict"
a__ = "error"
a__ = None
def _A ( self :List[str] ) -> Any:
'''simple docstring'''
if self.delimiter is not None:
snake_case_ : Tuple = self.delimiter
if self.column_names is not None:
snake_case_ : List[Any] = self.column_names
@property
def _A ( self :Optional[Any] ) -> int:
'''simple docstring'''
snake_case_ : Optional[int] = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A_ (datasets.ArrowBasedBuilder ):
"""simple docstring"""
a__ = CsvConfig
def _A ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
snake_case_ : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : List[str] = [files]
snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
snake_case_ : str = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
snake_case_ : str = [files]
snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table:
'''simple docstring'''
if self.config.features is not None:
snake_case_ : int = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
snake_case_ : str = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' )
raise
| 656 | 1 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class A_ (a_ ):
"""simple docstring"""
a__ = '''MCTCTFeatureExtractor'''
a__ = '''AutoTokenizer'''
def __init__( self :int , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] ) -> Tuple:
'''simple docstring'''
super().__init__(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : str = self.feature_extractor
snake_case_ : Tuple = False
def __call__( self :List[str] , *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :Tuple ) -> List[Any]:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*lowerCAmelCase__ , **lowerCAmelCase__ )
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." )
snake_case_ : str = kwargs.pop("raw_speech" )
else:
snake_case_ : Any = kwargs.pop("audio" , lowerCAmelCase__ )
snake_case_ : Any = kwargs.pop("sampling_rate" , lowerCAmelCase__ )
snake_case_ : List[Any] = kwargs.pop("text" , lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0:
snake_case_ : List[str] = args[0]
snake_case_ : Dict = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process." )
if audio is not None:
snake_case_ : Optional[Any] = self.feature_extractor(lowerCAmelCase__ , *lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , **lowerCAmelCase__ )
if text is not None:
snake_case_ : int = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
snake_case_ : Any = encodings["input_ids"]
return inputs
def _A ( self :Union[str, Any] , *lowerCAmelCase__ :int , **lowerCAmelCase__ :Optional[int] ) -> Tuple:
'''simple docstring'''
return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _A ( self :Any , *lowerCAmelCase__ :Tuple , **lowerCAmelCase__ :Dict ) -> List[str]:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor.pad(*lowerCAmelCase__ , **lowerCAmelCase__ )
snake_case_ : Tuple = kwargs.pop("input_features" , lowerCAmelCase__ )
snake_case_ : List[str] = kwargs.pop("labels" , lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0:
snake_case_ : Union[str, Any] = args[0]
snake_case_ : List[Any] = args[1:]
if input_features is not None:
snake_case_ : Optional[int] = self.feature_extractor.pad(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ )
if labels is not None:
snake_case_ : Tuple = self.tokenizer.pad(lowerCAmelCase__ , **lowerCAmelCase__ )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
snake_case_ : List[str] = labels["input_ids"]
return input_features
def _A ( self :Tuple , *lowerCAmelCase__ :List[Any] , **lowerCAmelCase__ :Any ) -> Any:
'''simple docstring'''
return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
@contextmanager
def _A ( self :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call." )
snake_case_ : Any = True
snake_case_ : str = self.tokenizer
yield
snake_case_ : List[Any] = self.feature_extractor
snake_case_ : Union[str, Any] = False
| 656 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = MgpstrTokenizer
a__ = False
a__ = {}
a__ = False
def _A ( self :List[str] ) -> List[str]:
'''simple docstring'''
super().setUp()
# fmt: off
snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str:
'''simple docstring'''
snake_case_ : Dict = "tester"
snake_case_ : Tuple = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def _A ( self :Dict ) -> str:
'''simple docstring'''
pass
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_ : Tuple = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def _A ( self :int ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ )
snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def _A ( self :Union[str, Any] ) -> Any:
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def _A ( self :int ) -> Dict:
'''simple docstring'''
pass
| 656 | 1 |
'''simple docstring'''
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
__lowerCamelCase : Any = '''2.13.1'''
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse('''3.7'''):
raise ImportWarning(
'''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.'''
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
'''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n'''
'''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.'''
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
__lowerCamelCase : Tuple = concatenate_datasets
__lowerCamelCase : Optional[Any] = DownloadConfig
__lowerCamelCase : str = DownloadManager
__lowerCamelCase : Optional[Any] = DownloadMode
__lowerCamelCase : Dict = DownloadConfig
__lowerCamelCase : Tuple = DownloadMode
__lowerCamelCase : int = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 656 |
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]:
"""simple docstring"""
if dataset.ndim != value_array.ndim:
snake_case_ : int = (
"Wrong input data's dimensions... "
F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}'''
)
raise ValueError(__magic_name__ )
try:
if dataset.shape[1] != value_array.shape[1]:
snake_case_ : Dict = (
"Wrong input data's shape... "
F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}'''
)
raise ValueError(__magic_name__ )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("Wrong shape" )
if dataset.dtype != value_array.dtype:
snake_case_ : Dict = (
"Input data have different datatype... "
F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}'''
)
raise TypeError(__magic_name__ )
snake_case_ : Optional[int] = []
for value in value_array:
snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] )
snake_case_ : int = dataset[0].tolist()
for dataset_value in dataset[1:]:
snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ )
if dist > temp_dist:
snake_case_ : Tuple = temp_dist
snake_case_ : Optional[int] = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float:
"""simple docstring"""
return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 656 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class A_ (unittest.TestCase ):
"""simple docstring"""
@slow
def _A ( self :str ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = XLMRobertaModel.from_pretrained("xlm-roberta-base" )
snake_case_ : Dict = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] )
# The dog is cute and lives in the garden house
snake_case_ : List[str] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim
snake_case_ : Union[str, Any] = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
snake_case_ : Optional[int] = model(lowerCAmelCase__ )["last_hidden_state"].detach()
self.assertEqual(output.shape , lowerCAmelCase__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase__ , atol=1E-3 ) )
@slow
def _A ( self :Optional[int] ) -> int:
'''simple docstring'''
snake_case_ : List[Any] = XLMRobertaModel.from_pretrained("xlm-roberta-large" )
snake_case_ : Union[str, Any] = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] )
# The dog is cute and lives in the garden house
snake_case_ : str = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim
snake_case_ : Optional[Any] = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
snake_case_ : List[Any] = model(lowerCAmelCase__ )["last_hidden_state"].detach()
self.assertEqual(output.shape , lowerCAmelCase__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase__ , atol=1E-3 ) )
| 656 |
'''simple docstring'''
import fire
from utils import calculate_rouge, save_json
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]:
"""simple docstring"""
snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()]
snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )]
snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ )
if save_path is not None:
save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 656 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.