code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from torch import nn def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
718
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowercase_ : int = logging.get_logger(__name__) lowercase_ : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } lowercase_ : Dict = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): lowercase = {} with open(lowercase_ , """r""" ) as file: for line_number, line in enumerate(lowercase_ ): lowercase = line.strip() if line: lowercase = line.split() lowercase = line_number lowercase = words[0] lowercase = value return result def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : List[str] ): for attribute in key.split(""".""" ): lowercase = getattr(lowercase_ , lowercase_ ) lowercase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase_ ): lowercase = PARAM_MAPPING[full_name.split(""".""" )[-1]] lowercase = """param""" if weight_type is not None and weight_type != "param": lowercase = getattr(lowercase_ , lowercase_ ).shape elif weight_type is not None and weight_type == "param": lowercase = hf_pointer for attribute in hf_param_name.split(""".""" ): lowercase = getattr(lowercase_ , lowercase_ ) lowercase = shape_pointer.shape # let's reduce dimension lowercase = value[0] else: lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase = value elif weight_type == "weight_g": lowercase = value elif weight_type == "weight_v": lowercase = value elif weight_type == "bias": lowercase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): lowercase = getattr(lowercase_ , lowercase_ ) lowercase = value else: lowercase = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[Any] ): lowercase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase_ ): lowercase = PARAM_MAPPING[full_name.split(""".""" )[-1]] lowercase = """param""" if weight_type is not None and weight_type != "param": lowercase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowercase = """.""".join([key, hf_param_name] ) else: lowercase = key lowercase = value if """lm_head""" in full_key else value[0] lowercase_ : Tuple = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : List[str]=None , lowercase_ : Optional[int]=None ): lowercase = False for key, mapped_key in MAPPING.items(): lowercase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase = True if "*" in mapped_key: lowercase = name.split(lowercase_ )[0].split(""".""" )[-2] lowercase = mapped_key.replace("""*""" , lowercase_ ) if "weight_g" in name: lowercase = """weight_g""" elif "weight_v" in name: lowercase = """weight_v""" elif "bias" in name: lowercase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase = """weight""" else: lowercase = None if hf_dict is not None: rename_dict(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return is_used return is_used def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Optional[int] ): lowercase = [] lowercase = fairseq_model.state_dict() lowercase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowercase = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == """group""" , ) lowercase = True else: lowercase = load_wavaveca_layer(lowercase_ , lowercase_ , lowercase_ ) if not is_used: unused_weights.append(lowercase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Optional[Any] ): lowercase = full_name.split("""conv_layers.""" )[-1] lowercase = name.split(""".""" ) lowercase = int(items[0] ) lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : List[str]=None , lowercase_ : str=None , lowercase_ : List[str]=True , lowercase_ : str=False ): if config_path is not None: lowercase = WavaVecaConfig.from_pretrained(lowercase_ ) else: lowercase = WavaVecaConfig() if is_seq_class: lowercase = read_txt_into_dict(lowercase_ ) lowercase = idalabel lowercase = WavaVecaForSequenceClassification(lowercase_ ) lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) feature_extractor.save_pretrained(lowercase_ ) elif is_finetuned: if dict_path: lowercase = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase = target_dict.pad_index lowercase = target_dict.bos_index lowercase = target_dict.eos_index lowercase = len(target_dict.symbols ) lowercase = os.path.join(lowercase_ , """vocab.json""" ) if not os.path.isdir(lowercase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase_ ) ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowercase = target_dict.indices # fairseq has the <pad> and <s> switched lowercase = 0 lowercase = 1 with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowercase_ , lowercase_ ) lowercase = WavaVecaCTCTokenizer( lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase_ , ) lowercase = True if config.feat_extract_norm == """layer""" else False lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) lowercase = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) lowercase = WavaVecaForCTC(lowercase_ ) else: lowercase = WavaVecaForPreTraining(lowercase_ ) if is_finetuned or is_seq_class: lowercase , lowercase , lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowercase = argparse.Namespace(task="""audio_pretraining""" ) lowercase = fairseq.tasks.setup_task(lowercase_ ) lowercase , lowercase , lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase_ ) lowercase = model[0].eval() recursively_load_weights(lowercase_ , lowercase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowercase_ ) if __name__ == "__main__": lowercase_ : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) lowercase_ : Union[str, Any] = parser.parse_args() lowercase_ : Optional[int] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
719
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class __UpperCamelCase (tf.keras.layers.Layer ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=1 , _lowerCAmelCase=False , **_lowerCAmelCase ) -> Tuple: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = vocab_size lowercase = d_embed lowercase = d_proj lowercase = cutoffs + [vocab_size] lowercase = [0] + self.cutoffs lowercase = div_val lowercase = self.cutoffs[0] lowercase = len(self.cutoffs ) - 1 lowercase = self.shortlist_size + self.n_clusters lowercase = keep_order lowercase = [] lowercase = [] def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' if self.n_clusters > 0: lowercase = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=_lowerCAmelCase , name="""cluster_weight""" ) lowercase = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=_lowerCAmelCase , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowercase = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=_lowerCAmelCase , name=F"""out_projs_._{i}""" , ) self.out_projs.append(_lowerCAmelCase ) else: self.out_projs.append(_lowerCAmelCase ) lowercase = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=_lowerCAmelCase , name=F"""out_layers_._{i}_._weight""" , ) lowercase = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=_lowerCAmelCase , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowercase , lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase = self.d_embed // (self.div_val**i) lowercase = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=_lowerCAmelCase , name=F"""out_projs_._{i}""" ) self.out_projs.append(_lowerCAmelCase ) lowercase = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=_lowerCAmelCase , name=F"""out_layers_._{i}_._weight""" , ) lowercase = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=_lowerCAmelCase , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(_lowerCAmelCase ) @staticmethod def _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ) -> Optional[int]: '''simple docstring''' lowercase = x if proj is not None: lowercase = tf.einsum("""ibd,ed->ibe""" , _lowerCAmelCase , _lowerCAmelCase ) return tf.einsum("""ibd,nd->ibn""" , _lowerCAmelCase , _lowerCAmelCase ) + b @staticmethod def _a ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: '''simple docstring''' lowercase = shape_list(_lowerCAmelCase ) lowercase = tf.range(lp_size[0] , dtype=target.dtype ) lowercase = tf.stack([r, target] , 1 ) return tf.gather_nd(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True , _lowerCAmelCase=False ) -> Dict: '''simple docstring''' lowercase = 0 if self.n_clusters == 0: lowercase = self._logit(_lowerCAmelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowercase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_lowerCAmelCase , logits=_lowerCAmelCase ) lowercase = tf.nn.log_softmax(_lowerCAmelCase , axis=-1 ) else: lowercase = shape_list(_lowerCAmelCase ) lowercase = [] lowercase = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowercase , lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowercase = (target >= l_idx) & (target < r_idx) lowercase = tf.where(_lowerCAmelCase ) lowercase = tf.boolean_mask(_lowerCAmelCase , _lowerCAmelCase ) - l_idx if self.div_val == 1: lowercase = self.out_layers[0][0][l_idx:r_idx] lowercase = self.out_layers[0][1][l_idx:r_idx] else: lowercase = self.out_layers[i][0] lowercase = self.out_layers[i][1] if i == 0: lowercase = tf.concat([cur_W, self.cluster_weight] , 0 ) lowercase = tf.concat([cur_b, self.cluster_bias] , 0 ) lowercase = self._logit(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.out_projs[0] ) lowercase = tf.nn.log_softmax(_lowerCAmelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowercase = tf.boolean_mask(_lowerCAmelCase , _lowerCAmelCase ) lowercase = self._gather_logprob(_lowerCAmelCase , _lowerCAmelCase ) else: lowercase = self._logit(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.out_projs[i] ) lowercase = tf.nn.log_softmax(_lowerCAmelCase ) lowercase = self.cutoffs[0] + i - 1 # No probability for the head cluster lowercase = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_lowerCAmelCase ) if target is not None: lowercase = tf.boolean_mask(_lowerCAmelCase , _lowerCAmelCase ) lowercase = tf.boolean_mask(_lowerCAmelCase , _lowerCAmelCase ) lowercase = self._gather_logprob(_lowerCAmelCase , _lowerCAmelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_lowerCAmelCase , -cur_logprob , shape_list(_lowerCAmelCase ) ) lowercase = tf.concat(_lowerCAmelCase , axis=-1 ) if target is not None: if return_mean: lowercase = tf.reduce_mean(_lowerCAmelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_lowerCAmelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_lowerCAmelCase , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
720
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): lowercase = os.path.join(os.path.dirname(lowercase_ ) , """num.txt""" ) with open(lowercase_ ) as file_hand: return str(sum(int(lowercase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> int: '''simple docstring''' lowercase = path_or_paths lowercase = split if split or isinstance(_lowerCAmelCase , _lowerCAmelCase ) else """train""" lowercase = features lowercase = cache_dir lowercase = keep_in_memory lowercase = streaming lowercase = num_proc lowercase = kwargs @abstractmethod def _a ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> List[str]: '''simple docstring''' lowercase = features lowercase = cache_dir lowercase = keep_in_memory lowercase = streaming lowercase = num_proc lowercase = kwargs @abstractmethod def _a ( self ) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
721
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase = DDIMScheduler() torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase = CLIPTextModel(_lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> int: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = """french fries""" lowercase = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Dict: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_lowerCAmelCase ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _a ( self ) -> str: '''simple docstring''' lowercase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> Any: '''simple docstring''' lowercase = 0 def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None: lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase = False lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ) -> int: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
700
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __A = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) __A = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowercase_ , os.path.join(lowercase_ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): assert hasattr(lowercase_ , lowercase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase_ , lowercase_ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator( lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) lowercase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate(metric_key_prefix="""val""" ) lowercase = data_args.n_val lowercase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase = lmap(str.strip , lowercase_ ) write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
653
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase (_UpperCAmelCase ): __A = ['''image_processor''', '''tokenizer'''] __A = '''BlipImageProcessor''' __A = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) lowercase = self.image_processor def __call__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowercase = self.tokenizer lowercase = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding # add pixel_values lowercase = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) if text is not None: lowercase = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) else: lowercase = None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def _a ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.tokenizer.model_input_names lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
701
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
653
0
from PIL import Image def SCREAMING_SNAKE_CASE ( lowercase_ : Image , lowercase_ : float ): def brightness(lowercase_ : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowercase_ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ : Dict = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
702
'''simple docstring''' from ... import PretrainedConfig lowercase_ : int = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __A = '''nezha''' def __init__( self , _lowerCAmelCase=2_1128 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
653
0
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=4 , ) -> Any: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_choices def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_attention_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = True __A = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self ) -> str: '''simple docstring''' lowercase = FlaxRoFormerModelTester(self ) @slow def _a ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: lowercase = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowerCAmelCase ) lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class __UpperCamelCase (unittest.TestCase ): @slow def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowercase = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowercase = model(_lowerCAmelCase )[0] lowercase = 5_0000 lowercase = (1, 6, vocab_size) self.assertEqual(output.shape , _lowerCAmelCase ) lowercase = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
703
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowercase_ : Tuple = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = git.Repo(search_parent_directories=lowercase_ ) lowercase = { """repo_id""": str(lowercase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowercase_ , """git_log.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if params.n_gpu <= 0: lowercase = 0 lowercase = -1 lowercase = True lowercase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = int(os.environ["""N_GPU_NODE"""] ) lowercase = int(os.environ["""RANK"""] ) # number of nodes / node ID lowercase = params.world_size // params.n_gpu_per_node lowercase = params.global_rank // params.n_gpu_per_node lowercase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase = 1 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 1 lowercase = 1 lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase = params.node_id == 0 and params.local_rank == 0 lowercase = params.n_nodes > 1 # summary lowercase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
653
0
'''simple docstring''' import math lowercase_ : Any = 10 lowercase_ : Any = 7 lowercase_ : str = BALLS_PER_COLOUR * NUM_COLOURS def SCREAMING_SNAKE_CASE ( lowercase_ : int = 20 ): lowercase = math.comb(lowercase_ , lowercase_ ) lowercase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowercase_ ) lowercase = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
704
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowercase_ : List[str] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase_ , headers=lowercase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
653
0
def SCREAMING_SNAKE_CASE ( lowercase_ : list ): def merge(lowercase_ : list , lowercase_ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowercase_ ) <= 1: return collection lowercase = len(lowercase_ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowercase_ : Tuple = input('''Enter numbers separated by a comma:\n''').strip() lowercase_ : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
705
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
706
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
653
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=10 , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=10 , _lowerCAmelCase=0.02 , _lowerCAmelCase=0.9 , _lowerCAmelCase=None , ) -> List[Any]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = patch_size lowercase = tubelet_size lowercase = num_frames lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = mask_ratio lowercase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase = (image_size // patch_size) ** 2 lowercase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase = int(mask_ratio * self.seq_length ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> List[str]: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = VideoMAEModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = VideoMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase = torch.ones((self.num_masks,) ) lowercase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase = mask.expand(self.batch_size , -1 ).bool() lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # model only returns predictions for masked patches lowercase = mask.sum().item() lowercase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __A = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = VideoMAEModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Tuple: '''simple docstring''' lowercase = copy.deepcopy(_lowerCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase = torch.ones((self.model_tester.num_masks,) ) lowercase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase = bool_masked_pos.to(_lowerCAmelCase ) if return_labels: if model_class in [ *get_values(_lowerCAmelCase ), ]: lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def _a ( self ) -> str: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) @slow def _a ( self ) -> int: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = VideoMAEModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' if not self.has_attentions: pass else: lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True for model_class in self.all_model_classes: lowercase = self.model_tester.seq_length - self.model_tester.num_masks lowercase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase = True lowercase = False lowercase = True lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase = True lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase = len(_lowerCAmelCase ) # Check attention is always last and order is fine lowercase = True lowercase = True lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCAmelCase ) ) lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _a ( self ) -> Dict: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) lowercase = self.model_tester.seq_length - self.model_tester.num_masks lowercase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) lowercase = np.load(lowercase_ ) return list(lowercase_ ) @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> str: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( _lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_video() lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([0.3669, -0.0688, -0.2421] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_video() lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # add boolean mask, indicating which patches to mask lowercase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) lowercase = torch.load(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size([1, 1408, 1536] ) lowercase = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=_lowerCAmelCase ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase = torch.tensor([0.5142] , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=_lowerCAmelCase ).to( _lowerCAmelCase ) with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) lowercase = torch.tensor(torch.tensor([0.6469] ) , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1E-4 ) )
707
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : str = logging.get_logger(__name__) lowercase_ : Optional[int] = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''roc_bert''' def __init__( self , _lowerCAmelCase=3_0522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase="absolute" , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=768 , _lowerCAmelCase=910 , _lowerCAmelCase=512 , _lowerCAmelCase=2_4858 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[str]: '''simple docstring''' lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = type_vocab_size lowercase = layer_norm_eps lowercase = use_cache lowercase = enable_pronunciation lowercase = enable_shape lowercase = pronunciation_embed_dim lowercase = pronunciation_vocab_size lowercase = shape_embed_dim lowercase = shape_vocab_size lowercase = concat_input lowercase = position_embedding_type lowercase = classifier_dropout super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
708
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor lowercase_ : Optional[Any] = logging.get_logger(__name__) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
709
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ : int = 50_0000 lowercase_ , lowercase_ : Union[str, Any] = os.path.split(__file__) lowercase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Dict ): lowercase = dataset.map(**lowercase_ ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ): lowercase = dataset.filter(**lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowercase = generate_example_dataset( os.path.join(lowercase_ , """dataset.arrow""" ) , lowercase_ , num_examples=lowercase_ ) lowercase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples["""text"""] ) lowercase = map(lowercase_ ) lowercase = map(lowercase_ , batched=lowercase_ ) lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""numpy""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""pandas""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) lowercase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) lowercase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , """wb""" ) as f: f.write(json.dumps(lowercase_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
653
0
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : Tuple=7 ): lowercase = None if token is not None: lowercase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase = """636036""" lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase = requests.get(lowercase_ , headers=lowercase_ ).json() return result["workflow_runs"] def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = get_daily_ci_runs(lowercase_ ) lowercase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase = workflow_run["""id"""] break return workflow_run_id def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : List[str] ): lowercase = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: lowercase = get_artifacts_links(worflow_run_id=lowercase_ , token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ , artifact_url=lowercase_ , output_dir=lowercase_ , token=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : str ): get_last_daily_ci_artifacts(lowercase_ , lowercase_ , lowercase_ ) lowercase = {} for artifact_name in artifact_names: lowercase = os.path.join(lowercase_ , F"""{artifact_name}.zip""" ) if os.path.isfile(lowercase_ ): lowercase = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: lowercase = f.read().decode("""UTF-8""" ) return results
710
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
0
'''simple docstring''' import socket def SCREAMING_SNAKE_CASE ( ): lowercase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowercase = socket.gethostname() lowercase = 1_2312 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: lowercase = sock.recv(1024 ) if not data: break out_file.write(lowercase_ ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
711
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
0
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowercase_ : int = logging.get_logger(__name__) lowercase_ : Tuple = {'''vocab_file''': '''spiece.model'''} lowercase_ : Any = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 lowercase_ : Optional[Any] = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } lowercase_ : int = '''▁''' class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase=100 , _lowerCAmelCase=None , _lowerCAmelCase = None , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> None: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase = [F"""<extra_id_{i}>""" for i in range(_lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowercase = len(set(filter(lambda _lowerCAmelCase : bool("""extra_id""" in str(_lowerCAmelCase ) ) , _lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) lowercase = legacy lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , extra_ids=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_lowerCAmelCase , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = extra_ids lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @staticmethod def _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowercase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , _lowerCAmelCase , ) return max_model_length @property def _a ( self ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + [1] return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1] def _a ( self ) -> List[Any]: '''simple docstring''' return list( set(filter(lambda _lowerCAmelCase : bool(re.search(r"""<extra_id_\d+>""" , _lowerCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _a ( self ) -> List[str]: '''simple docstring''' return [self._convert_token_to_id(_lowerCAmelCase ) for token in self.get_sentinel_tokens()] def _a ( self , _lowerCAmelCase ) -> List[int]: '''simple docstring''' if len(_lowerCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase = self._add_eos_if_not_present(_lowerCAmelCase ) if token_ids_a is None: return token_ids_a else: lowercase = self._add_eos_if_not_present(_lowerCAmelCase ) return token_ids_a + token_ids_a def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: '''simple docstring''' if not self.legacy: lowercase = SPIECE_UNDERLINE + text.replace(_lowerCAmelCase , """ """ ) return super().tokenize(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: '''simple docstring''' if not self.legacy: lowercase = text.startswith(_lowerCAmelCase ) if is_first: lowercase = text[1:] lowercase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(_lowerCAmelCase ): lowercase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _a ( self , _lowerCAmelCase ) -> int: '''simple docstring''' if token.startswith("""<extra_id_""" ): lowercase = re.match(r"""<extra_id_(\d+)>""" , _lowerCAmelCase ) lowercase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' if index < self.sp_model.get_piece_size(): lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) else: lowercase = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] lowercase = """""" lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = True lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowercase = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
713
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : list[int] , lowercase_ : int ): def count_of_possible_combinations(lowercase_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : list[int] , lowercase_ : int ): def count_of_possible_combinations_with_dp_array( lowercase_ : int , lowercase_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase = sum( count_of_possible_combinations_with_dp_array(target - item , lowercase_ ) for item in array ) lowercase = answer return answer lowercase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : list[int] , lowercase_ : int ): lowercase = [0] * (target + 1) lowercase = 1 for i in range(1 , target + 1 ): for j in range(lowercase_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowercase_ : Tuple = 3 lowercase_ : Any = 5 lowercase_ : Dict = [1, 2, 5] print(combination_sum_iv(n, array, target))
714
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
0
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase_ : Any = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase_ : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if "://" in dataset_path: lowercase = dataset_path.split("""://""" )[1] return dataset_path def SCREAMING_SNAKE_CASE ( lowercase_ : fsspec.AbstractFileSystem ): if fs is not None and fs.protocol != "file": return True else: return False def SCREAMING_SNAKE_CASE ( lowercase_ : fsspec.AbstractFileSystem , lowercase_ : str , lowercase_ : str ): lowercase = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) , fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ , lowercase_ , recursive=lowercase_ ) def SCREAMING_SNAKE_CASE ( ): if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase = None lowercase = None lowercase = threading.Lock()
715
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
0
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowercase_ : Dict = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') lowercase_ : Tuple = get_tests_dir('''fixtures/vocab.json''') lowercase_ : Optional[int] = get_tests_dir('''fixtures''') class __UpperCamelCase (unittest.TestCase ): __A = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = 0 def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig() lowercase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) lowercase = AutoProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) copyfile(_lowerCAmelCase , os.path.join(_lowerCAmelCase , """vocab.json""" ) ) lowercase = AutoProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaFeatureExtractor() lowercase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase = WavaVecaProcessor(_lowerCAmelCase , _lowerCAmelCase ) # save in new folder processor.save_pretrained(_lowerCAmelCase ) # drop `processor_class` in tokenizer with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """r""" ) as f: lowercase = json.load(_lowerCAmelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """w""" ) as f: f.write(json.dumps(_lowerCAmelCase ) ) lowercase = AutoProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaFeatureExtractor() lowercase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase = WavaVecaProcessor(_lowerCAmelCase , _lowerCAmelCase ) # save in new folder processor.save_pretrained(_lowerCAmelCase ) # drop `processor_class` in feature extractor with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """r""" ) as f: lowercase = json.load(_lowerCAmelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """w""" ) as f: f.write(json.dumps(_lowerCAmelCase ) ) lowercase = AutoProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(_lowerCAmelCase ) # copy relevant files copyfile(_lowerCAmelCase , os.path.join(_lowerCAmelCase , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """w""" ) as f: f.write("""{}""" ) lowercase = AutoProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' with self.assertRaises(_lowerCAmelCase ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_lowerCAmelCase ) lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_lowerCAmelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) lowercase = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) lowercase = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase ) lowercase = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def _a ( self ) -> Any: '''simple docstring''' try: AutoConfig.register("""custom""" , _lowerCAmelCase ) AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase ) AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase ) AutoProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase = CustomFeatureExtractor.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = os.path.join(_lowerCAmelCase , """vocab.txt""" ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase = CustomTokenizer(_lowerCAmelCase ) lowercase = CustomProcessor(_lowerCAmelCase , _lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_lowerCAmelCase ) lowercase = AutoProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _a ( self ) -> int: '''simple docstring''' class __UpperCamelCase (_UpperCAmelCase ): __A = False class __UpperCamelCase (_UpperCAmelCase ): __A = False class __UpperCamelCase (_UpperCAmelCase ): __A = '''AutoFeatureExtractor''' __A = '''AutoTokenizer''' __A = False try: AutoConfig.register("""custom""" , _lowerCAmelCase ) AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase ) AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase ) AutoProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # If remote code is not set, the default is to use local classes. lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_lowerCAmelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_lowerCAmelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _a ( self ) -> str: '''simple docstring''' lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class __UpperCamelCase (unittest.TestCase ): __A = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _a ( cls ) -> Union[str, Any]: '''simple docstring''' lowercase = TOKEN HfFolder.save_token(_lowerCAmelCase ) @classmethod def _a ( cls ) -> Optional[Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def _a ( self ) -> str: '''simple docstring''' lowercase = WavaVecaProcessor.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_lowerCAmelCase , """test-processor""" ) , push_to_hub=_lowerCAmelCase , use_auth_token=self._token ) lowercase = WavaVecaProcessor.from_pretrained(F"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(new_processor.feature_extractor , _lowerCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = WavaVecaProcessor.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_lowerCAmelCase , """test-processor-org""" ) , push_to_hub=_lowerCAmelCase , use_auth_token=self._token , organization="""valid_org""" , ) lowercase = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(new_processor.feature_extractor , _lowerCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _a ( self ) -> Tuple: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase = CustomFeatureExtractor.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = os.path.join(_lowerCAmelCase , """vocab.txt""" ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase = CustomTokenizer(_lowerCAmelCase ) lowercase = CustomProcessor(_lowerCAmelCase , _lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"""{USER}/test-dynamic-processor""" , token=self._token ) lowercase = Repository(_lowerCAmelCase , clone_from=F"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(_lowerCAmelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_lowerCAmelCase , """tokenizer_config.json""" ) ) as f: lowercase = json.load(_lowerCAmelCase ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_lowerCAmelCase , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_lowerCAmelCase , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_lowerCAmelCase , """custom_processing.py""" ) ) ) repo.push_to_hub() lowercase = AutoProcessor.from_pretrained(F"""{USER}/test-dynamic-processor""" , trust_remote_code=_lowerCAmelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
716
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
653
0
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowercase_ : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : bool , lowercase_ : bool ): def run_func(lowercase_ : Union[str, Any] ): @wraps(lowercase_ ) def run_in_eager_mode(*lowercase_ : List[Any] , **lowercase_ : Optional[int] ): return func(*lowercase_ , **lowercase_ ) @wraps(lowercase_ ) @tf.function(experimental_compile=lowercase_ ) def run_in_graph_mode(*lowercase_ : str , **lowercase_ : Union[str, Any] ): return func(*lowercase_ , **lowercase_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : int ): lowercase = random.Random() lowercase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowercase_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __UpperCamelCase (_UpperCAmelCase ): __A = 42 __A = 42 __A = '''TensorFlow''' @property def _a ( self ) -> Optional[Any]: '''simple docstring''' return tf.__version__ def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float: '''simple docstring''' lowercase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowercase = self._prepare_inference_func(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return self._measure_speed(_inference ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float: '''simple docstring''' lowercase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowercase = self._prepare_train_func(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return self._measure_speed(_train ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> [Memory, Optional[MemorySummary]]: '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _lowerCAmelCase ) lowercase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowercase = self._prepare_inference_func(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return self._measure_memory(_inference ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> [Memory, Optional[MemorySummary]]: '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _lowerCAmelCase ) lowercase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowercase = self._prepare_train_func(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return self._measure_memory(_train ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Callable[[], None]: '''simple docstring''' lowercase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) lowercase = ( hasattr(_lowerCAmelCase , """architectures""" ) and isinstance(config.architectures , _lowerCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowercase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model lowercase = __import__("""transformers""" , fromlist=[model_class] ) lowercase = getattr(_lowerCAmelCase , _lowerCAmelCase ) lowercase = model_cls(_lowerCAmelCase ) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: lowercase = TF_MODEL_MAPPING[config.__class__](_lowerCAmelCase ) # encoder-decoder has vocab size saved differently lowercase = config.vocab_size if hasattr(_lowerCAmelCase , """vocab_size""" ) else config.encoder.vocab_size lowercase = random_input_ids(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase , training=_lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(_lowerCAmelCase , training=_lowerCAmelCase ) lowercase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Callable[[], None]: '''simple docstring''' lowercase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) lowercase = ( hasattr(_lowerCAmelCase , """architectures""" ) and isinstance(config.architectures , _lowerCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowercase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model lowercase = __import__("""transformers""" , fromlist=[model_class] ) lowercase = getattr(_lowerCAmelCase , _lowerCAmelCase ) lowercase = model_cls(_lowerCAmelCase ) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: lowercase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_lowerCAmelCase ) # encoder-decoder has vocab size saved differently lowercase = config.vocab_size if hasattr(_lowerCAmelCase , """vocab_size""" ) else config.encoder.vocab_size lowercase = random_input_ids(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowercase = model(_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase )[0] lowercase = tf.gradients(_lowerCAmelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase )[0] lowercase = tf.gradients(_lowerCAmelCase , model.trainable_variables ) return gradients lowercase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _a ( self , _lowerCAmelCase ) -> float: '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(_lowerCAmelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowercase = timeit.repeat( _lowerCAmelCase , repeat=self.args.repeat , number=10 , ) return min(_lowerCAmelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""" ) def _a ( self , _lowerCAmelCase ) -> [Memory, MemorySummary]: '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) lowercase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) lowercase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() lowercase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowercase = nvml.nvmlDeviceGetMemoryInfo(_lowerCAmelCase ) lowercase = meminfo.used lowercase = Memory(_lowerCAmelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) lowercase = None else: lowercase = measure_peak_memory_cpu(_lowerCAmelCase ) lowercase = Memory(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else memory_bytes if self.args.trace_memory_line_by_line: lowercase = stop_memory_tracing(_lowerCAmelCase ) if memory is None: lowercase = summary.total else: lowercase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""" ) return "N/A", None
717
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
653
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): lowercase = os.path.join(args.tf_model_dir , """parameters.json""" ) lowercase = json.loads(open(lowercase_ ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(""".pt""" ): lowercase = args.output + """.pt""" lowercase = OrderedDict() with tf.device("""/CPU:0""" ): lowercase = tf.train.load_checkpoint(args.tf_model_dir ) lowercase = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase = reader.get_tensor(lowercase_ ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): lowercase = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): lowercase = 8 lowercase = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name.startswith("""model/moe""" ): lowercase = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): lowercase = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/softmlp/kernel""" ): lowercase = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): lowercase = key_name[-9:-7] for i in range(16 ): lowercase = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) lowercase = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase = torch.tensor(lowercase_ ) elif key_name.startswith("""model/mlp""" ): lowercase = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): lowercase = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/p1/bias""" ): lowercase = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/p2/kernel""" ): lowercase = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/p2/bias""" ): lowercase = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) elif key_name.startswith("""model/ln""" ): lowercase = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): lowercase = """model.blocks.%d.feed_forward.norm.bias""" % player lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/g""" ): lowercase = """model.blocks.%d.feed_forward.norm.weight""" % player lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) elif key_name.startswith("""model/att""" ): lowercase = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): lowercase = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase = state[:, 0, :, :] lowercase = state[:, 1, :, :] lowercase = state[:, 2, :, :] lowercase = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player lowercase = torch.tensor(lowercase_ ) lowercase = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player lowercase = torch.tensor(lowercase_ ) lowercase = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/o/kernel""" ): lowercase = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player lowercase = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name.startswith("""model/an""" ): lowercase = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): lowercase = """model.blocks.%d.self_attn.norm.bias""" % player lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/g""" ): lowercase = """model.blocks.%d.self_attn.norm.weight""" % player lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): lowercase = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] lowercase = """model.%s.weight""" % nlayer lowercase = vnp.copy() # same in embedded lowercase = torch.tensor(lowercase_ ) if key_name.startswith("""model/wte""" ): lowercase = """lm_head.weight""" lowercase = vnp.copy() # same in embedded lowercase = torch.tensor(lowercase_ ) elif key_name.startswith("""model/wob""" ): lowercase = """final_logits_bias""" lowercase = vnp.copy() # same in embedded lowercase = state.reshape((1, -1) ) lowercase = torch.tensor(lowercase_ ) elif key_name == "model/dense/kernel": lowercase = """model.last_project.weight""" lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name == "model/dense_1/bias": lowercase = """model.last_project.bias""" lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) torch.save(lowercase_ , args.output ) if __name__ == "__main__": lowercase_ : int = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ : str = parser.parse_args() convert_tf_gptsan_to_pt(args)
718
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
0
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : int="attention" ): lowercase = params[F"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] lowercase = params[F"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] lowercase = params[F"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] lowercase = params[F"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : int , lowercase_ : Any , lowercase_ : Optional[Any]=False ): if split_mlp_wi: lowercase = params[F"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] lowercase = params[F"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] lowercase = (wi_a, wi_a) else: lowercase = params[F"""{prefix}/layers_{i}/mlp/wi/kernel"""] lowercase = params[F"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : int ): return params[F"""{prefix}/layers_{i}/{layer_name}/scale"""] def SCREAMING_SNAKE_CASE ( lowercase_ : dict , *, lowercase_ : int , lowercase_ : bool ): lowercase = traverse_util.flatten_dict(variables["""target"""] ) lowercase = {"""/""".join(lowercase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase_ ) lowercase = collections.OrderedDict() # Shared embeddings. lowercase = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase_ ): # Block i, layer 0 (Self Attention). lowercase = tax_layer_norm_lookup(lowercase_ , lowercase_ , """encoder""" , """pre_attention_layer_norm""" ) lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowercase_ , lowercase_ , """encoder""" , """attention""" ) lowercase = layer_norm lowercase = k.T lowercase = o.T lowercase = q.T lowercase = v.T # Block i, layer 1 (MLP). lowercase = tax_layer_norm_lookup(lowercase_ , lowercase_ , """encoder""" , """pre_mlp_layer_norm""" ) lowercase , lowercase = tax_mlp_lookup(lowercase_ , lowercase_ , """encoder""" , lowercase_ ) lowercase = layer_norm if split_mlp_wi: lowercase = wi[0].T lowercase = wi[1].T else: lowercase = wi.T lowercase = wo.T lowercase = old[ """encoder/relpos_bias/rel_embedding""" ].T lowercase = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase_ ): # Block i, layer 0 (Self Attention). lowercase = tax_layer_norm_lookup(lowercase_ , lowercase_ , """decoder""" , """pre_self_attention_layer_norm""" ) lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowercase_ , lowercase_ , """decoder""" , """self_attention""" ) lowercase = layer_norm lowercase = k.T lowercase = o.T lowercase = q.T lowercase = v.T # Block i, layer 1 (Cross Attention). lowercase = tax_layer_norm_lookup(lowercase_ , lowercase_ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowercase_ , lowercase_ , """decoder""" , """encoder_decoder_attention""" ) lowercase = layer_norm lowercase = k.T lowercase = o.T lowercase = q.T lowercase = v.T # Block i, layer 2 (MLP). lowercase = tax_layer_norm_lookup(lowercase_ , lowercase_ , """decoder""" , """pre_mlp_layer_norm""" ) lowercase , lowercase = tax_mlp_lookup(lowercase_ , lowercase_ , """decoder""" , lowercase_ ) lowercase = layer_norm if split_mlp_wi: lowercase = wi[0].T lowercase = wi[1].T else: lowercase = wi.T lowercase = wo.T lowercase = old["""decoder/decoder_norm/scale"""] lowercase = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase = old["""decoder/logits_dense/kernel"""].T return new def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : bool ): lowercase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowercase = state_dict["""shared.weight"""] return state_dict def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Any ): lowercase = checkpoints.load_tax_checkpoint(lowercase_ ) lowercase = convert_tax_to_pytorch(lowercase_ , num_layers=config.num_layers , is_encoder_only=lowercase_ ) lowercase = make_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ , strict=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : bool = False ): lowercase = TaConfig.from_json_file(lowercase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase = TaEncoderModel(lowercase_ ) else: lowercase = TaForConditionalGeneration(lowercase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowercase_ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase_ ) print("""Done""" ) if __name__ == "__main__": lowercase_ : Optional[int] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) lowercase_ : Union[str, Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
719
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __UpperCamelCase (_UpperCAmelCase ): __A = DistilBertTokenizer __A = DistilBertTokenizerFast __A = True @slow def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
720
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): lowercase = os.path.join(os.path.dirname(lowercase_ ) , """num.txt""" ) with open(lowercase_ ) as file_hand: return str(sum(int(lowercase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = 0 for ch in input_str: lowercase = ord(lowercase_ ) lowercase = pow(2 , lowercase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase = DDIMScheduler() torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase = CLIPTextModel(_lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> int: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = """french fries""" lowercase = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Dict: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_lowerCAmelCase ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _a ( self ) -> str: '''simple docstring''' lowercase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> Any: '''simple docstring''' lowercase = 0 def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None: lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase = False lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ) -> int: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
653
0
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def SCREAMING_SNAKE_CASE ( lowercase_ : Any ): lowercase = {} lowercase = job["""started_at"""] lowercase = job["""completed_at"""] lowercase = date_parser.parse(lowercase_ ) lowercase = date_parser.parse(lowercase_ ) lowercase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) lowercase = start lowercase = end lowercase = duration_in_min return job_info def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : List[Any]=None ): lowercase = None if token is not None: lowercase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowercase = requests.get(lowercase_ , headers=lowercase_ ).json() lowercase = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(lowercase_ ) for job in result["""jobs"""]} ) lowercase = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowercase_ ): lowercase = requests.get(url + F"""&page={i + 2}""" , headers=lowercase_ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(lowercase_ ) for job in result["""jobs"""]} ) return job_time except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": lowercase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') lowercase_ : Union[str, Any] = parser.parse_args() lowercase_ : str = get_job_time(args.workflow_run_id) lowercase_ : List[str] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v["duration"]}''')
700
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __A = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) __A = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowercase_ , os.path.join(lowercase_ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): assert hasattr(lowercase_ , lowercase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase_ , lowercase_ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator( lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) lowercase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate(metric_key_prefix="""val""" ) lowercase = data_args.n_val lowercase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase = lmap(str.strip , lowercase_ ) write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
653
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example lowercase_ : List[str] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowercase_ : List[str] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def SCREAMING_SNAKE_CASE ( lowercase_ : list[list[int]] ): lowercase = [] for i in range(len(lowercase_ ) ): lowercase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowercase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowercase_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowercase_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowercase_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowercase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowercase_ ) return next_generation def SCREAMING_SNAKE_CASE ( lowercase_ : list[list[int]] , lowercase_ : int ): lowercase = [] for _ in range(lowercase_ ): # Create output image lowercase = Image.new("""RGB""" , (len(cells[0] ), len(lowercase_ )) ) lowercase = img.load() # Save cells to image for x in range(len(lowercase_ ) ): for y in range(len(cells[0] ) ): lowercase = 255 - cells[y][x] * 255 lowercase = (colour, colour, colour) # Save image images.append(lowercase_ ) lowercase = new_generation(lowercase_ ) return images if __name__ == "__main__": lowercase_ : Tuple = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
701
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
653
0
from manim import * class __UpperCamelCase (_UpperCAmelCase ): def _a ( self ) -> List[str]: '''simple docstring''' lowercase = Rectangle(height=0.5 , width=0.5 ) lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase = Rectangle(height=0.25 , width=0.25 ) lowercase = [mem.copy() for i in range(6 )] lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = Text("""CPU""" , font_size=24 ) lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) lowercase = [mem.copy() for i in range(4 )] lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = Text("""GPU""" , font_size=24 ) lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCAmelCase ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = Text("""Model""" , font_size=24 ) lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCAmelCase ) lowercase = [] lowercase = [] for i, rect in enumerate(_lowerCAmelCase ): lowercase = fill.copy().set_fill(_lowerCAmelCase , opacity=0.8 ) target.move_to(_lowerCAmelCase ) model_arr.append(_lowerCAmelCase ) lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_lowerCAmelCase ) self.add(*_lowerCAmelCase , *_lowerCAmelCase ) lowercase = [meta_mem.copy() for i in range(6 )] lowercase = [meta_mem.copy() for i in range(6 )] lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = Text("""Disk""" , font_size=24 ) lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) lowercase = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(_lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowerCAmelCase ) lowercase = MarkupText( F"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ) ) lowercase = Square(0.3 ) input.set_fill(_lowerCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _lowerCAmelCase , buff=0.5 ) self.play(Write(_lowerCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_lowerCAmelCase , buff=0.02 ) self.play(MoveToTarget(_lowerCAmelCase ) ) self.play(FadeOut(_lowerCAmelCase ) ) lowercase = Arrow(start=_lowerCAmelCase , end=_lowerCAmelCase , color=_lowerCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _lowerCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowercase = MarkupText( F"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) ) lowercase = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(_lowerCAmelCase ) , Circumscribe(model_arr[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowercase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _lowerCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowercase = AnimationGroup( FadeOut(_lowerCAmelCase , run_time=0.5 ) , MoveToTarget(_lowerCAmelCase , run_time=0.5 ) , FadeIn(_lowerCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_lowerCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowercase = 0.7 self.play( Circumscribe(model_arr[i] , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowercase = a_c lowercase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_lowerCAmelCase ) , FadeOut(_lowerCAmelCase , run_time=0.5 ) , ) lowercase = MarkupText(F"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) , MoveToTarget(_lowerCAmelCase ) ) self.wait()
702
'''simple docstring''' from ... import PretrainedConfig lowercase_ : int = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __A = '''nezha''' def __init__( self , _lowerCAmelCase=2_1128 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
653
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowercase = ksize + 1 lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowercase_ ): for x in range(lowercase_ ): # distance from center lowercase = x - ksize // 2 lowercase = y - ksize // 2 # degree to radiant lowercase = theta / 180 * np.pi lowercase = np.cos(_theta ) lowercase = np.sin(_theta ) # get kernel x lowercase = cos_theta * px + sin_theta * py # get kernel y lowercase = -sin_theta * px + cos_theta * py # fill kernel lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowercase_ : List[Any] = imread('''../image_data/lena.jpg''') # turn image in gray scale value lowercase_ : str = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowercase_ : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowercase_ : Dict = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowercase_ : Tuple = out / out.max() * 255 lowercase_ : Dict = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
703
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowercase_ : Tuple = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = git.Repo(search_parent_directories=lowercase_ ) lowercase = { """repo_id""": str(lowercase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowercase_ , """git_log.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if params.n_gpu <= 0: lowercase = 0 lowercase = -1 lowercase = True lowercase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = int(os.environ["""N_GPU_NODE"""] ) lowercase = int(os.environ["""RANK"""] ) # number of nodes / node ID lowercase = params.world_size // params.n_gpu_per_node lowercase = params.global_rank // params.n_gpu_per_node lowercase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase = 1 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 1 lowercase = 1 lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase = params.node_id == 0 and params.local_rank == 0 lowercase = params.n_nodes > 1 # summary lowercase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
653
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Dict: '''simple docstring''' super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: lowercase = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase = dict(scheduler.config ) lowercase = 1 lowercase = FrozenDict(_lowerCAmelCase ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: lowercase = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase = dict(scheduler.config ) lowercase = True lowercase = FrozenDict(_lowerCAmelCase ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=_lowerCAmelCase , segmentation_processor=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , ) def _a ( self , _lowerCAmelCase = "auto" ) -> Optional[int]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' self.enable_attention_slicing(_lowerCAmelCase ) def _a ( self ) -> Tuple: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowercase = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _a ( self ) -> Optional[Any]: '''simple docstring''' if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 512 , _lowerCAmelCase = 512 , _lowerCAmelCase = 50 , _lowerCAmelCase = 7.5 , _lowerCAmelCase = None , _lowerCAmelCase = 1 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "pil" , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = 1 , **_lowerCAmelCase , ) -> Dict: '''simple docstring''' lowercase = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) lowercase = self.segmentation_model(**_lowerCAmelCase ) lowercase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase = self.numpy_to_pil(_lowerCAmelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , height=_lowerCAmelCase , width=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , negative_prompt=_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase , eta=_lowerCAmelCase , generator=_lowerCAmelCase , latents=_lowerCAmelCase , output_type=_lowerCAmelCase , return_dict=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=_lowerCAmelCase , )
704
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowercase_ : List[str] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase_ , headers=lowercase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
653
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ : list[int] ): return len(set(lowercase_ ) ) == len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase_ : int = None lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ : List[Any] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase_ : Dict = { '''camembert-base''': 512, } lowercase_ : Union[str, Any] = '''▁''' class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] __A = CamembertTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_lowerCAmelCase , ) -> Any: lowercase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = False if not self.vocab_file else True def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
706
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
653
0
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=2 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=36 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=6 , _lowerCAmelCase=6 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1000 , ) -> Dict: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = patch_size lowercase = text_seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = coordinate_size lowercase = shape_size lowercase = num_labels lowercase = num_choices lowercase = scope lowercase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase = text_seq_length lowercase = (image_size // patch_size) ** 2 + 1 lowercase = self.text_seq_length + self.image_seq_length def _a ( self ) -> int: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowercase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase = bbox[i, j, 3] lowercase = bbox[i, j, 1] lowercase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase = bbox[i, j, 2] lowercase = bbox[i, j, 0] lowercase = t lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.text_seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowercase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = LayoutLMvaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # text + image lowercase = model(_lowerCAmelCase , pixel_values=_lowerCAmelCase ) lowercase = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) lowercase = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) lowercase = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowercase = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowercase = model(pixel_values=_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = self.num_labels lowercase = LayoutLMvaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: '''simple docstring''' lowercase = self.num_labels lowercase = LayoutLMvaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: '''simple docstring''' lowercase = LayoutLMvaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = False __A = False __A = False __A = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __A = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return True def _a ( self ) -> int: '''simple docstring''' lowercase = LayoutLMvaModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Optional[Any]: '''simple docstring''' lowercase = copy.deepcopy(_lowerCAmelCase ) if model_class in get_values(_lowerCAmelCase ): lowercase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_lowerCAmelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_lowerCAmelCase ): lowercase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in get_values(_lowerCAmelCase ): lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in [ *get_values(_lowerCAmelCase ), ]: lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in [ *get_values(_lowerCAmelCase ), ]: lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_lowerCAmelCase , ) return inputs_dict def _a ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ) -> str: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = LayoutLMvaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> int: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=_lowerCAmelCase ) if is_vision_available() else None @slow def _a ( self ) -> int: '''simple docstring''' lowercase = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCAmelCase ) lowercase = torch.tensor([[1, 2]] ) lowercase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowercase = model( input_ids=input_ids.to(_lowerCAmelCase ) , bbox=bbox.to(_lowerCAmelCase ) , pixel_values=pixel_values.to(_lowerCAmelCase ) , ) # verify the logits lowercase = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , _lowerCAmelCase ) lowercase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
707
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
0
'''simple docstring''' from collections.abc import Callable def SCREAMING_SNAKE_CASE ( lowercase_ : Callable[[float], float] , lowercase_ : float , lowercase_ : float ): lowercase = a lowercase = b if function(lowercase_ ) == 0: # one of the a or b is a root for the function return a elif function(lowercase_ ) == 0: return b elif ( function(lowercase_ ) * function(lowercase_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: lowercase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowercase_ ) == 0: return mid elif function(lowercase_ ) * function(lowercase_ ) < 0: lowercase = mid else: lowercase = mid lowercase = start + (end - start) / 2.0 return mid def SCREAMING_SNAKE_CASE ( lowercase_ : float ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
708
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
0
def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Tuple ): if height >= 1: move_tower(height - 1 , lowercase_ , lowercase_ , lowercase_ ) move_disk(lowercase_ , lowercase_ ) move_tower(height - 1 , lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : Optional[int] ): print("""moving disk from""" , lowercase_ , """to""" , lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = int(input("""Height of hanoi: """ ).strip() ) move_tower(lowercase_ , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
709
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ : int = 50_0000 lowercase_ , lowercase_ : Union[str, Any] = os.path.split(__file__) lowercase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Dict ): lowercase = dataset.map(**lowercase_ ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ): lowercase = dataset.filter(**lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowercase = generate_example_dataset( os.path.join(lowercase_ , """dataset.arrow""" ) , lowercase_ , num_examples=lowercase_ ) lowercase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples["""text"""] ) lowercase = map(lowercase_ ) lowercase = map(lowercase_ , batched=lowercase_ ) lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""numpy""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""pandas""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) lowercase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) lowercase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , """wb""" ) as f: f.write(json.dumps(lowercase_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
653
0
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str ): lowercase = hf_hub_url(repo_id=lowercase_ , path=lowercase_ , revision=lowercase_ ) assert url == F"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(lowercase_ )}"""
710
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
0
'''simple docstring''' import torch from diffusers import DiffusionPipeline class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) def __call__( self ) -> Optional[int]: '''simple docstring''' lowercase = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowercase = 1 lowercase = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample lowercase = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample lowercase = scheduler_output - scheduler_output + torch.ones_like(_lowerCAmelCase ) return result
711
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase_ : Any = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : List[Any] = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowercase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
0
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) lowercase_ : List[Any] = None lowercase_ : Any = { '''7B''': 1_1008, '''13B''': 1_3824, '''30B''': 1_7920, '''65B''': 2_2016, '''70B''': 2_8672, } lowercase_ : str = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : Any=1 , lowercase_ : Optional[int]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): with open(lowercase_ , """r""" ) as f: return json.load(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : int ): with open(lowercase_ , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : str=True ): os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowercase = os.path.join(lowercase_ , """tmp""" ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowercase = read_json(os.path.join(lowercase_ , """params.json""" ) ) lowercase = NUM_SHARDS[model_size] lowercase = params["""n_layers"""] lowercase = params["""n_heads"""] lowercase = n_heads // num_shards lowercase = params["""dim"""] lowercase = dim // n_heads lowercase = 1_0000.0 lowercase = 1.0 / (base ** (torch.arange(0 , lowercase_ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowercase = params["""n_kv_heads"""] # for GQA / MQA lowercase = n_heads_per_shard // num_key_value_heads lowercase = dim // num_key_value_heads else: # compatibility with other checkpoints lowercase = n_heads lowercase = n_heads_per_shard lowercase = dim # permute for sliced rotary def permute(lowercase_ : Tuple , lowercase_ : List[Any]=n_heads , lowercase_ : int=dim , lowercase_ : List[str]=dim ): return w.view(lowercase_ , dima // n_heads // 2 , 2 , lowercase_ ).transpose(1 , 2 ).reshape(lowercase_ , lowercase_ ) print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowercase = torch.load(os.path.join(lowercase_ , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded lowercase = [ torch.load(os.path.join(lowercase_ , F"""consolidated.{i:02d}.pth""" ) , map_location="""cpu""" ) for i in range(lowercase_ ) ] lowercase = 0 lowercase = {"""weight_map""": {}} for layer_i in range(lowercase_ ): lowercase = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded lowercase = { F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wq.weight"""] ), F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wk.weight"""] ), F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""], F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""], F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""], F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""], F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""], F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""], F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowercase = { F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.attention_norm.weight""" ].clone(), F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } lowercase = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(lowercase_ , lowercase_ , lowercase_ ) for i in range(lowercase_ ) ] , dim=0 , ).reshape(lowercase_ , lowercase_ ) ) lowercase = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view( lowercase_ , lowercase_ , lowercase_ ) for i in range(lowercase_ ) ] , dim=0 , ).reshape(lowercase_ , lowercase_ ) , lowercase_ , lowercase_ , lowercase_ , ) lowercase = torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view( lowercase_ , lowercase_ , lowercase_ ) for i in range(lowercase_ ) ] , dim=0 , ).reshape(lowercase_ , lowercase_ ) lowercase = torch.cat( [loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(lowercase_ )] , dim=1 ) lowercase = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(lowercase_ )] , dim=0 ) lowercase = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(lowercase_ )] , dim=1 ) lowercase = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(lowercase_ )] , dim=0 ) lowercase = inv_freq for k, v in state_dict.items(): lowercase = filename param_count += v.numel() torch.save(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) lowercase = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded lowercase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: lowercase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(lowercase_ )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(lowercase_ )] , dim=0 ), } for k, v in state_dict.items(): lowercase = filename param_count += v.numel() torch.save(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) # Write configs lowercase = {"""total_size""": param_count * 2} write_json(lowercase_ , os.path.join(lowercase_ , """pytorch_model.bin.index.json""" ) ) lowercase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 lowercase = params["""multiple_of"""] if """multiple_of""" in params else 256 lowercase = LlamaConfig( hidden_size=lowercase_ , intermediate_size=compute_intermediate_size(lowercase_ , lowercase_ , lowercase_ ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=lowercase_ , ) config.save_pretrained(lowercase_ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) lowercase = LlamaForCausalLM.from_pretrained(lowercase_ , torch_dtype=torch.floataa , low_cpu_mem_usage=lowercase_ ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(lowercase_ , safe_serialization=lowercase_ ) shutil.rmtree(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : str ): # Initialize the tokenizer based on the `spm` model lowercase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) lowercase = tokenizer_class(lowercase_ ) tokenizer.save_pretrained(lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=lowercase_ , help="""Whether or not to save using `safetensors`.""" ) lowercase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) lowercase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , lowercase_ ) if __name__ == "__main__": main()
713
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = [[1, 2, 4], [1, 2, 3, 4]] lowercase = DisjunctiveConstraint(_lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , _lowerCAmelCase ) ) with self.assertRaises(_lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _a ( self ) -> Any: '''simple docstring''' lowercase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_lowerCAmelCase ): DisjunctiveConstraint(_lowerCAmelCase ) # fails here def _a ( self ) -> Tuple: '''simple docstring''' lowercase = [[1, 2, 3], [1, 2, 4]] lowercase = DisjunctiveConstraint(_lowerCAmelCase ) lowercase , lowercase , lowercase = dc.update(1 ) lowercase = stepped is True and completed is False and reset is False self.assertTrue(_lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase , lowercase , lowercase = dc.update(2 ) lowercase = stepped is True and completed is False and reset is False self.assertTrue(_lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase , lowercase , lowercase = dc.update(3 ) lowercase = stepped is True and completed is True and reset is False self.assertTrue(_lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _a ( self ) -> str: '''simple docstring''' lowercase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase = DisjunctiveConstraint(_lowerCAmelCase ) lowercase , lowercase , lowercase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase , lowercase , lowercase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase , lowercase , lowercase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase , lowercase , lowercase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase , lowercase , lowercase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase , lowercase , lowercase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase , lowercase , lowercase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
714
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ : Dict = logging.get_logger(__name__) lowercase_ : Any = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''efficientnet''' def __init__( self , _lowerCAmelCase = 3 , _lowerCAmelCase = 600 , _lowerCAmelCase = 2.0 , _lowerCAmelCase = 3.1 , _lowerCAmelCase = 8 , _lowerCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _lowerCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _lowerCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _lowerCAmelCase = [] , _lowerCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _lowerCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _lowerCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _lowerCAmelCase = 0.25 , _lowerCAmelCase = "swish" , _lowerCAmelCase = 2560 , _lowerCAmelCase = "mean" , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 0.001 , _lowerCAmelCase = 0.99 , _lowerCAmelCase = 0.5 , _lowerCAmelCase = 0.2 , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = num_channels lowercase = image_size lowercase = width_coefficient lowercase = depth_coefficient lowercase = depth_divisor lowercase = kernel_sizes lowercase = in_channels lowercase = out_channels lowercase = depthwise_padding lowercase = strides lowercase = num_block_repeats lowercase = expand_ratios lowercase = squeeze_expansion_ratio lowercase = hidden_act lowercase = hidden_dim lowercase = pooling_type lowercase = initializer_range lowercase = batch_norm_eps lowercase = batch_norm_momentum lowercase = dropout_rate lowercase = drop_connect_rate lowercase = sum(_lowerCAmelCase ) * 4 class __UpperCamelCase (_UpperCAmelCase ): __A = version.parse('''1.11''' ) @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a ( self ) -> float: '''simple docstring''' return 1E-5
715
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase_ : Dict = logging.get_logger(__name__) lowercase_ : Dict = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class __UpperCamelCase (_UpperCAmelCase ): __A = '''marian''' __A = ['''past_key_values'''] __A = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowerCAmelCase=5_8101 , _lowerCAmelCase=None , _lowerCAmelCase=1024 , _lowerCAmelCase=12 , _lowerCAmelCase=4096 , _lowerCAmelCase=16 , _lowerCAmelCase=12 , _lowerCAmelCase=4096 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=1024 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=5_8100 , _lowerCAmelCase=False , _lowerCAmelCase=5_8100 , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = decoder_vocab_size or vocab_size lowercase = max_position_embeddings lowercase = d_model lowercase = encoder_ffn_dim lowercase = encoder_layers lowercase = encoder_attention_heads lowercase = decoder_ffn_dim lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = activation_function lowercase = init_std lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = use_cache lowercase = encoder_layers lowercase = scale_embedding # scale factor will be sqrt(d_model) if True lowercase = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class __UpperCamelCase (_UpperCAmelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def _a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowercase = {0: """batch"""} lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowercase = {0: """batch""", 1: """decoder_sequence"""} lowercase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowercase , lowercase = self.num_layers for i in range(_lowerCAmelCase ): lowercase = {0: """batch""", 2: """past_sequence + sequence"""} lowercase = {0: """batch""", 2: """past_sequence + sequence"""} else: lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def _a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase = super().outputs else: lowercase = super(_lowerCAmelCase , self ).outputs if self.use_past: lowercase , lowercase = self.num_layers for i in range(_lowerCAmelCase ): lowercase = {0: """batch""", 2: """past_sequence + sequence"""} lowercase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' lowercase = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Generate decoder inputs lowercase = seq_length if not self.use_past else 1 lowercase = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowercase = dict(**_lowerCAmelCase , **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase = common_inputs["""input_ids"""].shape lowercase = common_inputs["""decoder_input_ids"""].shape[1] lowercase , lowercase = self.num_attention_heads lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase = decoder_seq_length + 3 lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 ) lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase , lowercase = self.num_layers lowercase = min(_lowerCAmelCase , _lowerCAmelCase ) lowercase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers lowercase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. lowercase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' lowercase = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase = seqlen + 2 lowercase , lowercase = self.num_layers lowercase , lowercase = self.num_attention_heads lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase = common_inputs["""attention_mask"""].dtype lowercase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) lowercase = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' lowercase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) lowercase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowercase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return common_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) else: lowercase = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) return common_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: lowercase = super(_lowerCAmelCase , self )._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @property def _a ( self ) -> float: '''simple docstring''' return 1E-4
716
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
653
0
'''simple docstring''' lowercase_ : List[str] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def SCREAMING_SNAKE_CASE ( lowercase_ : bytes ): # Make sure the supplied data is a bytes-like object if not isinstance(lowercase_ , lowercase_ ): lowercase = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(lowercase_ ) lowercase = """""".join(bin(lowercase_ )[2:].zfill(8 ) for byte in data ) lowercase = len(lowercase_ ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase = B"""=""" * ((6 - len(lowercase_ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowercase_ ) % 6) else: lowercase = B"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowercase_ ) , 6 ) ).encode() + padding ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(lowercase_ , lowercase_ ) and not isinstance(lowercase_ , lowercase_ ): lowercase = ( """argument should be a bytes-like object or ASCII string, """ F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(lowercase_ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowercase_ , lowercase_ ): try: lowercase = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) lowercase = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowercase_ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase = encoded_data[:-padding] lowercase = """""".join( bin(B64_CHARSET.index(lowercase_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase = """""".join( bin(B64_CHARSET.index(lowercase_ ) )[2:].zfill(6 ) for char in encoded_data ) lowercase = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowercase_ ) , 8 ) ] return bytes(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
653
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ : Tuple = logging.get_logger(__name__) lowercase_ : Optional[int] = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase ): __A = '''nat''' __A = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=64 , _lowerCAmelCase=[3, 4, 6, 5] , _lowerCAmelCase=[2, 4, 8, 16] , _lowerCAmelCase=7 , _lowerCAmelCase=3.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = patch_size lowercase = num_channels lowercase = embed_dim lowercase = depths lowercase = len(_lowerCAmelCase ) lowercase = num_heads lowercase = kernel_size lowercase = mlp_ratio lowercase = qkv_bias lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = drop_path_rate lowercase = hidden_act lowercase = layer_norm_eps lowercase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) lowercase = layer_scale_init_value lowercase = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_lowerCAmelCase ) + 1 )] lowercase , lowercase = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
718
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
0
'''simple docstring''' from collections import namedtuple lowercase_ : List[str] = namedtuple('''from_to''', '''from_ to''') lowercase_ : List[Any] = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 1000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.00454, 264.172), '''cubicyard''': from_to(0.76455, 1.30795), '''cubicfoot''': from_to(0.028, 35.3147), '''cup''': from_to(0.000236588, 4226.75), } def SCREAMING_SNAKE_CASE ( lowercase_ : float , lowercase_ : str , lowercase_ : str ): if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + """, """.join(lowercase_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + """, """.join(lowercase_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : Optional[int] = {'''vocab_file''': '''spiece.model'''} lowercase_ : Optional[Any] = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = 3 lowercase = do_lower_case lowercase = remove_space lowercase = keep_accents lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) lowercase = jieba lowercase = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _a ( self ) -> Dict: '''simple docstring''' return len(self.sp_model ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> Tuple: '''simple docstring''' if self.remove_space: lowercase = """ """.join(inputs.strip().split() ) else: lowercase = inputs lowercase = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowercase = unicodedata.normalize("""NFKD""" , _lowerCAmelCase ) lowercase = """""".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: lowercase = outputs.lower() return outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = self.preprocess_text(_lowerCAmelCase ) lowercase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) lowercase = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowercase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase = cur_pieces[1:] else: lowercase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.PieceToId(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> Any: '''simple docstring''' return self.sp_model.IdToPiece(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase = [self.sep_token_id] lowercase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def _a ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase ) lowercase = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
720
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): lowercase = os.path.join(os.path.dirname(lowercase_ ) , """num.txt""" ) with open(lowercase_ ) as file_hand: return str(sum(int(lowercase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __UpperCamelCase (_UpperCAmelCase ): __A = '''facebook/bart-large-mnli''' __A = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) __A = '''text_classifier''' __A = AutoTokenizer __A = AutoModelForSequenceClassification __A = ['''text''', ['''text''']] __A = ['''text'''] def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().setup() lowercase = self.model.config lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): lowercase = int(_lowerCAmelCase ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = labels return self.pre_processor( [text] * len(_lowerCAmelCase ) , [F"""This example is {label}""" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def _a ( self , _lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = outputs.logits lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
721
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase = DDIMScheduler() torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase = CLIPTextModel(_lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> int: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = """french fries""" lowercase = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Dict: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_lowerCAmelCase ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _a ( self ) -> str: '''simple docstring''' lowercase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> Any: '''simple docstring''' lowercase = 0 def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None: lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase = False lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ) -> int: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
653
0
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class A ( UpperCAmelCase ): a_ = CustomTokenizer pass
654
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
1
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __lowerCAmelCase : Any = ["gpt2"] __lowerCAmelCase : Union[str, Any] = "gpt2" if is_tf_available(): class A ( tf.Module ): def __init__( self : Any , __a : Any ) -> Optional[int]: super().__init__() __UpperCAmelCase = tokenizer __UpperCAmelCase = AutoConfig.from_pretrained(__a ) __UpperCAmelCase = TFGPTaLMHeadModel.from_config(__a ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def snake_case__ ( self : int , __a : Optional[Any] ) -> int: __UpperCAmelCase = self.tokenizer(__a ) __UpperCAmelCase = tokenized['''input_ids'''].to_tensor() __UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __UpperCAmelCase = self.model(input_ids=__a , attention_mask=__a )['''logits'''] return outputs @require_tf @require_keras_nlp class A ( unittest.TestCase ): def snake_case__ ( self : int ) -> Dict: super().setUp() __UpperCAmelCase = [GPTaTokenizer.from_pretrained(__a ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(__a ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __UpperCAmelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def snake_case__ ( self : Optional[Any] ) -> List[Any]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __UpperCAmelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) __UpperCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __UpperCAmelCase = python_outputs[key].numpy() __UpperCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__a , tf.intaa ) == tf_outputs_values ) ) @slow def snake_case__ ( self : int ) -> List[Any]: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = tf.function(__a ) for test_inputs in self.test_sentences: __UpperCAmelCase = tf.constant(__a ) __UpperCAmelCase = compiled_tokenizer(__a ) __UpperCAmelCase = tf_tokenizer(__a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def snake_case__ ( self : Tuple ) -> Optional[Any]: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = ModelToSave(tokenizer=__a ) __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = model.serving(__a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __UpperCAmelCase = Path(__a ) / '''saved.model''' tf.saved_model.save(__a , __a , signatures={'''serving_default''': model.serving} ) __UpperCAmelCase = tf.saved_model.load(__a ) __UpperCAmelCase = loaded_model.signatures['''serving_default'''](__a )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def snake_case__ ( self : Optional[int] ) -> Dict: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = tf_tokenizer(__a ) # Build model with some sample inputs __UpperCAmelCase = tf_tokenizer.get_config() __UpperCAmelCase = TFGPTaTokenizer.from_config(__a ) __UpperCAmelCase = model_from_config(__a ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def snake_case__ ( self : Dict ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: # for the test to run __UpperCAmelCase = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = tf_tokenizer(__a , max_length=__a ) __UpperCAmelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
654
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
1
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __lowerCAmelCase : List[str] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class A ( UpperCAmelCase ): def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : str ) -> int: super().__init__(*__a , **__a ) requires_backends(self , '''decord''' ) self.check_model_type(__a ) def snake_case__ ( self : Tuple , __a : Tuple=None , __a : Optional[Any]=None , __a : Optional[int]=None ) -> Any: __UpperCAmelCase = {} if frame_sampling_rate is not None: __UpperCAmelCase = frame_sampling_rate if num_frames is not None: __UpperCAmelCase = num_frames __UpperCAmelCase = {} if top_k is not None: __UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : Dict , __a : Union[str, List[str]] , **__a : Dict ) -> Optional[Any]: return super().__call__(__a , **__a ) def snake_case__ ( self : Union[str, Any] , __a : Tuple , __a : List[Any]=None , __a : Optional[int]=1 ) -> List[str]: if num_frames is None: __UpperCAmelCase = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): __UpperCAmelCase = BytesIO(requests.get(__a ).content ) __UpperCAmelCase = VideoReader(__a ) videoreader.seek(0 ) __UpperCAmelCase = 0 __UpperCAmelCase = num_frames * frame_sampling_rate - 1 __UpperCAmelCase = np.linspace(__a , __a , num=__a , dtype=np.intaa ) __UpperCAmelCase = videoreader.get_batch(__a ).asnumpy() __UpperCAmelCase = list(__a ) __UpperCAmelCase = self.image_processor(__a , return_tensors=self.framework ) return model_inputs def snake_case__ ( self : Optional[Any] , __a : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase = self.model(**__a ) return model_outputs def snake_case__ ( self : Optional[int] , __a : List[Any] , __a : str=5 ) -> int: if top_k > self.model.config.num_labels: __UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": __UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] __UpperCAmelCase , __UpperCAmelCase = probs.topk(__a ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __UpperCAmelCase = scores.tolist() __UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class A ( UpperCAmelCase ): a_ = '''audio-spectrogram-transformer''' def __init__( self : str , __a : Optional[Any]=7_6_8 , __a : List[Any]=1_2 , __a : Optional[Any]=1_2 , __a : int=3_0_7_2 , __a : Optional[Any]="gelu" , __a : Optional[Any]=0.0 , __a : int=0.0 , __a : int=0.0_2 , __a : Optional[Any]=1e-12 , __a : Optional[Any]=1_6 , __a : Optional[int]=True , __a : int=1_0 , __a : Any=1_0 , __a : int=1_0_2_4 , __a : Tuple=1_2_8 , **__a : str , ) -> str: super().__init__(**__a ) __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = patch_size __UpperCAmelCase = qkv_bias __UpperCAmelCase = frequency_stride __UpperCAmelCase = time_stride __UpperCAmelCase = max_length __UpperCAmelCase = num_mel_bins
654
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) class A ( UpperCAmelCase ): def __init__( self : Any , *__a : Any , **__a : Union[str, Any] ) -> None: warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , __a , ) super().__init__(*__a , **__a )
654
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
1
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # General docstring __lowerCAmelCase : Union[str, Any] = "ResNetConfig" # Base docstring __lowerCAmelCase : str = "microsoft/resnet-50" __lowerCAmelCase : Dict = [1, 2_048, 7, 7] # Image classification docstring __lowerCAmelCase : str = "microsoft/resnet-50" __lowerCAmelCase : Optional[Any] = "tiger cat" __lowerCAmelCase : Any = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class A ( nn.Module ): def __init__( self : List[Any] , __a : int , __a : int , __a : int = 3 , __a : int = 1 , __a : str = "relu" ) -> Tuple: super().__init__() __UpperCAmelCase = nn.Convad( __a , __a , kernel_size=__a , stride=__a , padding=kernel_size // 2 , bias=__a ) __UpperCAmelCase = nn.BatchNormad(__a ) __UpperCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__ ( self : Any , __a : Tensor ) -> Tensor: __UpperCAmelCase = self.convolution(__a ) __UpperCAmelCase = self.normalization(__a ) __UpperCAmelCase = self.activation(__a ) return hidden_state class A ( nn.Module ): def __init__( self : List[Any] , __a : ResNetConfig ) -> Tuple: super().__init__() __UpperCAmelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __UpperCAmelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __UpperCAmelCase = config.num_channels def snake_case__ ( self : Optional[Any] , __a : Tensor ) -> Tensor: __UpperCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) __UpperCAmelCase = self.embedder(__a ) __UpperCAmelCase = self.pooler(__a ) return embedding class A ( nn.Module ): def __init__( self : Any , __a : int , __a : int , __a : int = 2 ) -> int: super().__init__() __UpperCAmelCase = nn.Convad(__a , __a , kernel_size=1 , stride=__a , bias=__a ) __UpperCAmelCase = nn.BatchNormad(__a ) def snake_case__ ( self : int , __a : Tensor ) -> Tensor: __UpperCAmelCase = self.convolution(__a ) __UpperCAmelCase = self.normalization(__a ) return hidden_state class A ( nn.Module ): def __init__( self : Optional[Any] , __a : int , __a : int , __a : int = 1 , __a : str = "relu" ) -> Any: super().__init__() __UpperCAmelCase = in_channels != out_channels or stride != 1 __UpperCAmelCase = ( ResNetShortCut(__a , __a , stride=__a ) if should_apply_shortcut else nn.Identity() ) __UpperCAmelCase = nn.Sequential( ResNetConvLayer(__a , __a , stride=__a ) , ResNetConvLayer(__a , __a , activation=__a ) , ) __UpperCAmelCase = ACTaFN[activation] def snake_case__ ( self : Optional[int] , __a : List[Any] ) -> int: __UpperCAmelCase = hidden_state __UpperCAmelCase = self.layer(__a ) __UpperCAmelCase = self.shortcut(__a ) hidden_state += residual __UpperCAmelCase = self.activation(__a ) return hidden_state class A ( nn.Module ): def __init__( self : Optional[int] , __a : int , __a : int , __a : int = 1 , __a : str = "relu" , __a : int = 4 ) -> Optional[Any]: super().__init__() __UpperCAmelCase = in_channels != out_channels or stride != 1 __UpperCAmelCase = out_channels // reduction __UpperCAmelCase = ( ResNetShortCut(__a , __a , stride=__a ) if should_apply_shortcut else nn.Identity() ) __UpperCAmelCase = nn.Sequential( ResNetConvLayer(__a , __a , kernel_size=1 ) , ResNetConvLayer(__a , __a , stride=__a ) , ResNetConvLayer(__a , __a , kernel_size=1 , activation=__a ) , ) __UpperCAmelCase = ACTaFN[activation] def snake_case__ ( self : Any , __a : Optional[int] ) -> int: __UpperCAmelCase = hidden_state __UpperCAmelCase = self.layer(__a ) __UpperCAmelCase = self.shortcut(__a ) hidden_state += residual __UpperCAmelCase = self.activation(__a ) return hidden_state class A ( nn.Module ): def __init__( self : int , __a : ResNetConfig , __a : int , __a : int , __a : int = 2 , __a : int = 2 , ) -> List[Any]: super().__init__() __UpperCAmelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer __UpperCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__a , __a , stride=__a , activation=config.hidden_act ) , *[layer(__a , __a , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def snake_case__ ( self : str , __a : Tensor ) -> Tensor: __UpperCAmelCase = input for layer in self.layers: __UpperCAmelCase = layer(__a ) return hidden_state class A ( nn.Module ): def __init__( self : Optional[Any] , __a : ResNetConfig ) -> Any: super().__init__() __UpperCAmelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __UpperCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__a , config.depths[1:] ): self.stages.append(ResNetStage(__a , __a , __a , depth=__a ) ) def snake_case__ ( self : Dict , __a : Tensor , __a : bool = False , __a : bool = True ) -> BaseModelOutputWithNoAttention: __UpperCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCAmelCase = hidden_states + (hidden_state,) __UpperCAmelCase = stage_module(__a ) if output_hidden_states: __UpperCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=__a , hidden_states=__a , ) class A ( UpperCAmelCase ): a_ = ResNetConfig a_ = '''resnet''' a_ = '''pixel_values''' a_ = True def snake_case__ ( self : List[Any] , __a : List[Any] ) -> List[str]: if isinstance(__a , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(__a , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case__ ( self : List[Any] , __a : Optional[int] , __a : Optional[Any]=False ) -> Dict: if isinstance(__a , __a ): __UpperCAmelCase = value __lowerCAmelCase : int = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __lowerCAmelCase : List[Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , UpperCAmelCase , ) class A ( UpperCAmelCase ): def __init__( self : List[str] , __a : Any ) -> Dict: super().__init__(__a ) __UpperCAmelCase = config __UpperCAmelCase = ResNetEmbeddings(__a ) __UpperCAmelCase = ResNetEncoder(__a ) __UpperCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case__ ( self : List[str] , __a : Tensor , __a : Optional[bool] = None , __a : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: __UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase = self.embedder(__a ) __UpperCAmelCase = self.encoder( __a , output_hidden_states=__a , return_dict=__a ) __UpperCAmelCase = encoder_outputs[0] __UpperCAmelCase = self.pooler(__a ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__a , pooler_output=__a , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase , ) class A ( UpperCAmelCase ): def __init__( self : Optional[int] , __a : Tuple ) -> Union[str, Any]: super().__init__(__a ) __UpperCAmelCase = config.num_labels __UpperCAmelCase = ResNetModel(__a ) # classification head __UpperCAmelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case__ ( self : Union[str, Any] , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: __UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase = self.resnet(__a , output_hidden_states=__a , return_dict=__a ) __UpperCAmelCase = outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase = self.classifier(__a ) __UpperCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCAmelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCAmelCase = '''single_label_classification''' else: __UpperCAmelCase = '''multi_label_classification''' if self.config.problem_type == "regression": __UpperCAmelCase = MSELoss() if self.num_labels == 1: __UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __UpperCAmelCase = loss_fct(__a , __a ) elif self.config.problem_type == "single_label_classification": __UpperCAmelCase = CrossEntropyLoss() __UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __UpperCAmelCase = BCEWithLogitsLoss() __UpperCAmelCase = loss_fct(__a , __a ) if not return_dict: __UpperCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__a , logits=__a , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , UpperCAmelCase , ) class A ( UpperCAmelCase , UpperCAmelCase ): def __init__( self : str , __a : str ) -> Optional[Any]: super().__init__(__a ) super()._init_backbone(__a ) __UpperCAmelCase = [config.embedding_size] + config.hidden_sizes __UpperCAmelCase = ResNetEmbeddings(__a ) __UpperCAmelCase = ResNetEncoder(__a ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @replace_return_docstrings(output_type=__a , config_class=_CONFIG_FOR_DOC ) def snake_case__ ( self : Dict , __a : Tensor , __a : Optional[bool] = None , __a : Optional[bool] = None ) -> BackboneOutput: __UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase = self.embedder(__a ) __UpperCAmelCase = self.encoder(__a , output_hidden_states=__a , return_dict=__a ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __UpperCAmelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__a , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=__a , )
654
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
1
'''simple docstring''' import re def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" if len(re.findall('''[ATCG]''' , UpperCamelCase__ ) ) != len(UpperCamelCase__ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : str = {} class A ( UpperCAmelCase ): a_ = '''llama''' a_ = ['''past_key_values'''] def __init__( self : List[Any] , __a : int=3_2_0_0_0 , __a : Optional[int]=4_0_9_6 , __a : Tuple=1_1_0_0_8 , __a : Optional[Any]=3_2 , __a : List[str]=3_2 , __a : Dict=None , __a : Any="silu" , __a : Tuple=2_0_4_8 , __a : Dict=0.0_2 , __a : Optional[Any]=1e-6 , __a : List[str]=True , __a : List[str]=0 , __a : Optional[Any]=1 , __a : List[str]=2 , __a : List[Any]=1 , __a : List[Any]=False , __a : Optional[int]=None , **__a : Dict , ) -> List[Any]: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = hidden_size __UpperCAmelCase = intermediate_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: __UpperCAmelCase = num_attention_heads __UpperCAmelCase = num_key_value_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = initializer_range __UpperCAmelCase = rms_norm_eps __UpperCAmelCase = pretraining_tp __UpperCAmelCase = use_cache __UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def snake_case__ ( self : str ) -> int: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __UpperCAmelCase = self.rope_scaling.get('''type''' , __a ) __UpperCAmelCase = self.rope_scaling.get('''factor''' , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
654
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class A ( unittest.TestCase ): a_ = StableDiffusionLDMaDPipeline a_ = TEXT_TO_IMAGE_PARAMS a_ = TEXT_TO_IMAGE_BATCH_PARAMS a_ = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self : Dict ) -> Dict: torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __UpperCAmelCase = CLIPTextModel(__a ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__ ( self : str , __a : str , __a : Optional[Any]=0 ) -> str: if str(__a ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(__a ) else: __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = StableDiffusionLDMaDPipeline(**__a ) __UpperCAmelCase = ldmad_pipe.to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = ldmad_pipe(**__a ) __UpperCAmelCase , __UpperCAmelCase = output.rgb, output.depth __UpperCAmelCase = rgb[0, -3:, -3:, -1] __UpperCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 6_4, 6_4, 3) assert depth.shape == (1, 6_4, 6_4) __UpperCAmelCase = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) __UpperCAmelCase = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def snake_case__ ( self : List[str] ) -> Any: __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = StableDiffusionLDMaDPipeline(**__a ) __UpperCAmelCase = ldmad_pipe.to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = 3 * [inputs['''prompt''']] # forward __UpperCAmelCase = ldmad_pipe(**__a ) __UpperCAmelCase , __UpperCAmelCase = output.rgb, output.depth __UpperCAmelCase = rgb_slice_a[0, -3:, -3:, -1] __UpperCAmelCase = depth_slice_a[0, -3:, -1] __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = 3 * [inputs.pop('''prompt''' )] __UpperCAmelCase = ldmad_pipe.tokenizer( __a , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__a , return_tensors='''pt''' , ) __UpperCAmelCase = text_inputs['''input_ids'''].to(__a ) __UpperCAmelCase = ldmad_pipe.text_encoder(__a )[0] __UpperCAmelCase = prompt_embeds # forward __UpperCAmelCase = ldmad_pipe(**__a ) __UpperCAmelCase , __UpperCAmelCase = output.rgb, output.depth __UpperCAmelCase = rgb_slice_a[0, -3:, -3:, -1] __UpperCAmelCase = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = PNDMScheduler(skip_prk_steps=__a ) __UpperCAmelCase = StableDiffusionLDMaDPipeline(**__a ) __UpperCAmelCase = ldmad_pipe.to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = '''french fries''' __UpperCAmelCase = ldmad_pipe(**__a , negative_prompt=__a ) __UpperCAmelCase , __UpperCAmelCase = output.rgb, output.depth __UpperCAmelCase = rgb[0, -3:, -3:, -1] __UpperCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 6_4, 6_4, 3) assert depth.shape == (1, 6_4, 6_4) __UpperCAmelCase = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) __UpperCAmelCase = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class A ( unittest.TestCase ): def snake_case__ ( self : Any ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Optional[int] , __a : Dict , __a : List[str]="cpu" , __a : Union[str, Any]=torch.floataa , __a : Optional[Any]=0 ) -> List[str]: __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __UpperCAmelCase = np.random.RandomState(__a ).standard_normal((1, 4, 6_4, 6_4) ) __UpperCAmelCase = torch.from_numpy(__a ).to(device=__a , dtype=__a ) __UpperCAmelCase = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : int ) -> Any: __UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) __UpperCAmelCase = ldmad_pipe.to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_inputs(__a ) __UpperCAmelCase = ldmad_pipe(**__a ) __UpperCAmelCase , __UpperCAmelCase = output.rgb, output.depth __UpperCAmelCase = rgb[0, -3:, -3:, -1].flatten() __UpperCAmelCase = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_1_2, 5_1_2, 3) assert depth.shape == (1, 5_1_2, 5_1_2) __UpperCAmelCase = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) __UpperCAmelCase = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class A ( unittest.TestCase ): def snake_case__ ( self : List[str] ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Optional[Any] , __a : List[str] , __a : Any="cpu" , __a : List[str]=torch.floataa , __a : Dict=0 ) -> List[Any]: __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __UpperCAmelCase = np.random.RandomState(__a ).standard_normal((1, 4, 6_4, 6_4) ) __UpperCAmelCase = torch.from_numpy(__a ).to(device=__a , dtype=__a ) __UpperCAmelCase = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 5_0, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : Tuple ) -> int: __UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_inputs(__a ) __UpperCAmelCase = ldmad_pipe(**__a ) __UpperCAmelCase , __UpperCAmelCase = output.rgb, output.depth __UpperCAmelCase = 0.4_9_5_5_8_6 __UpperCAmelCase = 0.3_3_7_9_5_5_1_5 __UpperCAmelCase = 1_1_2.4_8_5_1_8 __UpperCAmelCase = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def snake_case__ ( self : List[Any] ) -> str: __UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_inputs(__a ) __UpperCAmelCase = ldmad_pipe(**__a ) __UpperCAmelCase , __UpperCAmelCase = output.rgb, output.depth __UpperCAmelCase = 0.4_1_9_4_1_2_7 __UpperCAmelCase = 0.3_5_3_7_5_5_8_6 __UpperCAmelCase = 0.5_6_3_8_5_0_2 __UpperCAmelCase = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 5_1_2, 5_1_2, 3) assert depth.shape == (1, 5_1_2, 5_1_2, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' , UpperCamelCase__ ).groups()[0] class A ( UpperCAmelCase ): def __init__( self : Optional[Any] , __a : Optional[Any] , __a : List[Any]=None , __a : int=None ) -> List[Any]: __UpperCAmelCase = file_names __UpperCAmelCase = image_transform __UpperCAmelCase = label_to_id def __len__( self : Dict ) -> Tuple: return len(self.file_names ) def __getitem__( self : List[Any] , __a : int ) -> List[str]: __UpperCAmelCase = self.file_names[idx] __UpperCAmelCase = PIL.Image.open(__a ) __UpperCAmelCase = raw_image.convert('''RGB''' ) if self.image_transform is not None: __UpperCAmelCase = self.image_transform(__a ) __UpperCAmelCase = extract_label(__a ) if self.label_to_id is not None: __UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): """simple docstring""" # Initialize accelerator if args.with_tracking: __UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase = config['''lr'''] __UpperCAmelCase = int(config['''num_epochs'''] ) __UpperCAmelCase = int(config['''seed'''] ) __UpperCAmelCase = int(config['''batch_size'''] ) __UpperCAmelCase = config['''image_size'''] if not isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": __UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: __UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __UpperCAmelCase = os.path.split(UpperCamelCase__ )[-1].split('''.''' )[0] accelerator.init_trackers(UpperCamelCase__ , UpperCamelCase__ ) # Grab all the image filenames __UpperCAmelCase = [os.path.join(args.data_dir , UpperCamelCase__ ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences __UpperCAmelCase = [extract_label(UpperCamelCase__ ) for fname in file_names] __UpperCAmelCase = list(set(UpperCamelCase__ ) ) id_to_label.sort() __UpperCAmelCase = {lbl: i for i, lbl in enumerate(UpperCamelCase__ )} # Set the seed before splitting the data. np.random.seed(UpperCamelCase__ ) torch.manual_seed(UpperCamelCase__ ) torch.cuda.manual_seed_all(UpperCamelCase__ ) # Split our filenames between train and validation __UpperCAmelCase = np.random.permutation(len(UpperCamelCase__ ) ) __UpperCAmelCase = int(0.8 * len(UpperCamelCase__ ) ) __UpperCAmelCase = random_perm[:cut] __UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop __UpperCAmelCase = Compose([RandomResizedCrop(UpperCamelCase__ , scale=(0.5, 1.0) ), ToTensor()] ) __UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # For evaluation, we use a deterministic Resize __UpperCAmelCase = Compose([Resize(UpperCamelCase__ ), ToTensor()] ) __UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # Instantiate dataloaders. __UpperCAmelCase = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) __UpperCAmelCase = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase = create_model('''resnet50d''' , pretrained=UpperCamelCase__ , num_classes=len(UpperCamelCase__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __UpperCAmelCase = False for param in model.get_classifier().parameters(): __UpperCAmelCase = True # We normalize the batches of images to be a bit faster. __UpperCAmelCase = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) __UpperCAmelCase = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 2_5 ) # Instantiate learning rate scheduler __UpperCAmelCase = OneCycleLR(optimizer=UpperCamelCase__ , max_lr=UpperCamelCase__ , epochs=UpperCamelCase__ , steps_per_epoch=len(UpperCamelCase__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # We need to keep track of how many total steps we have iterated over __UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly __UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) __UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __UpperCAmelCase = os.path.splitext(UpperCamelCase__ )[0] if "epoch" in training_difference: __UpperCAmelCase = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 __UpperCAmelCase = None else: __UpperCAmelCase = int(training_difference.replace('''step_''' , '''''' ) ) __UpperCAmelCase = resume_step // len(UpperCamelCase__ ) resume_step -= starting_epoch * len(UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ , UpperCamelCase__ ): model.train() if args.with_tracking: __UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __UpperCAmelCase = accelerator.skip_first_batches(UpperCamelCase__ , UpperCamelCase__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __UpperCAmelCase = (batch['''image'''] - mean) / std __UpperCAmelCase = model(UpperCamelCase__ ) __UpperCAmelCase = torch.nn.functional.cross_entropy(UpperCamelCase__ , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __UpperCAmelCase = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) model.eval() __UpperCAmelCase = 0 __UpperCAmelCase = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. __UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __UpperCAmelCase = (batch['''image'''] - mean) / std with torch.no_grad(): __UpperCAmelCase = model(UpperCamelCase__ ) __UpperCAmelCase = outputs.argmax(dim=-1 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''label''']) ) __UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {1_0_0 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { '''accuracy''': 1_0_0 * eval_metric, '''train_loss''': total_loss.item() / len(UpperCamelCase__ ), '''epoch''': epoch, } , step=UpperCamelCase__ , ) if checkpointing_steps == "epoch": __UpperCAmelCase = f"""epoch_{epoch}""" if args.output_dir is not None: __UpperCAmelCase = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=UpperCamelCase__ , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=UpperCamelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=UpperCamelCase__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {'''lr''': 3E-2, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 6_4, '''image_size''': 2_2_4} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
654
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : str = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class A ( UpperCAmelCase , UpperCAmelCase ): a_ = '''focalnet''' def __init__( self : Optional[int] , __a : Tuple=2_2_4 , __a : Dict=4 , __a : int=3 , __a : int=9_6 , __a : int=False , __a : Optional[int]=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , __a : Tuple=[2, 2, 6, 2] , __a : List[Any]=[2, 2, 2, 2] , __a : Optional[Any]=[3, 3, 3, 3] , __a : Tuple="gelu" , __a : Optional[int]=4.0 , __a : Optional[Any]=0.0 , __a : Optional[int]=0.1 , __a : int=False , __a : List[Any]=1e-4 , __a : Tuple=False , __a : Union[str, Any]=False , __a : List[str]=False , __a : Tuple=0.0_2 , __a : str=1e-5 , __a : Optional[int]=3_2 , __a : Optional[int]=None , __a : List[Any]=None , **__a : Union[str, Any] , ) -> Optional[Any]: super().__init__(**__a ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = use_conv_embed __UpperCAmelCase = hidden_sizes __UpperCAmelCase = depths __UpperCAmelCase = focal_levels __UpperCAmelCase = focal_windows __UpperCAmelCase = hidden_act __UpperCAmelCase = mlp_ratio __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = use_layerscale __UpperCAmelCase = layerscale_value __UpperCAmelCase = use_post_layernorm __UpperCAmelCase = use_post_layernorm_in_modulation __UpperCAmelCase = normalize_modulator __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = encoder_stride __UpperCAmelCase = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __UpperCAmelCase , __UpperCAmelCase = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
654
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
1
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __lowerCAmelCase : Optional[int] = 500_000 __lowerCAmelCase , __lowerCAmelCase : str = os.path.split(__file__) __lowerCAmelCase : str = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowerCAmelCase ( UpperCamelCase__ : datasets.Dataset , **UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dataset.map(**UpperCamelCase__ ) @get_duration def lowerCAmelCase ( UpperCamelCase__ : datasets.Dataset , **UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = dataset.filter(**UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) __UpperCAmelCase = generate_example_dataset( os.path.join(UpperCamelCase__ , '''dataset.arrow''' ) , UpperCamelCase__ , num_examples=UpperCamelCase__ ) __UpperCAmelCase = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase__ ) def tokenize(UpperCamelCase__ : Optional[Any] ): return tokenizer(examples['''text'''] ) __UpperCAmelCase = map(UpperCamelCase__ ) __UpperCAmelCase = map(UpperCamelCase__ , batched=UpperCamelCase__ ) __UpperCAmelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='''numpy''' ): __UpperCAmelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='''pandas''' ): __UpperCAmelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): __UpperCAmelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): __UpperCAmelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) __UpperCAmelCase = map(UpperCamelCase__ , function=UpperCamelCase__ , batched=UpperCamelCase__ ) __UpperCAmelCase = filter(UpperCamelCase__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase__ , '''wb''' ) as f: f.write(json.dumps(UpperCamelCase__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
654
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCAmelCase : List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", F"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", F"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", F"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", F"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.weight""", F"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", F"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", F"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", F"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.weight""", F"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", F"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", F"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", F"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", F"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", F"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.bias""", F"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", F"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", F"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", F"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.bias""", F"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", F"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __UpperCAmelCase = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __UpperCAmelCase = value else: __UpperCAmelCase = value return new_state_dict def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : int=False ): """simple docstring""" __UpperCAmelCase = '''''' if is_panoptic: __UpperCAmelCase = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __UpperCAmelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __UpperCAmelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase = in_proj_weight[:2_5_6, :] __UpperCAmelCase = in_proj_bias[:2_5_6] __UpperCAmelCase = in_proj_weight[2_5_6:5_1_2, :] __UpperCAmelCase = in_proj_bias[2_5_6:5_1_2] __UpperCAmelCase = in_proj_weight[-2_5_6:, :] __UpperCAmelCase = in_proj_bias[-2_5_6:] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __UpperCAmelCase = '''resnet101''' if "dc5" in model_name: __UpperCAmelCase = True __UpperCAmelCase = '''panoptic''' in model_name if is_panoptic: __UpperCAmelCase = 2_5_0 else: __UpperCAmelCase = 9_1 __UpperCAmelCase = '''huggingface/label-files''' __UpperCAmelCase = '''coco-detection-id2label.json''' __UpperCAmelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __UpperCAmelCase = idalabel __UpperCAmelCase = {v: k for k, v in idalabel.items()} # load image processor __UpperCAmelCase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __UpperCAmelCase = ConditionalDetrImageProcessor(format=UpperCamelCase__ ) # prepare image __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ) __UpperCAmelCase = encoding['''pixel_values'''] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub __UpperCAmelCase = torch.hub.load('''DeppMeng/ConditionalDETR''' , UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() __UpperCAmelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __UpperCAmelCase = '''conditional_detr.''' + src rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = rename_backbone_keys(UpperCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase__ , is_panoptic=UpperCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __UpperCAmelCase = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) __UpperCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) __UpperCAmelCase = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) __UpperCAmelCase = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) __UpperCAmelCase = val # finally, create HuggingFace model and load state dict __UpperCAmelCase = ConditionalDetrForSegmentation(UpperCamelCase__ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() model.push_to_hub(repo_id=UpperCamelCase__ , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion __UpperCAmelCase = conditional_detr(UpperCamelCase__ ) __UpperCAmelCase = model(UpperCamelCase__ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
654
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
1
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class A : def __init__( self : List[Any] , __a : int , __a : Optional[Any]=sys.maxsize ) -> Union[str, Any]: __UpperCAmelCase = '''bilinear''' __UpperCAmelCase = max_size __UpperCAmelCase = short_edge_length def __call__( self : List[Any] , __a : Optional[Any] ) -> int: __UpperCAmelCase = [] for img in imgs: __UpperCAmelCase , __UpperCAmelCase = img.shape[:2] # later: provide list and randomly choose index for resize __UpperCAmelCase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __UpperCAmelCase = size * 1.0 / min(__a , __a ) if h < w: __UpperCAmelCase , __UpperCAmelCase = size, scale * w else: __UpperCAmelCase , __UpperCAmelCase = scale * h, size if max(__a , __a ) > self.max_size: __UpperCAmelCase = self.max_size * 1.0 / max(__a , __a ) __UpperCAmelCase = newh * scale __UpperCAmelCase = neww * scale __UpperCAmelCase = int(neww + 0.5 ) __UpperCAmelCase = int(newh + 0.5 ) if img.dtype == np.uinta: __UpperCAmelCase = Image.fromarray(__a ) __UpperCAmelCase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __UpperCAmelCase = np.asarray(__a ) else: __UpperCAmelCase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __UpperCAmelCase = nn.functional.interpolate( __a , (newh, neww) , mode=self.interp_method , align_corners=__a ).squeeze(0 ) img_augs.append(__a ) return img_augs class A : def __init__( self : Union[str, Any] , __a : Any ) -> Optional[int]: __UpperCAmelCase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __UpperCAmelCase = cfg.INPUT.FORMAT __UpperCAmelCase = cfg.SIZE_DIVISIBILITY __UpperCAmelCase = cfg.PAD_VALUE __UpperCAmelCase = cfg.INPUT.MAX_SIZE_TEST __UpperCAmelCase = cfg.MODEL.DEVICE __UpperCAmelCase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __UpperCAmelCase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __UpperCAmelCase = lambda __a : (x - self.pixel_mean) / self.pixel_std def snake_case__ ( self : Optional[Any] , __a : Optional[Any] ) -> str: __UpperCAmelCase = tuple(max(__a ) for s in zip(*[img.shape for img in images] ) ) __UpperCAmelCase = [im.shape[-2:] for im in images] __UpperCAmelCase = [ nn.functional.pad( __a , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__a , __a ) ] return torch.stack(__a ), torch.tensor(__a ) def __call__( self : Tuple , __a : Optional[int] , __a : Union[str, Any]=False ) -> Union[str, Any]: with torch.no_grad(): if not isinstance(__a , __a ): __UpperCAmelCase = [images] if single_image: assert len(__a ) == 1 for i in range(len(__a ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__a , images.pop(__a ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __a , torch.as_tensor(img_tensorize(images.pop(__a ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __UpperCAmelCase = torch.tensor([im.shape[:2] for im in images] ) __UpperCAmelCase = self.aug(__a ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __UpperCAmelCase = [self.normalizer(__a ) for x in images] # now pad them to do the following operations __UpperCAmelCase , __UpperCAmelCase = self.pad(__a ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __UpperCAmelCase = torch.true_divide(__a , __a ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple[int, int] ): """simple docstring""" assert torch.isfinite(UpperCamelCase__ ).all(), "Box tensor contains infinite or NaN!" __UpperCAmelCase , __UpperCAmelCase = box_size tensor[:, 0].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 1].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 2].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 3].clamp_(min=0 , max=UpperCamelCase__ )
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __lowerCAmelCase : Any = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class A ( UpperCAmelCase ): a_ = '''facebook/nllb-200-distilled-600M''' a_ = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) a_ = '''translator''' a_ = AutoTokenizer a_ = AutoModelForSeqaSeqLM a_ = LANGUAGE_CODES a_ = ['''text''', '''text''', '''text'''] a_ = ['''text'''] def snake_case__ ( self : Any , __a : int , __a : List[str] , __a : Optional[Any] ) -> str: if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) __UpperCAmelCase = self.lang_to_code[src_lang] __UpperCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __a , return_tensors='''pt''' , src_lang=__a , tgt_lang=__a ) def snake_case__ ( self : Optional[Any] , __a : str ) -> Any: return self.model.generate(**__a ) def snake_case__ ( self : Any , __a : Any ) -> Any: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__a )
654
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( UpperCAmelCase ): a_ = 42 a_ = 42 def __init__( self : str , __a : UNetaDModel , __a : ScoreSdeVeScheduler ) -> Optional[int]: super().__init__() self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self : Any , __a : int = 1 , __a : int = 2_0_0_0 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : Optional[str] = "pil" , __a : bool = True , **__a : List[Any] , ) -> Union[ImagePipelineOutput, Tuple]: __UpperCAmelCase = self.unet.config.sample_size __UpperCAmelCase = (batch_size, 3, img_size, img_size) __UpperCAmelCase = self.unet __UpperCAmelCase = randn_tensor(__a , generator=__a ) * self.scheduler.init_noise_sigma __UpperCAmelCase = sample.to(self.device ) self.scheduler.set_timesteps(__a ) self.scheduler.set_sigmas(__a ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCAmelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCAmelCase = self.unet(__a , __a ).sample __UpperCAmelCase = self.scheduler.step_correct(__a , __a , generator=__a ).prev_sample # prediction step __UpperCAmelCase = model(__a , __a ).sample __UpperCAmelCase = self.scheduler.step_pred(__a , __a , __a , generator=__a ) __UpperCAmelCase , __UpperCAmelCase = output.prev_sample, output.prev_sample_mean __UpperCAmelCase = sample_mean.clamp(0 , 1 ) __UpperCAmelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(__a ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__a )
654
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A ( UpperCAmelCase ): a_ = 42 a_ = 42 class A ( UpperCAmelCase , UpperCAmelCase ): a_ = 1 @register_to_config def __init__( self : List[str] , __a : int = 2_0_0_0 , __a : float = 0.1_5 , __a : float = 0.0_1 , __a : float = 1_3_4_8.0 , __a : float = 1e-5 , __a : int = 1 , ) -> Tuple: # standard deviation of the initial noise distribution __UpperCAmelCase = sigma_max # setable values __UpperCAmelCase = None self.set_sigmas(__a , __a , __a , __a ) def snake_case__ ( self : List[Any] , __a : torch.FloatTensor , __a : Optional[int] = None ) -> torch.FloatTensor: return sample def snake_case__ ( self : Union[str, Any] , __a : int , __a : float = None , __a : Union[str, torch.device] = None ) -> Tuple: __UpperCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps __UpperCAmelCase = torch.linspace(1 , __a , __a , device=__a ) def snake_case__ ( self : Optional[Any] , __a : int , __a : float = None , __a : float = None , __a : float = None ) -> int: __UpperCAmelCase = sigma_min if sigma_min is not None else self.config.sigma_min __UpperCAmelCase = sigma_max if sigma_max is not None else self.config.sigma_max __UpperCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a , __a ) __UpperCAmelCase = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __UpperCAmelCase = torch.exp(torch.linspace(math.log(__a ) , math.log(__a ) , __a ) ) __UpperCAmelCase = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def snake_case__ ( self : Any , __a : Union[str, Any] , __a : Dict ) -> Any: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def snake_case__ ( self : int , __a : torch.FloatTensor , __a : int , __a : torch.FloatTensor , __a : Optional[torch.Generator] = None , __a : bool = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) __UpperCAmelCase = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __UpperCAmelCase = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __UpperCAmelCase = timesteps.to(self.discrete_sigmas.device ) __UpperCAmelCase = self.discrete_sigmas[timesteps].to(sample.device ) __UpperCAmelCase = self.get_adjacent_sigma(__a , __a ).to(sample.device ) __UpperCAmelCase = torch.zeros_like(__a ) __UpperCAmelCase = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __UpperCAmelCase = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __UpperCAmelCase = diffusion.unsqueeze(-1 ) __UpperCAmelCase = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __UpperCAmelCase = randn_tensor( sample.shape , layout=sample.layout , generator=__a , device=sample.device , dtype=sample.dtype ) __UpperCAmelCase = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __UpperCAmelCase = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a , prev_sample_mean=__a ) def snake_case__ ( self : Union[str, Any] , __a : torch.FloatTensor , __a : torch.FloatTensor , __a : Optional[torch.Generator] = None , __a : bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __UpperCAmelCase = randn_tensor(sample.shape , layout=sample.layout , generator=__a ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __UpperCAmelCase = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __UpperCAmelCase = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __UpperCAmelCase = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __UpperCAmelCase = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __UpperCAmelCase = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __UpperCAmelCase = step_size.unsqueeze(-1 ) __UpperCAmelCase = sample + step_size * model_output __UpperCAmelCase = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a ) def snake_case__ ( self : List[Any] , __a : torch.FloatTensor , __a : torch.FloatTensor , __a : torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __UpperCAmelCase = timesteps.to(original_samples.device ) __UpperCAmelCase = self.discrete_sigmas.to(original_samples.device )[timesteps] __UpperCAmelCase = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a ) * sigmas[:, None, None, None] ) __UpperCAmelCase = noise + original_samples return noisy_samples def __len__( self : Optional[int] ) -> List[Any]: return self.config.num_train_timesteps
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCAmelCase : Dict = logging.get_logger(__name__) class A ( UpperCAmelCase ): a_ = ['''input_features'''] def __init__( self : List[str] , __a : Union[str, Any]=8_0 , __a : List[Any]=1_6_0_0_0 , __a : Any=1_6_0 , __a : Any=3_0 , __a : Union[str, Any]=4_0_0 , __a : Tuple=0.0 , __a : Tuple=False , **__a : Any , ) -> Union[str, Any]: super().__init__( feature_size=__a , sampling_rate=__a , padding_value=__a , return_attention_mask=__a , **__a , ) __UpperCAmelCase = n_fft __UpperCAmelCase = hop_length __UpperCAmelCase = chunk_length __UpperCAmelCase = chunk_length * sampling_rate __UpperCAmelCase = self.n_samples // hop_length __UpperCAmelCase = sampling_rate __UpperCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__a , min_frequency=0.0 , max_frequency=8_0_0_0.0 , sampling_rate=__a , norm='''slaney''' , mel_scale='''slaney''' , ) def snake_case__ ( self : Optional[int] , __a : np.array ) -> np.ndarray: __UpperCAmelCase = spectrogram( __a , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) __UpperCAmelCase = log_spec[:, :-1] __UpperCAmelCase = np.maximum(__a , log_spec.max() - 8.0 ) __UpperCAmelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def snake_case__ ( __a : List[np.ndarray] , __a : List[np.ndarray] , __a : float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: __UpperCAmelCase = np.array(__a , np.intaa ) __UpperCAmelCase = [] for vector, length in zip(__a , attention_mask.sum(-1 ) ): __UpperCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __UpperCAmelCase = padding_value normed_input_values.append(__a ) else: __UpperCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Tuple , __a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __a : bool = True , __a : Optional[int] = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[bool] = None , __a : Optional[str] = "max_length" , __a : Optional[int] = None , __a : Optional[int] = None , __a : Optional[bool] = None , **__a : Optional[Any] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __UpperCAmelCase = isinstance(__a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __UpperCAmelCase = is_batched_numpy or ( isinstance(__a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__a , np.ndarray ): __UpperCAmelCase = np.asarray(__a , dtype=np.floataa ) elif isinstance(__a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase = [np.asarray([raw_speech] ).T] __UpperCAmelCase = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding __UpperCAmelCase = self.pad( __a , padding=__a , max_length=max_length if max_length else self.n_samples , truncation=__a , pad_to_multiple_of=__a , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __UpperCAmelCase = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) __UpperCAmelCase = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format __UpperCAmelCase = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) __UpperCAmelCase = [self._np_extract_fbank_features(__a ) for waveform in input_features[0]] if isinstance(input_features[0] , __a ): __UpperCAmelCase = [np.asarray(__a , dtype=np.floataa ) for feature in input_features] else: __UpperCAmelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __UpperCAmelCase = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: __UpperCAmelCase = padded_inputs.convert_to_tensors(__a ) return padded_inputs def snake_case__ ( self : List[str] ) -> Dict[str, Any]: __UpperCAmelCase = copy.deepcopy(self.__dict__ ) __UpperCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
654
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
1
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A ( nn.Module ): def __init__( self : Tuple , __a : nn.Module , __a : int ) -> Optional[int]: super().__init__() __UpperCAmelCase = module __UpperCAmelCase = nn.Sequential( nn.Linear(module.in_features , __a , bias=__a ) , nn.Linear(__a , module.out_features , bias=__a ) , ) __UpperCAmelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__a ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def snake_case__ ( self : List[Any] , __a : List[Any] , *__a : Tuple , **__a : Dict ) -> str: return self.module(__a , *__a , **__a ) + self.adapter(__a ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module a_ = '''bigscience/bloom-1b7''' # Constant values a_ = 2.109_659_552_692_574 a_ = '''Hello my name is''' a_ = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) a_ = 1_0 def snake_case__ ( self : str ) -> str: # Models and tokenizer __UpperCAmelCase = AutoTokenizer.from_pretrained(self.model_name ) class A ( UpperCAmelCase ): def snake_case__ ( self : Dict ) -> List[str]: super().setUp() # Models and tokenizer __UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__a , device_map='''auto''' ) def snake_case__ ( self : str ) -> Tuple: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Optional[int] ) -> List[str]: __UpperCAmelCase = self.model_abit.config self.assertTrue(hasattr(__a , '''quantization_config''' ) ) __UpperCAmelCase = config.to_dict() __UpperCAmelCase = config.to_diff_dict() __UpperCAmelCase = config.to_json_string() def snake_case__ ( self : Tuple ) -> Any: from bitsandbytes.nn import Paramsabit __UpperCAmelCase = self.model_fpaa.get_memory_footprint() __UpperCAmelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __UpperCAmelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__a , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def snake_case__ ( self : List[Any] ) -> Dict: __UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __UpperCAmelCase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__a ) , self.EXPECTED_OUTPUTS ) def snake_case__ ( self : Union[str, Any] ) -> str: __UpperCAmelCase = BitsAndBytesConfig() __UpperCAmelCase = True __UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__a , device_map='''auto''' ) __UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __UpperCAmelCase = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__a ) , self.EXPECTED_OUTPUTS ) def snake_case__ ( self : Optional[Any] ) -> str: with self.assertRaises(__a ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__a ) def snake_case__ ( self : List[Any] ) -> Optional[int]: __UpperCAmelCase = BitsAndBytesConfig() with self.assertRaises(__a ): __UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__a , load_in_abit=__a , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def snake_case__ ( self : List[Any] ) -> Optional[int]: with self.assertRaises(__a ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(__a ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__a ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(__a ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__a ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __UpperCAmelCase = self.model_fpaa.to(torch.floataa ) __UpperCAmelCase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error __UpperCAmelCase = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error __UpperCAmelCase = self.model_fpaa.half() # Check this does not throw an error __UpperCAmelCase = self.model_fpaa.float() def snake_case__ ( self : str ) -> Dict: __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__a , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A ( unittest.TestCase ): @classmethod def snake_case__ ( cls : int ) -> Any: __UpperCAmelCase = '''t5-small''' __UpperCAmelCase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense __UpperCAmelCase = AutoTokenizer.from_pretrained(cls.model_name ) __UpperCAmelCase = '''Translate in German: Hello, my dog is cute''' def snake_case__ ( self : Dict ) -> str: gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : List[Any] ) -> Dict: from transformers import TaForConditionalGeneration __UpperCAmelCase = TaForConditionalGeneration._keep_in_fpaa_modules __UpperCAmelCase = None # test with `t5-small` __UpperCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__a , device_map='''auto''' ) __UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __UpperCAmelCase = model.generate(**__a ) # test with `flan-t5-small` __UpperCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__a , device_map='''auto''' ) __UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __UpperCAmelCase = model.generate(**__a ) __UpperCAmelCase = modules def snake_case__ ( self : str ) -> List[Any]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __UpperCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__a , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __UpperCAmelCase = model.generate(**__a ) # test with `flan-t5-small` __UpperCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__a , device_map='''auto''' ) __UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __UpperCAmelCase = model.generate(**__a ) class A ( UpperCAmelCase ): def snake_case__ ( self : str ) -> List[Any]: super().setUp() # model_name __UpperCAmelCase = '''bigscience/bloom-560m''' __UpperCAmelCase = '''t5-small''' # Different types of model __UpperCAmelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=__a , device_map='''auto''' ) # Sequence classification model __UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__a , device_map='''auto''' ) # CausalLM model __UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__a , device_map='''auto''' ) # Seq2seq model __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__a , device_map='''auto''' ) def snake_case__ ( self : Any ) -> int: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : str ) -> Optional[int]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A ( UpperCAmelCase ): def snake_case__ ( self : str ) -> Optional[Any]: super().setUp() def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : int ) -> List[str]: __UpperCAmelCase = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __UpperCAmelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A ( UpperCAmelCase ): def snake_case__ ( self : int ) -> int: super().setUp() def snake_case__ ( self : Dict ) -> Any: __UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__a , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch __UpperCAmelCase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__a ) , self.EXPECTED_OUTPUTS ) class A ( UpperCAmelCase ): def snake_case__ ( self : Union[str, Any] ) -> int: __UpperCAmelCase = '''facebook/opt-350m''' super().setUp() def snake_case__ ( self : Optional[Any] ) -> List[str]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters __UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__a ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __UpperCAmelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __UpperCAmelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__a ) ): __UpperCAmelCase = LoRALayer(module.q_proj , rank=1_6 ) __UpperCAmelCase = LoRALayer(module.k_proj , rank=1_6 ) __UpperCAmelCase = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch __UpperCAmelCase = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __UpperCAmelCase = model.forward(**__a ) out.logits.norm().backward() for module in model.modules(): if isinstance(__a , __a ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__a , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A ( UpperCAmelCase ): a_ = '''gpt2-xl''' a_ = 3.3_191_854_854_152_187
654
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 7 , UpperCamelCase__ : int = 1_0_0_0_0_0_0 ): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 for current_denominator in range(1 , limit + 1 ): __UpperCAmelCase = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __UpperCAmelCase = current_numerator __UpperCAmelCase = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
654
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class A ( UpperCAmelCase ): a_ = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) a_ = '''CIDAS/clipseg-rd64-refined''' a_ = '''image_segmenter''' a_ = CLIPSegForImageSegmentation a_ = ['''image''', '''text'''] a_ = ['''image'''] def __init__( self : Tuple , *__a : str , **__a : List[Any] ) -> Tuple: requires_backends(self , ['''vision'''] ) super().__init__(*__a , **__a ) def snake_case__ ( self : Any , __a : "Image" , __a : str ) -> int: return self.pre_processor(text=[label] , images=[image] , padding=__a , return_tensors='''pt''' ) def snake_case__ ( self : Any , __a : Dict ) -> List[Any]: with torch.no_grad(): __UpperCAmelCase = self.model(**__a ).logits return logits def snake_case__ ( self : List[Any] , __a : Optional[int] ) -> List[Any]: __UpperCAmelCase = outputs.cpu().detach().numpy() __UpperCAmelCase = 0 __UpperCAmelCase = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
654
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
1
'''simple docstring''' from ....utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class A ( UpperCAmelCase ): def __init__( self : Optional[int] , __a : int , __a : int=None , __a : Dict=2_0_4_8 ) -> Any: __UpperCAmelCase = config.__dict__ __UpperCAmelCase = modal_hidden_size if num_labels: __UpperCAmelCase = num_labels
654
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
1
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class A ( UpperCAmelCase ): def __init__( self : int , __a : Callable , __a : Optional[Features] = None , __a : str = None , __a : bool = False , __a : bool = False , __a : Optional[dict] = None , __a : Optional[int] = None , **__a : Optional[Any] , ) -> str: super().__init__( features=__a , cache_dir=__a , keep_in_memory=__a , streaming=__a , num_proc=__a , **__a , ) __UpperCAmelCase = Generator( cache_dir=__a , features=__a , generator=__a , gen_kwargs=__a , **__a , ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: # Build iterable dataset if self.streaming: __UpperCAmelCase = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None self.builder.download_and_prepare( download_config=__a , download_mode=__a , verification_mode=__a , base_path=__a , num_proc=self.num_proc , ) __UpperCAmelCase = self.builder.as_dataset( split='''train''' , verification_mode=__a , in_memory=self.keep_in_memory ) return dataset
654
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
1
'''simple docstring''' import requests __lowerCAmelCase : Dict = "YOUR API KEY" def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str = giphy_api_key ): """simple docstring""" __UpperCAmelCase = '''+'''.join(query.split() ) __UpperCAmelCase = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" __UpperCAmelCase = requests.get(UpperCamelCase__ ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
654
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
1
'''simple docstring''' import unittest from knapsack import knapsack as k class A ( unittest.TestCase ): def snake_case__ ( self : int ) -> Tuple: __UpperCAmelCase = 0 __UpperCAmelCase = [0] __UpperCAmelCase = [0] __UpperCAmelCase = len(__a ) self.assertEqual(k.knapsack(__a , __a , __a , __a ) , 0 ) __UpperCAmelCase = [6_0] __UpperCAmelCase = [1_0] __UpperCAmelCase = len(__a ) self.assertEqual(k.knapsack(__a , __a , __a , __a ) , 0 ) def snake_case__ ( self : str ) -> Tuple: __UpperCAmelCase = 3 __UpperCAmelCase = [1, 2, 3] __UpperCAmelCase = [3, 2, 1] __UpperCAmelCase = len(__a ) self.assertEqual(k.knapsack(__a , __a , __a , __a ) , 5 ) def snake_case__ ( self : Tuple ) -> List[str]: __UpperCAmelCase = 5_0 __UpperCAmelCase = [6_0, 1_0_0, 1_2_0] __UpperCAmelCase = [1_0, 2_0, 3_0] __UpperCAmelCase = len(__a ) self.assertEqual(k.knapsack(__a , __a , __a , __a ) , 2_2_0 ) if __name__ == "__main__": unittest.main()
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
1
'''simple docstring''' from torch import nn def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
654
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int = 5_0 ): """simple docstring""" __UpperCAmelCase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
654
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
1
'''simple docstring''' import math def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = input('''Enter message: ''' ) __UpperCAmelCase = int(input(f"""Enter key [2-{len(UpperCamelCase__ ) - 1}]: """ ) ) __UpperCAmelCase = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): __UpperCAmelCase = encrypt_message(UpperCamelCase__ , UpperCamelCase__ ) elif mode.lower().startswith('''d''' ): __UpperCAmelCase = decrypt_message(UpperCamelCase__ , UpperCamelCase__ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + '|'}""" ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [''''''] * key for col in range(UpperCamelCase__ ): __UpperCAmelCase = col while pointer < len(UpperCamelCase__ ): cipher_text[col] += message[pointer] pointer += key return "".join(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = math.ceil(len(UpperCamelCase__ ) / key ) __UpperCAmelCase = key __UpperCAmelCase = (num_cols * num_rows) - len(UpperCamelCase__ ) __UpperCAmelCase = [''''''] * num_cols __UpperCAmelCase = 0 __UpperCAmelCase = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): __UpperCAmelCase = 0 row += 1 return "".join(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
654
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
1
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __lowerCAmelCase : List[Any] = "base_with_context" def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) __UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCamelCase__ ) for lyr_num, lyr in enumerate(model.encoders ): __UpperCAmelCase = weights[f"""layers_{lyr_num}"""] __UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) __UpperCAmelCase = ly_weight['''attention'''] __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCamelCase__ ) for lyr_num, lyr in enumerate(model.encoders ): __UpperCAmelCase = weights[f"""layers_{lyr_num}"""] __UpperCAmelCase = ly_weight['''attention'''] __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCamelCase__ ) __UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __UpperCAmelCase = weights[f"""layers_{lyr_num}"""] __UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) __UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) __UpperCAmelCase = ly_weight['''self_attention'''] __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __UpperCAmelCase = ly_weight['''MultiHeadDotProductAttention_0'''] __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) __UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) __UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def lowerCAmelCase ( UpperCamelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __UpperCAmelCase = jnp.tree_util.tree_map(onp.array , UpperCamelCase__ ) __UpperCAmelCase = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] __UpperCAmelCase = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) __UpperCAmelCase = inference.parse_training_gin_file(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = inference.InferenceModel(args.checkpoint_path , UpperCamelCase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) __UpperCAmelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) __UpperCAmelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) __UpperCAmelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __UpperCAmelCase = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , UpperCamelCase__ ) __UpperCAmelCase = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , UpperCamelCase__ ) __UpperCAmelCase = load_decoder(ta_checkpoint['''target''']['''decoder'''] , UpperCamelCase__ ) __UpperCAmelCase = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) __UpperCAmelCase = SpectrogramDiffusionPipeline( notes_encoder=UpperCamelCase__ , continuous_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ , scheduler=UpperCamelCase__ , melgan=UpperCamelCase__ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help="Path to the original jax model checkpoint.", ) __lowerCAmelCase : str = parser.parse_args() main(args)
654
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
1
'''simple docstring''' import argparse from collections import defaultdict import yaml __lowerCAmelCase : int = "docs/source/en/_toctree.yml" def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = defaultdict(UpperCamelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 __UpperCAmelCase = [key for key, value in counts.items() if value > 1] __UpperCAmelCase = [] for duplicate_key in duplicates: __UpperCAmelCase = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(UpperCamelCase__ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : s["title"].lower() ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" with open(UpperCamelCase__ , encoding='''utf-8''' ) as f: __UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase = content[api_idx]['''sections'''] # Then to the model doc __UpperCAmelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __UpperCAmelCase = api_doc[model_idx]['''sections'''] __UpperCAmelCase = [(idx, section) for idx, section in enumerate(UpperCamelCase__ ) if '''sections''' in section] __UpperCAmelCase = False for idx, modality_doc in modalities_docs: __UpperCAmelCase = modality_doc['''sections'''] __UpperCAmelCase = clean_model_doc_toc(UpperCamelCase__ ) if old_modality_doc != new_modality_doc: __UpperCAmelCase = True if overwrite: __UpperCAmelCase = new_modality_doc if diff: if overwrite: __UpperCAmelCase = model_doc __UpperCAmelCase = api_doc with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __lowerCAmelCase : Dict = parser.parse_args() check_model_doc(args.fix_and_overwrite)
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __lowerCAmelCase : int = logging.getLogger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.argmax(UpperCamelCase__ , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" with open(UpperCamelCase__ , encoding='''utf_8''' ) as f: __UpperCAmelCase = csv.reader(UpperCamelCase__ ) __UpperCAmelCase = [] next(UpperCamelCase__ ) # skip the first line for line in tqdm(UpperCamelCase__ ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = [] for dataset in encoded_datasets: __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __UpperCAmelCase = np.zeros((n_batch, 2) , dtype=np.intaa ) __UpperCAmelCase = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) __UpperCAmelCase = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(UpperCamelCase__ ): __UpperCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCAmelCase = with_conta __UpperCAmelCase = with_conta __UpperCAmelCase = len(UpperCamelCase__ ) - 1 __UpperCAmelCase = len(UpperCamelCase__ ) - 1 __UpperCAmelCase = with_conta __UpperCAmelCase = with_conta __UpperCAmelCase = mc_label __UpperCAmelCase = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(UpperCamelCase__ ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=UpperCamelCase__ , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=UpperCamelCase__ , default='''''' ) parser.add_argument('''--eval_dataset''' , type=UpperCamelCase__ , default='''''' ) parser.add_argument('''--seed''' , type=UpperCamelCase__ , default=4_2 ) parser.add_argument('''--num_train_epochs''' , type=UpperCamelCase__ , default=3 ) parser.add_argument('''--train_batch_size''' , type=UpperCamelCase__ , default=8 ) parser.add_argument('''--eval_batch_size''' , type=UpperCamelCase__ , default=1_6 ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=UpperCamelCase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=UpperCamelCase__ , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=UpperCamelCase__ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=UpperCamelCase__ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=UpperCamelCase__ , default=6.2_5E-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=UpperCamelCase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=UpperCamelCase__ , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=UpperCamelCase__ , default=0.01 ) parser.add_argument('''--lm_coef''' , type=UpperCamelCase__ , default=0.9 ) parser.add_argument('''--n_valid''' , type=UpperCamelCase__ , default=3_7_4 ) parser.add_argument('''--server_ip''' , type=UpperCamelCase__ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=UpperCamelCase__ , default='''''' , help='''Can be used for distant debugging.''' ) __UpperCAmelCase = parser.parse_args() print(UpperCamelCase__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCamelCase__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __UpperCAmelCase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __UpperCAmelCase = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(UpperCamelCase__ , UpperCamelCase__ ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __UpperCAmelCase = ['''_start_''', '''_delimiter_''', '''_classify_'''] __UpperCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(UpperCamelCase__ ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) __UpperCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) model.to(UpperCamelCase__ ) # Load and encode the datasets def tokenize_and_encode(UpperCamelCase__ : Union[str, Any] ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(UpperCamelCase__ ) ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): return obj return [tokenize_and_encode(UpperCamelCase__ ) for o in obj] logger.info('''Encoding dataset...''' ) __UpperCAmelCase = load_rocstories_dataset(args.train_dataset ) __UpperCAmelCase = load_rocstories_dataset(args.eval_dataset ) __UpperCAmelCase = (train_dataset, eval_dataset) __UpperCAmelCase = tokenize_and_encode(UpperCamelCase__ ) # Compute the max input length for the Transformer __UpperCAmelCase = model.config.n_positions // 2 - 2 __UpperCAmelCase = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __UpperCAmelCase = min(UpperCamelCase__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __UpperCAmelCase = pre_process_datasets(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase = tensor_datasets[0], tensor_datasets[1] __UpperCAmelCase = TensorDataset(*UpperCamelCase__ ) __UpperCAmelCase = RandomSampler(UpperCamelCase__ ) __UpperCAmelCase = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=args.train_batch_size ) __UpperCAmelCase = TensorDataset(*UpperCamelCase__ ) __UpperCAmelCase = SequentialSampler(UpperCamelCase__ ) __UpperCAmelCase = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __UpperCAmelCase = args.max_steps __UpperCAmelCase = args.max_steps // (len(UpperCamelCase__ ) // args.gradient_accumulation_steps) + 1 else: __UpperCAmelCase = len(UpperCamelCase__ ) // args.gradient_accumulation_steps * args.num_train_epochs __UpperCAmelCase = list(model.named_parameters() ) __UpperCAmelCase = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __UpperCAmelCase = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] __UpperCAmelCase = AdamW(UpperCamelCase__ , lr=args.learning_rate , eps=args.adam_epsilon ) __UpperCAmelCase = get_linear_schedule_with_warmup( UpperCamelCase__ , num_warmup_steps=args.warmup_steps , num_training_steps=UpperCamelCase__ ) if args.do_train: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = tqdm(UpperCamelCase__ , desc='''Training''' ) for step, batch in enumerate(UpperCamelCase__ ): __UpperCAmelCase = tuple(t.to(UpperCamelCase__ ) for t in batch ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = batch __UpperCAmelCase = model(UpperCamelCase__ , mc_token_ids=UpperCamelCase__ , lm_labels=UpperCamelCase__ , mc_labels=UpperCamelCase__ ) __UpperCAmelCase = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __UpperCAmelCase = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __UpperCAmelCase = '''Training loss: {:.2e} lr: {:.2e}'''.format(UpperCamelCase__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __UpperCAmelCase = model.module if hasattr(UpperCamelCase__ , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __UpperCAmelCase = os.path.join(args.output_dir , UpperCamelCase__ ) __UpperCAmelCase = os.path.join(args.output_dir , UpperCamelCase__ ) torch.save(model_to_save.state_dict() , UpperCamelCase__ ) model_to_save.config.to_json_file(UpperCamelCase__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __UpperCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __UpperCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(UpperCamelCase__ ) if args.do_eval: model.eval() __UpperCAmelCase , __UpperCAmelCase = 0, 0 __UpperCAmelCase , __UpperCAmelCase = 0, 0 for batch in tqdm(UpperCamelCase__ , desc='''Evaluating''' ): __UpperCAmelCase = tuple(t.to(UpperCamelCase__ ) for t in batch ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = batch with torch.no_grad(): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = model( UpperCamelCase__ , mc_token_ids=UpperCamelCase__ , lm_labels=UpperCamelCase__ , mc_labels=UpperCamelCase__ ) __UpperCAmelCase = mc_logits.detach().cpu().numpy() __UpperCAmelCase = mc_labels.to('''cpu''' ).numpy() __UpperCAmelCase = accuracy(UpperCamelCase__ , UpperCamelCase__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __UpperCAmelCase = eval_loss / nb_eval_steps __UpperCAmelCase = eval_accuracy / nb_eval_examples __UpperCAmelCase = tr_loss / nb_tr_steps if args.do_train else None __UpperCAmelCase = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __UpperCAmelCase = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , UpperCamelCase__ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
654
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=False ): """simple docstring""" __UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : str=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __UpperCAmelCase = '''''' else: __UpperCAmelCase = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCAmelCase = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] __UpperCAmelCase = in_proj_bias[: config.hidden_size] __UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __UpperCAmelCase = in_proj_bias[-config.hidden_size :] def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase = DeiTConfig() # all deit models have fine-tuned heads __UpperCAmelCase = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __UpperCAmelCase = 1_0_0_0 __UpperCAmelCase = '''huggingface/label-files''' __UpperCAmelCase = '''imagenet-1k-id2label.json''' __UpperCAmelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __UpperCAmelCase = idalabel __UpperCAmelCase = {v: k for k, v in idalabel.items()} __UpperCAmelCase = int(deit_name[-6:-4] ) __UpperCAmelCase = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): __UpperCAmelCase = 1_9_2 __UpperCAmelCase = 7_6_8 __UpperCAmelCase = 1_2 __UpperCAmelCase = 3 elif deit_name[9:].startswith('''small''' ): __UpperCAmelCase = 3_8_4 __UpperCAmelCase = 1_5_3_6 __UpperCAmelCase = 1_2 __UpperCAmelCase = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 # load original model from timm __UpperCAmelCase = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __UpperCAmelCase = timm_model.state_dict() __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # load HuggingFace model __UpperCAmelCase = DeiTForImageClassificationWithTeacher(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor __UpperCAmelCase = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __UpperCAmelCase = DeiTImageProcessor(size=UpperCamelCase__ , crop_size=config.image_size ) __UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase = encoding['''pixel_values'''] __UpperCAmelCase = model(UpperCamelCase__ ) __UpperCAmelCase = timm_model(UpperCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase__ , outputs.logits , atol=1E-3 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __lowerCAmelCase : List[str] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
654
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
1
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
1
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class A ( UpperCAmelCase ): a_ = 42 a_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [] if len(UpperCamelCase__ ) == 1: return [nums.copy()] for _ in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = nums.pop(0 ) __UpperCAmelCase = permute(UpperCamelCase__ ) for perm in permutations: perm.append(UpperCamelCase__ ) result.extend(UpperCamelCase__ ) nums.append(UpperCamelCase__ ) return result def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" def backtrack(UpperCamelCase__ : str ): if start == len(UpperCamelCase__ ) - 1: output.append(nums[:] ) else: for i in range(UpperCamelCase__ , len(UpperCamelCase__ ) ): __UpperCAmelCase , __UpperCAmelCase = nums[i], nums[start] backtrack(start + 1 ) __UpperCAmelCase , __UpperCAmelCase = nums[i], nums[start] # backtrack __UpperCAmelCase = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __lowerCAmelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
654
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class A ( UpperCAmelCase ): a_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = StableDiffusionControlNetImgaImgPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} a_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self : Any ) -> List[str]: torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) __UpperCAmelCase = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __UpperCAmelCase = CLIPTextModel(__a ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__ ( self : int , __a : Optional[Any] , __a : Tuple=0 ) -> List[str]: if str(__a ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(__a ) else: __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __UpperCAmelCase = 2 __UpperCAmelCase = randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=__a , device=torch.device(__a ) , ) __UpperCAmelCase = floats_tensor(control_image.shape , rng=random.Random(__a ) ).to(__a ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCAmelCase = Image.fromarray(np.uinta(__a ) ).convert('''RGB''' ).resize((6_4, 6_4) ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def snake_case__ ( self : List[Any] ) -> int: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case__ ( self : Dict ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def snake_case__ ( self : str ) -> Dict: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = StableDiffusionControlNetImgaImgPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} a_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def snake_case__ ( self : Tuple ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) def init_weights(__a : int ): if isinstance(__a , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __UpperCAmelCase = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(__a ) torch.manual_seed(0 ) __UpperCAmelCase = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(__a ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __UpperCAmelCase = CLIPTextModel(__a ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = MultiControlNetModel([controlneta, controlneta] ) __UpperCAmelCase = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : Dict=0 ) -> Optional[int]: if str(__a ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(__a ) else: __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __UpperCAmelCase = 2 __UpperCAmelCase = [ randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=__a , device=torch.device(__a ) , ), randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=__a , device=torch.device(__a ) , ), ] __UpperCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(__a ) ).to(__a ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCAmelCase = Image.fromarray(np.uinta(__a ) ).convert('''RGB''' ).resize((6_4, 6_4) ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def snake_case__ ( self : Union[str, Any] ) -> int: __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**__a ) pipe.to(__a ) __UpperCAmelCase = 1_0.0 __UpperCAmelCase = 4 __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = steps __UpperCAmelCase = scale __UpperCAmelCase = pipe(**__a )[0] __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = steps __UpperCAmelCase = scale __UpperCAmelCase = pipe(**__a , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = steps __UpperCAmelCase = scale __UpperCAmelCase = pipe(**__a , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = steps __UpperCAmelCase = scale __UpperCAmelCase = pipe(**__a , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case__ ( self : Dict ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def snake_case__ ( self : int ) -> Tuple: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def snake_case__ ( self : Optional[Any] ) -> str: __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__a ) except NotImplementedError: pass @slow @require_torch_gpu class A ( unittest.TestCase ): def snake_case__ ( self : Tuple ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) __UpperCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=__a , controlnet=__a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = '''evil space-punk bird''' __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((5_1_2, 5_1_2) ) __UpperCAmelCase = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((5_1_2, 5_1_2) ) __UpperCAmelCase = pipe( __a , __a , control_image=__a , generator=__a , output_type='''np''' , num_inference_steps=5_0 , strength=0.6 , ) __UpperCAmelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9e-2
654
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
1
'''simple docstring''' # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowerCAmelCase ( *UpperCamelCase__ : Optional[Any] ): """simple docstring""" with open(UpperCamelCase__ , '''r''' ) as fh: fcntl.flock(UpperCamelCase__ , fcntl.LOCK_EX ) try: print(*UpperCamelCase__ ) finally: fcntl.flock(UpperCamelCase__ , fcntl.LOCK_UN ) __lowerCAmelCase : Tuple = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __lowerCAmelCase : Union[str, Any] = torch.device("cuda", local_rank) __lowerCAmelCase : str = socket.gethostname() __lowerCAmelCase : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __lowerCAmelCase : Union[str, Any] = dist.get_rank() __lowerCAmelCase : int = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
654
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase : str = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , ): """simple docstring""" if attention_mask is None: __UpperCAmelCase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __UpperCAmelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __UpperCAmelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A : def __init__( self : Dict , __a : Any , __a : List[str]=1_3 , __a : List[str]=7 , __a : List[str]=True , __a : List[Any]=False , __a : List[Any]=9_9 , __a : Any=1_6 , __a : Any=2 , __a : Dict=4 , __a : Optional[int]=4 , __a : List[str]="gelu" , __a : Optional[Any]=0.1 , __a : List[str]=0.1 , __a : Optional[int]=3_2 , __a : Union[str, Any]=2 , __a : Dict=1 , __a : Union[str, Any]=0 , __a : int=0.0_2 , ) -> Union[str, Any]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = eos_token_id __UpperCAmelCase = pad_token_id __UpperCAmelCase = bos_token_id __UpperCAmelCase = initializer_range def snake_case__ ( self : Dict ) -> Optional[int]: __UpperCAmelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __UpperCAmelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __UpperCAmelCase = shift_tokens_right(__a , 1 , 2 ) __UpperCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__a , ) __UpperCAmelCase = prepare_blenderbot_inputs_dict(__a , __a , __a ) return config, inputs_dict def snake_case__ ( self : Tuple ) -> str: __UpperCAmelCase , __UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__ ( self : str , __a : Optional[Any] , __a : Dict , __a : Union[str, Any] ) -> Tuple: __UpperCAmelCase = 2_0 __UpperCAmelCase = model_class_name(__a ) __UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] ) __UpperCAmelCase , __UpperCAmelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a ) __UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) __UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) __UpperCAmelCase = model.decode(__a , __a ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def snake_case__ ( self : Optional[Any] , __a : str , __a : List[str] , __a : str ) -> Union[str, Any]: __UpperCAmelCase = 2_0 __UpperCAmelCase = model_class_name(__a ) __UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] ) __UpperCAmelCase , __UpperCAmelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __UpperCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) __UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) __UpperCAmelCase = model.decode(__a , __a , decoder_attention_mask=__a ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class A ( unittest.TestCase ): a_ = 9_9 def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) __UpperCAmelCase = input_ids.shape[0] __UpperCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def snake_case__ ( self : str ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._get_config_and_data() __UpperCAmelCase = FlaxBlenderbotForConditionalGeneration(__a ) __UpperCAmelCase = lm_model(input_ids=__a ) __UpperCAmelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __a ) def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) __UpperCAmelCase = FlaxBlenderbotForConditionalGeneration(__a ) __UpperCAmelCase = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) __UpperCAmelCase = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) __UpperCAmelCase = lm_model(input_ids=__a , decoder_input_ids=__a ) __UpperCAmelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __a ) def snake_case__ ( self : int ) -> List[Any]: __UpperCAmelCase = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) __UpperCAmelCase = shift_tokens_right(__a , 1 , 2 ) __UpperCAmelCase = np.equal(__a , 1 ).astype(np.floataa ).sum() __UpperCAmelCase = np.equal(__a , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__a , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A ( UpperCAmelCase , unittest.TestCase , UpperCAmelCase ): a_ = True a_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) a_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def snake_case__ ( self : Optional[Any] ) -> int: __UpperCAmelCase = FlaxBlenderbotModelTester(self ) def snake_case__ ( self : Union[str, Any] ) -> str: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a ) def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a ) def snake_case__ ( self : Any ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase = self._prepare_for_class(__a , __a ) __UpperCAmelCase = model_class(__a ) @jax.jit def encode_jitted(__a : List[Any] , __a : Any=None , **__a : Optional[Any] ): return model.encode(input_ids=__a , attention_mask=__a ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase = encode_jitted(**__a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase = encode_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase = model_class(__a ) __UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __UpperCAmelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a : Tuple , __a : Tuple , __a : Optional[Any] ): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase = decode_jitted(**__a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase = decode_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case__ ( self : List[Any] ) -> Optional[int]: for model_class_name in self.all_model_classes: __UpperCAmelCase = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __UpperCAmelCase = np.ones((1, 1) ) * model.config.eos_token_id __UpperCAmelCase = model(__a ) self.assertIsNotNone(__a ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def snake_case__ ( self : Dict ) -> str: __UpperCAmelCase = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 1_5, '''max_length''': 2_5} __UpperCAmelCase = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} __UpperCAmelCase = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=__a ) __UpperCAmelCase = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) __UpperCAmelCase = ['''Sam'''] __UpperCAmelCase = tokenizer(__a , return_tensors='''jax''' ) __UpperCAmelCase = model.generate(**__a , **__a ) __UpperCAmelCase = '''Sam is a great name. It means "sun" in Gaelic.''' __UpperCAmelCase = tokenizer.batch_decode(__a , **__a ) assert generated_txt[0].strip() == tgt_text
654
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
1
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { "nielsr/canine-s": 2_048, } # Unicode defines 1,114,112 total “codepoints” __lowerCAmelCase : str = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : Optional[int] = 0Xe000 __lowerCAmelCase : Optional[int] = 0Xe001 __lowerCAmelCase : Optional[int] = 0Xe002 __lowerCAmelCase : Dict = 0Xe003 __lowerCAmelCase : Optional[int] = 0Xe004 # Maps special codepoints to human-readable names. __lowerCAmelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __lowerCAmelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A ( UpperCAmelCase ): a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , __a : Union[str, Any]=chr(__a ) , __a : Optional[int]=chr(__a ) , __a : Union[str, Any]=chr(__a ) , __a : List[Any]=chr(__a ) , __a : Any=chr(__a ) , __a : Tuple=chr(__a ) , __a : Union[str, Any]=False , __a : Optional[int]=2_0_4_8 , **__a : str , ) -> Tuple: __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , model_max_length=__a , **__a , ) # Creates a mapping for looking up the IDs of special symbols. __UpperCAmelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __UpperCAmelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __UpperCAmelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } __UpperCAmelCase = UNICODE_VOCAB_SIZE __UpperCAmelCase = len(self._special_codepoints ) @property def snake_case__ ( self : Union[str, Any] ) -> int: return self._unicode_vocab_size def snake_case__ ( self : str , __a : str ) -> List[str]: return list(__a ) def snake_case__ ( self : Optional[int] , __a : str ) -> int: try: return ord(__a ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def snake_case__ ( self : List[str] , __a : int ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__a ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def snake_case__ ( self : Any , __a : Union[str, Any] ) -> Optional[int]: return "".join(__a ) def snake_case__ ( self : List[str] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def snake_case__ ( self : int , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) __UpperCAmelCase = [1] + ([0] * len(__a )) + [1] if token_ids_a is not None: result += ([0] * len(__a )) + [1] return result def snake_case__ ( self : Optional[int] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def snake_case__ ( self : Optional[Any] , __a : str , __a : Optional[str] = None ) -> Any: return ()
654
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 1_8, 2] __UpperCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False __UpperCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False __UpperCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __UpperCAmelCase = [3, 3, 3, 3] __UpperCAmelCase = [5, 5, 5, 5] elif "fl4" in model_name: __UpperCAmelCase = [4, 4, 4, 4] __UpperCAmelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __UpperCAmelCase = [3, 3, 3, 3] if "lrf" in model_name: __UpperCAmelCase = [3, 3, 3, 3] else: __UpperCAmelCase = [2, 2, 2, 2] if "tiny" in model_name: __UpperCAmelCase = 9_6 elif "small" in model_name: __UpperCAmelCase = 9_6 elif "base" in model_name: __UpperCAmelCase = 1_2_8 elif "large" in model_name: __UpperCAmelCase = 1_9_2 elif "xlarge" in model_name: __UpperCAmelCase = 2_5_6 elif "huge" in model_name: __UpperCAmelCase = 3_5_2 # set label information __UpperCAmelCase = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __UpperCAmelCase = '''imagenet-22k-id2label.json''' else: __UpperCAmelCase = '''imagenet-1k-id2label.json''' __UpperCAmelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __UpperCAmelCase = {v: k for k, v in idalabel.items()} __UpperCAmelCase = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if "patch_embed.proj" in name: __UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __UpperCAmelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __UpperCAmelCase = '''encoder.''' + name if "encoder.layers" in name: __UpperCAmelCase = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: __UpperCAmelCase = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: __UpperCAmelCase = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __UpperCAmelCase = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __UpperCAmelCase = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __UpperCAmelCase = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": __UpperCAmelCase = '''layernorm.weight''' if name == "norm.bias": __UpperCAmelCase = '''layernorm.bias''' if "head" in name: __UpperCAmelCase = name.replace('''head''' , '''classifier''' ) else: __UpperCAmelCase = '''focalnet.''' + name return name def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple=False ): """simple docstring""" # fmt: off __UpperCAmelCase = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __UpperCAmelCase = model_name_to_url[model_name] print('''Checkpoint URL: ''' , UpperCamelCase__ ) __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) __UpperCAmelCase = val __UpperCAmelCase = get_focalnet_config(UpperCamelCase__ ) __UpperCAmelCase = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion __UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'''shortest_edge''': 2_5_6} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=2_2_4 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __UpperCAmelCase = processor(images=UpperCamelCase__ , return_tensors='''pt''' ) __UpperCAmelCase = transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __UpperCAmelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 ) __UpperCAmelCase = model(**UpperCamelCase__ ) __UpperCAmelCase = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __UpperCAmelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": __UpperCAmelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": __UpperCAmelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": __UpperCAmelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": __UpperCAmelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": __UpperCAmelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __lowerCAmelCase : Any = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
654
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class A ( UpperCAmelCase ): a_ = 42 class A ( UpperCAmelCase , UpperCAmelCase ): @register_to_config def __init__( self : List[str] , __a : int = 3_2 , __a : int = 6_4 , __a : int = 2_0 , __a : int = 7_6_8 , __a : Union[str, Any]=7_7 , __a : Any=4 , __a : float = 0.0 , __a : str = "silu" , __a : Optional[str] = None , __a : Optional[str] = None , __a : Optional[str] = "linear" , __a : Optional[str] = "prd" , __a : Optional[int] = None , __a : Optional[int] = None , __a : Optional[int] = None , ) -> Union[str, Any]: super().__init__() __UpperCAmelCase = num_attention_heads __UpperCAmelCase = attention_head_dim __UpperCAmelCase = num_attention_heads * attention_head_dim __UpperCAmelCase = additional_embeddings __UpperCAmelCase = time_embed_dim or inner_dim __UpperCAmelCase = embedding_proj_dim or embedding_dim __UpperCAmelCase = clip_embed_dim or embedding_dim __UpperCAmelCase = Timesteps(__a , __a , 0 ) __UpperCAmelCase = TimestepEmbedding(__a , __a , out_dim=__a , act_fn=__a ) __UpperCAmelCase = nn.Linear(__a , __a ) if embedding_proj_norm_type is None: __UpperCAmelCase = None elif embedding_proj_norm_type == "layer": __UpperCAmelCase = nn.LayerNorm(__a ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __UpperCAmelCase = nn.Linear(__a , __a ) if encoder_hid_proj_type is None: __UpperCAmelCase = None elif encoder_hid_proj_type == "linear": __UpperCAmelCase = nn.Linear(__a , __a ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __UpperCAmelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __a ) ) if added_emb_type == "prd": __UpperCAmelCase = nn.Parameter(torch.zeros(1 , 1 , __a ) ) elif added_emb_type is None: __UpperCAmelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __UpperCAmelCase = nn.ModuleList( [ BasicTransformerBlock( __a , __a , __a , dropout=__a , activation_fn='''gelu''' , attention_bias=__a , ) for d in range(__a ) ] ) if norm_in_type == "layer": __UpperCAmelCase = nn.LayerNorm(__a ) elif norm_in_type is None: __UpperCAmelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __UpperCAmelCase = nn.LayerNorm(__a ) __UpperCAmelCase = nn.Linear(__a , __a ) __UpperCAmelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) __UpperCAmelCase = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , __a , persistent=__a ) __UpperCAmelCase = nn.Parameter(torch.zeros(1 , __a ) ) __UpperCAmelCase = nn.Parameter(torch.zeros(1 , __a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def snake_case__ ( self : Dict ) -> Dict[str, AttentionProcessor]: __UpperCAmelCase = {} def fn_recursive_add_processors(__a : str , __a : torch.nn.Module , __a : Dict[str, AttentionProcessor] ): if hasattr(__a , '''set_processor''' ): __UpperCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , __a , __a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__a , __a , __a ) return processors def snake_case__ ( self : Optional[Any] , __a : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Any: __UpperCAmelCase = len(self.attn_processors.keys() ) if isinstance(__a , __a ) and len(__a ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(__a )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__a : str , __a : torch.nn.Module , __a : Union[str, Any] ): if hasattr(__a , '''set_processor''' ): if not isinstance(__a , __a ): module.set_processor(__a ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , __a , __a ) for name, module in self.named_children(): fn_recursive_attn_processor(__a , __a , __a ) def snake_case__ ( self : Any ) -> int: self.set_attn_processor(AttnProcessor() ) def snake_case__ ( self : List[str] , __a : str , __a : Union[torch.Tensor, float, int] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.BoolTensor] = None , __a : bool = True , ) -> str: __UpperCAmelCase = hidden_states.shape[0] __UpperCAmelCase = timestep if not torch.is_tensor(__a ): __UpperCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__a ) and len(timesteps.shape ) == 0: __UpperCAmelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase = timesteps * torch.ones(__a , dtype=timesteps.dtype , device=timesteps.device ) __UpperCAmelCase = self.time_proj(__a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCAmelCase = timesteps_projected.to(dtype=self.dtype ) __UpperCAmelCase = self.time_embedding(__a ) if self.embedding_proj_norm is not None: __UpperCAmelCase = self.embedding_proj_norm(__a ) __UpperCAmelCase = self.embedding_proj(__a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCAmelCase = self.encoder_hidden_states_proj(__a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) __UpperCAmelCase = self.proj_in(__a ) __UpperCAmelCase = self.positional_embedding.to(hidden_states.dtype ) __UpperCAmelCase = [] __UpperCAmelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(__a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCAmelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCAmelCase = hidden_states[:, None, :] __UpperCAmelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCAmelCase = self.prd_embedding.to(hidden_states.dtype ).expand(__a , -1 , -1 ) additional_embeds.append(__a ) __UpperCAmelCase = torch.cat( __a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCAmelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCAmelCase = F.pad( __a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCAmelCase = hidden_states + positional_embeddings if attention_mask is not None: __UpperCAmelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 __UpperCAmelCase = F.pad(__a , (0, self.additional_embeddings) , value=0.0 ) __UpperCAmelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCAmelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCAmelCase = self.norm_in(__a ) for block in self.transformer_blocks: __UpperCAmelCase = block(__a , attention_mask=__a ) __UpperCAmelCase = self.norm_out(__a ) if self.prd_embedding is not None: __UpperCAmelCase = hidden_states[:, -1] else: __UpperCAmelCase = hidden_states[:, additional_embeddings_len:] __UpperCAmelCase = self.proj_to_clip_embeddings(__a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__a ) def snake_case__ ( self : str , __a : int ) -> str: __UpperCAmelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
654
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = StableDiffusionInstructPixaPixPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) __UpperCAmelCase = PNDMScheduler(skip_prk_steps=__a ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __UpperCAmelCase = CLIPTextModel(__a ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__ ( self : Union[str, Any] , __a : Optional[int] , __a : Optional[Any]=0 ) -> int: __UpperCAmelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__a ) ).to(__a ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCAmelCase = Image.fromarray(np.uinta(__a ) ).convert('''RGB''' ) if str(__a ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(__a ) else: __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__a ) __UpperCAmelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = sd_pipe(**__a ).images __UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__a ) __UpperCAmelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = '''french fries''' __UpperCAmelCase = sd_pipe(**__a , negative_prompt=__a ) __UpperCAmelCase = output.images __UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__a ) __UpperCAmelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = [inputs['''prompt''']] * 2 __UpperCAmelCase = np.array(inputs['''image'''] ).astype(np.floataa ) / 2_5_5.0 __UpperCAmelCase = torch.from_numpy(__a ).unsqueeze(0 ).to(__a ) __UpperCAmelCase = image / 2 + 0.5 __UpperCAmelCase = image.permute(0 , 3 , 1 , 2 ) __UpperCAmelCase = image.repeat(2 , 1 , 1 , 1 ) __UpperCAmelCase = sd_pipe(**__a ).images __UpperCAmelCase = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) __UpperCAmelCase = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self : Optional[int] ) -> Optional[Any]: __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__a ) __UpperCAmelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = sd_pipe(**__a ).images __UpperCAmelCase = image[0, -3:, -3:, -1] __UpperCAmelCase = [round(__a , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(__a ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__ ( self : List[Any] ) -> Tuple: __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__a ) __UpperCAmelCase = VaeImageProcessor(do_resize=__a , do_normalize=__a ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = pipe(**self.get_dummy_inputs_by_type(__a , input_image_type='''pt''' ) )[0] __UpperCAmelCase = components['''vae'''] __UpperCAmelCase = self.get_dummy_inputs_by_type(__a , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __UpperCAmelCase = vae.encode(inputs[image_param] ).latent_dist.mode() __UpperCAmelCase = pipe(**__a )[0] __UpperCAmelCase = np.abs(out - out_latents_inputs ).max() self.assertLess(__a , 1e-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class A ( unittest.TestCase ): def snake_case__ ( self : Dict ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : List[str] , __a : Dict=0 ) -> List[str]: __UpperCAmelCase = torch.manual_seed(__a ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __UpperCAmelCase = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __UpperCAmelCase = self.get_inputs() __UpperCAmelCase = pipe(**__a ).images __UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __UpperCAmelCase = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case__ ( self : Any ) -> List[str]: __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__a ) __UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __UpperCAmelCase = self.get_inputs() __UpperCAmelCase = pipe(**__a ).images __UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __UpperCAmelCase = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case__ ( self : Tuple ) -> Tuple: __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__a ) __UpperCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __UpperCAmelCase = self.get_inputs() __UpperCAmelCase = pipe(**__a ).images __UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __UpperCAmelCase = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case__ ( self : Optional[int] ) -> Optional[Any]: __UpperCAmelCase = 0 def callback_fn(__a : int , __a : int , __a : torch.FloatTensor ) -> None: __UpperCAmelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) __UpperCAmelCase = latents[0, -3:, -3:, -1] __UpperCAmelCase = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) __UpperCAmelCase = latents[0, -3:, -3:, -1] __UpperCAmelCase = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __UpperCAmelCase = False __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__a , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __UpperCAmelCase = self.get_inputs() pipe(**__a , callback=__a , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def snake_case__ ( self : Any ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__a , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __UpperCAmelCase = self.get_inputs() __UpperCAmelCase = pipe(**__a ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __UpperCAmelCase = inputs['''image'''].resize((5_0_4, 5_0_4) ) __UpperCAmelCase = '''timbrooks/instruct-pix2pix''' __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __UpperCAmelCase = pipe(**__a ) __UpperCAmelCase = output.images[0] __UpperCAmelCase = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) __UpperCAmelCase = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
654
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] ): """simple docstring""" # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(UpperCamelCase__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(UpperCamelCase__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class A ( unittest.TestCase ): a_ = JukeboxTokenizer a_ = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def snake_case__ ( self : Optional[int] ) -> Any: import torch __UpperCAmelCase = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) __UpperCAmelCase = tokenizer(**self.metas )['''input_ids'''] # fmt: off __UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def snake_case__ ( self : List[str] ) -> Optional[Any]: import torch __UpperCAmelCase = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) __UpperCAmelCase = tokenizer(**self.metas )['''input_ids'''] # fmt: off __UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
654
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) __UpperCAmelCase = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 __UpperCAmelCase = 1 if upper_limit > 0: __UpperCAmelCase = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCamelCase__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: __lowerCAmelCase : int = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
654
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
1
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __lowerCAmelCase : Tuple = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex __lowerCAmelCase : Any = 10 __lowerCAmelCase : Dict = 256 def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" if len(UpperCamelCase__ ) < MIN_NUM_TOKENS: return None __UpperCAmelCase = MinHash(num_perm=UpperCamelCase__ ) for token in set(UpperCamelCase__ ): min_hash.update(token.encode() ) return min_hash def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(UpperCamelCase__ ) if len(t.strip() ) > 0} class A : def __init__( self : List[Any] , *, __a : float = 0.8_5 , ) -> Optional[int]: __UpperCAmelCase = duplication_jaccard_threshold __UpperCAmelCase = NUM_PERM __UpperCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __UpperCAmelCase = defaultdict(__a ) def snake_case__ ( self : Dict , __a : Tuple , __a : MinHash ) -> None: __UpperCAmelCase = self._index.query(__a ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def snake_case__ ( self : str ) -> List[List[Dict]]: __UpperCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): __UpperCAmelCase = [base] + list(__a ) # reformat the cluster to be a list of dict __UpperCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def snake_case__ ( self : int , __a : str ) -> None: __UpperCAmelCase = self.get_duplicate_clusters() with open(__a , '''w''' ) as f: json.dump(__a , __a ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = element __UpperCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase ( UpperCamelCase__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(UpperCamelCase__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def lowerCAmelCase ( UpperCamelCase__ : Type[Dataset] , UpperCamelCase__ : float ): """simple docstring""" __UpperCAmelCase = DuplicationIndex(duplication_jaccard_threshold=UpperCamelCase__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(UpperCamelCase__ ) ) , max_queue_size=1_0_0 ) ): di.add(UpperCamelCase__ , UpperCamelCase__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = get_tokens(UpperCamelCase__ ) __UpperCAmelCase = get_tokens(UpperCamelCase__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __lowerCAmelCase : str = None def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = [] for elementa in cluster: __UpperCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: __UpperCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(UpperCamelCase__ , UpperCamelCase__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __UpperCAmelCase = 1 extremes.append(UpperCamelCase__ ) return extremes def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): """simple docstring""" global _shared_dataset __UpperCAmelCase = dataset __UpperCAmelCase = [] __UpperCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=UpperCamelCase__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( UpperCamelCase__ , UpperCamelCase__ , ) , total=len(UpperCamelCase__ ) , ): extremes_list.append(UpperCamelCase__ ) return extremes_list def lowerCAmelCase ( UpperCamelCase__ : Type[Dataset] , UpperCamelCase__ : float = 0.85 ): """simple docstring""" __UpperCAmelCase = make_duplicate_clusters(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} __UpperCAmelCase = {} __UpperCAmelCase = find_extremes(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for extremes in extremes_clusters: for element in extremes: __UpperCAmelCase = element __UpperCAmelCase = duplicate_indices - set(extreme_dict.keys() ) __UpperCAmelCase = dataset.filter(lambda UpperCamelCase__ , UpperCamelCase__ : idx not in remove_indices , with_indices=UpperCamelCase__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __UpperCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: __UpperCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f"""Original dataset size: {len(UpperCamelCase__ )}""" ) print(f"""Number of duplicate clusters: {len(UpperCamelCase__ )}""" ) print(f"""Files in duplicate cluster: {len(UpperCamelCase__ )}""" ) print(f"""Unique files in duplicate cluster: {len(UpperCamelCase__ )}""" ) print(f"""Filtered dataset size: {len(UpperCamelCase__ )}""" ) return ds_filter, duplicate_clusters
654
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
1
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __lowerCAmelCase : Dict = "src/transformers" __lowerCAmelCase : List[Any] = "docs/source/en" __lowerCAmelCase : Tuple = "." def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start prompt. __UpperCAmelCase = 0 while not lines[start_index].startswith(UpperCamelCase__ ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index while not lines[end_index].startswith(UpperCamelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __lowerCAmelCase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : Tuple = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : Tuple = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[Any] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : int = direct_transformers_import(TRANSFORMERS_PATH) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = 2 if text == '''✅''' or text == '''❌''' else len(UpperCamelCase__ ) __UpperCAmelCase = (width - text_length) // 2 __UpperCAmelCase = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __UpperCAmelCase = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if attr_name.endswith('''Tokenizer''' ): __UpperCAmelCase = slow_tokenizers __UpperCAmelCase = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): __UpperCAmelCase = fast_tokenizers __UpperCAmelCase = attr_name[:-1_3] elif _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) # Let's build that table! __UpperCAmelCase = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __UpperCAmelCase = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __UpperCAmelCase = [len(UpperCamelCase__ ) + 2 for c in columns] __UpperCAmelCase = max([len(UpperCamelCase__ ) for name in model_names] ) + 2 # Build the table per se __UpperCAmelCase = '''|''' + '''|'''.join([_center_text(UpperCamelCase__ , UpperCamelCase__ ) for c, w in zip(UpperCamelCase__ , UpperCamelCase__ )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" __UpperCAmelCase = {True: '''✅''', False: '''❌'''} for name in model_names: __UpperCAmelCase = model_name_to_prefix[name] __UpperCAmelCase = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCamelCase__ , UpperCamelCase__ ) for l, w in zip(UpperCamelCase__ , UpperCamelCase__ )] ) + "|\n" return table def lowerCAmelCase ( UpperCamelCase__ : Optional[Any]=False ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = _find_text_in_file( filename=os.path.join(UpperCamelCase__ , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) __UpperCAmelCase = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCamelCase__ , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __lowerCAmelCase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
654
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
1