code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from functools import reduce __lowerCamelCase : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( __magic_name__ = N )-> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda __magic_name__ ,__magic_name__ : str(int(__magic_name__ ) * int(__magic_name__ ) ) ,n[i : i + 13] ) ) for i in range(len(__magic_name__ ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
656
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ ) snake_case_ : Any = val def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) snake_case_ : int = value else: snake_case_ : int = value return new_state_dict def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]: """simple docstring""" snake_case_ : str = "" if is_panoptic: snake_case_ : Dict = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Tuple = in_proj_weight[:256, :] snake_case_ : List[Any] = in_proj_bias[:256] snake_case_ : Optional[Any] = in_proj_weight[256:512, :] snake_case_ : Optional[int] = in_proj_bias[256:512] snake_case_ : Optional[int] = in_proj_weight[-256:, :] snake_case_ : str = in_proj_bias[-256:] def __UpperCAmelCase ( )-> Optional[Any]: """simple docstring""" snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case_ : Optional[Any] = "resnet101" if "dc5" in model_name: snake_case_ : List[str] = True snake_case_ : Tuple = "panoptic" in model_name if is_panoptic: snake_case_ : List[Any] = 250 else: snake_case_ : Optional[Any] = 91 snake_case_ : Optional[int] = "huggingface/label-files" snake_case_ : Dict = "coco-detection-id2label.json" snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : Dict = {v: k for k, v in idalabel.items()} # load image processor snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection" snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image snake_case_ : str = prepare_img() snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" ) snake_case_ : Union[str, Any] = encoding["pixel_values"] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval() snake_case_ : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case_ : Any = "conditional_detr." + src rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Tuple = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : int = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case_ : Tuple = state_dict.pop(__magic_name__ ) snake_case_ : Any = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val # finally, create HuggingFace model and load state dict snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" ) # verify our conversion snake_case_ : Dict = conditional_detr(__magic_name__ ) snake_case_ : Union[str, Any] = model(__magic_name__ ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowerCamelCase : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
656
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ ) snake_case_ : Any = val def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) snake_case_ : int = value else: snake_case_ : int = value return new_state_dict def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]: """simple docstring""" snake_case_ : str = "" if is_panoptic: snake_case_ : Dict = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Tuple = in_proj_weight[:256, :] snake_case_ : List[Any] = in_proj_bias[:256] snake_case_ : Optional[Any] = in_proj_weight[256:512, :] snake_case_ : Optional[int] = in_proj_bias[256:512] snake_case_ : Optional[int] = in_proj_weight[-256:, :] snake_case_ : str = in_proj_bias[-256:] def __UpperCAmelCase ( )-> Optional[Any]: """simple docstring""" snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case_ : Optional[Any] = "resnet101" if "dc5" in model_name: snake_case_ : List[str] = True snake_case_ : Tuple = "panoptic" in model_name if is_panoptic: snake_case_ : List[Any] = 250 else: snake_case_ : Optional[Any] = 91 snake_case_ : Optional[int] = "huggingface/label-files" snake_case_ : Dict = "coco-detection-id2label.json" snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : Dict = {v: k for k, v in idalabel.items()} # load image processor snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection" snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image snake_case_ : str = prepare_img() snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" ) snake_case_ : Union[str, Any] = encoding["pixel_values"] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval() snake_case_ : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case_ : Any = "conditional_detr." + src rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Tuple = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : int = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case_ : Tuple = state_dict.pop(__magic_name__ ) snake_case_ : Any = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val # finally, create HuggingFace model and load state dict snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" ) # verify our conversion snake_case_ : Dict = conditional_detr(__magic_name__ ) snake_case_ : Union[str, Any] = model(__magic_name__ ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowerCamelCase : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
656
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Any = 1 snake_case_ : Dict = 3 snake_case_ : Union[str, Any] = (32, 32) snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _A ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _A ( self :Dict ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def _A ( self :Any ) -> str: '''simple docstring''' def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ): class A_ : """simple docstring""" def __init__( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.ones([0] ) def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ : str = self.dummy_cond_unet snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : Dict = self.dummy_vae snake_case_ : Dict = self.dummy_text_encoder snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : str = 77 snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ ) snake_case_ : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Dict = "A painting of a squirrel eating a burger" snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ) snake_case_ : Any = output.images snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Optional[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.dummy_cond_unet snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : int = self.dummy_vae snake_case_ : List[Any] = self.dummy_text_encoder snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : int = 77 snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 snake_case_ : Optional[Any] = unet.half() snake_case_ : Tuple = vae.half() snake_case_ : List[str] = bert.half() # make sure here that pndm scheduler skips prk snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[Any] = "A painting of a squirrel eating a burger" snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Any = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ : str = init_image.resize((760, 504) ) snake_case_ : Optional[Any] = "BAAI/AltDiffusion" snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : str = output.images[0] snake_case_ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : List[Any] = init_image.resize((768, 512) ) snake_case_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) snake_case_ : Any = "BAAI/AltDiffusion" snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
656
1
'''simple docstring''' __lowerCamelCase : Union[str, Any] = 256 # Modulus to hash a string __lowerCamelCase : Optional[int] = 1000003 def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> bool: """simple docstring""" snake_case_ : Optional[int] = len(__magic_name__ ) snake_case_ : Optional[Any] = len(__magic_name__ ) if p_len > t_len: return False snake_case_ : int = 0 snake_case_ : List[Any] = 0 snake_case_ : Optional[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(__magic_name__ ): snake_case_ : Any = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ : List[str] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ : List[str] = (modulus_power * alphabet_size) % modulus for i in range(0 ,t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ : Any = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __UpperCAmelCase ( )-> None: """simple docstring""" snake_case_ : str = "abc1abc12" snake_case_ : Any = "alskfjaldsabc1abc1abc12k23adsfabcabc" snake_case_ : str = "alskfjaldsk23adsfabcabc" assert rabin_karp(__magic_name__ ,__magic_name__ ) and not rabin_karp(__magic_name__ ,__magic_name__ ) # Test 2) snake_case_ : Tuple = "ABABX" snake_case_ : str = "ABABZABABYABABX" assert rabin_karp(__magic_name__ ,__magic_name__ ) # Test 3) snake_case_ : List[str] = "AAAB" snake_case_ : List[str] = "ABAAAAAB" assert rabin_karp(__magic_name__ ,__magic_name__ ) # Test 4) snake_case_ : List[str] = "abcdabcy" snake_case_ : Dict = "abcxabcdabxabcdabcdabcy" assert rabin_karp(__magic_name__ ,__magic_name__ ) # Test 5) snake_case_ : Optional[int] = "Lü" snake_case_ : Tuple = "Lüsai" assert rabin_karp(__magic_name__ ,__magic_name__ ) snake_case_ : Tuple = "Lue" assert not rabin_karp(__magic_name__ ,__magic_name__ ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
656
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A_ (unittest.TestCase ): """simple docstring""" a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = ZeroShotClassificationPipeline( model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # No kwarg snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : str = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(1 ) ] , ) snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase__ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier(lowerCAmelCase__ , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , ) self.run_entailment_id(lowerCAmelCase__ ) def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = zero_shot_classifier.model.config snake_case_ : Optional[int] = config.labelaid snake_case_ : Tuple = zero_shot_classifier.entailment_id snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case_ : List[str] = original_labelaid self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id ) @require_torch def _A ( self :Tuple ) -> Any: '''simple docstring''' snake_case_ : List[Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) snake_case_ : int = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : List[str] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) snake_case_ : Optional[int] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _A ( self :Union[str, Any] ) -> int: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) snake_case_ : str = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Optional[int] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) snake_case_ : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Tuple = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
656
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A_ (unittest.TestCase ): """simple docstring""" a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = ZeroShotClassificationPipeline( model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # No kwarg snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : str = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(1 ) ] , ) snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase__ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier(lowerCAmelCase__ , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , ) self.run_entailment_id(lowerCAmelCase__ ) def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = zero_shot_classifier.model.config snake_case_ : Optional[int] = config.labelaid snake_case_ : Tuple = zero_shot_classifier.entailment_id snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case_ : List[str] = original_labelaid self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id ) @require_torch def _A ( self :Tuple ) -> Any: '''simple docstring''' snake_case_ : List[Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) snake_case_ : int = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : List[str] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) snake_case_ : Optional[int] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _A ( self :Union[str, Any] ) -> int: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) snake_case_ : str = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Optional[int] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) snake_case_ : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Tuple = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
656
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ ) roberta.eval() # disable dropout snake_case_ : Dict = roberta.model.encoder.sentence_encoder snake_case_ : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__magic_name__ ) snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight snake_case_ : int = roberta_sent_encoder.embed_positions.weight snake_case_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case_ : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ : BertLayer = model.roberta.encoder.layer[i] snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] snake_case_ : RobertaAttention = layer.attention snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias # self attention snake_case_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight snake_case_ : Any = roberta_layer.self_attn.q_proj.bias snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight snake_case_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case_ : int = roberta_layer.final_layer_norm.weight snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate snake_case_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : List[str] = roberta_layer.fca.weight snake_case_ : List[Any] = roberta_layer.fca.bias # output snake_case_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : Any = roberta_layer.fca.weight snake_case_ : Any = roberta_layer.fca.bias # end of layer if classification_head: snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight snake_case_ : int = roberta.model.encoder.lm_head.dense.bias snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias snake_case_ : int = roberta.model.encoder.lm_head.weight snake_case_ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1 snake_case_ : Union[str, Any] = model(__magic_name__ )[0] if classification_head: snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) ) else: snake_case_ : List[str] = roberta.model(__magic_name__ )[0] print(our_output.shape ,their_output.shape ) snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : Tuple = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
656
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A_ (nn.Module ): """simple docstring""" a__ = 42 a__ = 42 a__ = 0.0 a__ = 1 a__ = 1 a__ = True a__ = False a__ = False a__ = False a__ = jnp.floataa def _A ( self :Any ) -> int: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] for i in range(self.num_layers ): snake_case_ : Tuple = self.in_channels if i == 0 else self.out_channels snake_case_ : Any = FlaxResnetBlockaD( in_channels=lowerCAmelCase__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase__ ) snake_case_ : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase__ ) snake_case_ : Dict = resnets snake_case_ : Union[str, Any] = attentions if self.add_downsample: snake_case_ : Optional[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any]=True ) -> List[Any]: '''simple docstring''' snake_case_ : int = () for resnet, attn in zip(self.resnets , self.attentions ): snake_case_ : List[Any] = resnet(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__ ) snake_case_ : Dict = attn(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__ ) output_states += (hidden_states,) if self.add_downsample: snake_case_ : Optional[Any] = self.downsamplers_a(lowerCAmelCase__ ) output_states += (hidden_states,) return hidden_states, output_states class A_ (nn.Module ): """simple docstring""" a__ = 42 a__ = 42 a__ = 0.0 a__ = 1 a__ = True a__ = jnp.floataa def _A ( self :List[str] ) -> List[Any]: '''simple docstring''' snake_case_ : int = [] for i in range(self.num_layers ): snake_case_ : Any = self.in_channels if i == 0 else self.out_channels snake_case_ : int = FlaxResnetBlockaD( in_channels=lowerCAmelCase__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = resnets if self.add_downsample: snake_case_ : Tuple = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any]=True ) -> List[Any]: '''simple docstring''' snake_case_ : Dict = () for resnet in self.resnets: snake_case_ : Any = resnet(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__ ) output_states += (hidden_states,) if self.add_downsample: snake_case_ : Union[str, Any] = self.downsamplers_a(lowerCAmelCase__ ) output_states += (hidden_states,) return hidden_states, output_states class A_ (nn.Module ): """simple docstring""" a__ = 42 a__ = 42 a__ = 42 a__ = 0.0 a__ = 1 a__ = 1 a__ = True a__ = False a__ = False a__ = False a__ = jnp.floataa def _A ( self :Tuple ) -> str: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : List[Any] = [] for i in range(self.num_layers ): snake_case_ : List[str] = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels snake_case_ : int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase__ ) snake_case_ : Optional[int] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase__ ) snake_case_ : Optional[Any] = resnets snake_case_ : List[str] = attentions if self.add_upsample: snake_case_ : Optional[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self :List[str] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple=True ) -> int: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states snake_case_ : Any = res_hidden_states_tuple[-1] snake_case_ : str = res_hidden_states_tuple[:-1] snake_case_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case_ : Union[str, Any] = resnet(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__ ) snake_case_ : Optional[int] = attn(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__ ) if self.add_upsample: snake_case_ : List[Any] = self.upsamplers_a(lowerCAmelCase__ ) return hidden_states class A_ (nn.Module ): """simple docstring""" a__ = 42 a__ = 42 a__ = 42 a__ = 0.0 a__ = 1 a__ = True a__ = jnp.floataa def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : int = [] for i in range(self.num_layers ): snake_case_ : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ : List[str] = self.prev_output_channel if i == 0 else self.out_channels snake_case_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase__ ) snake_case_ : List[str] = resnets if self.add_upsample: snake_case_ : Optional[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int=True ) -> Tuple: '''simple docstring''' for resnet in self.resnets: # pop res hidden states snake_case_ : Optional[Any] = res_hidden_states_tuple[-1] snake_case_ : int = res_hidden_states_tuple[:-1] snake_case_ : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case_ : int = resnet(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__ ) if self.add_upsample: snake_case_ : List[Any] = self.upsamplers_a(lowerCAmelCase__ ) return hidden_states class A_ (nn.Module ): """simple docstring""" a__ = 42 a__ = 0.0 a__ = 1 a__ = 1 a__ = False a__ = False a__ = jnp.floataa def _A ( self :List[Any] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] snake_case_ : str = [] for _ in range(self.num_layers ): snake_case_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase__ ) snake_case_ : Tuple = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = resnets snake_case_ : List[str] = attentions def __call__( self :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :int=True ) -> int: '''simple docstring''' snake_case_ : List[str] = self.resnets[0](lowerCAmelCase__ , lowerCAmelCase__ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): snake_case_ : Optional[Any] = attn(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__ ) snake_case_ : Optional[Any] = resnet(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__ ) return hidden_states
656
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]: """simple docstring""" snake_case_ : str = False snake_case_ : int = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): snake_case_ : Any = True elif "IPython" in sys.modules: snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: snake_case_ : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: snake_case_ : Tuple = 8 snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__magic_name__ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ): snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case_ : Any = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,): snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ ) start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
656
1
'''simple docstring''' __lowerCamelCase : Any = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __lowerCamelCase : str = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __lowerCamelCase : List[str] = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __lowerCamelCase : Union[str, Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __lowerCamelCase : str = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __lowerCamelCase : Optional[int] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __lowerCamelCase : Optional[Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __lowerCamelCase : Union[str, Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
656
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Dict ) -> List[str]: '''simple docstring''' snake_case_ : int = {} def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case_ : Optional[int] = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): snake_case_ : Dict = [] def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str: '''simple docstring''' if s == d: return [] snake_case_ : str = [] snake_case_ : Optional[int] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int: '''simple docstring''' if c == -1: snake_case_ : Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : Tuple = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = [] snake_case_ : str = [] if s == -2: snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Any = [] snake_case_ : str = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Optional[int] = -2 snake_case_ : Any = [] snake_case_ : List[Any] = s snake_case_ : int = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[str] = s snake_case_ : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : str = -2 snake_case_ : List[str] = [] snake_case_ : List[Any] = s snake_case_ : List[str] = False snake_case_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Tuple = True if len(lowerCAmelCase__ ) != 0: snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str: '''simple docstring''' snake_case_ : Optional[int] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Optional[Any] = time() return end - begin def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Any = time() return end - begin class A_ : """simple docstring""" def __init__( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = {} def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case_ : str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case_ : List[str] = [[w, u]] def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int: '''simple docstring''' if s == d: return [] snake_case_ : Any = [] snake_case_ : Dict = [] if s == -2: snake_case_ : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]: '''simple docstring''' if c == -1: snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = [] snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : Optional[int] = [] snake_case_ : Tuple = s snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[int] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[Any] = s snake_case_ : Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : int = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : int = [] snake_case_ : int = s snake_case_ : Optional[Any] = False snake_case_ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = s snake_case_ : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Any ) -> Tuple: '''simple docstring''' return list(self.graph ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str: '''simple docstring''' snake_case_ : List[str] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = time() return end - begin def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int: '''simple docstring''' snake_case_ : List[str] = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Tuple = time() return end - begin
656
1
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( __magic_name__ )-> bool: """simple docstring""" if len(__magic_name__ ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) snake_case_ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
656
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCamelCase : List[str] = re.compile(R'''\s+''') def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )} def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple: """simple docstring""" snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"] snake_case_ : Optional[Any] = example["content"].splitlines() for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]: """simple docstring""" snake_case_ : str = ["unit tests", "test file", "configuration file"] snake_case_ : int = example["content"].splitlines() snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 # first test for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ : Tuple = example["content"].count("\n" ) snake_case_ : int = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : List[Any] = ["def ", "class ", "for ", "while "] snake_case_ : Optional[Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]: """simple docstring""" snake_case_ : Tuple = example["content"].splitlines() snake_case_ : Tuple = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"] snake_case_ : int = len(example["content"] ) / len(__magic_name__ ) return {"ratio": ratio} def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = {} results.update(get_hash(__magic_name__ ) ) results.update(line_stats(__magic_name__ ) ) results.update(alpha_stats(__magic_name__ ) ) results.update(char_token_ratio(__magic_name__ ) ) results.update(is_autogenerated(__magic_name__ ) ) results.update(is_config_or_test(__magic_name__ ) ) results.update(has_no_keywords(__magic_name__ ) ) results.update(has_few_assignments(__magic_name__ ) ) return results def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if not check_uniques(__magic_name__ ,__magic_name__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( __magic_name__ )-> Dict: """simple docstring""" with open(__magic_name__ ,"rb" ) as f_in: with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__magic_name__ ,__magic_name__ ) os.unlink(__magic_name__ ) # Settings __lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments) __lowerCamelCase : str = parser.parse_args() if args.num_workers is None: __lowerCamelCase : List[Any] = multiprocessing.cpu_count() __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCamelCase : Any = time.time() __lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __lowerCamelCase : Any = set(ds.unique('''hash''')) __lowerCamelCase : Optional[int] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCamelCase : List[str] = time.time() __lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __lowerCamelCase : List[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) __lowerCamelCase : List[str] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) __lowerCamelCase : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''') __lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
656
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : str = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A_ (a_ ): """simple docstring""" a__ = '''gpt_neo''' a__ = ['''past_key_values'''] a__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self :List[str] , lowerCAmelCase__ :Tuple=50_257 , lowerCAmelCase__ :Optional[Any]=2_048 , lowerCAmelCase__ :Tuple=2_048 , lowerCAmelCase__ :Optional[int]=24 , lowerCAmelCase__ :List[str]=[[["global", "local"], 12]] , lowerCAmelCase__ :Optional[int]=16 , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :Dict=256 , lowerCAmelCase__ :Union[str, Any]="gelu_new" , lowerCAmelCase__ :Dict=0.0 , lowerCAmelCase__ :Optional[Any]=0.0 , lowerCAmelCase__ :Union[str, Any]=0.0 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Any=1E-5 , lowerCAmelCase__ :Optional[Any]=0.0_2 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :int=50_256 , lowerCAmelCase__ :Tuple=50_256 , **lowerCAmelCase__ :Any , ) -> Tuple: '''simple docstring''' snake_case_ : Dict = vocab_size snake_case_ : Tuple = max_position_embeddings snake_case_ : Tuple = hidden_size snake_case_ : int = num_layers snake_case_ : List[str] = num_heads snake_case_ : List[Any] = intermediate_size snake_case_ : str = window_size snake_case_ : List[Any] = activation_function snake_case_ : List[Any] = resid_dropout snake_case_ : Union[str, Any] = embed_dropout snake_case_ : List[str] = attention_dropout snake_case_ : List[Any] = classifier_dropout snake_case_ : List[Any] = layer_norm_epsilon snake_case_ : Union[str, Any] = initializer_range snake_case_ : Optional[int] = use_cache snake_case_ : int = bos_token_id snake_case_ : Dict = eos_token_id snake_case_ : Any = attention_types snake_case_ : Union[str, Any] = self.expand_attention_types_params(lowerCAmelCase__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @staticmethod def _A ( lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' snake_case_ : int = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> Union[str, Any]: """simple docstring""" import torch snake_case_ : Optional[Any] = input.size() snake_case_ : Optional[int] = len(__magic_name__ ) snake_case_ : List[Any] = shape[dimension] snake_case_ : List[Any] = torch.arange(0 ,__magic_name__ ,__magic_name__ ) snake_case_ : str = torch.div(sizedim - size ,__magic_name__ ,rounding_mode="floor" ) + 1 snake_case_ : Dict = torch.arange(__magic_name__ ) + low_indices[:min_length][:, None] snake_case_ : List[str] = [slice(__magic_name__ )] * rank snake_case_ : List[str] = indices snake_case_ : Optional[Any] = input[s] snake_case_ : List[str] = list(range(0 ,rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> int: """simple docstring""" import torch snake_case_ : List[Any] = torch.arange(1 ,__magic_name__ ) snake_case_ : List[str] = torch.remainder(__magic_name__ ,__magic_name__ ) snake_case_ : Optional[int] = remainders == 0 snake_case_ : Union[str, Any] = candidates[divisor_indices] snake_case_ : Any = torch.max(__magic_name__ ) return largest_divisor, torch.div(__magic_name__ ,__magic_name__ ,rounding_mode="floor" ) class A_ (a_ ): """simple docstring""" @property def _A ( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' snake_case_ : str = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs" ) snake_case_ : str = {0: "batch", 1: "past_sequence + sequence"} else: snake_case_ : Optional[Any] = {0: "batch", 1: "sequence"} return common_inputs @property def _A ( self :Optional[Any] ) -> int: '''simple docstring''' return self._config.num_heads def _A ( self :Optional[int] , lowerCAmelCase__ :PreTrainedTokenizer , lowerCAmelCase__ :int = -1 , lowerCAmelCase__ :int = -1 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ : Optional[Any] = super(lowerCAmelCase__ , self ).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) # We need to order the input in the way they appears in the forward() snake_case_ : Union[str, Any] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case_, snake_case_ : int = common_inputs["input_ids"].shape # Not using the same length for past_key_values snake_case_ : List[str] = seqlen + 2 snake_case_ : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case_ : Union[str, Any] = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers ) ] snake_case_ : List[str] = common_inputs["attention_mask"] if self.use_past: snake_case_ : Any = ordered_inputs["attention_mask"].dtype snake_case_ : str = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) return ordered_inputs @property def _A ( self :Any ) -> int: '''simple docstring''' return 13
656
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 ) snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ : Tuple = Accelerator() snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> bool: """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> bool: """simple docstring""" if curr_ind == len(__magic_name__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 ,len(__magic_name__ ) ): if valid_connection(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ): # Insert current vertex into path as next transition snake_case_ : int = next_ver # Validate created path if util_hamilton_cycle(__magic_name__ ,__magic_name__ ,curr_ind + 1 ): return True # Backtrack snake_case_ : Union[str, Any] = -1 return False def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = 0 )-> list[int]: """simple docstring""" snake_case_ : List[str] = [-1] * (len(__magic_name__ ) + 1) # initialize start and end of path with starting index snake_case_ : str = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__magic_name__ ,__magic_name__ ,1 ) else []
656
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : Any = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __lowerCamelCase : Any = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = None # source code of `config_class` snake_case_ : List[Any] = inspect.getsource(__magic_name__ ) snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): snake_case_ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ : str = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case_ : Dict = ckpt_name break return checkpoint def __UpperCAmelCase ( )-> Dict: """simple docstring""" snake_case_ : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ ) snake_case_ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__magic_name__ ) if len(__magic_name__ ) > 0: snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
656
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A_ (a_ ): """simple docstring""" a__ = 42 a__ = 42 def __init__( self :int , lowerCAmelCase__ :UNetaDModel , lowerCAmelCase__ :KarrasVeScheduler ) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self :List[str] , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :int = 50 , lowerCAmelCase__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase__ :Optional[str] = "pil" , lowerCAmelCase__ :bool = True , **lowerCAmelCase__ :Optional[Any] , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' snake_case_ : Optional[Any] = self.unet.config.sample_size snake_case_ : Optional[int] = (batch_size, 3, img_size, img_size) snake_case_ : str = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) snake_case_ : str = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper snake_case_ : List[str] = self.scheduler.schedule[t] snake_case_ : Union[str, Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat snake_case_, snake_case_ : Union[str, Any] = self.scheduler.add_noise_to_input(lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. snake_case_ : List[Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev snake_case_ : str = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. snake_case_ : str = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample snake_case_ : List[str] = self.scheduler.step_correct( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , step_output.prev_sample , step_output["derivative"] , ) snake_case_ : Tuple = step_output.prev_sample snake_case_ : Dict = (sample / 2 + 0.5).clamp(0 , 1 ) snake_case_ : Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : Optional[int] = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
656
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : int = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A_ (a_ ): """simple docstring""" a__ = '''cvt''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : int = num_channels snake_case_ : int = patch_sizes snake_case_ : Optional[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Tuple = embed_dim snake_case_ : Optional[int] = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Optional[int] = mlp_ratio snake_case_ : Tuple = attention_drop_rate snake_case_ : str = drop_rate snake_case_ : Tuple = drop_path_rate snake_case_ : Any = qkv_bias snake_case_ : Union[str, Any] = cls_token snake_case_ : int = qkv_projection_method snake_case_ : Any = kernel_qkv snake_case_ : Union[str, Any] = padding_kv snake_case_ : str = stride_kv snake_case_ : Dict = padding_q snake_case_ : Tuple = stride_q snake_case_ : Any = initializer_range snake_case_ : Any = layer_norm_eps
656
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Any = {'''configuration_glpn''': ['''GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GLPNConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = ['''GLPNFeatureExtractor'''] __lowerCamelCase : Any = ['''GLPNImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''GLPN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GLPNForDepthEstimation''', '''GLPNLayer''', '''GLPNModel''', '''GLPNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __lowerCamelCase : str = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCamelCase : Dict = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __lowerCamelCase : int = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] snake_case_ : List[str] = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
656
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __lowerCamelCase : Any = None __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : Optional[Any] = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __lowerCamelCase : Any = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } __lowerCamelCase : Optional[Any] = '''▁''' class A_ (a_ ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = BigBirdTokenizer a__ = ['''input_ids''', '''attention_mask'''] a__ = [] def __init__( self :int , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :int=None , lowerCAmelCase__ :List[Any]="<unk>" , lowerCAmelCase__ :Any="<s>" , lowerCAmelCase__ :Union[str, Any]="</s>" , lowerCAmelCase__ :int="<pad>" , lowerCAmelCase__ :Dict="[SEP]" , lowerCAmelCase__ :Dict="[MASK]" , lowerCAmelCase__ :Any="[CLS]" , **lowerCAmelCase__ :Optional[int] , ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token snake_case_ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token snake_case_ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token snake_case_ : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token snake_case_ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token snake_case_ : List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) snake_case_ : Optional[int] = vocab_file snake_case_ : int = False if not self.vocab_file else True def _A ( self :int , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case_ : Optional[int] = [self.sep_token_id] snake_case_ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _A ( self :Optional[Any] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case_ : Optional[int] = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
656
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Any = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } snake_case_ : int = Dataset.from_dict(__magic_name__ ) return dataset class A_ (a_ ): """simple docstring""" def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = get_dataset() snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = get_dataset() snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) print(lowerCAmelCase__ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
656
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> tuple: """simple docstring""" snake_case_ : Optional[Any] = namedtuple("result" ,"name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" ,power / current ) elif current == 0: return result("current" ,power / voltage ) elif power == 0: return result("power" ,float(round(abs(voltage * current ) ,2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
656
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase : Dict = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
1
'''simple docstring''' from __future__ import annotations from random import choice def __UpperCAmelCase ( __magic_name__ )-> Dict: """simple docstring""" return choice(__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[int] = random_pivot(__magic_name__ ) # partition based on pivot # linear time snake_case_ : Union[str, Any] = [e for e in lst if e < pivot] snake_case_ : Union[str, Any] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__magic_name__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__magic_name__ ) < k - 1: return kth_number(__magic_name__ ,k - len(__magic_name__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__magic_name__ ,__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
656
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> list[int]: """simple docstring""" if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__magic_name__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
656
1
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A_ (pl.LightningModule ): """simple docstring""" def __init__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Dict: '''simple docstring''' super().__init__() snake_case_ : List[Any] = model snake_case_ : Optional[Any] = 2 snake_case_ : List[Any] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Dict: """simple docstring""" snake_case_ : str = LongformerModel.from_pretrained(__magic_name__ ) snake_case_ : Union[str, Any] = LightningModel(__magic_name__ ) snake_case_ : str = torch.load(__magic_name__ ,map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model snake_case_ : int = LongformerForQuestionAnswering.from_pretrained(__magic_name__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__magic_name__ ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowerCamelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
656
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __magic_name__=None )-> List[str]: """simple docstring""" if subparsers is not None: snake_case_ : List[str] = subparsers.add_parser("test" ) else: snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" ,default=__magic_name__ ,help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) ,) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: snake_case_ : str = script_name else: snake_case_ : Any = F'''--config_file={args.config_file} {script_name}''' snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split() snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Dict = test_command_parser() snake_case_ : Dict = parser.parse_args() test_command(__magic_name__ ) if __name__ == "__main__": main()
656
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : str = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCamelCase : str = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __lowerCamelCase : int = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __lowerCamelCase : List[str] = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
656
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCamelCase : str = 3 def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" print("Generating primitive root of p" ) while True: snake_case_ : int = random.randrange(3 ,__magic_name__ ) if pow(__magic_name__ ,2 ,__magic_name__ ) == 1: continue if pow(__magic_name__ ,__magic_name__ ,__magic_name__ ) == 1: continue return g def __UpperCAmelCase ( __magic_name__ )-> tuple[tuple[int, int, int, int], tuple[int, int]]: """simple docstring""" print("Generating prime p..." ) snake_case_ : str = rabin_miller.generate_large_prime(__magic_name__ ) # select large prime number. snake_case_ : Dict = primitive_root(__magic_name__ ) # one primitive root on modulo p. snake_case_ : Optional[int] = random.randrange(3 ,__magic_name__ ) # private_key -> have to be greater than 2 for safety. snake_case_ : Union[str, Any] = cryptomath.find_mod_inverse(pow(__magic_name__ ,__magic_name__ ,__magic_name__ ) ,__magic_name__ ) snake_case_ : Optional[Any] = (key_size, e_a, e_a, p) snake_case_ : Union[str, Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> None: """simple docstring""" if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print("\nWARNING:" ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' "Use a different name or delete these files and re-run this program." ) sys.exit() snake_case_, snake_case_ : Union[str, Any] = generate_key(__magic_name__ ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' ,"w" ) as fo: fo.write(F'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' ,"w" ) as fo: fo.write(F'''{private_key[0]},{private_key[1]}''' ) def __UpperCAmelCase ( )-> None: """simple docstring""" print("Making key files..." ) make_key_files("elgamal" ,2048 ) print("Key files generation successful" ) if __name__ == "__main__": main()
656
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCamelCase : str = 128022 __lowerCamelCase : List[Any] = 128028 @require_sentencepiece class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MaMaaaTokenizer a__ = False a__ = False a__ = True def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Optional[int] = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' return ( "This is a test", "This is a test", ) def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = "</s>" snake_case_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def _A ( self :Optional[int] ) -> int: '''simple docstring''' snake_case_ : int = self.get_tokenizer() snake_case_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , ) snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , "This is a test" ) @slow def _A ( self :Any ) -> List[Any]: '''simple docstring''' snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): """simple docstring""" a__ = '''facebook/m2m100_418M''' a__ = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] a__ = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def _A ( cls :str ) -> int: '''simple docstring''' snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) snake_case_ : List[str] = 1 return cls def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def _A ( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.tokenizer.get_vocab() self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ ) def _A ( self :Any ) -> Dict: '''simple docstring''' snake_case_ : List[str] = "en" snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def _A ( self :Tuple ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : int = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ ) @require_torch def _A ( self :Optional[Any] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = "en" snake_case_ : Tuple = "fr" snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" ) snake_case_ : Dict = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case_ : str = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case_ : int = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _A ( self :str ) -> int: '''simple docstring''' snake_case_ : Dict = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case_ : Tuple = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
656
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCamelCase : int = logging.get_logger(__name__) class A_ (a_ ): """simple docstring""" a__ = ['''pixel_values'''] def __init__( self :List[str] , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[Dict[str, int]] = None , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Union[int, float] = 1 / 255 , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ :Optional[Any] , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : Union[str, Any] = size if size is not None else {"height": 224, "width": 224} snake_case_ : str = get_size_dict(lowerCAmelCase__ ) snake_case_ : List[str] = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case_ : int = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ , param_name="crop_size" ) snake_case_ : int = do_resize snake_case_ : Optional[Any] = do_rescale snake_case_ : Union[str, Any] = do_normalize snake_case_ : Optional[Any] = do_center_crop snake_case_ : Tuple = crop_size snake_case_ : int = size snake_case_ : List[str] = resample snake_case_ : Tuple = rescale_factor snake_case_ : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _A ( self :List[str] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :List[str] , ) -> np.ndarray: '''simple docstring''' snake_case_ : Optional[Any] = get_size_dict(lowerCAmelCase__ ) if "shortest_edge" in size: snake_case_ : int = get_resize_output_image_size(lowerCAmelCase__ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase__ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: snake_case_ : Union[str, Any] = (size["height"], size["width"]) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Union[str, Any] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Any , ) -> np.ndarray: '''simple docstring''' snake_case_ : List[Any] = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :int , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :float , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Optional[Any] ) -> np.ndarray: '''simple docstring''' return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Tuple , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :int , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Tuple , lowerCAmelCase__ :ImageInput , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :PILImageResampling = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :int = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[float] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ :int , ) -> BatchFeature: '''simple docstring''' snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : int = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(lowerCAmelCase__ , param_name="crop_size" , default_to_square=lowerCAmelCase__ ) snake_case_ : Optional[Any] = resample if resample is not None else self.resample snake_case_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : Tuple = size if size is not None else self.size snake_case_ : Tuple = get_size_dict(lowerCAmelCase__ ) if not is_batched(lowerCAmelCase__ ): snake_case_ : str = [images] if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case_ : Tuple = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: snake_case_ : Any = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: snake_case_ : Dict = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: snake_case_ : List[str] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: snake_case_ : int = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] snake_case_ : List[str] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] snake_case_ : str = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
656
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCamelCase : str = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCamelCase : Tuple = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Tuple = SavedModel() snake_case_ : Dict = [] with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f: snake_case_ : Dict = json.load(__magic_name__ )["opsets"] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ ,"rb" ) as f: saved_model.ParseFromString(f.read() ) snake_case_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case_ : str = sorted(__magic_name__ ) snake_case_ : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__magic_name__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__magic_name__ ,sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __lowerCamelCase : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
656
1
'''simple docstring''' import math import tensorflow as tf from packaging import version def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Any = tf.convert_to_tensor(__magic_name__ ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) ,x.dtype ) )) return x * cdf def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" snake_case_ : List[Any] = tf.convert_to_tensor(__magic_name__ ) snake_case_ : Optional[Any] = tf.cast(math.pi ,x.dtype ) snake_case_ : int = tf.cast(0.044_715 ,x.dtype ) snake_case_ : Optional[Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__magic_name__ ,3 )) )) return x * cdf def __UpperCAmelCase ( __magic_name__ )-> List[str]: """simple docstring""" snake_case_ : List[Any] = tf.convert_to_tensor(__magic_name__ ) return x * tf.tanh(tf.math.softplus(__magic_name__ ) ) def __UpperCAmelCase ( __magic_name__ )-> Dict: """simple docstring""" snake_case_ : Optional[Any] = tf.convert_to_tensor(__magic_name__ ) snake_case_ : str = tf.cast(0.044_715 ,x.dtype ) snake_case_ : Tuple = tf.cast(0.7_978_845_608 ,x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : List[str] = tf.convert_to_tensor(__magic_name__ ) snake_case_ : Optional[int] = tf.cast(1.702 ,x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" return tf.clip_by_value(_gelu(__magic_name__ ) ,-10 ,10 ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__=-1 )-> List[str]: """simple docstring""" snake_case_, snake_case_ : List[str] = tf.split(__magic_name__ ,2 ,axis=__magic_name__ ) return a * tf.math.sigmoid(__magic_name__ ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" return tf.keras.activations.gelu(__magic_name__ ,approximate=__magic_name__ ) __lowerCamelCase : int = tf.keras.activations.gelu __lowerCamelCase : str = approximate_gelu_wrap else: __lowerCamelCase : Optional[int] = _gelu __lowerCamelCase : List[Any] = _gelu_new __lowerCamelCase : List[str] = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __UpperCAmelCase ( __magic_name__ )-> List[str]: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
656
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) __lowerCamelCase : List[str] = ['''names''', '''prefix'''] __lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines'''] __lowerCamelCase : Optional[Any] = ['''date_format'''] @dataclass class A_ (datasets.BuilderConfig ): """simple docstring""" a__ = "," a__ = None a__ = "infer" a__ = None a__ = None a__ = None a__ = None a__ = None a__ = True a__ = None a__ = None a__ = None a__ = None a__ = False a__ = None a__ = None a__ = None a__ = True a__ = True a__ = False a__ = True a__ = None a__ = "." a__ = None a__ = '"' a__ = 0 a__ = None a__ = None a__ = None a__ = None a__ = True a__ = True a__ = 0 a__ = True a__ = False a__ = None a__ = 10000 a__ = None a__ = "strict" a__ = "error" a__ = None def _A ( self :List[str] ) -> Any: '''simple docstring''' if self.delimiter is not None: snake_case_ : Tuple = self.delimiter if self.column_names is not None: snake_case_ : List[Any] = self.column_names @property def _A ( self :Optional[Any] ) -> int: '''simple docstring''' snake_case_ : Optional[int] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A_ (datasets.ArrowBasedBuilder ): """simple docstring""" a__ = CsvConfig def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): snake_case_ : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : List[str] = [files] snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ : str = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : str = [files] snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: snake_case_ : int = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case_ : str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' ) raise
656
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class A_ (unittest.TestCase ): """simple docstring""" a__ = JukeboxTokenizer a__ = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def _A ( self :int ) -> Optional[int]: '''simple docstring''' import torch snake_case_ : Optional[int] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) snake_case_ : Any = tokenizer(**self.metas )["input_ids"] # fmt: off snake_case_ : Any = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _A ( self :Any ) -> str: '''simple docstring''' import torch snake_case_ : Tuple = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) snake_case_ : Any = tokenizer(**self.metas )["input_ids"] # fmt: off snake_case_ : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
656
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MgpstrTokenizer a__ = False a__ = {} a__ = False def _A ( self :List[str] ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str: '''simple docstring''' snake_case_ : Dict = "tester" snake_case_ : Tuple = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _A ( self :Dict ) -> str: '''simple docstring''' pass def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ) snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _A ( self :Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _A ( self :int ) -> Dict: '''simple docstring''' pass
656
1
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __UpperCAmelCase ( __magic_name__="" )-> str: """simple docstring""" snake_case_ : Any = tempfile.mkdtemp() return os.path.join(__magic_name__ ,str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ : Dict = AgentAudio(lowerCAmelCase__ ) snake_case_ : Optional[int] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase__ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) # Ensure that the file contains the same value as the original tensor snake_case_, snake_case_ : List[str] = sf.read(lowerCAmelCase__ ) self.assertTrue(torch.allclose(lowerCAmelCase__ , torch.tensor(lowerCAmelCase__ ) , atol=1E-4 ) ) def _A ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ : Union[str, Any] = get_new_path(suffix=".wav" ) sf.write(lowerCAmelCase__ , lowerCAmelCase__ , 16_000 ) snake_case_ : Dict = AgentAudio(lowerCAmelCase__ ) self.assertTrue(torch.allclose(lowerCAmelCase__ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowerCAmelCase__ ) @require_vision @require_torch class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> int: '''simple docstring''' snake_case_ : str = torch.randint(0 , 256 , (64, 64, 3) ) snake_case_ : List[str] = AgentImage(lowerCAmelCase__ ) snake_case_ : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase__ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) def _A ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' snake_case_ : Any = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" snake_case_ : Union[str, Any] = Image.open(lowerCAmelCase__ ) snake_case_ : List[str] = AgentImage(lowerCAmelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) def _A ( self :Any ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" snake_case_ : List[Any] = Image.open(lowerCAmelCase__ ) snake_case_ : int = AgentImage(lowerCAmelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : Dict = "Hey!" snake_case_ : Dict = AgentText(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , agent_type.to_string() ) self.assertEqual(lowerCAmelCase__ , agent_type.to_raw() ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
656
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: snake_case_ : int = ( "Wrong input data's dimensions... " F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__magic_name__ ) try: if dataset.shape[1] != value_array.shape[1]: snake_case_ : Dict = ( "Wrong input data's shape... " F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__magic_name__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: snake_case_ : Dict = ( "Input data have different datatype... " F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__magic_name__ ) snake_case_ : Optional[int] = [] for value in value_array: snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] ) snake_case_ : int = dataset[0].tolist() for dataset_value in dataset[1:]: snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ ) if dist > temp_dist: snake_case_ : Tuple = temp_dist snake_case_ : Optional[int] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ )) if __name__ == "__main__": import doctest doctest.testmod()
656
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Any = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A_ (a_ ): """simple docstring""" a__ = '''unispeech''' def __init__( self :Union[str, Any] , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple=768 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :List[str]=3_072 , lowerCAmelCase__ :Dict="gelu" , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :List[str]=0.0 , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :str=0.0_2 , lowerCAmelCase__ :Tuple=1E-5 , lowerCAmelCase__ :Optional[Any]="group" , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :Optional[Any]=(512, 512, 512, 512, 512, 512, 512) , lowerCAmelCase__ :Optional[int]=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__ :Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :Tuple=128 , lowerCAmelCase__ :Optional[Any]=16 , lowerCAmelCase__ :List[str]=False , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.0_5 , lowerCAmelCase__ :Any=10 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :List[Any]=0.0 , lowerCAmelCase__ :Any=10 , lowerCAmelCase__ :str=0 , lowerCAmelCase__ :List[str]=320 , lowerCAmelCase__ :Optional[Any]=2 , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :List[Any]=100 , lowerCAmelCase__ :Tuple=256 , lowerCAmelCase__ :Optional[int]=256 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :Optional[Any]="mean" , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :List[str]=256 , lowerCAmelCase__ :Dict=80 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :List[Any]=1 , lowerCAmelCase__ :List[Any]=2 , lowerCAmelCase__ :int=0.5 , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) snake_case_ : int = hidden_size snake_case_ : List[Any] = feat_extract_norm snake_case_ : List[str] = feat_extract_activation snake_case_ : int = list(lowerCAmelCase__ ) snake_case_ : Dict = list(lowerCAmelCase__ ) snake_case_ : Any = list(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = conv_bias snake_case_ : int = num_conv_pos_embeddings snake_case_ : Optional[Any] = num_conv_pos_embedding_groups snake_case_ : Any = len(self.conv_dim ) snake_case_ : List[str] = num_hidden_layers snake_case_ : List[Any] = intermediate_size snake_case_ : int = hidden_act snake_case_ : Optional[int] = num_attention_heads snake_case_ : int = hidden_dropout snake_case_ : Dict = attention_dropout snake_case_ : Union[str, Any] = activation_dropout snake_case_ : Dict = feat_proj_dropout snake_case_ : Optional[Any] = final_dropout snake_case_ : Tuple = layerdrop snake_case_ : str = layer_norm_eps snake_case_ : Dict = initializer_range snake_case_ : List[Any] = num_ctc_classes snake_case_ : Optional[int] = vocab_size snake_case_ : Any = do_stable_layer_norm snake_case_ : Any = use_weighted_layer_sum snake_case_ : Union[str, Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ : int = apply_spec_augment snake_case_ : Tuple = mask_time_prob snake_case_ : str = mask_time_length snake_case_ : List[Any] = mask_time_min_masks snake_case_ : str = mask_feature_prob snake_case_ : Optional[int] = mask_feature_length snake_case_ : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ : Optional[Any] = num_codevectors_per_group snake_case_ : Dict = num_codevector_groups snake_case_ : List[Any] = contrastive_logits_temperature snake_case_ : Dict = feat_quantizer_dropout snake_case_ : Dict = num_negatives snake_case_ : Optional[Any] = codevector_dim snake_case_ : Any = proj_codevector_dim snake_case_ : str = diversity_loss_weight # ctc loss snake_case_ : Optional[Any] = ctc_loss_reduction snake_case_ : List[Any] = ctc_zero_infinity # pretraining loss snake_case_ : Optional[int] = replace_prob @property def _A ( self :Tuple ) -> str: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
656
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()] snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )] snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ ) if save_path is not None: save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
656
1
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
656
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ ) snake_case_ : Any = val def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) snake_case_ : int = value else: snake_case_ : int = value return new_state_dict def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]: """simple docstring""" snake_case_ : str = "" if is_panoptic: snake_case_ : Dict = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Tuple = in_proj_weight[:256, :] snake_case_ : List[Any] = in_proj_bias[:256] snake_case_ : Optional[Any] = in_proj_weight[256:512, :] snake_case_ : Optional[int] = in_proj_bias[256:512] snake_case_ : Optional[int] = in_proj_weight[-256:, :] snake_case_ : str = in_proj_bias[-256:] def __UpperCAmelCase ( )-> Optional[Any]: """simple docstring""" snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case_ : Optional[Any] = "resnet101" if "dc5" in model_name: snake_case_ : List[str] = True snake_case_ : Tuple = "panoptic" in model_name if is_panoptic: snake_case_ : List[Any] = 250 else: snake_case_ : Optional[Any] = 91 snake_case_ : Optional[int] = "huggingface/label-files" snake_case_ : Dict = "coco-detection-id2label.json" snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : Dict = {v: k for k, v in idalabel.items()} # load image processor snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection" snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image snake_case_ : str = prepare_img() snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" ) snake_case_ : Union[str, Any] = encoding["pixel_values"] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval() snake_case_ : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case_ : Any = "conditional_detr." + src rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Tuple = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : int = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case_ : Tuple = state_dict.pop(__magic_name__ ) snake_case_ : Any = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val # finally, create HuggingFace model and load state dict snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" ) # verify our conversion snake_case_ : Dict = conditional_detr(__magic_name__ ) snake_case_ : Union[str, Any] = model(__magic_name__ ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowerCamelCase : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
656
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __lowerCamelCase : Union[str, Any] = 0 __lowerCamelCase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Any = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __lowerCamelCase : str = tuple[int, int] class A_ : """simple docstring""" def __init__( self :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :Node | None , ) -> None: '''simple docstring''' snake_case_ : Optional[int] = pos_x snake_case_ : int = pos_y snake_case_ : int = (pos_y, pos_x) snake_case_ : Optional[int] = goal_x snake_case_ : Optional[Any] = goal_y snake_case_ : Any = g_cost snake_case_ : List[Any] = parent snake_case_ : Union[str, Any] = self.calculate_heuristic() snake_case_ : Optional[int] = self.g_cost + self.h_cost def _A ( self :Dict ) -> float: '''simple docstring''' snake_case_ : List[str] = self.pos_x - self.goal_x snake_case_ : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCAmelCase__ ) + abs(lowerCAmelCase__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self :Optional[int] , lowerCAmelCase__ :Node ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class A_ : """simple docstring""" def __init__( self :List[Any] , lowerCAmelCase__ :TPosition , lowerCAmelCase__ :TPosition ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase__ ) snake_case_ : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , lowerCAmelCase__ ) snake_case_ : List[Any] = [self.start] snake_case_ : list[Node] = [] snake_case_ : Tuple = False def _A ( self :Tuple ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case_ : str = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCAmelCase__ ) self.closed_nodes.append(lowerCAmelCase__ ) snake_case_ : List[str] = self.get_successors(lowerCAmelCase__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCAmelCase__ ) else: # retrieve the best current path snake_case_ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCAmelCase__ ) else: self.open_nodes.append(lowerCAmelCase__ ) return [self.start.pos] def _A ( self :Optional[Any] , lowerCAmelCase__ :Node ) -> list[Node]: '''simple docstring''' snake_case_ : Optional[int] = [] for action in delta: snake_case_ : Tuple = parent.pos_x + action[1] snake_case_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCAmelCase__ , lowerCAmelCase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase__ , ) ) return successors def _A ( self :Any , lowerCAmelCase__ :Node | None ) -> list[TPosition]: '''simple docstring''' snake_case_ : Optional[int] = node snake_case_ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case_ : List[str] = current_node.parent path.reverse() return path class A_ : """simple docstring""" def __init__( self :int , lowerCAmelCase__ :TPosition , lowerCAmelCase__ :TPosition ) -> None: '''simple docstring''' snake_case_ : Any = AStar(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : str = AStar(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Dict = False def _A ( self :List[Any] ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() snake_case_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) snake_case_ : Union[str, Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCAmelCase__ , lowerCAmelCase__ ) self.fwd_astar.closed_nodes.append(lowerCAmelCase__ ) self.bwd_astar.closed_nodes.append(lowerCAmelCase__ ) snake_case_ : str = current_bwd_node snake_case_ : Dict = current_fwd_node snake_case_ : Any = { self.fwd_astar: self.fwd_astar.get_successors(lowerCAmelCase__ ), self.bwd_astar: self.bwd_astar.get_successors(lowerCAmelCase__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCAmelCase__ ) else: # retrieve the best current path snake_case_ : str = astar.open_nodes.pop( astar.open_nodes.index(lowerCAmelCase__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCAmelCase__ ) else: astar.open_nodes.append(lowerCAmelCase__ ) return [self.fwd_astar.start.pos] def _A ( self :int , lowerCAmelCase__ :Node , lowerCAmelCase__ :Node ) -> list[TPosition]: '''simple docstring''' snake_case_ : str = self.fwd_astar.retrace_path(lowerCAmelCase__ ) snake_case_ : Any = self.bwd_astar.retrace_path(lowerCAmelCase__ ) bwd_path.pop() bwd_path.reverse() snake_case_ : int = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __lowerCamelCase : Union[str, Any] = (0, 0) __lowerCamelCase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : str = time.time() __lowerCamelCase : Dict = AStar(init, goal) __lowerCamelCase : int = a_star.search() __lowerCamelCase : List[Any] = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') __lowerCamelCase : Tuple = time.time() __lowerCamelCase : List[str] = BidirectionalAStar(init, goal) __lowerCamelCase : Optional[int] = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
656
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Any = 1 snake_case_ : Dict = 3 snake_case_ : Union[str, Any] = (32, 32) snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _A ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _A ( self :Dict ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def _A ( self :Any ) -> str: '''simple docstring''' def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ): class A_ : """simple docstring""" def __init__( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.ones([0] ) def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ : str = self.dummy_cond_unet snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : Dict = self.dummy_vae snake_case_ : Dict = self.dummy_text_encoder snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : str = 77 snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ ) snake_case_ : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Dict = "A painting of a squirrel eating a burger" snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ) snake_case_ : Any = output.images snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Optional[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.dummy_cond_unet snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : int = self.dummy_vae snake_case_ : List[Any] = self.dummy_text_encoder snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : int = 77 snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 snake_case_ : Optional[Any] = unet.half() snake_case_ : Tuple = vae.half() snake_case_ : List[str] = bert.half() # make sure here that pndm scheduler skips prk snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[Any] = "A painting of a squirrel eating a burger" snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Any = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ : str = init_image.resize((760, 504) ) snake_case_ : Optional[Any] = "BAAI/AltDiffusion" snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : str = output.images[0] snake_case_ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : List[Any] = init_image.resize((768, 512) ) snake_case_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) snake_case_ : Any = "BAAI/AltDiffusion" snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
656
1
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> str: """simple docstring""" snake_case_ : Optional[int] = BigBirdConfig.from_json_file(__magic_name__ ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: snake_case_ : str = BigBirdForQuestionAnswering(__magic_name__ ) else: snake_case_ : List[Any] = BigBirdForPreTraining(__magic_name__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__magic_name__ ,__magic_name__ ,is_trivia_qa=__magic_name__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) __lowerCamelCase : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
656
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A_ (unittest.TestCase ): """simple docstring""" a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = ZeroShotClassificationPipeline( model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # No kwarg snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : str = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(1 ) ] , ) snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase__ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier(lowerCAmelCase__ , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , ) self.run_entailment_id(lowerCAmelCase__ ) def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = zero_shot_classifier.model.config snake_case_ : Optional[int] = config.labelaid snake_case_ : Tuple = zero_shot_classifier.entailment_id snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case_ : List[str] = original_labelaid self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id ) @require_torch def _A ( self :Tuple ) -> Any: '''simple docstring''' snake_case_ : List[Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) snake_case_ : int = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : List[str] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) snake_case_ : Optional[int] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _A ( self :Union[str, Any] ) -> int: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) snake_case_ : str = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Optional[int] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) snake_case_ : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Tuple = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ = 200_0000 )-> int: """simple docstring""" snake_case_ : int = [0 for i in range(n + 1 )] snake_case_ : List[Any] = 1 snake_case_ : Optional[Any] = 1 for i in range(2 ,int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i ,n + 1 ,__magic_name__ ): snake_case_ : List[str] = 1 snake_case_ : List[Any] = 0 for i in range(__magic_name__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
656
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ ) roberta.eval() # disable dropout snake_case_ : Dict = roberta.model.encoder.sentence_encoder snake_case_ : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__magic_name__ ) snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight snake_case_ : int = roberta_sent_encoder.embed_positions.weight snake_case_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case_ : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ : BertLayer = model.roberta.encoder.layer[i] snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] snake_case_ : RobertaAttention = layer.attention snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias # self attention snake_case_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight snake_case_ : Any = roberta_layer.self_attn.q_proj.bias snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight snake_case_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case_ : int = roberta_layer.final_layer_norm.weight snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate snake_case_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : List[str] = roberta_layer.fca.weight snake_case_ : List[Any] = roberta_layer.fca.bias # output snake_case_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : Any = roberta_layer.fca.weight snake_case_ : Any = roberta_layer.fca.bias # end of layer if classification_head: snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight snake_case_ : int = roberta.model.encoder.lm_head.dense.bias snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias snake_case_ : int = roberta.model.encoder.lm_head.weight snake_case_ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1 snake_case_ : Union[str, Any] = model(__magic_name__ )[0] if classification_head: snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) ) else: snake_case_ : List[str] = roberta.model(__magic_name__ )[0] print(our_output.shape ,their_output.shape ) snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : Tuple = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
656
1
'''simple docstring''' from __future__ import annotations __lowerCamelCase : List[Any] = [True] * 1000001 __lowerCamelCase : List[Any] = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): __lowerCamelCase : Tuple = False i += 1 def __UpperCAmelCase ( __magic_name__ )-> bool: """simple docstring""" return seive[n] def __UpperCAmelCase ( __magic_name__ )-> bool: """simple docstring""" return any(digit in "02468" for digit in str(__magic_name__ ) ) def __UpperCAmelCase ( __magic_name__ = 100_0000 )-> list[int]: """simple docstring""" snake_case_ : Optional[int] = [2] # result already includes the number 2. for num in range(3 ,limit + 1 ,2 ): if is_prime(__magic_name__ ) and not contains_an_even_digit(__magic_name__ ): snake_case_ : List[str] = str(__magic_name__ ) snake_case_ : Optional[int] = [int(str_num[j:] + str_num[:j] ) for j in range(len(__magic_name__ ) )] if all(is_prime(__magic_name__ ) for i in list_nums ): result.append(__magic_name__ ) return result def __UpperCAmelCase ( )-> int: """simple docstring""" return len(find_circular_primes() ) if __name__ == "__main__": print(f'''{len(find_circular_primes()) = }''')
656
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]: """simple docstring""" snake_case_ : str = False snake_case_ : int = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): snake_case_ : Any = True elif "IPython" in sys.modules: snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: snake_case_ : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: snake_case_ : Tuple = 8 snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__magic_name__ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ): snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case_ : Any = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,): snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ ) start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
656
1
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __lowerCamelCase : Union[str, Any] = '''sshleifer/bart-tiny-random''' __lowerCamelCase : Optional[int] = '''patrickvonplaten/t5-tiny-random''' @require_torch class A_ (unittest.TestCase ): """simple docstring""" @cached_property def _A ( self :Tuple ) -> Optional[Any]: '''simple docstring''' return AutoConfig.from_pretrained(lowerCAmelCase__ ) def _A ( self :List[Any] ) -> Any: '''simple docstring''' snake_case_, *snake_case_ : int = create_student_by_copying_alternating_layers(lowerCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_, *snake_case_ : int = create_student_by_copying_alternating_layers(lowerCAmelCase__ , tempfile.mkdtemp() , e=1 , d=lowerCAmelCase__ ) def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case_, *snake_case_ : Tuple = create_student_by_copying_alternating_layers(lowerCAmelCase__ , tempfile.mkdtemp() , e=1 , d=lowerCAmelCase__ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _A ( self :Dict ) -> str: '''simple docstring''' snake_case_, *snake_case_ : Dict = create_student_by_copying_alternating_layers(lowerCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _A ( self :Any ) -> Tuple: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): create_student_by_copying_alternating_layers(lowerCAmelCase__ , tempfile.mkdtemp() , e=lowerCAmelCase__ , d=lowerCAmelCase__ )
656
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Dict ) -> List[str]: '''simple docstring''' snake_case_ : int = {} def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case_ : Optional[int] = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): snake_case_ : Dict = [] def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str: '''simple docstring''' if s == d: return [] snake_case_ : str = [] snake_case_ : Optional[int] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int: '''simple docstring''' if c == -1: snake_case_ : Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : Tuple = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = [] snake_case_ : str = [] if s == -2: snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Any = [] snake_case_ : str = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Optional[int] = -2 snake_case_ : Any = [] snake_case_ : List[Any] = s snake_case_ : int = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[str] = s snake_case_ : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : str = -2 snake_case_ : List[str] = [] snake_case_ : List[Any] = s snake_case_ : List[str] = False snake_case_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Tuple = True if len(lowerCAmelCase__ ) != 0: snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str: '''simple docstring''' snake_case_ : Optional[int] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Optional[Any] = time() return end - begin def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Any = time() return end - begin class A_ : """simple docstring""" def __init__( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = {} def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case_ : str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case_ : List[str] = [[w, u]] def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int: '''simple docstring''' if s == d: return [] snake_case_ : Any = [] snake_case_ : Dict = [] if s == -2: snake_case_ : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]: '''simple docstring''' if c == -1: snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = [] snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : Optional[int] = [] snake_case_ : Tuple = s snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[int] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[Any] = s snake_case_ : Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : int = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : int = [] snake_case_ : int = s snake_case_ : Optional[Any] = False snake_case_ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = s snake_case_ : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Any ) -> Tuple: '''simple docstring''' return list(self.graph ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str: '''simple docstring''' snake_case_ : List[str] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = time() return end - begin def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int: '''simple docstring''' snake_case_ : List[str] = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Tuple = time() return end - begin
656
1
'''simple docstring''' import math import random def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = False )-> float: """simple docstring""" if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __lowerCamelCase : List[str] = 0.02 def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" snake_case_ : Union[str, Any] = float(2 * (random.randint(1 ,100 )) - 1 ) for _ in range(__magic_name__ ): # Forward propagation snake_case_ : Optional[int] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? snake_case_ : int = (expected / 100) - layer_a # Error delta snake_case_ : Any = layer_1_error * sigmoid_function(__magic_name__ ,__magic_name__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : str = int(input('''Expected value: ''')) __lowerCamelCase : Union[str, Any] = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
656
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCamelCase : List[str] = re.compile(R'''\s+''') def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )} def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple: """simple docstring""" snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"] snake_case_ : Optional[Any] = example["content"].splitlines() for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]: """simple docstring""" snake_case_ : str = ["unit tests", "test file", "configuration file"] snake_case_ : int = example["content"].splitlines() snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 # first test for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ : Tuple = example["content"].count("\n" ) snake_case_ : int = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : List[Any] = ["def ", "class ", "for ", "while "] snake_case_ : Optional[Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]: """simple docstring""" snake_case_ : Tuple = example["content"].splitlines() snake_case_ : Tuple = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"] snake_case_ : int = len(example["content"] ) / len(__magic_name__ ) return {"ratio": ratio} def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = {} results.update(get_hash(__magic_name__ ) ) results.update(line_stats(__magic_name__ ) ) results.update(alpha_stats(__magic_name__ ) ) results.update(char_token_ratio(__magic_name__ ) ) results.update(is_autogenerated(__magic_name__ ) ) results.update(is_config_or_test(__magic_name__ ) ) results.update(has_no_keywords(__magic_name__ ) ) results.update(has_few_assignments(__magic_name__ ) ) return results def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if not check_uniques(__magic_name__ ,__magic_name__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( __magic_name__ )-> Dict: """simple docstring""" with open(__magic_name__ ,"rb" ) as f_in: with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__magic_name__ ,__magic_name__ ) os.unlink(__magic_name__ ) # Settings __lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments) __lowerCamelCase : str = parser.parse_args() if args.num_workers is None: __lowerCamelCase : List[Any] = multiprocessing.cpu_count() __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCamelCase : Any = time.time() __lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __lowerCamelCase : Any = set(ds.unique('''hash''')) __lowerCamelCase : Optional[int] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCamelCase : List[str] = time.time() __lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __lowerCamelCase : List[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) __lowerCamelCase : List[str] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) __lowerCamelCase : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''') __lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
656
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Tuple = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] __lowerCamelCase : Optional[Any] = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : List[Any] = torch.load(__magic_name__ ,map_location="cpu" ) return sd def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=rename_keys_prefix )-> Optional[int]: """simple docstring""" snake_case_ : int = OrderedDict() snake_case_ : Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue snake_case_ : Optional[Any] = key for name_pair in rename_keys_prefix: snake_case_ : Optional[Any] = new_key.replace(name_pair[0] ,name_pair[1] ) snake_case_ : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately snake_case_ : Dict = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Dict: """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: snake_case_ : List[str] = "pretraining" if "vcr" in checkpoint_path: snake_case_ : Union[str, Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: snake_case_ : List[str] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: snake_case_ : Tuple = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: snake_case_ : List[str] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: snake_case_ : List[Any] = {"visual_embedding_dim": 512} snake_case_ : str = "multichoice" elif "vqa_advanced" in checkpoint_path: snake_case_ : Tuple = {"visual_embedding_dim": 2048} snake_case_ : Union[str, Any] = "vqa_advanced" elif "vqa" in checkpoint_path: snake_case_ : Optional[int] = {"visual_embedding_dim": 2048, "num_labels": 3129} snake_case_ : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: snake_case_ : str = { "visual_embedding_dim": 1024, "num_labels": 2, } snake_case_ : Dict = "nlvr" snake_case_ : List[str] = VisualBertConfig(**__magic_name__ ) # Load State Dict snake_case_ : Any = load_state_dict(__magic_name__ ) snake_case_ : Dict = get_new_dict(__magic_name__ ,__magic_name__ ) if model_type == "pretraining": snake_case_ : Dict = VisualBertForPreTraining(__magic_name__ ) elif model_type == "vqa": snake_case_ : List[Any] = VisualBertForQuestionAnswering(__magic_name__ ) elif model_type == "nlvr": snake_case_ : Union[str, Any] = VisualBertForVisualReasoning(__magic_name__ ) elif model_type == "multichoice": snake_case_ : List[Any] = VisualBertForMultipleChoice(__magic_name__ ) model.load_state_dict(__magic_name__ ) # Save Checkpoints Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') __lowerCamelCase : List[Any] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
656
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 ) snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ : Tuple = Accelerator() snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
1
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __lowerCamelCase : str = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class A_ : """simple docstring""" def __init__( self :List[str] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int]=16 , lowerCAmelCase__ :Tuple=13 , lowerCAmelCase__ :int=7 , lowerCAmelCase__ :Dict=14 , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :str=19 , lowerCAmelCase__ :Optional[Any]=5 , lowerCAmelCase__ :int=4 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Union[str, Any]=4 , lowerCAmelCase__ :int="gelu" , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :Optional[int]=[1, 2, 3, 4, 5] , lowerCAmelCase__ :Dict=25 , lowerCAmelCase__ :Any=5 , ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = d_model snake_case_ : Any = parent snake_case_ : Tuple = batch_size snake_case_ : Tuple = prediction_length snake_case_ : List[str] = context_length snake_case_ : List[str] = cardinality snake_case_ : Optional[Any] = num_time_features snake_case_ : Dict = lags_sequence snake_case_ : Union[str, Any] = embedding_dimension snake_case_ : List[str] = is_training snake_case_ : int = hidden_size snake_case_ : int = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[str] = hidden_act snake_case_ : int = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : Optional[int] = context_length snake_case_ : Dict = prediction_length + label_length snake_case_ : Dict = label_length snake_case_ : Union[str, Any] = moving_average snake_case_ : int = autocorrelation_factor def _A ( self :Union[str, Any] ) -> str: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _A ( self :Optional[int] , lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = config.context_length + max(config.lags_sequence ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) snake_case_ : Union[str, Any] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) snake_case_ : Any = floats_tensor([self.batch_size, _past_length] ) snake_case_ : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs snake_case_ : Tuple = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) snake_case_ : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length] ) snake_case_ : Optional[Any] = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def _A ( self :Optional[int] ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = self.get_config() snake_case_ : Any = self.prepare_autoformer_inputs_dict(lowerCAmelCase__ ) return config, inputs_dict def _A ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case_, snake_case_ : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def _A ( self :Optional[int] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = AutoformerModel(config=lowerCAmelCase__ ).to(lowerCAmelCase__ ).eval() snake_case_ : Union[str, Any] = model(**lowerCAmelCase__ ) snake_case_ : Dict = outputs.encoder_last_hidden_state snake_case_ : Optional[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : str = model.get_encoder() encoder.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = AutoformerEncoder.from_pretrained(lowerCAmelCase__ ).to(lowerCAmelCase__ ) snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ : str = model.create_network_inputs(**lowerCAmelCase__ ) snake_case_, snake_case_ : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) snake_case_ : List[str] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) snake_case_ : str = encoder(inputs_embeds=lowerCAmelCase__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) snake_case_ : Optional[int] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) snake_case_ : List[Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) snake_case_ : int = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) snake_case_ : Any = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Optional[int] = model.get_decoder() decoder.save_pretrained(lowerCAmelCase__ ) snake_case_ : int = AutoformerDecoder.from_pretrained(lowerCAmelCase__ ).to(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = decoder( trend=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class A_ (a_ , a_ , unittest.TestCase ): """simple docstring""" a__ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () a__ = (AutoformerForPrediction,) if is_torch_available() else () a__ = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} a__ = False a__ = False a__ = False a__ = False a__ = False a__ = False def _A ( self :int ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[int] = AutoformerModelTester(self ) snake_case_ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def _A ( self :Tuple ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def _A ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case_, snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case_ : Any = model_class(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) snake_case_, snake_case_ : int = model_class.from_pretrained(lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) self.assertEqual(info["missing_keys"] , [] ) def _A ( self :Optional[int] ) -> str: '''simple docstring''' snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCAmelCase__ ) @unittest.skip(reason="Model has no tokens embeddings" ) def _A ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def _A ( self :Dict ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = inspect.signature(getattr(lowerCAmelCase__ , "forward" ) ) # The main input is the name of the argument after `self` snake_case_ : Any = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_, snake_case_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(lowerCAmelCase__ ) snake_case_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Tuple = [*signature.parameters.keys()] snake_case_ : Optional[int] = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(lowerCAmelCase__ )] , lowerCAmelCase__ ) def _A ( self :Dict ) -> Union[str, Any]: '''simple docstring''' snake_case_, snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : List[str] = True snake_case_ : Dict = getattr(self.model_tester , "seq_length" , lowerCAmelCase__ ) snake_case_ : str = getattr(self.model_tester , "decoder_seq_length" , lowerCAmelCase__ ) snake_case_ : int = getattr(self.model_tester , "encoder_seq_length" , lowerCAmelCase__ ) snake_case_ : Tuple = getattr(self.model_tester , "d_model" , lowerCAmelCase__ ) snake_case_ : int = getattr(self.model_tester , "num_attention_heads" , lowerCAmelCase__ ) snake_case_ : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: snake_case_ : int = True snake_case_ : Dict = False snake_case_ : Optional[Any] = True snake_case_ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): snake_case_ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) snake_case_ : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ : str = True snake_case_ : Optional[int] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): snake_case_ : Any = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) snake_case_ : List[Any] = outputs.encoder_attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) snake_case_ : int = len(lowerCAmelCase__ ) snake_case_ : Dict = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # decoder attentions snake_case_ : Any = outputs.decoder_attentions self.assertIsInstance(lowerCAmelCase__ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions snake_case_ : List[Any] = outputs.cross_attentions self.assertIsInstance(lowerCAmelCase__ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine snake_case_ : List[Any] = True snake_case_ : Union[str, Any] = True snake_case_ : Dict = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): snake_case_ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 2 , len(lowerCAmelCase__ ) ) snake_case_ : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def __UpperCAmelCase ( __magic_name__="train-batch.pt" )-> int: """simple docstring""" snake_case_ : Any = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" ,filename=__magic_name__ ,repo_type="dataset" ) snake_case_ : str = torch.load(__magic_name__ ,map_location=__magic_name__ ) return batch @require_torch @slow class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Dict ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(lowerCAmelCase__ ) snake_case_ : int = prepare_batch() with torch.no_grad(): snake_case_ : Dict = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] snake_case_ : int = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) snake_case_ : Any = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=lowerCAmelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) def _A ( self :Union[str, Any] ) -> str: '''simple docstring''' snake_case_ : str = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(lowerCAmelCase__ ) snake_case_ : Tuple = prepare_batch("val-batch.pt" ) with torch.no_grad(): snake_case_ : Any = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state snake_case_ : Optional[int] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowerCAmelCase__ ) snake_case_ : List[Any] = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=lowerCAmelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) def _A ( self :List[str] ) -> List[Any]: '''simple docstring''' snake_case_ : str = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(lowerCAmelCase__ ) snake_case_ : int = prepare_batch("val-batch.pt" ) with torch.no_grad(): snake_case_ : Union[str, Any] = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) snake_case_ : Tuple = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowerCAmelCase__ ) snake_case_ : str = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=lowerCAmelCase__ ) snake_case_ : Union[str, Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowerCAmelCase__ , rtol=1E-1 ) )
656
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : Any = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __lowerCamelCase : Any = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = None # source code of `config_class` snake_case_ : List[Any] = inspect.getsource(__magic_name__ ) snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): snake_case_ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ : str = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case_ : Dict = ckpt_name break return checkpoint def __UpperCAmelCase ( )-> Dict: """simple docstring""" snake_case_ : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ ) snake_case_ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__magic_name__ ) if len(__magic_name__ ) > 0: snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
656
1
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __UpperCAmelCase ( __magic_name__ = "isbn/0140328726" )-> dict: """simple docstring""" snake_case_ : Optional[Any] = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: snake_case_ : Optional[Any] = F'''{olid} is not a valid Open Library olid''' raise ValueError(__magic_name__ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def __UpperCAmelCase ( __magic_name__ )-> dict: """simple docstring""" snake_case_ : Dict = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } snake_case_ : int = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} snake_case_ : str = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] snake_case_ : str = data["First sentence"]["value"] for key, value in data.items(): if isinstance(__magic_name__ ,__magic_name__ ): snake_case_ : Dict = ", ".join(__magic_name__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __lowerCamelCase : List[Any] = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: __lowerCamelCase : Tuple = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('''\n'''.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
656
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : int = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A_ (a_ ): """simple docstring""" a__ = '''cvt''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : int = num_channels snake_case_ : int = patch_sizes snake_case_ : Optional[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Tuple = embed_dim snake_case_ : Optional[int] = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Optional[int] = mlp_ratio snake_case_ : Tuple = attention_drop_rate snake_case_ : str = drop_rate snake_case_ : Tuple = drop_path_rate snake_case_ : Any = qkv_bias snake_case_ : Union[str, Any] = cls_token snake_case_ : int = qkv_projection_method snake_case_ : Any = kernel_qkv snake_case_ : Union[str, Any] = padding_kv snake_case_ : str = stride_kv snake_case_ : Dict = padding_q snake_case_ : Tuple = stride_q snake_case_ : Any = initializer_range snake_case_ : Any = layer_norm_eps
656
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCamelCase : str = 128022 __lowerCamelCase : List[Any] = 128028 @require_sentencepiece class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MaMaaaTokenizer a__ = False a__ = False a__ = True def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Optional[int] = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' return ( "This is a test", "This is a test", ) def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = "</s>" snake_case_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def _A ( self :Optional[int] ) -> int: '''simple docstring''' snake_case_ : int = self.get_tokenizer() snake_case_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , ) snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , "This is a test" ) @slow def _A ( self :Any ) -> List[Any]: '''simple docstring''' snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): """simple docstring""" a__ = '''facebook/m2m100_418M''' a__ = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] a__ = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def _A ( cls :str ) -> int: '''simple docstring''' snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) snake_case_ : List[str] = 1 return cls def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def _A ( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.tokenizer.get_vocab() self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ ) def _A ( self :Any ) -> Dict: '''simple docstring''' snake_case_ : List[str] = "en" snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def _A ( self :Tuple ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : int = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ ) @require_torch def _A ( self :Optional[Any] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = "en" snake_case_ : Tuple = "fr" snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" ) snake_case_ : Dict = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case_ : str = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case_ : int = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _A ( self :str ) -> int: '''simple docstring''' snake_case_ : Dict = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case_ : Tuple = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
656
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __lowerCamelCase : str = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCamelCase : Dict = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __lowerCamelCase : int = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] snake_case_ : List[str] = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
656
1
'''simple docstring''' import socket def __UpperCAmelCase ( )-> Optional[int]: """simple docstring""" snake_case_ : Dict = socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) snake_case_ : Union[str, Any] = socket.gethostname() snake_case_ : Union[str, Any] = 1_2312 sock.connect((host, port) ) sock.send(B"Hello server!" ) with open("Received_file" ,"wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: snake_case_ : List[Any] = sock.recv(1024 ) if not data: break out_file.write(__magic_name__ ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
656
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Any = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } snake_case_ : int = Dataset.from_dict(__magic_name__ ) return dataset class A_ (a_ ): """simple docstring""" def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = get_dataset() snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = get_dataset() snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) print(lowerCAmelCase__ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
656
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Optional[int] = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] snake_case_ : List[Any] = True if "large" in model_name or "huge" in model_name else False snake_case_ : List[Any] = True if "large" in model_name or "huge" in model_name else False snake_case_ : int = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: snake_case_ : List[Any] = [3, 3, 3, 3] snake_case_ : Any = [5, 5, 5, 5] elif "fl4" in model_name: snake_case_ : int = [4, 4, 4, 4] snake_case_ : Optional[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: snake_case_ : str = [3, 3, 3, 3] if "lrf" in model_name: snake_case_ : List[Any] = [3, 3, 3, 3] else: snake_case_ : List[Any] = [2, 2, 2, 2] if "tiny" in model_name: snake_case_ : List[Any] = 96 elif "small" in model_name: snake_case_ : Any = 96 elif "base" in model_name: snake_case_ : str = 128 elif "large" in model_name: snake_case_ : List[Any] = 192 elif "xlarge" in model_name: snake_case_ : int = 256 elif "huge" in model_name: snake_case_ : str = 352 # set label information snake_case_ : int = "huggingface/label-files" if "large" in model_name or "huge" in model_name: snake_case_ : List[Any] = "imagenet-22k-id2label.json" else: snake_case_ : List[str] = "imagenet-1k-id2label.json" snake_case_ : Union[str, Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : str = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : str = {v: k for k, v in idalabel.items()} snake_case_ : int = FocalNetConfig( embed_dim=__magic_name__ ,depths=__magic_name__ ,focal_levels=__magic_name__ ,focal_windows=__magic_name__ ,use_conv_embed=__magic_name__ ,idalabel=__magic_name__ ,labelaid=__magic_name__ ,use_post_layernorm=__magic_name__ ,use_layerscale=__magic_name__ ,) return config def __UpperCAmelCase ( __magic_name__ )-> List[str]: """simple docstring""" if "patch_embed.proj" in name: snake_case_ : Union[str, Any] = name.replace("patch_embed.proj" ,"embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: snake_case_ : Tuple = name.replace("patch_embed.norm" ,"embeddings.norm" ) if "layers" in name: snake_case_ : Optional[int] = "encoder." + name if "encoder.layers" in name: snake_case_ : Tuple = name.replace("encoder.layers" ,"encoder.stages" ) if "downsample.proj" in name: snake_case_ : Tuple = name.replace("downsample.proj" ,"downsample.projection" ) if "blocks" in name: snake_case_ : int = name.replace("blocks" ,"layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: snake_case_ : List[Any] = name.replace("modulation.f" ,"modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: snake_case_ : str = name.replace("modulation.h" ,"modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: snake_case_ : int = name.replace("modulation.proj" ,"modulation.projection_out" ) if name == "norm.weight": snake_case_ : Any = "layernorm.weight" if name == "norm.bias": snake_case_ : Any = "layernorm.bias" if "head" in name: snake_case_ : Optional[Any] = name.replace("head" ,"classifier" ) else: snake_case_ : List[str] = "focalnet." + name return name def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=False )-> Dict: """simple docstring""" snake_case_ : Tuple = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on snake_case_ : Any = model_name_to_url[model_name] print("Checkpoint URL: " ,__magic_name__ ) snake_case_ : Union[str, Any] = torch.hub.load_state_dict_from_url(__magic_name__ ,map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): snake_case_ : Optional[int] = state_dict.pop(__magic_name__ ) snake_case_ : List[str] = val snake_case_ : str = get_focalnet_config(__magic_name__ ) snake_case_ : List[Any] = FocalNetForImageClassification(__magic_name__ ) model.eval() # load state dict model.load_state_dict(__magic_name__ ) # verify conversion snake_case_ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ : Any = BitImageProcessor( do_resize=__magic_name__ ,size={"shortest_edge": 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=__magic_name__ ,crop_size=224 ,do_normalize=__magic_name__ ,image_mean=__magic_name__ ,image_std=__magic_name__ ,) snake_case_ : Any = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw ) snake_case_ : Tuple = processor(images=__magic_name__ ,return_tensors="pt" ) snake_case_ : Union[str, Any] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) snake_case_ : Optional[Any] = image_transforms(__magic_name__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,__magic_name__ ,atol=1E-4 ) snake_case_ : int = model(**__magic_name__ ) snake_case_ : Dict = outputs.logits.argmax(-1 ).item() print("Predicted class:" ,model.config.idalabel[predicted_class_idx] ) print("First values of logits:" ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": snake_case_ : Tuple = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": snake_case_ : Optional[Any] = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": snake_case_ : List[Any] = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": snake_case_ : Optional[int] = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": snake_case_ : List[Any] = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": snake_case_ : List[str] = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,__magic_name__ ,atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) __lowerCamelCase : List[Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
656
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase : Dict = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } __lowerCamelCase : List[str] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } __lowerCamelCase : Optional[int] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class A_ (a_ ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_INIT_CONFIGURATION a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = BertTokenizer def __init__( self :int , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[str]="[UNK]" , lowerCAmelCase__ :List[str]="[SEP]" , lowerCAmelCase__ :int="[PAD]" , lowerCAmelCase__ :Optional[int]="[CLS]" , lowerCAmelCase__ :List[str]="[MASK]" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Any=None , **lowerCAmelCase__ :List[Any] , ) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) snake_case_ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase__ ) != tokenize_chinese_chars ): snake_case_ : Dict = getattr(lowerCAmelCase__ , normalizer_state.pop("type" ) ) snake_case_ : int = do_lower_case snake_case_ : Tuple = strip_accents snake_case_ : int = tokenize_chinese_chars snake_case_ : Dict = normalizer_class(**lowerCAmelCase__ ) snake_case_ : Dict = do_lower_case def _A ( self :List[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str]=None ) -> List[Any]: '''simple docstring''' snake_case_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _A ( self :List[Any] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case_ : Optional[Any] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : Optional[Any] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
656
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> list[int]: """simple docstring""" if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__magic_name__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
656
1
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ (a_ ): """simple docstring""" a__ = (DDIMParallelScheduler,) a__ = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def _A ( self :Optional[Any] , **lowerCAmelCase__ :Dict ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowerCAmelCase__ ) return config def _A ( self :Any , **lowerCAmelCase__ :Optional[int] ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.scheduler_classes[0] snake_case_ : Tuple = self.get_scheduler_config(**lowerCAmelCase__ ) snake_case_ : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) snake_case_, snake_case_ : Union[str, Any] = 10, 0.0 snake_case_ : Any = self.dummy_model() snake_case_ : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__ ) for t in scheduler.timesteps: snake_case_ : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample return sample def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _A ( self :List[str] ) -> Optional[int]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase__ ) snake_case_ : Union[str, Any] = self.scheduler_classes[0] snake_case_ : str = self.get_scheduler_config(steps_offset=1 ) snake_case_ : Tuple = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _A ( self :Any ) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> int: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase__ ) def _A ( self :Optional[int] ) -> int: '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> int: '''simple docstring''' self.check_over_configs(thresholding=lowerCAmelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase__ , prediction_type=lowerCAmelCase__ , sample_max_value=lowerCAmelCase__ , ) def _A ( self :List[str] ) -> Dict: '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ ) def _A ( self :int ) -> Union[str, Any]: '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCAmelCase__ , eta=lowerCAmelCase__ ) def _A ( self :List[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = self.scheduler_classes[0] snake_case_ : Any = self.get_scheduler_config() snake_case_ : str = scheduler_class(**lowerCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4_7_7_1 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2_4_6_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.0_2 ) ) < 1E-5 def _A ( self :List[str] ) -> Tuple: '''simple docstring''' snake_case_ : str = self.scheduler_classes[0] snake_case_ : Optional[Any] = self.get_scheduler_config() snake_case_ : Tuple = scheduler_class(**lowerCAmelCase__ ) snake_case_, snake_case_ : Any = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase__ ) snake_case_ : Optional[int] = self.dummy_model() snake_case_ : Tuple = self.dummy_sample_deter snake_case_ : str = self.dummy_sample_deter + 0.1 snake_case_ : Optional[Any] = self.dummy_sample_deter - 0.1 snake_case_ : int = samplea.shape[0] snake_case_ : List[str] = torch.stack([samplea, samplea, samplea] , dim=0 ) snake_case_ : int = torch.arange(lowerCAmelCase__ )[0:3, None].repeat(1 , lowerCAmelCase__ ) snake_case_ : Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) snake_case_ : List[Any] = scheduler.batch_step_no_noise(lowerCAmelCase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCAmelCase__ ) snake_case_ : Any = torch.sum(torch.abs(lowerCAmelCase__ ) ) snake_case_ : List[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1E-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1E-3 def _A ( self :Tuple ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = self.full_loop() snake_case_ : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) snake_case_ : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1E-3 def _A ( self :int ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = self.full_loop(prediction_type="v_prediction" ) snake_case_ : str = torch.sum(torch.abs(lowerCAmelCase__ ) ) snake_case_ : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1E-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1E-3 def _A ( self :Optional[int] ) -> str: '''simple docstring''' snake_case_ : List[Any] = self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.0_1 ) snake_case_ : Union[str, Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) snake_case_ : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1E-3 def _A ( self :Dict ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.0_1 ) snake_case_ : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) snake_case_ : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1E-3
656
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __magic_name__=None )-> List[str]: """simple docstring""" if subparsers is not None: snake_case_ : List[str] = subparsers.add_parser("test" ) else: snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" ,default=__magic_name__ ,help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) ,) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: snake_case_ : str = script_name else: snake_case_ : Any = F'''--config_file={args.config_file} {script_name}''' snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split() snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Dict = test_command_parser() snake_case_ : Dict = parser.parse_args() test_command(__magic_name__ ) if __name__ == "__main__": main()
656
1
'''simple docstring''' import os def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Any = os.path.dirname(os.path.realpath(__magic_name__ ) ) snake_case_ : List[Any] = os.path.join(__magic_name__ ,"triangle.txt" ) with open(__magic_name__ ) as f: snake_case_ : List[Any] = f.readlines() snake_case_ : Tuple = [] for line in triangle: snake_case_ : Any = [] for number in line.strip().split(" " ): numbers_from_line.append(int(__magic_name__ ) ) a.append(__magic_name__ ) for i in range(1 ,len(__magic_name__ ) ): for j in range(len(a[i] ) ): snake_case_ : Any = a[i - 1][j] if j != len(a[i - 1] ) else 0 snake_case_ : Optional[Any] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__magic_name__ ,__magic_name__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
656
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCamelCase : str = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __lowerCamelCase : int = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __lowerCamelCase : List[str] = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
656
1
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Dict ) -> List[str]: '''simple docstring''' snake_case_ : int = {} def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case_ : Optional[int] = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): snake_case_ : Dict = [] def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str: '''simple docstring''' if s == d: return [] snake_case_ : str = [] snake_case_ : Optional[int] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int: '''simple docstring''' if c == -1: snake_case_ : Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : Tuple = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = [] snake_case_ : str = [] if s == -2: snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Any = [] snake_case_ : str = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Optional[int] = -2 snake_case_ : Any = [] snake_case_ : List[Any] = s snake_case_ : int = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[str] = s snake_case_ : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : str = -2 snake_case_ : List[str] = [] snake_case_ : List[Any] = s snake_case_ : List[str] = False snake_case_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Tuple = True if len(lowerCAmelCase__ ) != 0: snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str: '''simple docstring''' snake_case_ : Optional[int] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Optional[Any] = time() return end - begin def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Any = time() return end - begin class A_ : """simple docstring""" def __init__( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = {} def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case_ : str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case_ : List[str] = [[w, u]] def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int: '''simple docstring''' if s == d: return [] snake_case_ : Any = [] snake_case_ : Dict = [] if s == -2: snake_case_ : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]: '''simple docstring''' if c == -1: snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = [] snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : Optional[int] = [] snake_case_ : Tuple = s snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[int] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[Any] = s snake_case_ : Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : int = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : int = [] snake_case_ : int = s snake_case_ : Optional[Any] = False snake_case_ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = s snake_case_ : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Any ) -> Tuple: '''simple docstring''' return list(self.graph ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str: '''simple docstring''' snake_case_ : List[str] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = time() return end - begin def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int: '''simple docstring''' snake_case_ : List[str] = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Tuple = time() return end - begin
656
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCamelCase : str = 128022 __lowerCamelCase : List[Any] = 128028 @require_sentencepiece class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MaMaaaTokenizer a__ = False a__ = False a__ = True def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Optional[int] = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' return ( "This is a test", "This is a test", ) def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = "</s>" snake_case_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def _A ( self :Optional[int] ) -> int: '''simple docstring''' snake_case_ : int = self.get_tokenizer() snake_case_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , ) snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , "This is a test" ) @slow def _A ( self :Any ) -> List[Any]: '''simple docstring''' snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): """simple docstring""" a__ = '''facebook/m2m100_418M''' a__ = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] a__ = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def _A ( cls :str ) -> int: '''simple docstring''' snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) snake_case_ : List[str] = 1 return cls def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def _A ( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.tokenizer.get_vocab() self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ ) def _A ( self :Any ) -> Dict: '''simple docstring''' snake_case_ : List[str] = "en" snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def _A ( self :Tuple ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : int = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ ) @require_torch def _A ( self :Optional[Any] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = "en" snake_case_ : Tuple = "fr" snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" ) snake_case_ : Dict = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case_ : str = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case_ : int = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _A ( self :str ) -> int: '''simple docstring''' snake_case_ : Dict = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case_ : Tuple = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
656
1
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __lowerCamelCase : str = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } __lowerCamelCase : int = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } __lowerCamelCase : Tuple = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } __lowerCamelCase : Dict = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } __lowerCamelCase : Optional[int] = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } __lowerCamelCase : Optional[int] = { '''num_train_timesteps''': 151, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" if isinstance(__magic_name__ ,__magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__=False )-> str: """simple docstring""" snake_case_ : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] snake_case_ : Dict = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] snake_case_ : List[Any] = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] snake_case_ : Tuple = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] snake_case_ : Optional[Any] = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] snake_case_ : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] snake_case_ : List[str] = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] snake_case_ : int = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] snake_case_ : Any = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] snake_case_ : int = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: snake_case_ : List[str] = checkpoint[F'''{old_prefix}.skip_connection.weight'''] snake_case_ : str = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__=None )-> Union[str, Any]: """simple docstring""" snake_case_, snake_case_, snake_case_ : Any = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 ,dim=0 ) snake_case_, snake_case_, snake_case_ : Optional[int] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 ,dim=0 ) snake_case_ : Optional[int] = checkpoint[F'''{old_prefix}.norm.weight'''] snake_case_ : str = checkpoint[F'''{old_prefix}.norm.bias'''] snake_case_ : int = weight_q.squeeze(-1 ).squeeze(-1 ) snake_case_ : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) snake_case_ : Optional[int] = weight_k.squeeze(-1 ).squeeze(-1 ) snake_case_ : Any = bias_k.squeeze(-1 ).squeeze(-1 ) snake_case_ : Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) snake_case_ : Union[str, Any] = bias_v.squeeze(-1 ).squeeze(-1 ) snake_case_ : Dict = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) snake_case_ : Optional[Any] = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[int] = torch.load(__magic_name__ ,map_location="cpu" ) snake_case_ : Tuple = {} snake_case_ : Any = checkpoint["time_embed.0.weight"] snake_case_ : Union[str, Any] = checkpoint["time_embed.0.bias"] snake_case_ : Tuple = checkpoint["time_embed.2.weight"] snake_case_ : Optional[Any] = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: snake_case_ : Union[str, Any] = checkpoint["label_emb.weight"] snake_case_ : Optional[int] = checkpoint["input_blocks.0.0.weight"] snake_case_ : Dict = checkpoint["input_blocks.0.0.bias"] snake_case_ : Any = unet_config["down_block_types"] snake_case_ : Union[str, Any] = unet_config["layers_per_block"] snake_case_ : Optional[int] = unet_config["attention_head_dim"] snake_case_ : List[str] = unet_config["block_out_channels"] snake_case_ : Any = 1 snake_case_ : int = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): snake_case_ : int = channels_list[i] snake_case_ : Any = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): snake_case_ : str = F'''down_blocks.{i}.resnets.{j}''' snake_case_ : Optional[int] = F'''input_blocks.{current_layer}.0''' snake_case_ : List[str] = True if j == 0 and downsample_block_has_skip else False snake_case_ : Optional[Any] = convert_resnet(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): snake_case_ : Dict = F'''down_blocks.{i}.resnets.{j}''' snake_case_ : List[Any] = F'''input_blocks.{current_layer}.0''' snake_case_ : int = True if j == 0 and downsample_block_has_skip else False snake_case_ : Dict = convert_resnet(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,has_skip=__magic_name__ ) snake_case_ : List[Any] = F'''down_blocks.{i}.attentions.{j}''' snake_case_ : List[str] = F'''input_blocks.{current_layer}.1''' snake_case_ : Dict = convert_attention( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: snake_case_ : Optional[Any] = F'''down_blocks.{i}.downsamplers.0''' snake_case_ : List[str] = F'''input_blocks.{current_layer}.0''' snake_case_ : int = convert_resnet(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) current_layer += 1 snake_case_ : Any = current_channels # hardcoded the mid-block for now snake_case_ : Optional[Any] = "mid_block.resnets.0" snake_case_ : int = "middle_block.0" snake_case_ : Optional[Any] = convert_resnet(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : int = "mid_block.attentions.0" snake_case_ : Optional[int] = "middle_block.1" snake_case_ : Dict = convert_attention(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Dict = "mid_block.resnets.1" snake_case_ : Tuple = "middle_block.2" snake_case_ : Dict = convert_resnet(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Tuple = 0 snake_case_ : Union[str, Any] = unet_config["up_block_types"] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): snake_case_ : Tuple = F'''up_blocks.{i}.resnets.{j}''' snake_case_ : Any = F'''output_blocks.{current_layer}.0''' snake_case_ : str = convert_resnet(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: snake_case_ : Optional[int] = F'''up_blocks.{i}.upsamplers.0''' snake_case_ : Any = F'''output_blocks.{current_layer-1}.1''' snake_case_ : Tuple = convert_resnet(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): snake_case_ : Tuple = F'''up_blocks.{i}.resnets.{j}''' snake_case_ : int = F'''output_blocks.{current_layer}.0''' snake_case_ : Optional[int] = convert_resnet(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,has_skip=__magic_name__ ) snake_case_ : Dict = F'''up_blocks.{i}.attentions.{j}''' snake_case_ : Optional[int] = F'''output_blocks.{current_layer}.1''' snake_case_ : Any = convert_attention( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: snake_case_ : Optional[Any] = F'''up_blocks.{i}.upsamplers.0''' snake_case_ : Optional[int] = F'''output_blocks.{current_layer-1}.2''' snake_case_ : int = convert_resnet(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : List[str] = checkpoint["out.0.weight"] snake_case_ : Optional[int] = checkpoint["out.0.bias"] snake_case_ : Dict = checkpoint["out.2.weight"] snake_case_ : List[str] = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : Dict = strabool(args.class_cond) __lowerCamelCase : Dict = os.path.basename(args.unet_path) print(f'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: __lowerCamelCase : List[Any] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCamelCase : Union[str, Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __lowerCamelCase : List[Any] = TEST_UNET_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: __lowerCamelCase : List[str] = None __lowerCamelCase : Any = con_pt_to_diffuser(args.unet_path, unet_config) __lowerCamelCase : List[Any] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __lowerCamelCase : List[str] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __lowerCamelCase : Optional[Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCamelCase : Dict = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') __lowerCamelCase : Optional[int] = CMStochasticIterativeScheduler(**scheduler_config) __lowerCamelCase : Dict = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
656
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCamelCase : str = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCamelCase : Tuple = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Tuple = SavedModel() snake_case_ : Dict = [] with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f: snake_case_ : Dict = json.load(__magic_name__ )["opsets"] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ ,"rb" ) as f: saved_model.ParseFromString(f.read() ) snake_case_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case_ : str = sorted(__magic_name__ ) snake_case_ : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__magic_name__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__magic_name__ ,sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __lowerCamelCase : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
656
1
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __lowerCamelCase : Dict = 10 def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" for i in range(__magic_name__ ,__magic_name__ ): if array[i] == target: return i return -1 def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Dict = 0 snake_case_ : List[str] = len(__magic_name__ ) while left <= right: if right - left < precision: return lin_search(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : int = (left + right) // 3 + 1 snake_case_ : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: snake_case_ : Any = one_third - 1 elif array[two_third] < target: snake_case_ : int = two_third + 1 else: snake_case_ : Optional[Any] = one_third + 1 snake_case_ : str = two_third - 1 else: return -1 def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" if left < right: if right - left < precision: return lin_search(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Union[str, Any] = (left + right) // 3 + 1 snake_case_ : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__magic_name__ ,one_third - 1 ,__magic_name__ ,__magic_name__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 ,__magic_name__ ,__magic_name__ ,__magic_name__ ) else: return rec_ternary_search(one_third + 1 ,two_third - 1 ,__magic_name__ ,__magic_name__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() __lowerCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __lowerCamelCase : List[Any] = int(input('''Enter the number to be found in the list:\n''').strip()) __lowerCamelCase : int = ite_ternary_search(collection, target) __lowerCamelCase : Dict = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
656
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) __lowerCamelCase : List[str] = ['''names''', '''prefix'''] __lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines'''] __lowerCamelCase : Optional[Any] = ['''date_format'''] @dataclass class A_ (datasets.BuilderConfig ): """simple docstring""" a__ = "," a__ = None a__ = "infer" a__ = None a__ = None a__ = None a__ = None a__ = None a__ = True a__ = None a__ = None a__ = None a__ = None a__ = False a__ = None a__ = None a__ = None a__ = True a__ = True a__ = False a__ = True a__ = None a__ = "." a__ = None a__ = '"' a__ = 0 a__ = None a__ = None a__ = None a__ = None a__ = True a__ = True a__ = 0 a__ = True a__ = False a__ = None a__ = 10000 a__ = None a__ = "strict" a__ = "error" a__ = None def _A ( self :List[str] ) -> Any: '''simple docstring''' if self.delimiter is not None: snake_case_ : Tuple = self.delimiter if self.column_names is not None: snake_case_ : List[Any] = self.column_names @property def _A ( self :Optional[Any] ) -> int: '''simple docstring''' snake_case_ : Optional[int] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A_ (datasets.ArrowBasedBuilder ): """simple docstring""" a__ = CsvConfig def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): snake_case_ : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : List[str] = [files] snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ : str = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : str = [files] snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: snake_case_ : int = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case_ : str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' ) raise
656
1
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : Any = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __lowerCamelCase : Any = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = None # source code of `config_class` snake_case_ : List[Any] = inspect.getsource(__magic_name__ ) snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): snake_case_ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ : str = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case_ : Dict = ckpt_name break return checkpoint def __UpperCAmelCase ( )-> Dict: """simple docstring""" snake_case_ : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ ) snake_case_ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__magic_name__ ) if len(__magic_name__ ) > 0: snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
656
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MgpstrTokenizer a__ = False a__ = {} a__ = False def _A ( self :List[str] ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str: '''simple docstring''' snake_case_ : Dict = "tester" snake_case_ : Tuple = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _A ( self :Dict ) -> str: '''simple docstring''' pass def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ) snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _A ( self :Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _A ( self :int ) -> Dict: '''simple docstring''' pass
656
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : List[str] = {'''vocab_file''': '''spiece.model'''} __lowerCamelCase : str = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class A_ (a_ ): """simple docstring""" def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Union[str, Any]="<s>" , lowerCAmelCase__ :List[str]="</s>" , lowerCAmelCase__ :List[str]="<unk>" , lowerCAmelCase__ :Union[str, Any]="<sep>" , lowerCAmelCase__ :List[str]="<pad>" , lowerCAmelCase__ :str="<cls>" , lowerCAmelCase__ :Dict="<mask>" , lowerCAmelCase__ :Optional[Any]=["<eop>", "<eod>"] , lowerCAmelCase__ :Optional[Dict[str, Any]] = None , **lowerCAmelCase__ :Union[str, Any] , ) -> None: '''simple docstring''' snake_case_ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token snake_case_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) snake_case_ : Union[str, Any] = 3 snake_case_ : str = do_lower_case snake_case_ : Tuple = remove_space snake_case_ : Tuple = keep_accents snake_case_ : Tuple = vocab_file snake_case_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) snake_case_ : Any = jieba snake_case_ : Dict = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _A ( self :List[str] ) -> str: '''simple docstring''' return len(self.sp_model ) def _A ( self :str ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Optional[Any] ) -> int: '''simple docstring''' snake_case_ : Optional[int] = self.__dict__.copy() snake_case_ : Optional[Any] = None return state def __setstate__( self :int , lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case_ : Any = {} snake_case_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A ( self :Union[str, Any] , lowerCAmelCase__ :str ) -> Dict: '''simple docstring''' if self.remove_space: snake_case_ : Dict = " ".join(inputs.strip().split() ) else: snake_case_ : Union[str, Any] = inputs snake_case_ : List[Any] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: snake_case_ : int = unicodedata.normalize("NFKD" , lowerCAmelCase__ ) snake_case_ : Optional[Any] = "".join([c for c in outputs if not unicodedata.combining(lowerCAmelCase__ )] ) if self.do_lower_case: snake_case_ : Optional[int] = outputs.lower() return outputs def _A ( self :Union[str, Any] , lowerCAmelCase__ :str ) -> List[str]: '''simple docstring''' snake_case_ : str = self.preprocess_text(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) snake_case_ : Optional[Any] = [] for piece in pieces: if len(lowerCAmelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): snake_case_ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ : int = cur_pieces[1:] else: snake_case_ : str = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCAmelCase__ ) else: new_pieces.append(lowerCAmelCase__ ) return new_pieces def _A ( self :Any , lowerCAmelCase__ :Optional[int] ) -> List[Any]: '''simple docstring''' return self.sp_model.PieceToId(lowerCAmelCase__ ) def _A ( self :int , lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.sp_model.IdToPiece(lowerCAmelCase__ ) def _A ( self :List[Any] , lowerCAmelCase__ :Any ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = "".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , " " ).strip() return out_string def _A ( self :Optional[Any] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case_ : Optional[Any] = [self.sep_token_id] snake_case_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _A ( self :Dict , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is not None: return ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] return ([0] * len(lowerCAmelCase__ )) + [1, 1] def _A ( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case_ : str = [self.sep_token_id] snake_case_ : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _A ( self :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : Optional[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , "wb" ) as fi: snake_case_ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def _A ( self :List[str] , *lowerCAmelCase__ :List[str] , **lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = super()._decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) snake_case_ : List[str] = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
656
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: snake_case_ : int = ( "Wrong input data's dimensions... " F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__magic_name__ ) try: if dataset.shape[1] != value_array.shape[1]: snake_case_ : Dict = ( "Wrong input data's shape... " F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__magic_name__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: snake_case_ : Dict = ( "Input data have different datatype... " F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__magic_name__ ) snake_case_ : Optional[int] = [] for value in value_array: snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] ) snake_case_ : int = dataset[0].tolist() for dataset_value in dataset[1:]: snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ ) if dist > temp_dist: snake_case_ : Tuple = temp_dist snake_case_ : Optional[int] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ )) if __name__ == "__main__": import doctest doctest.testmod()
656
1
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow __lowerCamelCase : Optional[Any] = False class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any , lowerCAmelCase__ :Optional[int]=32 ) -> Optional[Any]: '''simple docstring''' set_seed(0 ) snake_case_ : Dict = UNetaDModel(sample_size=lowerCAmelCase__ , in_channels=3 , out_channels=3 ) snake_case_ : List[Any] = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1 ) return model, optimizer @slow def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable snake_case_ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule="linear" , clip_sample=lowerCAmelCase__ , ) snake_case_ : List[str] = DDIMScheduler( num_train_timesteps=1_000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule="linear" , clip_sample=lowerCAmelCase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) snake_case_ : Any = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(lowerCAmelCase__ ) for _ in range(4 )] snake_case_ : Optional[Any] = [torch.randn((4, 3, 32, 32) ).to(lowerCAmelCase__ ) for _ in range(4 )] snake_case_ : Any = [torch.randint(0 , 1_000 , (4,) ).long().to(lowerCAmelCase__ ) for _ in range(4 )] # train with a DDPM scheduler snake_case_, snake_case_ : int = self.get_model_optimizer(resolution=32 ) model.train().to(lowerCAmelCase__ ) for i in range(4 ): optimizer.zero_grad() snake_case_ : Union[str, Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) snake_case_ : Dict = model(lowerCAmelCase__ , timesteps[i] ).sample snake_case_ : List[Any] = torch.nn.functional.mse_loss(lowerCAmelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM snake_case_, snake_case_ : str = self.get_model_optimizer(resolution=32 ) model.train().to(lowerCAmelCase__ ) for i in range(4 ): optimizer.zero_grad() snake_case_ : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) snake_case_ : str = model(lowerCAmelCase__ , timesteps[i] ).sample snake_case_ : Dict = torch.nn.functional.mse_loss(lowerCAmelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) )
656
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()] snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )] snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ ) if save_path is not None: save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
656
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class A_ (a_ , a_ ): """simple docstring""" a__ = '''convnextv2''' def __init__( self :str , lowerCAmelCase__ :str=3 , lowerCAmelCase__ :Optional[Any]=4 , lowerCAmelCase__ :List[Any]=4 , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :List[Any]="gelu" , lowerCAmelCase__ :Optional[Any]=0.0_2 , lowerCAmelCase__ :List[Any]=1E-1_2 , lowerCAmelCase__ :int=0.0 , lowerCAmelCase__ :Tuple=224 , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :str=None , **lowerCAmelCase__ :Optional[Any] , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : Optional[Any] = num_channels snake_case_ : Any = patch_size snake_case_ : Dict = num_stages snake_case_ : Tuple = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes snake_case_ : List[Any] = [3, 3, 9, 3] if depths is None else depths snake_case_ : Optional[Any] = hidden_act snake_case_ : Optional[Any] = initializer_range snake_case_ : Dict = layer_norm_eps snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : Union[str, Any] = image_size snake_case_ : List[str] = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] snake_case_, snake_case_ : int = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
656
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ ) snake_case_ : Any = val def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) snake_case_ : int = value else: snake_case_ : int = value return new_state_dict def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]: """simple docstring""" snake_case_ : str = "" if is_panoptic: snake_case_ : Dict = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Tuple = in_proj_weight[:256, :] snake_case_ : List[Any] = in_proj_bias[:256] snake_case_ : Optional[Any] = in_proj_weight[256:512, :] snake_case_ : Optional[int] = in_proj_bias[256:512] snake_case_ : Optional[int] = in_proj_weight[-256:, :] snake_case_ : str = in_proj_bias[-256:] def __UpperCAmelCase ( )-> Optional[Any]: """simple docstring""" snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case_ : Optional[Any] = "resnet101" if "dc5" in model_name: snake_case_ : List[str] = True snake_case_ : Tuple = "panoptic" in model_name if is_panoptic: snake_case_ : List[Any] = 250 else: snake_case_ : Optional[Any] = 91 snake_case_ : Optional[int] = "huggingface/label-files" snake_case_ : Dict = "coco-detection-id2label.json" snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : Dict = {v: k for k, v in idalabel.items()} # load image processor snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection" snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image snake_case_ : str = prepare_img() snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" ) snake_case_ : Union[str, Any] = encoding["pixel_values"] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval() snake_case_ : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case_ : Any = "conditional_detr." + src rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Tuple = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : int = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case_ : Tuple = state_dict.pop(__magic_name__ ) snake_case_ : Any = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val # finally, create HuggingFace model and load state dict snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" ) # verify our conversion snake_case_ : Dict = conditional_detr(__magic_name__ ) snake_case_ : Union[str, Any] = model(__magic_name__ ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowerCamelCase : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
656
1
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: snake_case_ : int = ( "Wrong input data's dimensions... " F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__magic_name__ ) try: if dataset.shape[1] != value_array.shape[1]: snake_case_ : Dict = ( "Wrong input data's shape... " F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__magic_name__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: snake_case_ : Dict = ( "Input data have different datatype... " F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__magic_name__ ) snake_case_ : Optional[int] = [] for value in value_array: snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] ) snake_case_ : int = dataset[0].tolist() for dataset_value in dataset[1:]: snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ ) if dist > temp_dist: snake_case_ : Tuple = temp_dist snake_case_ : Optional[int] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ )) if __name__ == "__main__": import doctest doctest.testmod()
656
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Any = 1 snake_case_ : Dict = 3 snake_case_ : Union[str, Any] = (32, 32) snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _A ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _A ( self :Dict ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def _A ( self :Any ) -> str: '''simple docstring''' def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ): class A_ : """simple docstring""" def __init__( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.ones([0] ) def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ : str = self.dummy_cond_unet snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : Dict = self.dummy_vae snake_case_ : Dict = self.dummy_text_encoder snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : str = 77 snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ ) snake_case_ : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Dict = "A painting of a squirrel eating a burger" snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ) snake_case_ : Any = output.images snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Optional[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.dummy_cond_unet snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : int = self.dummy_vae snake_case_ : List[Any] = self.dummy_text_encoder snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : int = 77 snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 snake_case_ : Optional[Any] = unet.half() snake_case_ : Tuple = vae.half() snake_case_ : List[str] = bert.half() # make sure here that pndm scheduler skips prk snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[Any] = "A painting of a squirrel eating a burger" snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Any = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ : str = init_image.resize((760, 504) ) snake_case_ : Optional[Any] = "BAAI/AltDiffusion" snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : str = output.images[0] snake_case_ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : List[Any] = init_image.resize((768, 512) ) snake_case_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) snake_case_ : Any = "BAAI/AltDiffusion" snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
656
1
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A_ (nn.Module ): """simple docstring""" def __init__( self :Optional[int] , lowerCAmelCase__ :nn.Module , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' super().__init__() snake_case_ : int = module snake_case_ : Dict = nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase__ , bias=lowerCAmelCase__ ) , nn.Linear(lowerCAmelCase__ , module.out_features , bias=lowerCAmelCase__ ) , ) snake_case_ : List[str] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase__ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _A ( self :Optional[int] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Tuple ) -> List[str]: '''simple docstring''' return self.module(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) + self.adapter(lowerCAmelCase__ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A_ (unittest.TestCase ): """simple docstring""" a__ = '''bigscience/bloom-1b7''' # Constant values a__ = 2.109659552692574 a__ = '''Hello my name is''' a__ = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) a__ = 10 def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(self.model_name ) class A_ (a_ ): """simple docstring""" def _A ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer snake_case_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) snake_case_ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) def _A ( self :Any ) -> Any: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _A ( self :Dict ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase__ , "quantization_config" ) ) snake_case_ : List[Any] = config.to_dict() snake_case_ : Optional[int] = config.to_diff_dict() snake_case_ : int = config.to_json_string() def _A ( self :List[str] ) -> int: '''simple docstring''' from bitsandbytes.nn import Paramsabit snake_case_ : Union[str, Any] = self.model_fpaa.get_memory_footprint() snake_case_ : Any = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) snake_case_ : str = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _A ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase__ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ) snake_case_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase__ ) , self.EXPECTED_OUTPUTS ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = BitsAndBytesConfig() snake_case_ : int = True snake_case_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase__ , device_map="auto" ) snake_case_ : List[str] = self.tokenizer(self.input_text , return_tensors="pt" ) snake_case_ : Any = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase__ ) , self.EXPECTED_OUTPUTS ) def _A ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase__ ) def _A ( self :Optional[int] ) -> str: '''simple docstring''' snake_case_ : Tuple = BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase__ ): snake_case_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase__ , load_in_abit=lowerCAmelCase__ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def _A ( self :Any ) -> int: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(lowerCAmelCase__ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase__ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(lowerCAmelCase__ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase__ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything snake_case_ : Any = self.tokenizer(self.input_text , return_tensors="pt" ) snake_case_ : Optional[Any] = self.model_fpaa.to(torch.floataa ) snake_case_ : Optional[int] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error snake_case_ : Union[str, Any] = self.model_fpaa.to("cpu" ) # Check this does not throw an error snake_case_ : Optional[Any] = self.model_fpaa.half() # Check this does not throw an error snake_case_ : int = self.model_fpaa.float() def _A ( self :Optional[Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCAmelCase__ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A_ (unittest.TestCase ): """simple docstring""" @classmethod def _A ( cls :List[Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = "t5-small" snake_case_ : Union[str, Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense snake_case_ : int = AutoTokenizer.from_pretrained(cls.model_name ) snake_case_ : str = "Translate in German: Hello, my dog is cute" def _A ( self :int ) -> Optional[Any]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def _A ( self :Dict ) -> Any: '''simple docstring''' from transformers import TaForConditionalGeneration snake_case_ : List[Any] = TaForConditionalGeneration._keep_in_fpaa_modules snake_case_ : Optional[Any] = None # test with `t5-small` snake_case_ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) snake_case_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) snake_case_ : int = model.generate(**lowerCAmelCase__ ) # test with `flan-t5-small` snake_case_ : Tuple = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) snake_case_ : List[str] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) snake_case_ : Optional[Any] = model.generate(**lowerCAmelCase__ ) snake_case_ : List[str] = modules def _A ( self :Tuple ) -> Any: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` snake_case_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) snake_case_ : Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) snake_case_ : List[str] = model.generate(**lowerCAmelCase__ ) # test with `flan-t5-small` snake_case_ : Tuple = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) snake_case_ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) snake_case_ : Optional[Any] = model.generate(**lowerCAmelCase__ ) class A_ (a_ ): """simple docstring""" def _A ( self :List[str] ) -> List[str]: '''simple docstring''' super().setUp() # model_name snake_case_ : Union[str, Any] = "bigscience/bloom-560m" snake_case_ : Optional[Any] = "t5-small" # Different types of model snake_case_ : Optional[int] = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) # Sequence classification model snake_case_ : str = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) # CausalLM model snake_case_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) # Seq2seq model snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _A ( self :Any ) -> Dict: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A_ (a_ ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' super().setUp() def _A ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def _A ( self :Any ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass snake_case_ : Dict = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A_ (a_ ): """simple docstring""" def _A ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().setUp() def _A ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' snake_case_ : Any = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase__ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model snake_case_ : Any = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch snake_case_ : Tuple = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase__ ) , self.EXPECTED_OUTPUTS ) class A_ (a_ ): """simple docstring""" def _A ( self :List[Any] ) -> str: '''simple docstring''' snake_case_ : Dict = "facebook/opt-350m" super().setUp() def _A ( self :Any ) -> Tuple: '''simple docstring''' if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters snake_case_ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase__ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): snake_case_ : Optional[Any] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability snake_case_ : Optional[Any] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase__ ) ): snake_case_ : Union[str, Any] = LoRALayer(module.q_proj , rank=16 ) snake_case_ : Dict = LoRALayer(module.k_proj , rank=16 ) snake_case_ : Optional[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch snake_case_ : Optional[int] = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): snake_case_ : Optional[int] = model.forward(**lowerCAmelCase__ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase__ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A_ (a_ ): """simple docstring""" a__ = '''gpt2-xl''' a__ = 3.3191854854152187
656
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A_ (unittest.TestCase ): """simple docstring""" a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = ZeroShotClassificationPipeline( model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # No kwarg snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : str = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(1 ) ] , ) snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase__ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier(lowerCAmelCase__ , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , ) self.run_entailment_id(lowerCAmelCase__ ) def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = zero_shot_classifier.model.config snake_case_ : Optional[int] = config.labelaid snake_case_ : Tuple = zero_shot_classifier.entailment_id snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case_ : List[str] = original_labelaid self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id ) @require_torch def _A ( self :Tuple ) -> Any: '''simple docstring''' snake_case_ : List[Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) snake_case_ : int = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : List[str] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) snake_case_ : Optional[int] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _A ( self :Union[str, Any] ) -> int: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) snake_case_ : str = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Optional[int] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) snake_case_ : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Tuple = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
656
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : List[str] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class A_ (a_ ): """simple docstring""" a__ = '''megatron-bert''' def __init__( self :List[str] , lowerCAmelCase__ :str=29_056 , lowerCAmelCase__ :Tuple=1_024 , lowerCAmelCase__ :int=24 , lowerCAmelCase__ :Optional[Any]=16 , lowerCAmelCase__ :List[str]=4_096 , lowerCAmelCase__ :List[str]="gelu" , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :int=0.0_2 , lowerCAmelCase__ :Union[str, Any]=1E-1_2 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :List[Any]="absolute" , lowerCAmelCase__ :Tuple=True , **lowerCAmelCase__ :Dict , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) snake_case_ : int = vocab_size snake_case_ : str = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : List[Any] = hidden_act snake_case_ : Tuple = intermediate_size snake_case_ : List[str] = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : str = type_vocab_size snake_case_ : List[Any] = initializer_range snake_case_ : Dict = layer_norm_eps snake_case_ : List[Any] = position_embedding_type snake_case_ : str = use_cache
656
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ ) roberta.eval() # disable dropout snake_case_ : Dict = roberta.model.encoder.sentence_encoder snake_case_ : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__magic_name__ ) snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight snake_case_ : int = roberta_sent_encoder.embed_positions.weight snake_case_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case_ : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ : BertLayer = model.roberta.encoder.layer[i] snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] snake_case_ : RobertaAttention = layer.attention snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias # self attention snake_case_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight snake_case_ : Any = roberta_layer.self_attn.q_proj.bias snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight snake_case_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case_ : int = roberta_layer.final_layer_norm.weight snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate snake_case_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : List[str] = roberta_layer.fca.weight snake_case_ : List[Any] = roberta_layer.fca.bias # output snake_case_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : Any = roberta_layer.fca.weight snake_case_ : Any = roberta_layer.fca.bias # end of layer if classification_head: snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight snake_case_ : int = roberta.model.encoder.lm_head.dense.bias snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias snake_case_ : int = roberta.model.encoder.lm_head.weight snake_case_ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1 snake_case_ : Union[str, Any] = model(__magic_name__ )[0] if classification_head: snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) ) else: snake_case_ : List[str] = roberta.model(__magic_name__ )[0] print(our_output.shape ,their_output.shape ) snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : Tuple = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
656
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : List[str] = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class A_ (_lowerCamelCase ): """simple docstring""" a__ = '''luke''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any]=50_267 , lowerCAmelCase__ :List[Any]=500_000 , lowerCAmelCase__ :int=768 , lowerCAmelCase__ :Optional[Any]=256 , lowerCAmelCase__ :List[Any]=12 , lowerCAmelCase__ :Optional[Any]=12 , lowerCAmelCase__ :List[str]=3_072 , lowerCAmelCase__ :int="gelu" , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=512 , lowerCAmelCase__ :List[str]=2 , lowerCAmelCase__ :Dict=0.0_2 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :int=1 , lowerCAmelCase__ :Dict=0 , lowerCAmelCase__ :List[Any]=2 , **lowerCAmelCase__ :Any , ) -> int: '''simple docstring''' super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) snake_case_ : Union[str, Any] = vocab_size snake_case_ : Any = entity_vocab_size snake_case_ : str = hidden_size snake_case_ : List[str] = entity_emb_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Union[str, Any] = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : int = layer_norm_eps snake_case_ : str = use_entity_aware_attention snake_case_ : Optional[Any] = classifier_dropout
700
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]: """simple docstring""" snake_case_ : str = False snake_case_ : int = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): snake_case_ : Any = True elif "IPython" in sys.modules: snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: snake_case_ : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: snake_case_ : Tuple = 8 snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__magic_name__ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ): snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case_ : Any = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,): snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ ) start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
656
0
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[Any]: """simple docstring""" return 1 if input_a == input_a else 0 def __UpperCAmelCase ( )-> Union[str, Any]: """simple docstring""" assert xnor_gate(0 ,0 ) == 1 assert xnor_gate(0 ,1 ) == 0 assert xnor_gate(1 ,0 ) == 0 assert xnor_gate(1 ,1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
701
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Dict ) -> List[str]: '''simple docstring''' snake_case_ : int = {} def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case_ : Optional[int] = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): snake_case_ : Dict = [] def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str: '''simple docstring''' if s == d: return [] snake_case_ : str = [] snake_case_ : Optional[int] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int: '''simple docstring''' if c == -1: snake_case_ : Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : Tuple = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = [] snake_case_ : str = [] if s == -2: snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Any = [] snake_case_ : str = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Optional[int] = -2 snake_case_ : Any = [] snake_case_ : List[Any] = s snake_case_ : int = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[str] = s snake_case_ : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : str = -2 snake_case_ : List[str] = [] snake_case_ : List[Any] = s snake_case_ : List[str] = False snake_case_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Tuple = True if len(lowerCAmelCase__ ) != 0: snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str: '''simple docstring''' snake_case_ : Optional[int] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Optional[Any] = time() return end - begin def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Any = time() return end - begin class A_ : """simple docstring""" def __init__( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = {} def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case_ : str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case_ : List[str] = [[w, u]] def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int: '''simple docstring''' if s == d: return [] snake_case_ : Any = [] snake_case_ : Dict = [] if s == -2: snake_case_ : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]: '''simple docstring''' if c == -1: snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = [] snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : Optional[int] = [] snake_case_ : Tuple = s snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[int] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[Any] = s snake_case_ : Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : int = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : int = [] snake_case_ : int = s snake_case_ : Optional[Any] = False snake_case_ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = s snake_case_ : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Any ) -> Tuple: '''simple docstring''' return list(self.graph ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str: '''simple docstring''' snake_case_ : List[str] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = time() return end - begin def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int: '''simple docstring''' snake_case_ : List[str] = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Tuple = time() return end - begin
656
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ = None ,)-> Union[str, Any]: """simple docstring""" snake_case_ : Tuple = {} if train_file is not None: snake_case_ : Any = [train_file] if eval_file is not None: snake_case_ : int = [eval_file] if test_file is not None: snake_case_ : Union[str, Any] = [test_file] snake_case_ : Dict = datasets.load_dataset("csv" ,data_files=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) snake_case_ : Tuple = features_name.pop(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case_ : Any = {label: i for i, label in enumerate(_SCREAMING_SNAKE_CASE )} snake_case_ : Tuple = tokenizer.model_input_names snake_case_ : List[str] = {} if len(_SCREAMING_SNAKE_CASE ) == 1: for k in files.keys(): snake_case_ : List[str] = ds[k].map( lambda __magic_name__ : tokenizer.batch_encode_plus( example[features_name[0]] ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,padding="max_length" ) ,batched=_SCREAMING_SNAKE_CASE ,) elif len(_SCREAMING_SNAKE_CASE ) == 2: for k in files.keys(): snake_case_ : Union[str, Any] = ds[k].map( lambda __magic_name__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,padding="max_length" ,) ,batched=_SCREAMING_SNAKE_CASE ,) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case_ : Dict = {k: v for k, v in ex.items() if k in input_names} snake_case_ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case_ : List[str] = {k: v for k, v in ex.items() if k in input_names} snake_case_ : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case_ : List[Any] = {k: v for k, v in ex.items() if k in input_names} snake_case_ : Dict = labelaid[ex[label_name]] yield (d, label) snake_case_ : Optional[int] = ( tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case_ : Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case_ : List[str] = ( tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case_ : List[str] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case_ : Tuple = ( tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case_ : List[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class A_ : """simple docstring""" a__ = field(metadata={'''help''': '''Which column contains the label'''} ) a__ = field(default=snake_case__ , metadata={'''help''': '''The path of the training file'''} ) a__ = field(default=snake_case__ , metadata={'''help''': '''The path of the development file'''} ) a__ = field(default=snake_case__ , metadata={'''help''': '''The path of the test file'''} ) a__ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a__ = field( default=snake_case__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A_ : """simple docstring""" a__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a__ = field( default=snake_case__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a__ = field( default=snake_case__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a__ = field(default=snake_case__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a__ = field( default=snake_case__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __UpperCAmelCase ( )-> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case_, snake_case_, snake_case_ : Union[str, Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' F'''16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) snake_case_, snake_case_, snake_case_, snake_case_ : int = get_tfds( train_file=data_args.train_file ,eval_file=data_args.dev_file ,test_file=data_args.test_file ,tokenizer=_SCREAMING_SNAKE_CASE ,label_column_id=data_args.label_column_id ,max_seq_length=data_args.max_seq_length ,) snake_case_ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=len(_SCREAMING_SNAKE_CASE ) ,labelaid=_SCREAMING_SNAKE_CASE ,idalabel={id: label for label, id in labelaid.items()} ,finetuning_task="text-classification" ,cache_dir=model_args.cache_dir ,) with training_args.strategy.scope(): snake_case_ : Dict = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_pt=bool(".bin" in model_args.model_name_or_path ) ,config=_SCREAMING_SNAKE_CASE ,cache_dir=model_args.cache_dir ,) def compute_metrics(__magic_name__ ) -> Dict: snake_case_ : List[Any] = np.argmax(p.predictions ,axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case_ : Any = TFTrainer( model=_SCREAMING_SNAKE_CASE ,args=_SCREAMING_SNAKE_CASE ,train_dataset=_SCREAMING_SNAKE_CASE ,eval_dataset=_SCREAMING_SNAKE_CASE ,compute_metrics=_SCREAMING_SNAKE_CASE ,) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ : Tuple = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case_ : Union[str, Any] = trainer.evaluate() snake_case_ : Optional[int] = os.path.join(training_args.output_dir ,"eval_results.txt" ) with open(_SCREAMING_SNAKE_CASE ,"w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) results.update(_SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": main()
702
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCamelCase : List[str] = re.compile(R'''\s+''') def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )} def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple: """simple docstring""" snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"] snake_case_ : Optional[Any] = example["content"].splitlines() for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]: """simple docstring""" snake_case_ : str = ["unit tests", "test file", "configuration file"] snake_case_ : int = example["content"].splitlines() snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 # first test for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ : Tuple = example["content"].count("\n" ) snake_case_ : int = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : List[Any] = ["def ", "class ", "for ", "while "] snake_case_ : Optional[Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]: """simple docstring""" snake_case_ : Tuple = example["content"].splitlines() snake_case_ : Tuple = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"] snake_case_ : int = len(example["content"] ) / len(__magic_name__ ) return {"ratio": ratio} def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = {} results.update(get_hash(__magic_name__ ) ) results.update(line_stats(__magic_name__ ) ) results.update(alpha_stats(__magic_name__ ) ) results.update(char_token_ratio(__magic_name__ ) ) results.update(is_autogenerated(__magic_name__ ) ) results.update(is_config_or_test(__magic_name__ ) ) results.update(has_no_keywords(__magic_name__ ) ) results.update(has_few_assignments(__magic_name__ ) ) return results def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if not check_uniques(__magic_name__ ,__magic_name__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( __magic_name__ )-> Dict: """simple docstring""" with open(__magic_name__ ,"rb" ) as f_in: with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__magic_name__ ,__magic_name__ ) os.unlink(__magic_name__ ) # Settings __lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments) __lowerCamelCase : str = parser.parse_args() if args.num_workers is None: __lowerCamelCase : List[Any] = multiprocessing.cpu_count() __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCamelCase : Any = time.time() __lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __lowerCamelCase : Any = set(ds.unique('''hash''')) __lowerCamelCase : Optional[int] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCamelCase : List[str] = time.time() __lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __lowerCamelCase : List[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) __lowerCamelCase : List[str] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) __lowerCamelCase : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''') __lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
656
0
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __UpperCAmelCase ( __magic_name__ )-> Any: """simple docstring""" if isinstance(__magic_name__ , collections.abc.Iterable ): return x return (x, x) @require_flax class A_ : """simple docstring""" def _A ( self :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def _A ( self :List[str] ) -> Optional[int]: '''simple docstring''' pass def _A ( self :int ) -> Dict: '''simple docstring''' pass def _A ( self :Any , lowerCAmelCase__ :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict ) -> int: '''simple docstring''' snake_case_ : Optional[int] = np.abs((a - b) ).max() self.assertLessEqual(A_ , A_ , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _A ( self :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Any=None , **lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(A_ , A_ ) snake_case_ : Optional[int] = FlaxVisionTextDualEncoderModel(A_ ) snake_case_ : int = model(input_ids=A_ , pixel_values=A_ , attention_mask=A_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def _A ( self :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=None , **lowerCAmelCase__ :List[Any] ) -> Dict: '''simple docstring''' snake_case_, snake_case_ : Optional[Any] = self.get_vision_text_model(A_ , A_ ) snake_case_ : List[str] = {"vision_model": vision_model, "text_model": text_model} snake_case_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**A_ ) snake_case_ : List[Any] = model(input_ids=A_ , pixel_values=A_ , attention_mask=A_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _A ( self :int , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict=None , **lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' snake_case_, snake_case_ : List[Any] = self.get_vision_text_model(A_ , A_ ) snake_case_ : Union[str, Any] = {"vision_model": vision_model, "text_model": text_model} snake_case_ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**A_ ) snake_case_ : Any = model(input_ids=A_ , pixel_values=A_ , attention_mask=A_ ) snake_case_ : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) snake_case_ : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(A_ ) snake_case_ : Dict = model(input_ids=A_ , pixel_values=A_ , attention_mask=A_ ) snake_case_ : Optional[Any] = after_output[0] snake_case_ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A_ , 1E-3 ) def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int=None , **lowerCAmelCase__ :List[str] ) -> Dict: '''simple docstring''' snake_case_, snake_case_ : List[str] = self.get_vision_text_model(A_ , A_ ) snake_case_ : List[str] = {"vision_model": vision_model, "text_model": text_model} snake_case_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**A_ ) snake_case_ : Union[str, Any] = model( input_ids=A_ , pixel_values=A_ , attention_mask=A_ , output_attentions=A_ ) snake_case_ : List[str] = output.vision_model_output.attentions self.assertEqual(len(A_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case_ : List[Any] = to_atuple(vision_model.config.image_size ) snake_case_ : str = to_atuple(vision_model.config.patch_size ) snake_case_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) snake_case_ : str = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) snake_case_ : Optional[int] = output.text_model_output.attentions self.assertEqual(len(A_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _A ( self :Union[str, Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any] ) -> List[str]: '''simple docstring''' pt_model.to(A_ ) pt_model.eval() # prepare inputs snake_case_ : str = inputs_dict snake_case_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): snake_case_ : Tuple = pt_model(**A_ ).to_tuple() snake_case_ : List[str] = fx_model(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(A_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(A_ ) snake_case_ : int = FlaxVisionTextDualEncoderModel.from_pretrained(A_ , from_pt=A_ ) snake_case_ : str = fx_model_loaded(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(A_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(A_ ) snake_case_ : Tuple = VisionTextDualEncoderModel.from_pretrained(A_ , from_flax=A_ ) pt_model_loaded.to(A_ ) pt_model_loaded.eval() with torch.no_grad(): snake_case_ : List[str] = pt_model_loaded(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(A_ , pt_output_loaded.numpy() , 4E-2 ) def _A ( self :Optional[int] , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] ) -> int: '''simple docstring''' snake_case_ : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(A_ , A_ ) snake_case_ : int = VisionTextDualEncoderModel(A_ ) snake_case_ : Any = FlaxVisionTextDualEncoderModel(A_ ) snake_case_ : List[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , A_ ) snake_case_ : List[Any] = fx_state self.check_pt_flax_equivalence(A_ , A_ , A_ ) def _A ( self :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[int] ) -> List[Any]: '''simple docstring''' snake_case_ : int = VisionTextDualEncoderConfig.from_vision_text_configs(A_ , A_ ) snake_case_ : Tuple = VisionTextDualEncoderModel(A_ ) snake_case_ : Optional[Any] = FlaxVisionTextDualEncoderModel(A_ ) snake_case_ : int = load_flax_weights_in_pytorch_model(A_ , fx_model.params ) self.check_pt_flax_equivalence(A_ , A_ , A_ ) def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**A_ ) def _A ( self :str ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**A_ ) def _A ( self :Tuple ) -> int: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() self.check_save_load(**A_ ) def _A ( self :int ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**A_ ) @is_pt_flax_cross_test def _A ( self :Tuple ) -> str: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ : Tuple = config_inputs_dict.pop("vision_config" ) snake_case_ : Tuple = config_inputs_dict.pop("text_config" ) snake_case_ : List[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(A_ , A_ , A_ ) self.check_equivalence_flax_to_pt(A_ , A_ , A_ ) @slow def _A ( self :List[str] ) -> Optional[Any]: '''simple docstring''' snake_case_, snake_case_ : Tuple = self.get_pretrained_model_and_inputs() snake_case_ : Dict = model_a(**A_ ) snake_case_ : int = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(A_ ) snake_case_ : Any = FlaxVisionTextDualEncoderModel.from_pretrained(A_ ) snake_case_ : Dict = model_a(**A_ ) snake_case_ : List[str] = after_outputs[0] snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A_ , 1E-5 ) @require_flax class A_ (_SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" def _A ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=A_ , text_from_pt=A_ , ) snake_case_ : int = 13 snake_case_ : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) snake_case_ : Optional[int] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) snake_case_ : Union[str, Any] = random_attention_mask([batch_size, 4] ) snake_case_ : List[str] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _A ( self :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] ) -> List[str]: '''simple docstring''' snake_case_ : int = FlaxViTModel(A_ ) snake_case_ : Any = FlaxBertModel(A_ ) return vision_model, text_model def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = FlaxViTModelTester(self ) snake_case_ : Any = FlaxBertModelTester(self ) snake_case_ : Dict = vit_model_tester.prepare_config_and_inputs() snake_case_ : Any = bert_model_tester.prepare_config_and_inputs() snake_case_, snake_case_ : Any = vision_config_and_inputs snake_case_, snake_case_, snake_case_, snake_case_ : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class A_ (_SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=A_ , text_from_pt=A_ , ) snake_case_ : List[Any] = 13 snake_case_ : int = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) snake_case_ : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) snake_case_ : str = random_attention_mask([batch_size, 4] ) snake_case_ : List[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _A ( self :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str ) -> int: '''simple docstring''' snake_case_ : Dict = FlaxCLIPVisionModel(A_ ) snake_case_ : List[Any] = FlaxBertModel(A_ ) return vision_model, text_model def _A ( self :Any ) -> Optional[int]: '''simple docstring''' snake_case_ : str = FlaxCLIPVisionModelTester(self ) snake_case_ : List[str] = FlaxBertModelTester(self ) snake_case_ : int = clip_model_tester.prepare_config_and_inputs() snake_case_ : List[Any] = bert_model_tester.prepare_config_and_inputs() snake_case_, snake_case_ : int = vision_config_and_inputs snake_case_, snake_case_, snake_case_, snake_case_ : Optional[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class A_ (unittest.TestCase ): """simple docstring""" @slow def _A ( self :Union[str, Any] ) -> str: '''simple docstring''' snake_case_ : Dict = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) snake_case_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) snake_case_ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) snake_case_ : Tuple = processor( text=["una foto di un gatto", "una foto di un cane"] , images=A_ , padding=A_ , return_tensors="np" ) snake_case_ : Tuple = model(**A_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) snake_case_ : Tuple = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , A_ , atol=1E-3 ) )
703
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 ) snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ : Tuple = Accelerator() snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Optional[Any] = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : Any = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __lowerCamelCase : Any = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = None # source code of `config_class` snake_case_ : List[Any] = inspect.getsource(__magic_name__ ) snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): snake_case_ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ : str = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case_ : Dict = ckpt_name break return checkpoint def __UpperCAmelCase ( )-> Dict: """simple docstring""" snake_case_ : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ ) snake_case_ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__magic_name__ ) if len(__magic_name__ ) > 0: snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
656
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class A_ : """simple docstring""" def __init__( self :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[int]=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :Union[str, Any]=99 , lowerCAmelCase__ :List[Any]=32 , lowerCAmelCase__ :List[Any]=5 , lowerCAmelCase__ :Optional[Any]=4 , lowerCAmelCase__ :Optional[int]=37 , lowerCAmelCase__ :List[str]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Optional[Any]=16 , lowerCAmelCase__ :Optional[Any]=2 , lowerCAmelCase__ :str=0.0_2 , lowerCAmelCase__ :List[str]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : int = batch_size snake_case_ : List[Any] = seq_length snake_case_ : Union[str, Any] = is_training snake_case_ : Any = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : Union[str, Any] = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : str = hidden_act snake_case_ : str = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Optional[int] = type_vocab_size snake_case_ : List[Any] = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : List[str] = num_labels snake_case_ : List[Any] = num_choices snake_case_ : Optional[Any] = scope snake_case_ : List[Any] = self.vocab_size - 1 def _A ( self :List[Any] ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[Any] = None if self.use_token_type_ids: snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Any = None snake_case_ : str = None snake_case_ : str = None if self.use_labels: snake_case_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) snake_case_ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _A ( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :int , *lowerCAmelCase__ :List[Any] ) -> int: '''simple docstring''' snake_case_ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case_ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) snake_case_ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) snake_case_ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case_ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[int] , *lowerCAmelCase__ :Tuple ) -> str: '''simple docstring''' snake_case_ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case_ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] , *lowerCAmelCase__ :Optional[int] ) -> int: '''simple docstring''' snake_case_ : Dict = self.num_labels snake_case_ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() ( snake_case_ ) : Any = config_and_inputs snake_case_ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class A_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" a__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a__ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _A ( self :List[str] , lowerCAmelCase__ :str , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _A ( self :Union[str, Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple=False ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , ) snake_case_ : Tuple = inputs_dict["labels"] snake_case_ : Any = inputs_dict["labels"] snake_case_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , ) snake_case_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = OpenAIGPTModelTester(self ) snake_case_ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def _A ( self :int ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _A ( self :Dict ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase ) def _A ( self :str ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase ) def _A ( self :Optional[int] ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase ) @slow def _A ( self :List[str] ) -> int: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class A_ (unittest.TestCase ): """simple docstring""" @slow def _A ( self :Any ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(__lowerCamelCase ) snake_case_ : int = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is snake_case_ : Union[str, Any] = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case_ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
705
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : int = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A_ (a_ ): """simple docstring""" a__ = '''cvt''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : int = num_channels snake_case_ : int = patch_sizes snake_case_ : Optional[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Tuple = embed_dim snake_case_ : Optional[int] = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Optional[int] = mlp_ratio snake_case_ : Tuple = attention_drop_rate snake_case_ : str = drop_rate snake_case_ : Tuple = drop_path_rate snake_case_ : Any = qkv_bias snake_case_ : Union[str, Any] = cls_token snake_case_ : int = qkv_projection_method snake_case_ : Any = kernel_qkv snake_case_ : Union[str, Any] = padding_kv snake_case_ : str = stride_kv snake_case_ : Dict = padding_q snake_case_ : Tuple = stride_q snake_case_ : Any = initializer_range snake_case_ : Any = layer_norm_eps
656
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class A_ (__lowerCamelCase ): """simple docstring""" a__ = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) a__ = Features({'''text''': Value('''string''' )} ) a__ = Features({'''labels''': ClassLabel} ) a__ = '''text''' a__ = '''labels''' def _A ( self :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , UpperCAmelCase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) snake_case_ : Dict = copy.deepcopy(self ) snake_case_ : int = self.label_schema.copy() snake_case_ : Union[str, Any] = features[self.label_column] snake_case_ : Tuple = label_schema return task_template @property def _A ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
706
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __lowerCamelCase : str = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCamelCase : Dict = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __lowerCamelCase : int = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] snake_case_ : List[str] = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
656
0
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str: """simple docstring""" snake_case_ : list[list[str]] = [[] for _ in range(__magic_name__ )] snake_case_ : Dict = key - 1 if key <= 0: raise ValueError("Height of grid can\'t be 0 or negative" ) if key == 1 or len(__magic_name__ ) <= key: return input_string for position, character in enumerate(__magic_name__ ): snake_case_ : Dict = position % (lowest * 2) # puts it in bounds snake_case_ : int = min(__magic_name__ ,lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__magic_name__ ) snake_case_ : List[str] = [''.join(__magic_name__ ) for row in temp_grid] snake_case_ : Optional[int] = ''.join(__magic_name__ ) return output_string def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str: """simple docstring""" snake_case_ : List[Any] = [] snake_case_ : List[str] = key - 1 if key <= 0: raise ValueError("Height of grid can\'t be 0 or negative" ) if key == 1: return input_string snake_case_ : list[list[str]] = [[] for _ in range(__magic_name__ )] # generates template for position in range(len(__magic_name__ ) ): snake_case_ : Tuple = position % (lowest * 2) # puts it in bounds snake_case_ : str = min(__magic_name__ ,lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) snake_case_ : List[Any] = 0 for row in temp_grid: # fills in the characters snake_case_ : List[str] = input_string[counter : counter + len(__magic_name__ )] grid.append(list(__magic_name__ ) ) counter += len(__magic_name__ ) snake_case_ : Tuple = '' # reads as zigzag for position in range(len(__magic_name__ ) ): snake_case_ : int = position % (lowest * 2) # puts it in bounds snake_case_ : str = min(__magic_name__ ,lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __UpperCAmelCase ( __magic_name__ )-> dict[int, str]: """simple docstring""" snake_case_ : Tuple = {} for key_guess in range(1 ,len(__magic_name__ ) ): # tries every key snake_case_ : str = decrypt(__magic_name__ ,__magic_name__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Any = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } snake_case_ : int = Dataset.from_dict(__magic_name__ ) return dataset class A_ (a_ ): """simple docstring""" def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = get_dataset() snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = get_dataset() snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) print(lowerCAmelCase__ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
656
0
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __lowerCamelCase : int = logging.get_logger(__name__) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[int]: """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : int = to_pil_image(__A ) snake_case_ : Tuple = pil_image.size snake_case_ : Optional[Any] = pytesseract.image_to_data(__A ,lang=__A ,output_type="dict" ,config=__A ) snake_case_ : Optional[Any] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates snake_case_ : Dict = [idx for idx, word in enumerate(__A ) if not word.strip()] snake_case_ : str = [word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] snake_case_ : Optional[int] = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] snake_case_ : List[Any] = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] snake_case_ : str = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] snake_case_ : int = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format snake_case_ : Tuple = [] for x, y, w, h in zip(__A ,__A ,__A ,__A ): snake_case_ : str = [x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes snake_case_ : List[str] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__A ,__A ,__A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A_ (__A ): """simple docstring""" a__ = ['''pixel_values'''] def __init__( self :List[Any] , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :float = 1 / 255 , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Union[float, Iterable[float]] = None , lowerCAmelCase__ :Union[float, Iterable[float]] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[str] = None , lowerCAmelCase__ :Optional[str] = "" , **lowerCAmelCase__ :Tuple , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : Tuple = size if size is not None else {'''height''': 224, '''width''': 224} snake_case_ : Optional[Any] = get_size_dict(lowerCAmelCase__ ) snake_case_ : Optional[Any] = do_resize snake_case_ : List[Any] = size snake_case_ : List[str] = resample snake_case_ : Dict = do_rescale snake_case_ : str = rescale_value snake_case_ : Optional[int] = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD snake_case_ : List[Any] = apply_ocr snake_case_ : Union[str, Any] = ocr_lang snake_case_ : str = tesseract_config def _A ( self :Dict , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Optional[Any] , ) -> np.ndarray: '''simple docstring''' snake_case_ : Tuple = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) snake_case_ : Optional[Any] = (size['''height'''], size['''width''']) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Union[str, Any] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[int, float] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Union[str, Any] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[float, Iterable[float]] , lowerCAmelCase__ :Union[float, Iterable[float]] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Any , lowerCAmelCase__ :ImageInput , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :float = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Union[float, Iterable[float]] = None , lowerCAmelCase__ :Union[float, Iterable[float]] = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Optional[str] = None , lowerCAmelCase__ :Optional[str] = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ :List[str] , ) -> PIL.Image.Image: '''simple docstring''' snake_case_ : Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case_ : Tuple = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(lowerCAmelCase__ ) snake_case_ : List[str] = resample if resample is not None else self.resample snake_case_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : Optional[int] = image_std if image_std is not None else self.image_std snake_case_ : Any = apply_ocr if apply_ocr is not None else self.apply_ocr snake_case_ : Any = ocr_lang if ocr_lang is not None else self.ocr_lang snake_case_ : Dict = tesseract_config if tesseract_config is not None else self.tesseract_config snake_case_ : str = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified." ) # All transformations expect numpy arrays. snake_case_ : Tuple = [to_numpy_array(lowerCAmelCase__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , "pytesseract" ) snake_case_ : int = [] snake_case_ : Tuple = [] for image in images: snake_case_ : Dict = apply_tesseract(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) words_batch.append(lowerCAmelCase__ ) boxes_batch.append(lowerCAmelCase__ ) if do_resize: snake_case_ : int = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_rescale: snake_case_ : Tuple = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] snake_case_ : Optional[Any] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] snake_case_ : Dict = BatchFeature(data={"pixel_values": images} , tensor_type=lowerCAmelCase__ ) if apply_ocr: snake_case_ : int = words_batch snake_case_ : List[str] = boxes_batch return data
708
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase : Dict = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __lowerCamelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(a_ ) class A_ (a_ ): """simple docstring""" def __init__( self :int , **lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' super().__init__(**_lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self :List[str] , lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :str ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _A ( self :Tuple , **lowerCAmelCase__ :Any ) -> int: '''simple docstring''' snake_case_ : str = {} if "candidate_labels" in kwargs: snake_case_ : str = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: snake_case_ : int = kwargs["hypothesis_template"] return preprocess_params, {}, {} def _A ( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Optional[Any]="This is a photo of {}." ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = load_image(_lowerCAmelCase ) snake_case_ : int = self.image_processor(images=[image] , return_tensors=self.framework ) snake_case_ : Any = candidate_labels snake_case_ : Optional[Any] = [hypothesis_template.format(_lowerCAmelCase ) for x in candidate_labels] snake_case_ : Tuple = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework , padding=_lowerCAmelCase ) snake_case_ : int = [text_inputs] return inputs def _A ( self :Dict , lowerCAmelCase__ :List[Any] ) -> int: '''simple docstring''' snake_case_ : Optional[int] = model_inputs.pop("candidate_labels" ) snake_case_ : str = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , _lowerCAmelCase ): snake_case_ : Tuple = text_inputs[0] else: # Batching case. snake_case_ : List[Any] = text_inputs[0][0] snake_case_ : Union[str, Any] = self.model(**_lowerCAmelCase , **_lowerCAmelCase ) snake_case_ : Dict = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def _A ( self :Tuple , lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' snake_case_ : int = model_outputs.pop("candidate_labels" ) snake_case_ : Tuple = model_outputs["logits"][0] if self.framework == "pt": snake_case_ : Optional[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) snake_case_ : Optional[int] = probs.tolist() if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case_ : Optional[int] = [scores] elif self.framework == "tf": snake_case_ : Optional[Any] = stable_softmax(_lowerCAmelCase , axis=-1 ) snake_case_ : Union[str, Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) snake_case_ : List[str] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(_lowerCAmelCase , _lowerCAmelCase ) , key=lambda lowerCAmelCase__ : -x[0] ) ] return result
709
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> list[int]: """simple docstring""" if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__magic_name__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
656
0
'''simple docstring''' from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
710
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __magic_name__=None )-> List[str]: """simple docstring""" if subparsers is not None: snake_case_ : List[str] = subparsers.add_parser("test" ) else: snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" ,default=__magic_name__ ,help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) ,) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: snake_case_ : str = script_name else: snake_case_ : Any = F'''--config_file={args.config_file} {script_name}''' snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split() snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Dict = test_command_parser() snake_case_ : Dict = parser.parse_args() test_command(__magic_name__ ) if __name__ == "__main__": main()
656
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase : Optional[int] = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
711
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCamelCase : str = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __lowerCamelCase : int = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __lowerCamelCase : List[str] = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
656
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : List[Any] = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ (UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a__ = SpeechTaTokenizer a__ = False a__ = True def _A ( self :Optional[Any] ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : Tuple = SpeechTaTokenizer(_a ) snake_case_ : Optional[Any] = AddedToken("<mask>" , lstrip=_a , rstrip=_a ) snake_case_ : Tuple = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Dict ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = """this is a test""" snake_case_ : List[Any] = """this is a test""" return input_text, output_text def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :int=False , lowerCAmelCase__ :str=20 , lowerCAmelCase__ :Optional[int]=5 ) -> int: '''simple docstring''' snake_case_ : List[Any] = self.get_input_output_texts(_a ) snake_case_ : List[str] = tokenizer.encode(_a , add_special_tokens=_a ) snake_case_ : str = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) return text, ids def _A ( self :str ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = """<pad>""" snake_case_ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def _A ( self :List[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(_a ) , 81 ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def _A ( self :List[str] ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : int = tokenizer.vocab_size snake_case_ : str = len(_a ) self.assertNotEqual(_a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case_ : List[str] = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] snake_case_ : List[str] = tokenizer.add_tokens(_a ) snake_case_ : List[str] = tokenizer.vocab_size snake_case_ : Tuple = len(_a ) self.assertNotEqual(_a , 0 ) self.assertEqual(_a , _a ) self.assertEqual(_a , len(_a ) ) self.assertEqual(_a , all_size + len(_a ) ) snake_case_ : Optional[Any] = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) snake_case_ : Tuple = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} snake_case_ : Union[str, Any] = tokenizer.add_special_tokens(_a ) snake_case_ : Optional[Any] = tokenizer.vocab_size snake_case_ : Tuple = len(_a ) self.assertNotEqual(_a , 0 ) self.assertEqual(_a , _a ) self.assertEqual(_a , len(_a ) ) self.assertEqual(_a , all_size_a + len(_a ) ) snake_case_ : List[Any] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def _A ( self :Optional[Any] ) -> List[str]: '''simple docstring''' pass def _A ( self :Tuple ) -> Dict: '''simple docstring''' pass def _A ( self :str ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.get_tokenizer() snake_case_ : str = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(_a , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) snake_case_ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _a , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) snake_case_ : str = tokenizer.convert_tokens_to_ids(_a ) # fmt: off self.assertListEqual(_a , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on snake_case_ : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off snake_case_ : int = { """input_ids""": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=_a , )
712
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCamelCase : str = 128022 __lowerCamelCase : List[Any] = 128028 @require_sentencepiece class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MaMaaaTokenizer a__ = False a__ = False a__ = True def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Optional[int] = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' return ( "This is a test", "This is a test", ) def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = "</s>" snake_case_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def _A ( self :Optional[int] ) -> int: '''simple docstring''' snake_case_ : int = self.get_tokenizer() snake_case_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , ) snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , "This is a test" ) @slow def _A ( self :Any ) -> List[Any]: '''simple docstring''' snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): """simple docstring""" a__ = '''facebook/m2m100_418M''' a__ = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] a__ = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def _A ( cls :str ) -> int: '''simple docstring''' snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) snake_case_ : List[str] = 1 return cls def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def _A ( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.tokenizer.get_vocab() self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ ) def _A ( self :Any ) -> Dict: '''simple docstring''' snake_case_ : List[str] = "en" snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def _A ( self :Tuple ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : int = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ ) @require_torch def _A ( self :Optional[Any] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = "en" snake_case_ : Tuple = "fr" snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" ) snake_case_ : Dict = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case_ : str = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case_ : int = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _A ( self :str ) -> int: '''simple docstring''' snake_case_ : Dict = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case_ : Tuple = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
656
0
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> str: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: snake_case_ : Union[str, Any] = TOKENIZER_CLASSES else: snake_case_ : Optional[Any] = {tokenizer_name: getattr(__UpperCAmelCase ,tokenizer_name + "Fast" )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: snake_case_ : Union[str, Any] = TOKENIZER_CLASSES[tokenizer_name] snake_case_ : Optional[Any] = True if checkpoint_name is None: snake_case_ : Any = list(tokenizer_class.max_model_input_sizes.keys() ) else: snake_case_ : int = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer snake_case_ : List[Any] = tokenizer_class.from_pretrained(__UpperCAmelCase ,force_download=__UpperCAmelCase ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: snake_case_, snake_case_ : Optional[Any] = checkpoint.split("/" ) snake_case_ : Union[str, Any] = os.path.join(__UpperCAmelCase ,__UpperCAmelCase ) elif add_prefix: snake_case_ : Optional[int] = checkpoint snake_case_ : Dict = dump_path else: snake_case_ : Dict = None snake_case_ : int = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: snake_case_ : Any = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] snake_case_ : List[Any] = file_path.split(__UpperCAmelCase )[-1][0] if next_char == "/": snake_case_ : Optional[Any] = os.path.join(__UpperCAmelCase ,__UpperCAmelCase ) snake_case_ : List[Any] = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) snake_case_ : str = tokenizer.save_pretrained( __UpperCAmelCase ,legacy_format=__UpperCAmelCase ,filename_prefix=__UpperCAmelCase ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(__UpperCAmelCase ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) __lowerCamelCase : List[Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
713
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCamelCase : str = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCamelCase : Tuple = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Tuple = SavedModel() snake_case_ : Dict = [] with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f: snake_case_ : Dict = json.load(__magic_name__ )["opsets"] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ ,"rb" ) as f: saved_model.ParseFromString(f.read() ) snake_case_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case_ : str = sorted(__magic_name__ ) snake_case_ : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__magic_name__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__magic_name__ ,sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __lowerCamelCase : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
656
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCamelCase : List[Any] = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] __lowerCamelCase : Union[str, Any] = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] __lowerCamelCase : Dict = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): __lowerCamelCase : Optional[int] = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) __lowerCamelCase : List[str] = ['''names''', '''prefix'''] __lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines'''] __lowerCamelCase : Optional[Any] = ['''date_format'''] @dataclass class A_ (datasets.BuilderConfig ): """simple docstring""" a__ = "," a__ = None a__ = "infer" a__ = None a__ = None a__ = None a__ = None a__ = None a__ = True a__ = None a__ = None a__ = None a__ = None a__ = False a__ = None a__ = None a__ = None a__ = True a__ = True a__ = False a__ = True a__ = None a__ = "." a__ = None a__ = '"' a__ = 0 a__ = None a__ = None a__ = None a__ = None a__ = True a__ = True a__ = 0 a__ = True a__ = False a__ = None a__ = 10000 a__ = None a__ = "strict" a__ = "error" a__ = None def _A ( self :List[str] ) -> Any: '''simple docstring''' if self.delimiter is not None: snake_case_ : Tuple = self.delimiter if self.column_names is not None: snake_case_ : List[Any] = self.column_names @property def _A ( self :Optional[Any] ) -> int: '''simple docstring''' snake_case_ : Optional[int] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A_ (datasets.ArrowBasedBuilder ): """simple docstring""" a__ = CsvConfig def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): snake_case_ : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : List[str] = [files] snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ : str = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : str = [files] snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: snake_case_ : int = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case_ : str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' ) raise
656
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A_ (__lowerCAmelCase ): """simple docstring""" a__ = ['''image_processor''', '''tokenizer'''] a__ = '''OwlViTImageProcessor''' a__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self :str , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :Any=None , **lowerCAmelCase__ :List[Any] ) -> Any: '''simple docstring''' snake_case_ : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCamelCase , ) snake_case_ : Optional[int] = kwargs.pop("feature_extractor" ) snake_case_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self :int , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :Dict="max_length" , lowerCAmelCase__ :List[str]="np" , **lowerCAmelCase__ :Optional[Any] ) -> List[Any]: '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(_UpperCamelCase , _UpperCamelCase ) or (isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(text[0] , _UpperCamelCase )): snake_case_ : int = [self.tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase )] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(text[0] , _UpperCamelCase ): snake_case_ : Union[str, Any] = [] # Maximum number of queries across batch snake_case_ : List[str] = max([len(_UpperCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_UpperCamelCase ) != max_num_queries: snake_case_ : Any = t + [""" """] * (max_num_queries - len(_UpperCamelCase )) snake_case_ : int = self.tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) encodings.append(_UpperCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": snake_case_ : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) snake_case_ : Union[str, Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp snake_case_ : str = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) snake_case_ : Optional[Any] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch snake_case_ : str = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) snake_case_ : List[Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf snake_case_ : List[str] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) snake_case_ : List[str] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) snake_case_ : Any = BatchEncoding() snake_case_ : str = input_ids snake_case_ : Union[str, Any] = attention_mask if query_images is not None: snake_case_ : Optional[Any] = BatchEncoding() snake_case_ : int = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ).pixel_values snake_case_ : Tuple = query_pixel_values if images is not None: snake_case_ : Any = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if text is not None and images is not None: snake_case_ : List[str] = image_features.pixel_values return encoding elif query_images is not None and images is not None: snake_case_ : List[str] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCamelCase ) , tensor_type=_UpperCamelCase ) def _A ( self :Union[str, Any] , *lowerCAmelCase__ :int , **lowerCAmelCase__ :int ) -> Tuple: '''simple docstring''' return self.image_processor.post_process(*_UpperCamelCase , **_UpperCamelCase ) def _A ( self :Tuple , *lowerCAmelCase__ :Optional[int] , **lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' return self.image_processor.post_process_object_detection(*_UpperCamelCase , **_UpperCamelCase ) def _A ( self :int , *lowerCAmelCase__ :Dict , **lowerCAmelCase__ :str ) -> int: '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*_UpperCamelCase , **_UpperCamelCase ) def _A ( self :Optional[int] , *lowerCAmelCase__ :Any , **lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def _A ( self :Any , *lowerCAmelCase__ :Tuple , **lowerCAmelCase__ :List[Any] ) -> Any: '''simple docstring''' return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def _A ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCamelCase , ) return self.image_processor_class @property def _A ( self :Dict ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _UpperCamelCase , ) return self.image_processor
715
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MgpstrTokenizer a__ = False a__ = {} a__ = False def _A ( self :List[str] ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str: '''simple docstring''' snake_case_ : Dict = "tester" snake_case_ : Tuple = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _A ( self :Dict ) -> str: '''simple docstring''' pass def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ) snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _A ( self :Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _A ( self :int ) -> Dict: '''simple docstring''' pass
656
0
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
716
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: snake_case_ : int = ( "Wrong input data's dimensions... " F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__magic_name__ ) try: if dataset.shape[1] != value_array.shape[1]: snake_case_ : Dict = ( "Wrong input data's shape... " F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__magic_name__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: snake_case_ : Dict = ( "Input data have different datatype... " F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__magic_name__ ) snake_case_ : Optional[int] = [] for value in value_array: snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] ) snake_case_ : int = dataset[0].tolist() for dataset_value in dataset[1:]: snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ ) if dist > temp_dist: snake_case_ : Tuple = temp_dist snake_case_ : Optional[int] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ )) if __name__ == "__main__": import doctest doctest.testmod()
656
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : int = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class A_ (_A ): """simple docstring""" a__ = '''dpt''' def __init__( self :Optional[int] , lowerCAmelCase__ :List[Any]=768 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :List[str]=12 , lowerCAmelCase__ :Optional[Any]=3_072 , lowerCAmelCase__ :List[str]="gelu" , lowerCAmelCase__ :Tuple=0.0 , lowerCAmelCase__ :Optional[int]=0.0 , lowerCAmelCase__ :Optional[int]=0.0_2 , lowerCAmelCase__ :Optional[int]=1E-1_2 , lowerCAmelCase__ :List[Any]=384 , lowerCAmelCase__ :Optional[int]=16 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :int=True , lowerCAmelCase__ :Tuple=[2, 5, 8, 11] , lowerCAmelCase__ :Tuple="project" , lowerCAmelCase__ :List[str]=[4, 2, 1, 0.5] , lowerCAmelCase__ :Tuple=[96, 192, 384, 768] , lowerCAmelCase__ :Optional[Any]=256 , lowerCAmelCase__ :str=-1 , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :Union[str, Any]=0.4 , lowerCAmelCase__ :Any=255 , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :Optional[Any]=[1, 1_024, 24, 24] , lowerCAmelCase__ :Optional[int]=[0, 1] , lowerCAmelCase__ :List[str]=None , **lowerCAmelCase__ :Dict , ) -> Optional[int]: '''simple docstring''' super().__init__(**__lowerCamelCase ) snake_case_ : str = hidden_size snake_case_ : int = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) snake_case_ : str = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } snake_case_ : Optional[int] = BitConfig(**__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): logger.info("Initializing the config with a `BiT` backbone." ) snake_case_ : Union[str, Any] = BitConfig(**__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): snake_case_ : Union[str, Any] = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ : int = backbone_featmap_shape snake_case_ : Tuple = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: snake_case_ : int = None snake_case_ : List[str] = None snake_case_ : Any = [] snake_case_ : int = num_hidden_layers snake_case_ : str = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : str = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : str = initializer_range snake_case_ : List[Any] = layer_norm_eps snake_case_ : Union[str, Any] = image_size snake_case_ : Tuple = patch_size snake_case_ : str = num_channels snake_case_ : Dict = qkv_bias snake_case_ : Union[str, Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) snake_case_ : List[Any] = readout_type snake_case_ : List[Any] = reassemble_factors snake_case_ : Union[str, Any] = neck_hidden_sizes snake_case_ : Tuple = fusion_hidden_size snake_case_ : Union[str, Any] = head_in_index snake_case_ : Dict = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ : List[Any] = use_auxiliary_head snake_case_ : Optional[Any] = auxiliary_loss_weight snake_case_ : Optional[Any] = semantic_loss_ignore_index snake_case_ : Any = semantic_classifier_dropout def _A ( self :List[str] ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ : Tuple = self.backbone_config.to_dict() snake_case_ : Tuple = self.__class__.model_type return output
717
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()] snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )] snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ ) if save_path is not None: save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
656
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class A_ (_UpperCAmelCase ): """simple docstring""" a__ = '''mctct''' def __init__( self :str , lowerCAmelCase__ :Dict=8_065 , lowerCAmelCase__ :Optional[Any]=1_536 , lowerCAmelCase__ :int=36 , lowerCAmelCase__ :List[str]=6_144 , lowerCAmelCase__ :Optional[int]=4 , lowerCAmelCase__ :Tuple=384 , lowerCAmelCase__ :str=920 , lowerCAmelCase__ :List[str]=1E-5 , lowerCAmelCase__ :Optional[int]=0.3 , lowerCAmelCase__ :str="relu" , lowerCAmelCase__ :Optional[Any]=0.0_2 , lowerCAmelCase__ :str=0.3 , lowerCAmelCase__ :Union[str, Any]=0.3 , lowerCAmelCase__ :Optional[Any]=1 , lowerCAmelCase__ :Union[str, Any]=0 , lowerCAmelCase__ :str=2 , lowerCAmelCase__ :Union[str, Any]=1 , lowerCAmelCase__ :Union[str, Any]=0.3 , lowerCAmelCase__ :List[Any]=1 , lowerCAmelCase__ :Optional[int]=(7,) , lowerCAmelCase__ :List[str]=(3,) , lowerCAmelCase__ :Dict=80 , lowerCAmelCase__ :Union[str, Any]=1 , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :str="sum" , lowerCAmelCase__ :List[Any]=False , **lowerCAmelCase__ :Tuple , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) snake_case_ : int = vocab_size snake_case_ : Tuple = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : List[Any] = intermediate_size snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Optional[Any] = attention_head_dim snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Tuple = layer_norm_eps snake_case_ : str = layerdrop snake_case_ : List[str] = hidden_act snake_case_ : Optional[Any] = initializer_range snake_case_ : List[str] = hidden_dropout_prob snake_case_ : int = attention_probs_dropout_prob snake_case_ : Tuple = pad_token_id snake_case_ : Tuple = bos_token_id snake_case_ : List[str] = eos_token_id snake_case_ : int = conv_glu_dim snake_case_ : str = conv_dropout snake_case_ : Tuple = num_conv_layers snake_case_ : int = input_feat_per_channel snake_case_ : Optional[Any] = input_channels snake_case_ : Any = conv_channels snake_case_ : Tuple = ctc_loss_reduction snake_case_ : Any = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case_ : Dict = list(lowerCamelCase_ ) snake_case_ : Optional[int] = list(lowerCamelCase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
718
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ ) snake_case_ : Any = val def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) snake_case_ : int = value else: snake_case_ : int = value return new_state_dict def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]: """simple docstring""" snake_case_ : str = "" if is_panoptic: snake_case_ : Dict = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Tuple = in_proj_weight[:256, :] snake_case_ : List[Any] = in_proj_bias[:256] snake_case_ : Optional[Any] = in_proj_weight[256:512, :] snake_case_ : Optional[int] = in_proj_bias[256:512] snake_case_ : Optional[int] = in_proj_weight[-256:, :] snake_case_ : str = in_proj_bias[-256:] def __UpperCAmelCase ( )-> Optional[Any]: """simple docstring""" snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case_ : Optional[Any] = "resnet101" if "dc5" in model_name: snake_case_ : List[str] = True snake_case_ : Tuple = "panoptic" in model_name if is_panoptic: snake_case_ : List[Any] = 250 else: snake_case_ : Optional[Any] = 91 snake_case_ : Optional[int] = "huggingface/label-files" snake_case_ : Dict = "coco-detection-id2label.json" snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : Dict = {v: k for k, v in idalabel.items()} # load image processor snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection" snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image snake_case_ : str = prepare_img() snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" ) snake_case_ : Union[str, Any] = encoding["pixel_values"] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval() snake_case_ : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case_ : Any = "conditional_detr." + src rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Tuple = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : int = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case_ : Tuple = state_dict.pop(__magic_name__ ) snake_case_ : Any = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val # finally, create HuggingFace model and load state dict snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" ) # verify our conversion snake_case_ : Dict = conditional_detr(__magic_name__ ) snake_case_ : Union[str, Any] = model(__magic_name__ ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowerCamelCase : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
656
0
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> int: """simple docstring""" return int(input_a == input_a == 0 ) def __UpperCAmelCase ( )-> None: """simple docstring""" print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F'''| 0 | 0 | {nor_gate(0 ,0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 ,1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 ,0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 ,1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
719
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Any = 1 snake_case_ : Dict = 3 snake_case_ : Union[str, Any] = (32, 32) snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _A ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _A ( self :Dict ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def _A ( self :Any ) -> str: '''simple docstring''' def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ): class A_ : """simple docstring""" def __init__( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.ones([0] ) def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ : str = self.dummy_cond_unet snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : Dict = self.dummy_vae snake_case_ : Dict = self.dummy_text_encoder snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : str = 77 snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ ) snake_case_ : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Dict = "A painting of a squirrel eating a burger" snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ) snake_case_ : Any = output.images snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Optional[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.dummy_cond_unet snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : int = self.dummy_vae snake_case_ : List[Any] = self.dummy_text_encoder snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : int = 77 snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 snake_case_ : Optional[Any] = unet.half() snake_case_ : Tuple = vae.half() snake_case_ : List[str] = bert.half() # make sure here that pndm scheduler skips prk snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[Any] = "A painting of a squirrel eating a burger" snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Any = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ : str = init_image.resize((760, 504) ) snake_case_ : Optional[Any] = "BAAI/AltDiffusion" snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : str = output.images[0] snake_case_ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : List[Any] = init_image.resize((768, 512) ) snake_case_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) snake_case_ : Any = "BAAI/AltDiffusion" snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
656
0
'''simple docstring''' import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __lowerCamelCase : Dict = get_logger(__name__) __lowerCamelCase : Any = Path(__file__).parent / """model_card_template.md""" __lowerCamelCase : int = uuida().hex __lowerCamelCase : List[str] = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES __lowerCamelCase : List[Any] = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES __lowerCamelCase : Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def __UpperCAmelCase ( __magic_name__ = None )-> str: """simple docstring""" snake_case_ : List[str] = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" ,"" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__magic_name__ ,__magic_name__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__magic_name__ ,__magic_name__ ): ua += "; " + user_agent return ua def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = None ,__magic_name__ = None )-> Union[str, Any]: """simple docstring""" if token is None: snake_case_ : Optional[Any] = HfFolder.get_token() if organization is None: snake_case_ : str = whoami(__magic_name__ )["name"] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Any: """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__magic_name__ ,"local_rank" ) and args.local_rank not in [-1, 0]: return snake_case_ : int = args.hub_token if hasattr(__magic_name__ ,"hub_token" ) else None snake_case_ : Union[str, Any] = get_full_repo_name(__magic_name__ ,token=__magic_name__ ) snake_case_ : int = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" ,license="apache-2.0" ,library_name="diffusers" ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=__magic_name__ ,model_name=__magic_name__ ,repo_name=__magic_name__ ,dataset_name=args.dataset_name if hasattr(__magic_name__ ,"dataset_name" ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__magic_name__ ,"gradient_accumulation_steps" ) else None ) ,adam_betaa=args.adam_betaa if hasattr(__magic_name__ ,"adam_beta1" ) else None ,adam_betaa=args.adam_betaa if hasattr(__magic_name__ ,"adam_beta2" ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(__magic_name__ ,"adam_weight_decay" ) else None ,adam_epsilon=args.adam_epsilon if hasattr(__magic_name__ ,"adam_epsilon" ) else None ,lr_scheduler=args.lr_scheduler if hasattr(__magic_name__ ,"lr_scheduler" ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(__magic_name__ ,"lr_warmup_steps" ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(__magic_name__ ,"ema_inv_gamma" ) else None ,ema_power=args.ema_power if hasattr(__magic_name__ ,"ema_power" ) else None ,ema_max_decay=args.ema_max_decay if hasattr(__magic_name__ ,"ema_max_decay" ) else None ,mixed_precision=args.mixed_precision ,) snake_case_ : Dict = os.path.join(args.output_dir ,"README.md" ) model_card.save(__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = None )-> str: """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ : List[str] = str(Path(__magic_name__ ).as_posix() ) snake_case_ : List[Any] = re.search(r"snapshots/([^/]+)/" ,__magic_name__ ) if search is None: return None snake_case_ : Optional[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__magic_name__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __lowerCamelCase : List[str] = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) __lowerCamelCase : Optional[Any] = os.path.join(hf_cache_home, '''diffusers''') def __UpperCAmelCase ( __magic_name__ = None ,__magic_name__ = None )-> None: """simple docstring""" if new_cache_dir is None: snake_case_ : Tuple = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ : Dict = old_diffusers_cache snake_case_ : str = Path(__magic_name__ ).expanduser() snake_case_ : int = Path(__magic_name__ ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ : Optional[int] = new_cache_dir / old_blob_path.relative_to(__magic_name__ ) new_blob_path.parent.mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ ) os.replace(__magic_name__ ,__magic_name__ ) try: os.symlink(__magic_name__ ,__magic_name__ ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __lowerCamelCase : str = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): __lowerCamelCase : Any = 0 else: with open(cache_version_file) as f: try: __lowerCamelCase : Optional[int] = int(f.read()) except ValueError: __lowerCamelCase : Optional[Any] = 0 if cache_version < 1: __lowerCamelCase : Union[str, Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: __lowerCamelCase : Optional[Any] = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' '''the directory exists and can be written to.''' ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = None )-> str: """simple docstring""" if variant is not None: snake_case_ : Optional[Any] = weights_name.split("." ) snake_case_ : Tuple = splits[:-1] + [variant] + splits[-1:] snake_case_ : Any = ".".join(__magic_name__ ) return weights_name def __UpperCAmelCase ( __magic_name__ ,*, __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__=None ,)-> Optional[Any]: """simple docstring""" snake_case_ : List[str] = str(__magic_name__ ) if os.path.isfile(__magic_name__ ): return pretrained_model_name_or_path elif os.path.isdir(__magic_name__ ): if os.path.isfile(os.path.join(__magic_name__ ,__magic_name__ ) ): # Load from a PyTorch checkpoint snake_case_ : List[str] = os.path.join(__magic_name__ ,__magic_name__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__magic_name__ ,__magic_name__ ,__magic_name__ ) ): snake_case_ : Union[str, Any] = os.path.join(__magic_name__ ,__magic_name__ ,__magic_name__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__magic_name__ ).base_version ) >= version.parse("0.20.0" ) ): try: snake_case_ : Any = hf_hub_download( __magic_name__ ,filename=_add_variant(__magic_name__ ,__magic_name__ ) ,cache_dir=__magic_name__ ,force_download=__magic_name__ ,proxies=__magic_name__ ,resume_download=__magic_name__ ,local_files_only=__magic_name__ ,use_auth_token=__magic_name__ ,user_agent=__magic_name__ ,subfolder=__magic_name__ ,revision=revision or commit_hash ,) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' ,__magic_name__ ,) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__magic_name__ ,__magic_name__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__magic_name__ ,__magic_name__ )}\' so that the correct variant file can be added.''' ,__magic_name__ ,) try: # 2. Load model file as usual snake_case_ : Tuple = hf_hub_download( __magic_name__ ,filename=__magic_name__ ,cache_dir=__magic_name__ ,force_download=__magic_name__ ,proxies=__magic_name__ ,resume_download=__magic_name__ ,local_files_only=__magic_name__ ,use_auth_token=__magic_name__ ,user_agent=__magic_name__ ,subfolder=__magic_name__ ,revision=revision or commit_hash ,) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'." ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. " F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
720
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A_ (unittest.TestCase ): """simple docstring""" a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = ZeroShotClassificationPipeline( model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # No kwarg snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : str = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(1 ) ] , ) snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase__ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier(lowerCAmelCase__ , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , ) self.run_entailment_id(lowerCAmelCase__ ) def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = zero_shot_classifier.model.config snake_case_ : Optional[int] = config.labelaid snake_case_ : Tuple = zero_shot_classifier.entailment_id snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case_ : List[str] = original_labelaid self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id ) @require_torch def _A ( self :Tuple ) -> Any: '''simple docstring''' snake_case_ : List[Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) snake_case_ : int = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : List[str] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) snake_case_ : Optional[int] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _A ( self :Union[str, Any] ) -> int: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) snake_case_ : str = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Optional[int] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) snake_case_ : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Tuple = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
656
0
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str: """simple docstring""" snake_case_ : Union[str, Any] = int(__UpperCamelCase ) assert noofclusters < len(__UpperCamelCase ) # Find out the dimensionality snake_case_ : Optional[int] = len(vectors[0] ) # Will help select random centroids from among the available vectors snake_case_ : int = list(range(len(__UpperCamelCase ) ) ) shuffle(__UpperCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. snake_case_ : str = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION snake_case_ : Dict = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points snake_case_ : str = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__UpperCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values snake_case_ : Dict = tf.placeholder("float64" ,[dim] ) snake_case_ : List[str] = [] for centroid in centroids: cent_assigns.append(tf.assign(__UpperCamelCase ,__UpperCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) snake_case_ : Any = [tf.Variable(0 ) for i in range(len(__UpperCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value snake_case_ : Tuple = tf.placeholder("int32" ) snake_case_ : Optional[int] = [] for assignment in assignments: cluster_assigns.append(tf.assign(__UpperCamelCase ,__UpperCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input snake_case_ : str = tf.placeholder("float" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors snake_case_ : List[str] = tf.reduce_mean(__UpperCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input snake_case_ : Union[str, Any] = tf.placeholder("float" ,[dim] ) snake_case_ : List[str] = tf.placeholder("float" ,[dim] ) snake_case_ : int = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__UpperCamelCase ,__UpperCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input snake_case_ : List[str] = tf.placeholder("float" ,[noofclusters] ) snake_case_ : Optional[int] = tf.argmin(__UpperCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. snake_case_ : List[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(__UpperCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. snake_case_ : Optional[Any] = 100 for _ in range(__UpperCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__UpperCamelCase ) ): snake_case_ : Any = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. snake_case_ : str = [ sess.run(__UpperCamelCase ,feed_dict={va: vect, va: sess.run(__UpperCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input snake_case_ : Any = sess.run( __UpperCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__UpperCamelCase ): # Collect all the vectors assigned to this cluster snake_case_ : List[str] = [ vectors[i] for i in range(len(__UpperCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location snake_case_ : Dict = sess.run( __UpperCamelCase ,feed_dict={mean_input: array(__UpperCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments snake_case_ : Optional[Any] = sess.run(__UpperCamelCase ) snake_case_ : Any = sess.run(__UpperCamelCase ) return centroids, assignments
721
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ ) roberta.eval() # disable dropout snake_case_ : Dict = roberta.model.encoder.sentence_encoder snake_case_ : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__magic_name__ ) snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight snake_case_ : int = roberta_sent_encoder.embed_positions.weight snake_case_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case_ : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ : BertLayer = model.roberta.encoder.layer[i] snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] snake_case_ : RobertaAttention = layer.attention snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias # self attention snake_case_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight snake_case_ : Any = roberta_layer.self_attn.q_proj.bias snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight snake_case_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case_ : int = roberta_layer.final_layer_norm.weight snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate snake_case_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : List[str] = roberta_layer.fca.weight snake_case_ : List[Any] = roberta_layer.fca.bias # output snake_case_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : Any = roberta_layer.fca.weight snake_case_ : Any = roberta_layer.fca.bias # end of layer if classification_head: snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight snake_case_ : int = roberta.model.encoder.lm_head.dense.bias snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias snake_case_ : int = roberta.model.encoder.lm_head.weight snake_case_ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1 snake_case_ : Union[str, Any] = model(__magic_name__ )[0] if classification_head: snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) ) else: snake_case_ : List[str] = roberta.model(__magic_name__ )[0] print(our_output.shape ,their_output.shape ) snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : Tuple = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
656
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : str = inspect.getfile(accelerate.test_utils ) snake_case_ : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) snake_case_ : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) snake_case_ : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def _A ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' print(F'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ : Union[str, Any] = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ , env=os.environ.copy() ) @require_multi_gpu def _A ( self :Optional[int] ) -> Tuple: '''simple docstring''' print(F'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ : Dict = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ , env=os.environ.copy() ) @require_multi_gpu def _A ( self :Tuple ) -> Dict: '''simple docstring''' snake_case_ : str = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ , env=os.environ.copy() ) @require_multi_gpu def _A ( self :str ) -> str: '''simple docstring''' print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) snake_case_ : Union[str, Any] = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = Accelerator() __lowerCamelCase : Any = (accelerator.state.process_index + 2, 10) __lowerCamelCase : List[Any] = torch.randint(0, 10, shape).to(accelerator.device) __lowerCamelCase : Optional[Any] = '''''' __lowerCamelCase : str = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __lowerCamelCase : Optional[int] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __lowerCamelCase : Optional[int] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
700
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]: """simple docstring""" snake_case_ : str = False snake_case_ : int = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): snake_case_ : Any = True elif "IPython" in sys.modules: snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: snake_case_ : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: snake_case_ : Tuple = 8 snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__magic_name__ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ): snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case_ : Any = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,): snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ ) start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
656
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class A_ : """simple docstring""" def __init__( self :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Dict=3 , lowerCAmelCase__ :Any=32 * 8 , lowerCAmelCase__ :Tuple=32 * 8 , lowerCAmelCase__ :Optional[int]=4 , lowerCAmelCase__ :List[Any]=64 , ) -> str: '''simple docstring''' snake_case_ : Any = parent snake_case_ : Tuple = batch_size snake_case_ : Tuple = is_training snake_case_ : List[str] = use_auxiliary_loss snake_case_ : Dict = num_queries snake_case_ : Tuple = num_channels snake_case_ : int = min_size snake_case_ : str = max_size snake_case_ : Optional[int] = num_labels snake_case_ : Dict = hidden_dim snake_case_ : Optional[int] = hidden_dim def _A ( self :List[str] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCAmelCase__ ) snake_case_ : int = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCAmelCase__ ) snake_case_ : List[Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCAmelCase__ ) > 0.5 ).float() snake_case_ : List[str] = (torch.rand((self.batch_size, self.num_labels) , device=lowerCAmelCase__ ) > 0.5).long() snake_case_ : str = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _A ( self :Dict ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = MaskaFormerConfig( hidden_size=self.hidden_dim , ) snake_case_ : List[str] = self.num_queries snake_case_ : Dict = self.num_labels snake_case_ : Optional[Any] = [1, 1, 1, 1] snake_case_ : Any = self.num_channels snake_case_ : int = 64 snake_case_ : List[str] = 128 snake_case_ : str = self.hidden_dim snake_case_ : int = self.hidden_dim snake_case_ : List[str] = self.hidden_dim return config def _A ( self :List[Any] ) -> List[Any]: '''simple docstring''' snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ : Optional[int] = self.prepare_config_and_inputs() snake_case_ : int = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _A ( self :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = output.encoder_hidden_states snake_case_ : Optional[Any] = output.pixel_decoder_hidden_states snake_case_ : Any = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCAmelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCAmelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCAmelCase__ ) , config.decoder_layers ) def _A ( self :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any=False ) -> Any: '''simple docstring''' with torch.no_grad(): snake_case_ : int = MaskaFormerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case_ : List[Any] = model(pixel_values=lowerCAmelCase__ , pixel_mask=lowerCAmelCase__ ) snake_case_ : Tuple = model(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCAmelCase__ , lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int ) -> Optional[int]: '''simple docstring''' snake_case_ : str = MaskaFormerForUniversalSegmentation(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() def comm_check_on_output(lowerCAmelCase__ :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case_ : Optional[int] = model(pixel_values=lowerCAmelCase__ , pixel_mask=lowerCAmelCase__ ) snake_case_ : Union[str, Any] = model(lowerCAmelCase__ ) comm_check_on_output(lowerCAmelCase__ ) snake_case_ : List[Any] = model( pixel_values=lowerCAmelCase__ , pixel_mask=lowerCAmelCase__ , mask_labels=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ) comm_check_on_output(lowerCAmelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A_ (lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" a__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () a__ = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} a__ = False a__ = False a__ = False a__ = False def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Any = MaskaFormerModelTester(self ) snake_case_ : str = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def _A ( self :int ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _A ( self :str ) -> List[Any]: '''simple docstring''' snake_case_, snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCAmelCase__ , **lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) def _A ( self :Optional[int] ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCAmelCase__ ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def _A ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def _A ( self :str ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="Mask2Former is not a generative model" ) def _A ( self :Dict ) -> int: '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def _A ( self :List[str] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _A ( self :int ) -> Any: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _A ( self :Dict ) -> Tuple: '''simple docstring''' pass def _A ( self :int ) -> List[Any]: '''simple docstring''' snake_case_, snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Any = model_class(lowerCAmelCase__ ) snake_case_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : List[Any] = [*signature.parameters.keys()] snake_case_ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) @slow def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: snake_case_ : str = MaskaFormerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _A ( self :Dict ) -> int: '''simple docstring''' snake_case_ : Optional[int] = (self.model_tester.min_size,) * 2 snake_case_ : int = { "pixel_values": torch.randn((2, 3, *size) , device=lowerCAmelCase__ ), "mask_labels": torch.randn((2, 10, *size) , device=lowerCAmelCase__ ), "class_labels": torch.zeros(2 , 10 , device=lowerCAmelCase__ ).long(), } snake_case_ : Tuple = self.model_tester.get_config() snake_case_ : str = MaskaFormerForUniversalSegmentation(lowerCAmelCase__ ).to(lowerCAmelCase__ ) snake_case_ : Optional[int] = model(**lowerCAmelCase__ ) self.assertTrue(outputs.loss is not None ) def _A ( self :str ) -> Tuple: '''simple docstring''' snake_case_, snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCAmelCase__ , **lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) def _A ( self :int ) -> Optional[int]: '''simple docstring''' snake_case_, snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[int] = model_class(lowerCAmelCase__ ).to(lowerCAmelCase__ ) snake_case_ : List[Any] = model(**lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) self.assertTrue(outputs.attentions is not None ) def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return snake_case_ : Optional[Any] = self.all_model_classes[1] snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() snake_case_ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() snake_case_ : str = model(lowerCAmelCase__ , mask_labels=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ).loss loss.backward() def _A ( self :Union[str, Any] ) -> Any: '''simple docstring''' snake_case_ : List[str] = self.all_model_classes[1] snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ : int = self.model_tester.prepare_config_and_inputs() snake_case_ : Dict = True snake_case_ : int = True snake_case_ : Tuple = model_class(lowerCAmelCase__ ).to(lowerCAmelCase__ ) model.train() snake_case_ : Any = model(lowerCAmelCase__ , mask_labels=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ) snake_case_ : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case_ : int = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() snake_case_ : Optional[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case_ : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCAmelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCamelCase : int = 1E-4 def __UpperCAmelCase ( )-> Union[str, Any]: """simple docstring""" snake_case_ : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class A_ (unittest.TestCase ): """simple docstring""" @cached_property def _A ( self :Union[str, Any] ) -> str: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def _A ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _A ( self :List[str] ) -> int: '''simple docstring''' snake_case_ : Any = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCAmelCase__ ) snake_case_ : List[str] = self.default_image_processor snake_case_ : Any = prepare_img() snake_case_ : Optional[int] = image_processor(lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) snake_case_ : int = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCAmelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): snake_case_ : List[Any] = model(**lowerCAmelCase__ ) snake_case_ : Union[str, Any] = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(lowerCAmelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) snake_case_ : List[Any] = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(lowerCAmelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) snake_case_ : List[str] = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(lowerCAmelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : int = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCAmelCase__ ).eval() snake_case_ : Optional[int] = self.default_image_processor snake_case_ : int = prepare_img() snake_case_ : Tuple = image_processor(lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCAmelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): snake_case_ : Union[str, Any] = model(**lowerCAmelCase__ ) # masks_queries_logits snake_case_ : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) snake_case_ : Optional[Any] = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] snake_case_ : Any = torch.tensor(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) # class_queries_logits snake_case_ : Tuple = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) snake_case_ : Optional[int] = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) def _A ( self :Union[str, Any] ) -> Any: '''simple docstring''' snake_case_ : List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCAmelCase__ ).eval() snake_case_ : Optional[int] = self.default_image_processor snake_case_ : Dict = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) snake_case_ : Tuple = inputs["pixel_values"].to(lowerCAmelCase__ ) snake_case_ : Optional[int] = [el.to(lowerCAmelCase__ ) for el in inputs["mask_labels"]] snake_case_ : Tuple = [el.to(lowerCAmelCase__ ) for el in inputs["class_labels"]] with torch.no_grad(): snake_case_ : Any = model(**lowerCAmelCase__ ) self.assertTrue(outputs.loss is not None )
701
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Dict ) -> List[str]: '''simple docstring''' snake_case_ : int = {} def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case_ : Optional[int] = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): snake_case_ : Dict = [] def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str: '''simple docstring''' if s == d: return [] snake_case_ : str = [] snake_case_ : Optional[int] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int: '''simple docstring''' if c == -1: snake_case_ : Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : Tuple = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = [] snake_case_ : str = [] if s == -2: snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Any = [] snake_case_ : str = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Optional[int] = -2 snake_case_ : Any = [] snake_case_ : List[Any] = s snake_case_ : int = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[str] = s snake_case_ : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : str = -2 snake_case_ : List[str] = [] snake_case_ : List[Any] = s snake_case_ : List[str] = False snake_case_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Tuple = True if len(lowerCAmelCase__ ) != 0: snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str: '''simple docstring''' snake_case_ : Optional[int] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Optional[Any] = time() return end - begin def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Any = time() return end - begin class A_ : """simple docstring""" def __init__( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = {} def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case_ : str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case_ : List[str] = [[w, u]] def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int: '''simple docstring''' if s == d: return [] snake_case_ : Any = [] snake_case_ : Dict = [] if s == -2: snake_case_ : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]: '''simple docstring''' if c == -1: snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = [] snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : Optional[int] = [] snake_case_ : Tuple = s snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[int] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[Any] = s snake_case_ : Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : int = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : int = [] snake_case_ : int = s snake_case_ : Optional[Any] = False snake_case_ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = s snake_case_ : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Any ) -> Tuple: '''simple docstring''' return list(self.graph ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str: '''simple docstring''' snake_case_ : List[str] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = time() return end - begin def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int: '''simple docstring''' snake_case_ : List[str] = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Tuple = time() return end - begin
656
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Tuple = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = XGLMTokenizer a__ = XGLMTokenizerFast a__ = True a__ = True def _A ( self :List[Any] ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = "<pad>" snake_case_ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_008 ) def _A ( self :str ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def _A ( self :Tuple ) -> Dict: '''simple docstring''' snake_case_ : List[str] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) snake_case_ : Any = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) snake_case_ : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case_ : Tuple = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) snake_case_ : Tuple = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _A ( self :Optional[int] ) -> int: '''simple docstring''' return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _A ( self :str ) -> Optional[int]: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name ) snake_case_ : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__ ) snake_case_ : Tuple = pickle.dumps(lowerCAmelCase__ ) pickle.loads(lowerCAmelCase__ ) def _A ( self :List[str] ) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : int = self.get_rust_tokenizer() snake_case_ : List[Any] = "I was born in 92000, and this is falsé." snake_case_ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) snake_case_ : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = self.get_rust_tokenizer() snake_case_ : Optional[int] = tokenizer.encode(lowerCAmelCase__ ) snake_case_ : Dict = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = "Hello World!" snake_case_ : Tuple = [2, 31_227, 4_447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def _A ( self :Any ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off snake_case_ : Dict = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def _A ( self :Optional[int] ) -> str: '''simple docstring''' snake_case_ : str = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
702
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCamelCase : List[str] = re.compile(R'''\s+''') def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )} def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple: """simple docstring""" snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"] snake_case_ : Optional[Any] = example["content"].splitlines() for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]: """simple docstring""" snake_case_ : str = ["unit tests", "test file", "configuration file"] snake_case_ : int = example["content"].splitlines() snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 # first test for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ : Tuple = example["content"].count("\n" ) snake_case_ : int = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : List[Any] = ["def ", "class ", "for ", "while "] snake_case_ : Optional[Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]: """simple docstring""" snake_case_ : Tuple = example["content"].splitlines() snake_case_ : Tuple = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"] snake_case_ : int = len(example["content"] ) / len(__magic_name__ ) return {"ratio": ratio} def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = {} results.update(get_hash(__magic_name__ ) ) results.update(line_stats(__magic_name__ ) ) results.update(alpha_stats(__magic_name__ ) ) results.update(char_token_ratio(__magic_name__ ) ) results.update(is_autogenerated(__magic_name__ ) ) results.update(is_config_or_test(__magic_name__ ) ) results.update(has_no_keywords(__magic_name__ ) ) results.update(has_few_assignments(__magic_name__ ) ) return results def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if not check_uniques(__magic_name__ ,__magic_name__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( __magic_name__ )-> Dict: """simple docstring""" with open(__magic_name__ ,"rb" ) as f_in: with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__magic_name__ ,__magic_name__ ) os.unlink(__magic_name__ ) # Settings __lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments) __lowerCamelCase : str = parser.parse_args() if args.num_workers is None: __lowerCamelCase : List[Any] = multiprocessing.cpu_count() __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCamelCase : Any = time.time() __lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __lowerCamelCase : Any = set(ds.unique('''hash''')) __lowerCamelCase : Optional[int] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCamelCase : List[str] = time.time() __lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __lowerCamelCase : List[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) __lowerCamelCase : List[str] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) __lowerCamelCase : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''') __lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
656
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class A_ (UpperCamelCase_ , UpperCamelCase_ ): """simple docstring""" a__ = '''swin''' a__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[int]=224 , lowerCAmelCase__ :Optional[int]=4 , lowerCAmelCase__ :Any=3 , lowerCAmelCase__ :List[Any]=96 , lowerCAmelCase__ :Union[str, Any]=[2, 2, 6, 2] , lowerCAmelCase__ :List[Any]=[3, 6, 12, 24] , lowerCAmelCase__ :str=7 , lowerCAmelCase__ :Any=4.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :int=0.0 , lowerCAmelCase__ :Union[str, Any]=0.0 , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :List[Any]=0.0_2 , lowerCAmelCase__ :Any=1E-5 , lowerCAmelCase__ :Optional[int]=32 , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :str=None , **lowerCAmelCase__ :Dict , ) -> Optional[int]: '''simple docstring''' super().__init__(**__A ) snake_case_ : str = image_size snake_case_ : Optional[Any] = patch_size snake_case_ : Tuple = num_channels snake_case_ : Any = embed_dim snake_case_ : Optional[Any] = depths snake_case_ : Tuple = len(__A ) snake_case_ : int = num_heads snake_case_ : str = window_size snake_case_ : Dict = mlp_ratio snake_case_ : List[str] = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : str = drop_path_rate snake_case_ : List[str] = hidden_act snake_case_ : Union[str, Any] = use_absolute_embeddings snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Optional[int] = int(embed_dim * 2 ** (len(__A ) - 1) ) snake_case_ : List[Any] = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(__A ) + 1 )] snake_case_ : int = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names ) class A_ (UpperCamelCase_ ): """simple docstring""" a__ = version.parse('''1.11''' ) @property def _A ( self :str ) -> Optional[int]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _A ( self :int ) -> Dict: '''simple docstring''' return 1E-4
703
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 ) snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ : Tuple = Accelerator() snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class A_ (unittest.TestCase ): """simple docstring""" @require_torch def _A ( self :Dict ) -> str: '''simple docstring''' snake_case_ : Any = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) snake_case_ : Optional[int] = load_dataset("ashraq/esc50" ) snake_case_ : Optional[int] = dataset["train"]["audio"][-1]["array"] snake_case_ : int = audio_classifier(lowerCAmelCase__ , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"score": 0.5_0_1, "label": "Sound of a dog"}, {"score": 0.4_9_9, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def _A ( self :int ) -> Union[str, Any]: '''simple docstring''' pass @slow @require_torch def _A ( self :int ) -> str: '''simple docstring''' snake_case_ : List[str] = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog snake_case_ : int = load_dataset("ashraq/esc50" ) snake_case_ : str = dataset["train"]["audio"][-1]["array"] snake_case_ : List[Any] = audio_classifier(lowerCAmelCase__ , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ] , ) snake_case_ : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) snake_case_ : int = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def _A ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass
704
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : Any = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __lowerCamelCase : Any = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = None # source code of `config_class` snake_case_ : List[Any] = inspect.getsource(__magic_name__ ) snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): snake_case_ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ : str = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case_ : Dict = ckpt_name break return checkpoint def __UpperCAmelCase ( )-> Dict: """simple docstring""" snake_case_ : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ ) snake_case_ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__magic_name__ ) if len(__magic_name__ ) > 0: snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
656
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
705
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : int = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A_ (a_ ): """simple docstring""" a__ = '''cvt''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : int = num_channels snake_case_ : int = patch_sizes snake_case_ : Optional[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Tuple = embed_dim snake_case_ : Optional[int] = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Optional[int] = mlp_ratio snake_case_ : Tuple = attention_drop_rate snake_case_ : str = drop_rate snake_case_ : Tuple = drop_path_rate snake_case_ : Any = qkv_bias snake_case_ : Union[str, Any] = cls_token snake_case_ : int = qkv_projection_method snake_case_ : Any = kernel_qkv snake_case_ : Union[str, Any] = padding_kv snake_case_ : str = stride_kv snake_case_ : Dict = padding_q snake_case_ : Tuple = stride_q snake_case_ : Any = initializer_range snake_case_ : Any = layer_norm_eps
656
0
'''simple docstring''' from __future__ import annotations import queue class A_ : """simple docstring""" def __init__( self :List[str] , lowerCAmelCase__ :Optional[Any] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = data snake_case_ : List[Any] = None snake_case_ : int = None def __UpperCAmelCase ( )-> Union[str, Any]: """simple docstring""" print("\n********Press N to stop entering at any point of time********\n" ) snake_case_ : Union[str, Any] = input("Enter the value of the root node: " ).strip().lower() snake_case_ : queue.Queue = queue.Queue() snake_case_ : List[str] = TreeNode(int(snake_case__ ) ) q.put(snake_case__ ) while not q.empty(): snake_case_ : Union[str, Any] = q.get() snake_case_ : str = F'''Enter the left node of {node_found.data}: ''' snake_case_ : int = input(snake_case__ ).strip().lower() or """n""" if check == "n": return tree_node snake_case_ : Optional[Any] = TreeNode(int(snake_case__ ) ) snake_case_ : List[Any] = left_node q.put(snake_case__ ) snake_case_ : List[str] = F'''Enter the right node of {node_found.data}: ''' snake_case_ : Optional[Any] = input(snake_case__ ).strip().lower() or """n""" if check == "n": return tree_node snake_case_ : List[Any] = TreeNode(int(snake_case__ ) ) snake_case_ : Union[str, Any] = right_node q.put(snake_case__ ) raise def __UpperCAmelCase ( __magic_name__ )-> Optional[int]: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or not node: return print(node.data ,end="," ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or not node: return in_order(node.left ) print(node.data ,end="," ) in_order(node.right ) def __UpperCAmelCase ( __magic_name__ )-> Any: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end="," ) def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or not node: return snake_case_ : queue.Queue = queue.Queue() q.put(snake_case__ ) while not q.empty(): snake_case_ : int = q.get() print(node_dequeued.data ,end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( __magic_name__ )-> Optional[int]: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or not node: return snake_case_ : queue.Queue = queue.Queue() q.put(snake_case__ ) while not q.empty(): snake_case_ : Any = [] while not q.empty(): snake_case_ : Dict = q.get() print(node_dequeued.data ,end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case__ ) def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or not node: return snake_case_ : list[TreeNode] = [] snake_case_ : List[str] = node while n or stack: while n: # start from root node, find its left child print(n.data ,end="," ) stack.append(snake_case__ ) snake_case_ : List[Any] = n.left # end of while means current node doesn't have left child snake_case_ : Optional[int] = stack.pop() # start to traverse its right child snake_case_ : Optional[int] = n.right def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or not node: return snake_case_ : list[TreeNode] = [] snake_case_ : Dict = node while n or stack: while n: stack.append(snake_case__ ) snake_case_ : Tuple = n.left snake_case_ : List[str] = stack.pop() print(n.data ,end="," ) snake_case_ : Dict = n.right def __UpperCAmelCase ( __magic_name__ )-> Optional[int]: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or not node: return snake_case_ : Union[str, Any] = [], [] snake_case_ : List[Any] = node stacka.append(snake_case__ ) while stacka: # to find the reversed order of post order, store it in stack2 snake_case_ : List[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end="," ) def __UpperCAmelCase ( __magic_name__ = "" ,__magic_name__=50 ,__magic_name__="*" )-> Any: """simple docstring""" if not s: return "\n" + width * char snake_case_ : Any = divmod(width - len(snake_case__ ) - 2 ,2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) __lowerCamelCase : str = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 50 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
706
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __lowerCamelCase : str = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCamelCase : Dict = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __lowerCamelCase : int = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] snake_case_ : List[str] = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
656
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Optional[Any] = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
707
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Any = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } snake_case_ : int = Dataset.from_dict(__magic_name__ ) return dataset class A_ (a_ ): """simple docstring""" def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = get_dataset() snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = get_dataset() snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) print(lowerCAmelCase__ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
656
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCamelCase : str = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __lowerCamelCase : List[str] = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __lowerCamelCase : List[Any] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __lowerCamelCase : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __lowerCamelCase : Tuple = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __lowerCamelCase : int = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __lowerCamelCase : Any = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __lowerCamelCase : List[str] = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __lowerCamelCase : Any = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class A_ (_UpperCAmelCase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class A_ (_UpperCAmelCase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Dict = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) __lowerCamelCase : List[Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) __lowerCamelCase : Union[str, Any] = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class A_ : """simple docstring""" def __call__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[str] = None , lowerCAmelCase__ :Optional[str] = None , lowerCAmelCase__ :Union[bool, str] = False , lowerCAmelCase__ :Union[bool, str] = False , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :Optional[bool] = None , **lowerCAmelCase__ :int , ) -> Dict: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) elif titles is None or texts is None: snake_case_ : Tuple = titles if texts is None else texts return super().__call__( lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) snake_case_ : Optional[int] = titles if not isinstance(lowercase_ , lowercase_ ) else [titles] snake_case_ : List[str] = texts if not isinstance(lowercase_ , lowercase_ ) else [texts] snake_case_ : str = len(lowercase_ ) snake_case_ : int = questions if not isinstance(lowercase_ , lowercase_ ) else [questions] * n_passages if len(lowercase_ ) != len(lowercase_ ): raise ValueError( F'''There should be as many titles than texts but got {len(lowercase_ )} titles and {len(lowercase_ )} texts.''' ) snake_case_ : Tuple = super().__call__(lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ )["""input_ids"""] snake_case_ : int = super().__call__(lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ )["""input_ids"""] snake_case_ : str = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase_ , lowercase_ ) ] } if return_attention_mask is not False: snake_case_ : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case_ : Any = attention_mask return self.pad(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ ) def _A ( self :int , lowerCAmelCase__ :BatchEncoding , lowerCAmelCase__ :DPRReaderOutput , lowerCAmelCase__ :int = 16 , lowerCAmelCase__ :int = 64 , lowerCAmelCase__ :int = 4 , ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = reader_input["""input_ids"""] snake_case_ : Tuple = reader_output[:3] snake_case_ : Optional[Any] = len(lowercase_ ) snake_case_ : Optional[Any] = sorted(range(lowercase_ ) , reverse=lowercase_ , key=relevance_logits.__getitem__ ) snake_case_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case_ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case_ : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case_ : Any = sequence_ids.index(self.pad_token_id ) else: snake_case_ : Optional[int] = len(lowercase_ ) snake_case_ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase_ , top_spans=lowercase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase_ , start_index=lowercase_ , end_index=lowercase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowercase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _A ( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :int , ) -> Optional[int]: '''simple docstring''' snake_case_ : int = [] for start_index, start_score in enumerate(lowercase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case_ : Dict = sorted(lowercase_ , key=lambda lowerCAmelCase__ : x[1] , reverse=lowercase_ ) snake_case_ : Any = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) snake_case_ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowercase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class A_ (_UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = READER_PRETRAINED_VOCAB_FILES_MAP a__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = READER_PRETRAINED_INIT_CONFIGURATION a__ = ['''input_ids''', '''attention_mask''']
708
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase : Dict = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
0
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = jnp.ones((batch_size, length) ) / length return scores def _A ( self :Any ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = None snake_case_ : Optional[int] = 20 snake_case_ : Tuple = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__ ) # tweak scores to not be uniform anymore snake_case_ : List[str] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch snake_case_ : Tuple = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax snake_case_ : Any = jax.nn.softmax(lowerCAmelCase__ , axis=-1 ) snake_case_ : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5 ) snake_case_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3 ) snake_case_ : Union[str, Any] = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__ ) , axis=-1 ) snake_case_ : Tuple = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Tuple = None snake_case_ : Any = 10 snake_case_ : int = 2 # create ramp distribution snake_case_ : Dict = np.broadcast_to(np.arange(lowerCAmelCase__ )[None, :] , (batch_size, vocab_size) ).copy() snake_case_ : Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size snake_case_ : Dict = FlaxTopKLogitsWarper(3 ) snake_case_ : int = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case snake_case_ : str = 5 snake_case_ : Optional[int] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) snake_case_ : Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__ )[None, :] , (batch_size, length) ).copy() snake_case_ : Union[str, Any] = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _A ( self :List[str] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = None snake_case_ : List[str] = 10 snake_case_ : Tuple = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) snake_case_ : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) snake_case_ : int = FlaxTopPLogitsWarper(0.8 ) snake_case_ : Dict = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 snake_case_ : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # check edge cases with negative and extreme logits snake_case_ : Dict = np.broadcast_to(np.arange(lowerCAmelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme snake_case_ : Dict = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept snake_case_ : int = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) snake_case_ : Optional[Any] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _A ( self :int ) -> List[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = 20 snake_case_ : Optional[int] = 4 snake_case_ : Dict = 0 snake_case_ : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__ ) # check that min length is applied at length 5 snake_case_ : Dict = ids_tensor((batch_size, 20) , vocab_size=20 ) snake_case_ : Optional[int] = 5 snake_case_ : List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 snake_case_ : Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Dict = 15 snake_case_ : Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) self.assertFalse(jnp.isinf(lowerCAmelCase__ ).any() ) def _A ( self :Optional[int] ) -> List[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = 20 snake_case_ : Tuple = 4 snake_case_ : Dict = 0 snake_case_ : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__ ) # check that all scores are -inf except the bos_token_id score snake_case_ : List[str] = ids_tensor((batch_size, 1) , vocab_size=20 ) snake_case_ : Optional[int] = 1 snake_case_ : List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Tuple = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 snake_case_ : Tuple = 3 snake_case_ : List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : str = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) self.assertFalse(jnp.isinf(lowerCAmelCase__ ).any() ) def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = 20 snake_case_ : Union[str, Any] = 4 snake_case_ : int = 0 snake_case_ : Union[str, Any] = 5 snake_case_ : int = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached snake_case_ : List[str] = ids_tensor((batch_size, 4) , vocab_size=20 ) snake_case_ : List[str] = 4 snake_case_ : Tuple = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Union[str, Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached snake_case_ : List[Any] = 3 snake_case_ : Any = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Tuple = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) self.assertFalse(jnp.isinf(lowerCAmelCase__ ).any() ) def _A ( self :Optional[int] ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = 4 snake_case_ : Optional[Any] = 10 snake_case_ : Union[str, Any] = 15 snake_case_ : Union[str, Any] = 2 snake_case_ : Any = 1 snake_case_ : Any = 15 # dummy input_ids and scores snake_case_ : str = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__ ) snake_case_ : int = input_ids.copy() snake_case_ : List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = scores.copy() # instantiate all dist processors snake_case_ : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) snake_case_ : Optional[Any] = FlaxTopKLogitsWarper(3 ) snake_case_ : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors snake_case_ : Any = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__ ) snake_case_ : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__ ) snake_case_ : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) snake_case_ : Optional[Any] = 10 # no processor list snake_case_ : List[Any] = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) snake_case_ : List[Any] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) snake_case_ : List[Any] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) snake_case_ : Optional[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) snake_case_ : int = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) snake_case_ : Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) # with processor list snake_case_ : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) snake_case_ : Optional[int] = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[Any] = 4 snake_case_ : Any = 10 snake_case_ : Optional[Any] = 15 snake_case_ : int = 2 snake_case_ : List[Any] = 1 snake_case_ : Dict = 15 # dummy input_ids and scores snake_case_ : List[str] = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__ ) snake_case_ : List[str] = input_ids.copy() snake_case_ : int = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[str] = scores.copy() # instantiate all dist processors snake_case_ : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) snake_case_ : Union[str, Any] = FlaxTopKLogitsWarper(3 ) snake_case_ : Tuple = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors snake_case_ : int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__ ) snake_case_ : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__ ) snake_case_ : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) snake_case_ : List[Any] = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] ): snake_case_ : Union[str, Any] = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) snake_case_ : Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) snake_case_ : Optional[Any] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) snake_case_ : Any = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) snake_case_ : Optional[Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) snake_case_ : str = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) return scores # with processor list def run_processor_list(lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple ): snake_case_ : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) snake_case_ : List[str] = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__ ) return scores snake_case_ : Tuple = jax.jit(lowerCAmelCase__ ) snake_case_ : str = jax.jit(lowerCAmelCase__ ) snake_case_ : Any = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Dict = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
709
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> list[int]: """simple docstring""" if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__magic_name__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
656
0
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[int]: """simple docstring""" snake_case_ : Union[str, Any] = k_size // 2 snake_case_, snake_case_ : str = mgrid[0 - center : k_size - center, 0 - center : k_size - center] snake_case_ : List[Any] = 1 / (2 * pi * sigma) * exp(-(square(UpperCAmelCase__ ) + square(UpperCAmelCase__ )) / (2 * square(UpperCAmelCase__ )) ) return g def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Union[str, Any]: """simple docstring""" snake_case_, snake_case_ : Tuple = image.shape[0], image.shape[1] # dst image height and width snake_case_ : Any = height - k_size + 1 snake_case_ : Optional[Any] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows snake_case_ : Optional[int] = zeros((dst_height * dst_width, k_size * k_size) ) snake_case_ : str = 0 for i, j in product(range(UpperCAmelCase__ ) ,range(UpperCAmelCase__ ) ): snake_case_ : Optional[Any] = ravel(image[i : i + k_size, j : j + k_size] ) snake_case_ : int = window row += 1 # turn the kernel into shape(k*k, 1) snake_case_ : List[str] = gen_gaussian_kernel(UpperCAmelCase__ ,UpperCAmelCase__ ) snake_case_ : Optional[int] = ravel(UpperCAmelCase__ ) # reshape and get the dst image snake_case_ : str = dot(UpperCAmelCase__ ,UpperCAmelCase__ ).reshape(UpperCAmelCase__ ,UpperCAmelCase__ ).astype(UpperCAmelCase__ ) return dst if __name__ == "__main__": # read original image __lowerCamelCase : int = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value __lowerCamelCase : str = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __lowerCamelCase : List[str] = gaussian_filter(gray, 3, sigma=1) __lowerCamelCase : Optional[int] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
710
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __magic_name__=None )-> List[str]: """simple docstring""" if subparsers is not None: snake_case_ : List[str] = subparsers.add_parser("test" ) else: snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" ,default=__magic_name__ ,help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) ,) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: snake_case_ : str = script_name else: snake_case_ : Any = F'''--config_file={args.config_file} {script_name}''' snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split() snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Dict = test_command_parser() snake_case_ : Dict = parser.parse_args() test_command(__magic_name__ ) if __name__ == "__main__": main()
656
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class A_ (unittest.TestCase ): """simple docstring""" def __init__( self :Tuple , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Optional[Any]=30 , lowerCAmelCase__ :List[Any]=400 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :Optional[int]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :Any=[0.5, 0.5, 0.5] , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Optional[Any]=1 / 255 , lowerCAmelCase__ :Union[str, Any]=True , ) -> Dict: '''simple docstring''' snake_case_ : List[str] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} snake_case_ : int = parent snake_case_ : List[Any] = batch_size snake_case_ : int = num_channels snake_case_ : List[str] = min_resolution snake_case_ : Dict = max_resolution snake_case_ : Any = do_resize snake_case_ : Optional[Any] = size snake_case_ : Any = do_normalize snake_case_ : Tuple = image_mean snake_case_ : Tuple = image_std snake_case_ : int = do_rescale snake_case_ : str = rescale_factor snake_case_ : int = do_pad def _A ( self :Any ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any]=False ) -> str: '''simple docstring''' if not batched: snake_case_ : Dict = image_inputs[0] if isinstance(UpperCAmelCase_ , Image.Image ): snake_case_, snake_case_ : Optional[Any] = image.size else: snake_case_, snake_case_ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case_ : Any = int(self.size["shortest_edge"] * h / w ) snake_case_ : str = self.size["shortest_edge"] elif w > h: snake_case_ : Any = self.size["shortest_edge"] snake_case_ : int = int(self.size["shortest_edge"] * w / h ) else: snake_case_ : Any = self.size["shortest_edge"] snake_case_ : int = self.size["shortest_edge"] else: snake_case_ : List[Any] = [] for image in image_inputs: snake_case_, snake_case_ : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : List[Any] = max(UpperCAmelCase_ , key=lambda lowerCAmelCase__ : item[0] )[0] snake_case_ : Optional[Any] = max(UpperCAmelCase_ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A_ (__UpperCAmelCase , unittest.TestCase ): """simple docstring""" a__ = ConditionalDetrImageProcessor if is_vision_available() else None def _A ( self :int ) -> List[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = ConditionalDetrImageProcessingTester(self ) @property def _A ( self :List[str] ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _A ( self :Optional[int] ) -> int: '''simple docstring''' snake_case_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) snake_case_ : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase_ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) def _A ( self :int ) -> int: '''simple docstring''' pass def _A ( self :List[Any] ) -> Any: '''simple docstring''' snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input snake_case_ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_, snake_case_ : List[Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_, snake_case_ : Dict = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) snake_case_ : Any = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self :Dict ) -> int: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input snake_case_ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_, snake_case_ : Any = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Tuple = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values snake_case_, snake_case_ : Any = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self :List[str] ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input snake_case_ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_, snake_case_ : List[Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Tuple = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values snake_case_, snake_case_ : int = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _A ( self :Optional[int] ) -> Dict: '''simple docstring''' snake_case_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case_ : List[Any] = json.loads(f.read() ) snake_case_ : Tuple = {"image_id": 39_769, "annotations": target} # encode them snake_case_ : Any = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case_ : Optional[Any] = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , return_tensors="pt" ) # verify pixel values snake_case_ : List[Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase_ ) snake_case_ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area snake_case_ : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase_ ) ) # verify boxes snake_case_ : int = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase_ ) snake_case_ : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id snake_case_ : Union[str, Any] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase_ ) ) # verify is_crowd snake_case_ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase_ ) ) # verify class_labels snake_case_ : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase_ ) ) # verify orig_size snake_case_ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase_ ) ) # verify size snake_case_ : str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase_ ) ) @slow def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case_ : Optional[int] = json.loads(f.read() ) snake_case_ : Optional[Any] = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} snake_case_ : List[str] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case_ : Union[str, Any] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case_ : Tuple = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , masks_path=UpperCAmelCase_ , return_tensors="pt" ) # verify pixel values snake_case_ : Dict = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase_ ) snake_case_ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area snake_case_ : Dict = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase_ ) ) # verify boxes snake_case_ : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase_ ) snake_case_ : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id snake_case_ : Dict = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase_ ) ) # verify is_crowd snake_case_ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase_ ) ) # verify class_labels snake_case_ : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase_ ) ) # verify masks snake_case_ : Any = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCAmelCase_ ) # verify orig_size snake_case_ : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase_ ) ) # verify size snake_case_ : Optional[int] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase_ ) )
711
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCamelCase : str = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __lowerCamelCase : int = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __lowerCamelCase : List[str] = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
656
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A_ (UpperCamelCase_ ): """simple docstring""" a__ = '''cvt''' def __init__( self :Optional[int] , lowerCAmelCase__ :int=3 , lowerCAmelCase__ :Optional[int]=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :str=[2, 1, 1] , lowerCAmelCase__ :Optional[Any]=[64, 192, 384] , lowerCAmelCase__ :Union[str, Any]=[1, 3, 6] , lowerCAmelCase__ :Optional[Any]=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :Any=[True, True, True] , lowerCAmelCase__ :Union[str, Any]=[False, False, True] , lowerCAmelCase__ :Optional[int]=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :List[Any]=[3, 3, 3] , lowerCAmelCase__ :List[str]=[1, 1, 1] , lowerCAmelCase__ :Optional[Any]=[2, 2, 2] , lowerCAmelCase__ :List[Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :Any=0.0_2 , lowerCAmelCase__ :Optional[int]=1E-1_2 , **lowerCAmelCase__ :Optional[int] , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) snake_case_ : int = num_channels snake_case_ : Tuple = patch_sizes snake_case_ : Optional[int] = patch_stride snake_case_ : Tuple = patch_padding snake_case_ : str = embed_dim snake_case_ : List[Any] = num_heads snake_case_ : str = depth snake_case_ : List[Any] = mlp_ratio snake_case_ : Any = attention_drop_rate snake_case_ : List[Any] = drop_rate snake_case_ : Optional[int] = drop_path_rate snake_case_ : Tuple = qkv_bias snake_case_ : Dict = cls_token snake_case_ : List[str] = qkv_projection_method snake_case_ : Optional[Any] = kernel_qkv snake_case_ : str = padding_kv snake_case_ : Union[str, Any] = stride_kv snake_case_ : str = padding_q snake_case_ : List[Any] = stride_q snake_case_ : str = initializer_range snake_case_ : Any = layer_norm_eps
712
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCamelCase : str = 128022 __lowerCamelCase : List[Any] = 128028 @require_sentencepiece class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MaMaaaTokenizer a__ = False a__ = False a__ = True def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Optional[int] = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' return ( "This is a test", "This is a test", ) def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = "</s>" snake_case_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def _A ( self :Optional[int] ) -> int: '''simple docstring''' snake_case_ : int = self.get_tokenizer() snake_case_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , ) snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , "This is a test" ) @slow def _A ( self :Any ) -> List[Any]: '''simple docstring''' snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): """simple docstring""" a__ = '''facebook/m2m100_418M''' a__ = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] a__ = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def _A ( cls :str ) -> int: '''simple docstring''' snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) snake_case_ : List[str] = 1 return cls def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def _A ( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.tokenizer.get_vocab() self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ ) def _A ( self :Any ) -> Dict: '''simple docstring''' snake_case_ : List[str] = "en" snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def _A ( self :Tuple ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : int = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ ) @require_torch def _A ( self :Optional[Any] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = "en" snake_case_ : Tuple = "fr" snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" ) snake_case_ : Dict = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case_ : str = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case_ : int = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _A ( self :str ) -> int: '''simple docstring''' snake_case_ : Dict = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case_ : Tuple = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
656
0
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str: """simple docstring""" return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 ,number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
713
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCamelCase : str = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCamelCase : Tuple = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Tuple = SavedModel() snake_case_ : Dict = [] with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f: snake_case_ : Dict = json.load(__magic_name__ )["opsets"] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ ,"rb" ) as f: saved_model.ParseFromString(f.read() ) snake_case_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case_ : str = sorted(__magic_name__ ) snake_case_ : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__magic_name__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__magic_name__ ,sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __lowerCamelCase : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
656
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
714
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) __lowerCamelCase : List[str] = ['''names''', '''prefix'''] __lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines'''] __lowerCamelCase : Optional[Any] = ['''date_format'''] @dataclass class A_ (datasets.BuilderConfig ): """simple docstring""" a__ = "," a__ = None a__ = "infer" a__ = None a__ = None a__ = None a__ = None a__ = None a__ = True a__ = None a__ = None a__ = None a__ = None a__ = False a__ = None a__ = None a__ = None a__ = True a__ = True a__ = False a__ = True a__ = None a__ = "." a__ = None a__ = '"' a__ = 0 a__ = None a__ = None a__ = None a__ = None a__ = True a__ = True a__ = 0 a__ = True a__ = False a__ = None a__ = 10000 a__ = None a__ = "strict" a__ = "error" a__ = None def _A ( self :List[str] ) -> Any: '''simple docstring''' if self.delimiter is not None: snake_case_ : Tuple = self.delimiter if self.column_names is not None: snake_case_ : List[Any] = self.column_names @property def _A ( self :Optional[Any] ) -> int: '''simple docstring''' snake_case_ : Optional[int] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A_ (datasets.ArrowBasedBuilder ): """simple docstring""" a__ = CsvConfig def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): snake_case_ : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : List[str] = [files] snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ : str = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : str = [files] snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: snake_case_ : int = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case_ : str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' ) raise
656
0
def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') __lowerCamelCase : Dict = int(input('''Enter number: ''').strip()) print(f'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
715
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MgpstrTokenizer a__ = False a__ = {} a__ = False def _A ( self :List[str] ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str: '''simple docstring''' snake_case_ : Dict = "tester" snake_case_ : Tuple = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _A ( self :Dict ) -> str: '''simple docstring''' pass def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ) snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _A ( self :Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _A ( self :int ) -> Dict: '''simple docstring''' pass
656
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" @property def _A ( self :Any ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.dummy_uncond_unet snake_case_ : Any = PNDMScheduler() snake_case_ : int = PNDMPipeline(unet=A_ , scheduler=A_ ) pndm.to(A_ ) pndm.set_progress_bar_config(disable=A_ ) snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : Any = pndm(generator=A_ , num_inference_steps=20 , output_type="numpy" ).images snake_case_ : Any = torch.manual_seed(0 ) snake_case_ : List[Any] = pndm(generator=A_ , num_inference_steps=20 , output_type="numpy" , return_dict=A_ )[0] snake_case_ : Any = image[0, -3:, -3:, -1] snake_case_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : Tuple = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :List[Any] ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = "google/ddpm-cifar10-32" snake_case_ : Tuple = UNetaDModel.from_pretrained(A_ ) snake_case_ : str = PNDMScheduler() snake_case_ : Union[str, Any] = PNDMPipeline(unet=A_ , scheduler=A_ ) pndm.to(A_ ) pndm.set_progress_bar_config(disable=A_ ) snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : Tuple = pndm(generator=A_ , output_type="numpy" ).images snake_case_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : int = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
716
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: snake_case_ : int = ( "Wrong input data's dimensions... " F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__magic_name__ ) try: if dataset.shape[1] != value_array.shape[1]: snake_case_ : Dict = ( "Wrong input data's shape... " F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__magic_name__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: snake_case_ : Dict = ( "Input data have different datatype... " F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__magic_name__ ) snake_case_ : Optional[int] = [] for value in value_array: snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] ) snake_case_ : int = dataset[0].tolist() for dataset_value in dataset[1:]: snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ ) if dist > temp_dist: snake_case_ : Tuple = temp_dist snake_case_ : Optional[int] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ )) if __name__ == "__main__": import doctest doctest.testmod()
656
0
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ = 100 ,)-> str: """simple docstring""" snake_case_ : int = x_start snake_case_ : Optional[int] = fnc(__magic_name__ ) snake_case_ : str = 0.0 for _ in range(__magic_name__ ): # Approximates curve as a sequence of linear lines and sums their length snake_case_ : Union[str, Any] = (x_end - x_start) / steps + xa snake_case_ : str = fnc(__magic_name__ ) length += math.hypot(xa - xa ,fxa - fxa ) # Increment step snake_case_ : Any = xa snake_case_ : Optional[Any] = fxa return length if __name__ == "__main__": def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" return math.sin(10 * x ) print('''f(x) = sin(10 * x)''') print('''The length of the curve from x = -10 to x = 10 is:''') __lowerCamelCase : Tuple = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
717
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()] snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )] snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ ) if save_path is not None: save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
656
0
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" warnings.warn( "The preprocess method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor.preprocess instead" ,__lowerCAmelCase ,) if isinstance(__lowerCAmelCase ,torch.Tensor ): return image elif isinstance(__lowerCAmelCase ,PIL.Image.Image ): snake_case_ : Union[str, Any] = [image] if isinstance(image[0] ,PIL.Image.Image ): snake_case_ : List[Any] = image[0].size snake_case_ : str = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 snake_case_ : int = [np.array(i.resize((w, h) ,resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] snake_case_ : List[Any] = np.concatenate(__lowerCAmelCase ,axis=0 ) snake_case_ : str = np.array(__lowerCAmelCase ).astype(np.floataa ) / 255.0 snake_case_ : Optional[Any] = image.transpose(0 ,3 ,1 ,2 ) snake_case_ : Optional[int] = 2.0 * image - 1.0 snake_case_ : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) elif isinstance(image[0] ,torch.Tensor ): snake_case_ : Union[str, Any] = torch.cat(__lowerCAmelCase ,dim=0 ) return image def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" if isinstance(__lowerCAmelCase ,torch.Tensor ): return mask elif isinstance(__lowerCAmelCase ,PIL.Image.Image ): snake_case_ : Optional[int] = [mask] if isinstance(mask[0] ,PIL.Image.Image ): snake_case_ : str = mask[0].size snake_case_ : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case_ : Tuple = [np.array(m.convert("L" ).resize((w, h) ,resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask] snake_case_ : int = np.concatenate(__lowerCAmelCase ,axis=0 ) snake_case_ : Optional[int] = mask.astype(np.floataa ) / 255.0 snake_case_ : Union[str, Any] = 0 snake_case_ : List[Any] = 1 snake_case_ : List[Any] = torch.from_numpy(__lowerCAmelCase ) elif isinstance(mask[0] ,torch.Tensor ): snake_case_ : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) return mask class A_ (UpperCAmelCase__ ): """simple docstring""" a__ = 42 a__ = 42 def __init__( self :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :List[Any] ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self :Union[str, Any] , lowerCAmelCase__ :Union[torch.Tensor, PIL.Image.Image] , lowerCAmelCase__ :Union[torch.Tensor, PIL.Image.Image] , lowerCAmelCase__ :int = 250 , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :int = 10 , lowerCAmelCase__ :int = 10 , lowerCAmelCase__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase__ :Optional[str] = "pil" , lowerCAmelCase__ :bool = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' snake_case_ : Optional[Any] = image snake_case_ : Tuple = _preprocess_image(lowerCamelCase__ ) snake_case_ : List[Any] = original_image.to(device=self.device , dtype=self.unet.dtype ) snake_case_ : int = _preprocess_mask(lowerCamelCase__ ) snake_case_ : List[Any] = mask_image.to(device=self.device , dtype=self.unet.dtype ) snake_case_ : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ : int = original_image.shape snake_case_ : List[str] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.device ) snake_case_ : str = eta snake_case_ : Optional[int] = self.scheduler.timesteps[0] + 1 snake_case_ : Optional[int] = generator[0] if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual snake_case_ : Any = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # compute previous image: x_t -> x_t-1 snake_case_ : Optional[int] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample else: # compute the reverse: x_t-1 -> x_t snake_case_ : Union[str, Any] = self.scheduler.undo_step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) snake_case_ : Tuple = t snake_case_ : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : Union[str, Any] = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
718
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ ) snake_case_ : Any = val def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) snake_case_ : int = value else: snake_case_ : int = value return new_state_dict def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]: """simple docstring""" snake_case_ : str = "" if is_panoptic: snake_case_ : Dict = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Tuple = in_proj_weight[:256, :] snake_case_ : List[Any] = in_proj_bias[:256] snake_case_ : Optional[Any] = in_proj_weight[256:512, :] snake_case_ : Optional[int] = in_proj_bias[256:512] snake_case_ : Optional[int] = in_proj_weight[-256:, :] snake_case_ : str = in_proj_bias[-256:] def __UpperCAmelCase ( )-> Optional[Any]: """simple docstring""" snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case_ : Optional[Any] = "resnet101" if "dc5" in model_name: snake_case_ : List[str] = True snake_case_ : Tuple = "panoptic" in model_name if is_panoptic: snake_case_ : List[Any] = 250 else: snake_case_ : Optional[Any] = 91 snake_case_ : Optional[int] = "huggingface/label-files" snake_case_ : Dict = "coco-detection-id2label.json" snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : Dict = {v: k for k, v in idalabel.items()} # load image processor snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection" snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image snake_case_ : str = prepare_img() snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" ) snake_case_ : Union[str, Any] = encoding["pixel_values"] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval() snake_case_ : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case_ : Any = "conditional_detr." + src rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Tuple = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : int = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case_ : Tuple = state_dict.pop(__magic_name__ ) snake_case_ : Any = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val # finally, create HuggingFace model and load state dict snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" ) # verify our conversion snake_case_ : Dict = conditional_detr(__magic_name__ ) snake_case_ : Union[str, Any] = model(__magic_name__ ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowerCamelCase : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
656
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : List[str] = Mock() snake_case_ : Any = conn, Mock() snake_case_ : int = iter([1, None] ) snake_case_ : str = lambda __magic_name__ : next(lowercase__ ) # ===== invoke ===== send_file(filename="mytext.txt" ,testing=lowercase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
719
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Any = 1 snake_case_ : Dict = 3 snake_case_ : Union[str, Any] = (32, 32) snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _A ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _A ( self :Dict ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def _A ( self :Any ) -> str: '''simple docstring''' def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ): class A_ : """simple docstring""" def __init__( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.ones([0] ) def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ : str = self.dummy_cond_unet snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : Dict = self.dummy_vae snake_case_ : Dict = self.dummy_text_encoder snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : str = 77 snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ ) snake_case_ : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Dict = "A painting of a squirrel eating a burger" snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ) snake_case_ : Any = output.images snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Optional[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.dummy_cond_unet snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : int = self.dummy_vae snake_case_ : List[Any] = self.dummy_text_encoder snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : int = 77 snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 snake_case_ : Optional[Any] = unet.half() snake_case_ : Tuple = vae.half() snake_case_ : List[str] = bert.half() # make sure here that pndm scheduler skips prk snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[Any] = "A painting of a squirrel eating a burger" snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Any = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ : str = init_image.resize((760, 504) ) snake_case_ : Optional[Any] = "BAAI/AltDiffusion" snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : str = output.images[0] snake_case_ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : List[Any] = init_image.resize((768, 512) ) snake_case_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) snake_case_ : Any = "BAAI/AltDiffusion" snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
656
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowerCamelCase : Any = None __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : int = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} __lowerCamelCase : int = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } __lowerCamelCase : Optional[Any] = { 'google/rembert': 256, } __lowerCamelCase : Tuple = '▁' class A_ (__lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = RemBertTokenizer def __init__( self :Union[str, Any] , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=False , lowerCAmelCase__ :Tuple="[CLS]" , lowerCAmelCase__ :Optional[Any]="[SEP]" , lowerCAmelCase__ :Union[str, Any]="<unk>" , lowerCAmelCase__ :List[str]="[SEP]" , lowerCAmelCase__ :str="<pad>" , lowerCAmelCase__ :str="[CLS]" , lowerCAmelCase__ :List[str]="[MASK]" , **lowerCAmelCase__ :Dict , ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , ) snake_case_ : Optional[Any] = do_lower_case snake_case_ : str = remove_space snake_case_ : Any = keep_accents snake_case_ : Optional[Any] = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True def _A ( self :str , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case_ : Optional[Any] = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _A ( self :Optional[Any] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] def _A ( self :Dict , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case_ : Union[str, Any] = [self.sep_token_id] snake_case_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self :List[str] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__a ): logger.error("Vocabulary path ({}) should be a directory".format(__a ) ) return snake_case_ : Optional[Any] = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
720
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A_ (unittest.TestCase ): """simple docstring""" a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = ZeroShotClassificationPipeline( model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # No kwarg snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : str = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(1 ) ] , ) snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase__ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier(lowerCAmelCase__ , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , ) self.run_entailment_id(lowerCAmelCase__ ) def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = zero_shot_classifier.model.config snake_case_ : Optional[int] = config.labelaid snake_case_ : Tuple = zero_shot_classifier.entailment_id snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case_ : List[str] = original_labelaid self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id ) @require_torch def _A ( self :Tuple ) -> Any: '''simple docstring''' snake_case_ : List[Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) snake_case_ : int = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : List[str] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) snake_case_ : Optional[int] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _A ( self :Union[str, Any] ) -> int: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) snake_case_ : str = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Optional[int] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) snake_case_ : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Tuple = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
656
0
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = True ,__magic_name__ = math.inf ,__magic_name__ = -math.inf ,__magic_name__ = math.inf ,__magic_name__ = -math.inf ,__magic_name__ = False ,__magic_name__ = 100 ,__magic_name__ = 0.01 ,__magic_name__ = 1 ,)-> List[Any]: """simple docstring""" snake_case_ : Dict = False snake_case_ : List[str] = search_prob snake_case_ : List[Any] = start_temperate snake_case_ : Union[str, Any] = [] snake_case_ : List[str] = 0 snake_case_ : List[Any] = None while not search_end: snake_case_ : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): snake_case_ : str = current_state scores.append(_UpperCamelCase ) iterations += 1 snake_case_ : Tuple = None snake_case_ : int = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to snake_case_ : Any = random.randint(0 ,len(_UpperCamelCase ) - 1 ) # picking a random neighbor snake_case_ : Optional[int] = neighbors.pop(_UpperCamelCase ) snake_case_ : Dict = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: snake_case_ : int = change * -1 # in case we are finding minimum if change > 0: # improves the solution snake_case_ : Dict = picked_neighbor else: snake_case_ : str = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability snake_case_ : Union[str, Any] = picked_neighbor snake_case_ : str = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor snake_case_ : str = True else: snake_case_ : int = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_UpperCamelCase ) ,_UpperCamelCase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __lowerCamelCase : Tuple = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowerCamelCase : Union[str, Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) __lowerCamelCase : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowerCamelCase : str = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) __lowerCamelCase : Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowerCamelCase : Tuple = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' ) __lowerCamelCase : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowerCamelCase : Optional[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' )
721
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ ) roberta.eval() # disable dropout snake_case_ : Dict = roberta.model.encoder.sentence_encoder snake_case_ : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__magic_name__ ) snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight snake_case_ : int = roberta_sent_encoder.embed_positions.weight snake_case_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case_ : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ : BertLayer = model.roberta.encoder.layer[i] snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] snake_case_ : RobertaAttention = layer.attention snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias # self attention snake_case_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight snake_case_ : Any = roberta_layer.self_attn.q_proj.bias snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight snake_case_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case_ : int = roberta_layer.final_layer_norm.weight snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate snake_case_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : List[str] = roberta_layer.fca.weight snake_case_ : List[Any] = roberta_layer.fca.bias # output snake_case_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : Any = roberta_layer.fca.weight snake_case_ : Any = roberta_layer.fca.bias # end of layer if classification_head: snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight snake_case_ : int = roberta.model.encoder.lm_head.dense.bias snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias snake_case_ : int = roberta.model.encoder.lm_head.weight snake_case_ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1 snake_case_ : Union[str, Any] = model(__magic_name__ )[0] if classification_head: snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) ) else: snake_case_ : List[str] = roberta.model(__magic_name__ )[0] print(our_output.shape ,their_output.shape ) snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : Tuple = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
656
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __lowerCamelCase : int = False class A_ (unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) snake_case_ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) snake_case_ : Optional[int] = torch.manual_seed(0 ) snake_case_ : Any = pipe.dual_guided( prompt="first prompt" , image=A__ , text_to_image_strength=0.7_5 , generator=A__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A__ ) snake_case_ : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained(A__ , torch_dtype=torch.floataa ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) snake_case_ : Any = generator.manual_seed(0 ) snake_case_ : str = pipe.dual_guided( prompt="first prompt" , image=A__ , text_to_image_strength=0.7_5 , generator=A__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _A ( self :Tuple ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) snake_case_ : Optional[int] = "cyberpunk 2077" snake_case_ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) snake_case_ : Optional[Any] = torch.manual_seed(0 ) snake_case_ : List[str] = pipe.dual_guided( prompt=A__ , image=A__ , text_to_image_strength=0.7_5 , generator=A__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images snake_case_ : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : Any = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 snake_case_ : List[Any] = "A painting of a squirrel eating a burger " snake_case_ : List[str] = torch.manual_seed(0 ) snake_case_ : str = pipe.text_to_image( prompt=A__ , generator=A__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images snake_case_ : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : List[str] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 snake_case_ : Optional[Any] = pipe.image_variation(A__ , generator=A__ , output_type="numpy" ).images snake_case_ : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
700
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]: """simple docstring""" snake_case_ : str = False snake_case_ : int = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): snake_case_ : Any = True elif "IPython" in sys.modules: snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: snake_case_ : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: snake_case_ : Tuple = 8 snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__magic_name__ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ): snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case_ : Any = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,): snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ ) start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
656
0
'''simple docstring''' def __UpperCAmelCase ( )-> int: """simple docstring""" return 1 def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( __magic_name__ = 200 )-> int: """simple docstring""" return two_pound(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution(int(input().strip())))
701
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Dict ) -> List[str]: '''simple docstring''' snake_case_ : int = {} def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case_ : Optional[int] = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): snake_case_ : Dict = [] def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str: '''simple docstring''' if s == d: return [] snake_case_ : str = [] snake_case_ : Optional[int] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int: '''simple docstring''' if c == -1: snake_case_ : Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : Tuple = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = [] snake_case_ : str = [] if s == -2: snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Any = [] snake_case_ : str = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Optional[int] = -2 snake_case_ : Any = [] snake_case_ : List[Any] = s snake_case_ : int = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[str] = s snake_case_ : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : str = -2 snake_case_ : List[str] = [] snake_case_ : List[Any] = s snake_case_ : List[str] = False snake_case_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Tuple = True if len(lowerCAmelCase__ ) != 0: snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str: '''simple docstring''' snake_case_ : Optional[int] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Optional[Any] = time() return end - begin def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Any = time() return end - begin class A_ : """simple docstring""" def __init__( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = {} def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case_ : str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case_ : List[str] = [[w, u]] def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int: '''simple docstring''' if s == d: return [] snake_case_ : Any = [] snake_case_ : Dict = [] if s == -2: snake_case_ : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]: '''simple docstring''' if c == -1: snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = [] snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : Optional[int] = [] snake_case_ : Tuple = s snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[int] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[Any] = s snake_case_ : Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : int = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : int = [] snake_case_ : int = s snake_case_ : Optional[Any] = False snake_case_ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = s snake_case_ : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Any ) -> Tuple: '''simple docstring''' return list(self.graph ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str: '''simple docstring''' snake_case_ : List[str] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = time() return end - begin def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int: '''simple docstring''' snake_case_ : List[str] = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Tuple = time() return end - begin
656
0
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __lowerCamelCase : Any = parse(importlib.metadata.version('''torch''')) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) snake_case_ : int = STR_OPERATION_TO_FUNC[operation] if isinstance(lowercase__ ,lowercase__ ): snake_case_ : Any = parse(importlib.metadata.version(lowercase__ ) ) return operation(lowercase__ ,parse(lowercase__ ) ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" return compare_versions(lowercase__ ,lowercase__ ,lowercase__ )
702
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCamelCase : List[str] = re.compile(R'''\s+''') def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )} def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple: """simple docstring""" snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"] snake_case_ : Optional[Any] = example["content"].splitlines() for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]: """simple docstring""" snake_case_ : str = ["unit tests", "test file", "configuration file"] snake_case_ : int = example["content"].splitlines() snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 # first test for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ : Tuple = example["content"].count("\n" ) snake_case_ : int = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : List[Any] = ["def ", "class ", "for ", "while "] snake_case_ : Optional[Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]: """simple docstring""" snake_case_ : Tuple = example["content"].splitlines() snake_case_ : Tuple = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"] snake_case_ : int = len(example["content"] ) / len(__magic_name__ ) return {"ratio": ratio} def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = {} results.update(get_hash(__magic_name__ ) ) results.update(line_stats(__magic_name__ ) ) results.update(alpha_stats(__magic_name__ ) ) results.update(char_token_ratio(__magic_name__ ) ) results.update(is_autogenerated(__magic_name__ ) ) results.update(is_config_or_test(__magic_name__ ) ) results.update(has_no_keywords(__magic_name__ ) ) results.update(has_few_assignments(__magic_name__ ) ) return results def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if not check_uniques(__magic_name__ ,__magic_name__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( __magic_name__ )-> Dict: """simple docstring""" with open(__magic_name__ ,"rb" ) as f_in: with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__magic_name__ ,__magic_name__ ) os.unlink(__magic_name__ ) # Settings __lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments) __lowerCamelCase : str = parser.parse_args() if args.num_workers is None: __lowerCamelCase : List[Any] = multiprocessing.cpu_count() __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCamelCase : Any = time.time() __lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __lowerCamelCase : Any = set(ds.unique('''hash''')) __lowerCamelCase : Optional[int] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCamelCase : List[str] = time.time() __lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __lowerCamelCase : List[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) __lowerCamelCase : List[str] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) __lowerCamelCase : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''') __lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
656
0
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __UpperCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )-> Dict: """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __UpperCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True )-> Dict: """simple docstring""" model.train() snake_case_ : Optional[int] = model(lowerCAmelCase_ ) snake_case_ : Any = F.mse_loss(lowerCAmelCase_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCAmelCase_ ) def __UpperCAmelCase ( __magic_name__ , __magic_name__=False )-> Union[str, Any]: """simple docstring""" set_seed(42 ) snake_case_ : Optional[Any] = RegressionModel() snake_case_ : Dict = deepcopy(lowerCAmelCase_ ) snake_case_ : Union[str, Any] = RegressionDataset(length=80 ) snake_case_ : List[Any] = DataLoader(lowerCAmelCase_ , batch_size=16 ) model.to(accelerator.device ) if sched: snake_case_ : List[str] = AdamW(params=model.parameters() , lr=1E-3 ) snake_case_ : str = AdamW(params=ddp_model.parameters() , lr=1E-3 ) snake_case_ : str = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda __magic_name__ : epoch**0.65 ) snake_case_ : Any = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda __magic_name__ : epoch**0.65 ) # Make a copy of `model` if sched: snake_case_ : str = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: snake_case_ : str = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Dict = get_training_setup(lowerCAmelCase_ ) # Use a single batch snake_case_ : Any = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case_ : int = accelerator.gather((ddp_input, ddp_target) ) snake_case_ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case_ : Dict = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" snake_case_ : int = get_training_setup(lowerCAmelCase_ ) # Use a single batch snake_case_ : int = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case_ : Optional[int] = accelerator.gather((ddp_input, ddp_target) ) snake_case_ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case_ : List[Any] = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def __UpperCAmelCase ( __magic_name__=False , __magic_name__=False )-> int: """simple docstring""" snake_case_ : Any = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case_ : Union[str, Any] = get_training_setup(lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): snake_case_ : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model snake_case_ : List[Any] = accelerator.gather((ddp_input, ddp_target) ) snake_case_ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCAmelCase_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case_ : str = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] GradientState._reset_state() def __UpperCAmelCase ( __magic_name__=False , __magic_name__=False )-> Dict: """simple docstring""" snake_case_ : Union[str, Any] = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case_ : int = get_training_setup(lowerCAmelCase_ , lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): snake_case_ : Dict = batch.values() # Gather the distributed inputs and targs for the base model snake_case_ : Any = accelerator.gather((ddp_input, ddp_target) ) snake_case_ : List[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCAmelCase_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' snake_case_ : Optional[Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCAmelCase_ )) if accelerator.num_processes > 1: check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __UpperCAmelCase ( )-> str: """simple docstring""" snake_case_ : int = Accelerator() snake_case_ : Optional[int] = RegressionDataset(length=80 ) snake_case_ : Tuple = DataLoader(lowerCAmelCase_ , batch_size=16 ) snake_case_ : Optional[int] = RegressionDataset(length=96 ) snake_case_ : Tuple = DataLoader(lowerCAmelCase_ , batch_size=16 ) snake_case_ : Optional[int] = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if iteration < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if batch_num < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Dict = Accelerator() snake_case_ : Optional[Any] = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(lowerCAmelCase_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(lowerCAmelCase_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(lowerCAmelCase_ , lowerCAmelCase_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCAmelCase_ , lowerCAmelCase_ ) def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
703
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 ) snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ : Tuple = Accelerator() snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowerCamelCase : int = logging.get_logger(__name__) class A_ (_UpperCAmelCase ): """simple docstring""" def __init__( self :Tuple , *lowerCAmelCase__ :int , **lowerCAmelCase__ :Optional[Any] ) -> Optional[int]: '''simple docstring''' warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
704
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : Any = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __lowerCamelCase : Any = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = None # source code of `config_class` snake_case_ : List[Any] = inspect.getsource(__magic_name__ ) snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): snake_case_ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ : str = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case_ : Dict = ckpt_name break return checkpoint def __UpperCAmelCase ( )-> Dict: """simple docstring""" snake_case_ : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ ) snake_case_ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__magic_name__ ) if len(__magic_name__ ) > 0: snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
656
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class A_ : """simple docstring""" def __init__( self :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int]=14 , lowerCAmelCase__ :Dict=7 , lowerCAmelCase__ :str=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Union[str, Any]=99 , lowerCAmelCase__ :Dict=32 , lowerCAmelCase__ :List[Any]=5 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :List[str]=37 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :List[Any]=512 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :int=2 , lowerCAmelCase__ :Union[str, Any]=0.0_2 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :str=None , ) -> List[str]: '''simple docstring''' snake_case_ : Any = parent snake_case_ : List[str] = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : int = is_training snake_case_ : Optional[int] = use_token_type_ids snake_case_ : Optional[int] = use_input_mask snake_case_ : Dict = use_labels snake_case_ : Any = use_mc_token_ids snake_case_ : str = vocab_size snake_case_ : Optional[int] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : Dict = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Optional[int] = max_position_embeddings snake_case_ : Tuple = type_vocab_size snake_case_ : int = type_sequence_label_size snake_case_ : Any = initializer_range snake_case_ : List[str] = num_labels snake_case_ : Any = num_choices snake_case_ : Union[str, Any] = scope snake_case_ : int = self.vocab_size - 1 def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : str = None if self.use_input_mask: snake_case_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : int = None if self.use_token_type_ids: snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = None if self.use_mc_token_ids: snake_case_ : Tuple = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) snake_case_ : List[str] = None snake_case_ : Any = None snake_case_ : List[Any] = None if self.use_labels: snake_case_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : Tuple = self.get_config() snake_case_ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _A ( self :Any ) -> Dict: '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _A ( self :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[str] ) -> int: '''simple docstring''' snake_case_ : Dict = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case , token_type_ids=__snake_case , head_mask=__snake_case ) model(__snake_case , token_type_ids=__snake_case ) snake_case_ : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :str ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() snake_case_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self :List[Any] ) -> Any: '''simple docstring''' snake_case_ : List[str] = self.prepare_config_and_inputs() ( snake_case_ ) : Optional[int] = config_and_inputs snake_case_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def _A ( self :int , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :List[Any] , *lowerCAmelCase__ :str ) -> int: '''simple docstring''' snake_case_ : Tuple = self.num_labels snake_case_ : Optional[int] = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() snake_case_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : List[str] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class A_ (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" a__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () a__ = (CTRLLMHeadModel,) if is_torch_available() else () a__ = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) a__ = True a__ = False a__ = False def _A ( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : List[str] = CTRLModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=__snake_case , n_embd=37 ) def _A ( self :str ) -> str: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _A ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _A ( self :List[str] ) -> Optional[Any]: '''simple docstring''' snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' pass @slow def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Dict = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip("The model doesn\'t support left padding" ) # and it's not used enough to be worth fixing :) def _A ( self :List[str] ) -> str: '''simple docstring''' pass @require_torch class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Dict ) -> List[Any]: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _A ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = CTRLLMHeadModel.from_pretrained("ctrl" ) model.to(__snake_case ) snake_case_ : Any = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=__snake_case ) # Legal the president is snake_case_ : List[str] = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a snake_case_ : int = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() , __snake_case )
705
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : int = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A_ (a_ ): """simple docstring""" a__ = '''cvt''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : int = num_channels snake_case_ : int = patch_sizes snake_case_ : Optional[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Tuple = embed_dim snake_case_ : Optional[int] = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Optional[int] = mlp_ratio snake_case_ : Tuple = attention_drop_rate snake_case_ : str = drop_rate snake_case_ : Tuple = drop_path_rate snake_case_ : Any = qkv_bias snake_case_ : Union[str, Any] = cls_token snake_case_ : int = qkv_projection_method snake_case_ : Any = kernel_qkv snake_case_ : Union[str, Any] = padding_kv snake_case_ : str = stride_kv snake_case_ : Dict = padding_q snake_case_ : Tuple = stride_q snake_case_ : Any = initializer_range snake_case_ : Any = layer_norm_eps
656
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :str ) -> List[Any]: '''simple docstring''' snake_case_ : Any = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) snake_case_ : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) sd_pipe.set_scheduler("sample_euler" ) snake_case_ : Any = "A painting of a squirrel eating a burger" snake_case_ : Optional[int] = torch.manual_seed(0 ) snake_case_ : Tuple = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : List[Any] = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self :str ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) snake_case_ : List[str] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) sd_pipe.set_scheduler("sample_euler" ) snake_case_ : Any = "A painting of a squirrel eating a burger" snake_case_ : Optional[Any] = torch.manual_seed(0 ) snake_case_ : Any = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) snake_case_ : Tuple = output.images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : Any = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : str = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) snake_case_ : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) snake_case_ : str = "A painting of a squirrel eating a burger" snake_case_ : Any = torch.manual_seed(0 ) snake_case_ : Optional[Any] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=lowerCAmelCase__ , ) snake_case_ : Optional[int] = output.images snake_case_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : int = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
706
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __lowerCamelCase : str = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCamelCase : Dict = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __lowerCamelCase : int = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] snake_case_ : List[str] = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
656
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def __UpperCAmelCase ( __magic_name__ )-> list[list[float]]: """simple docstring""" snake_case_ : Dict = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowercase_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix snake_case_ : Optional[int] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements snake_case_ : List[Any] = [[0.0, 0.0], [0.0, 0.0]] snake_case_ : int = matrix[1][1], matrix[0][0] snake_case_ : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowercase_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowercase_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule snake_case_ : Optional[int] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix snake_case_ : Optional[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] snake_case_ : Optional[Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) snake_case_ : Optional[int] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) snake_case_ : str = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) snake_case_ : int = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) snake_case_ : Optional[int] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) snake_case_ : List[str] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) snake_case_ : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) snake_case_ : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) snake_case_ : List[str] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) snake_case_ : str = array(lowercase_ ) for i in range(3 ): for j in range(3 ): snake_case_ : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix snake_case_ : List[str] = array(lowercase_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowercase_ ) # Calculate the inverse of the matrix return [[float(d(lowercase_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
707
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Any = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } snake_case_ : int = Dataset.from_dict(__magic_name__ ) return dataset class A_ (a_ ): """simple docstring""" def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = get_dataset() snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = get_dataset() snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) print(lowerCAmelCase__ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
656
0