code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from statistics import mean import numpy as np def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): a__ = 0 # Number of processes finished a__ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. a__ = [0] * no_of_process # List to include calculation results a__ = [0] * no_of_process # Sort by arrival time. a__ = [burst_time[i] for i in np.argsort(__lowerCAmelCase )] a__ = [process_name[i] for i in np.argsort(__lowerCAmelCase )] arrival_time.sort() while no_of_process > finished_process_count: a__ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: a__ = arrival_time[i] a__ = 0 # Index showing the location of the process being performed a__ = 0 # Saves the current response ratio. a__ = 0 for i in range(0 , __lowerCAmelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: a__ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: a__ = temp a__ = i # Calculate the turn around time a__ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. a__ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): a__ = [0] * no_of_process for i in range(0 , __lowerCAmelCase ): a__ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": snake_case : List[Any] = 5 snake_case : List[str] = ['''A''', '''B''', '''C''', '''D''', '''E'''] snake_case : Dict = [1, 2, 3, 4, 5] snake_case : List[Any] = [1, 2, 3, 4, 5] snake_case : str = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) snake_case : Optional[int] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( f"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" f"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(f"""average waiting time : {mean(waiting_time):.5f}""") print(f"""average turn around time : {mean(turn_around_time):.5f}""")
657
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
1
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case : int = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any]=False ): a__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" a__ = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str]=False ): for i in range(config.num_hidden_layers ): if base_model: a__ = '' else: a__ = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) a__ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a__ = in_proj_weight[ : config.hidden_size, : ] a__ = in_proj_bias[: config.hidden_size] a__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ = in_proj_weight[ -config.hidden_size :, : ] a__ = in_proj_bias[-config.hidden_size :] def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): a__ = dct.pop(__lowerCAmelCase ) a__ = val def __lowercase ( ): a__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ): a__ = DeiTConfig() # all deit models have fine-tuned heads a__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size a__ = 1_0_0_0 a__ = 'huggingface/label-files' a__ = 'imagenet-1k-id2label.json' a__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) a__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} a__ = int(deit_name[-6:-4] ) a__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): a__ = 1_9_2 a__ = 7_6_8 a__ = 1_2 a__ = 3 elif deit_name[9:].startswith('small' ): a__ = 3_8_4 a__ = 1_5_3_6 a__ = 1_2 a__ = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): a__ = 1_0_2_4 a__ = 4_0_9_6 a__ = 2_4 a__ = 1_6 # load original model from timm a__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys a__ = timm_model.state_dict() a__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model a__ = DeiTForImageClassificationWithTeacher(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor a__ = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 a__ = DeiTImageProcessor(size=__lowerCAmelCase , crop_size=config.image_size ) a__ = image_processor(images=prepare_img() , return_tensors='pt' ) a__ = encoding['pixel_values'] a__ = model(__lowerCAmelCase ) a__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) snake_case : List[str] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
657
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss snake_case : Any = pytest.mark.integration @require_faiss class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Tuple: a__ = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(__snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def lowerCamelCase__( self :Union[str, Any] ) -> Any: import faiss a__ = self._create_dummy_dataset() a__ = dset.map( lambda __snake_case ,__snake_case : {"vecs": i * np.ones(5 ,dtype=np.floataa )} ,with_indices=__snake_case ,keep_in_memory=__snake_case ) a__ = dset.add_faiss_index('vecs' ,batch_size=1_00 ,metric_type=faiss.METRIC_INNER_PRODUCT ) a__ , a__ = dset.get_nearest_examples('vecs' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) dset.drop_index('vecs' ) def lowerCamelCase__( self :Any ) -> str: import faiss a__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ,batch_size=1_00 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) a__ , a__ = dset.get_nearest_examples('vecs' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) def lowerCamelCase__( self :int ) -> List[Any]: import faiss a__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__snake_case ) as tmp_file: dset.save_faiss_index('vecs' ,tmp_file.name ) dset.load_faiss_index('vecs2' ,tmp_file.name ) os.unlink(tmp_file.name ) a__ , a__ = dset.get_nearest_examples('vecs2' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) def lowerCamelCase__( self :Dict ) -> Optional[Any]: a__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(__snake_case ,partial(dset.get_nearest_examples ,'vecs2' ,np.ones(5 ,dtype=np.floataa ) ) ) def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: from elasticsearch import Elasticsearch a__ = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: a__ = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) a__ = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} a__ = Elasticsearch() dset.add_elasticsearch_index('filename' ,es_client=__snake_case ) a__ , a__ = dset.get_nearest_examples('filename' ,'my_name-train_29' ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) @require_faiss class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :str ) -> Union[str, Any]: import faiss a__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal ,5 ) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal ,10 ) # single query a__ = np.zeros(5 ,dtype=np.floataa ) a__ = 1 a__ , a__ = index.search(__snake_case ) self.assertRaises(__snake_case ,index.search ,query.reshape(-1 ,1 ) ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) # batched queries a__ = np.eye(5 ,dtype=np.floataa )[::-1] a__ , a__ = index.search_batch(__snake_case ) self.assertRaises(__snake_case ,index.search_batch ,queries[0] ) a__ = [scores[0] for scores in total_scores] a__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(__snake_case ) ,0 ) self.assertListEqual([4, 3, 2, 1, 0] ,__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> Optional[Any]: import faiss a__ = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) a__ = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH ) with self.assertRaises(__snake_case ): a__ = FaissIndex(string_factory='Flat' ,custom_index=faiss.IndexFlat(5 ) ) def lowerCamelCase__( self :Any ) -> Union[str, Any]: import faiss a__ = faiss.IndexFlat(5 ) a__ = FaissIndex(custom_index=__snake_case ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) def lowerCamelCase__( self :int ) -> Optional[Any]: import faiss a__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__snake_case ) as tmp_file: index.save(tmp_file.name ) a__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) a__ = np.zeros(5 ,dtype=np.floataa ) a__ = 1 a__ , a__ = index.search(__snake_case ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) @require_faiss def __lowercase ( __lowerCAmelCase : Dict ): import faiss a__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) a__ = 'index.faiss' a__ = F'mock://{index_name}' index.save(__lowerCAmelCase , storage_options=mockfs.storage_options ) a__ = FaissIndex.load(__lowerCAmelCase , storage_options=mockfs.storage_options ) a__ = np.zeros(5 , dtype=np.floataa ) a__ = 1 a__ , a__ = index.search(__lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: a__ = Elasticsearch() a__ = {'acknowledged': True} a__ = ElasticSearchIndex(es_client=__snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query a__ = 'foo' a__ = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} a__ , a__ = index.search(__snake_case ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # single query with timeout a__ = 'foo' a__ = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} a__ , a__ = index.search(__snake_case ,request_timeout=30 ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # batched queries a__ = ['foo', 'bar', 'foobar'] a__ = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} a__ , a__ = index.search_batch(__snake_case ) a__ = [scores[0] for scores in total_scores] a__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(__snake_case ) ,0 ) self.assertListEqual([1, 1, 1] ,__snake_case ) # batched queries with timeout a__ = ['foo', 'bar', 'foobar'] a__ = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} a__ , a__ = index.search_batch(__snake_case ,request_timeout=30 ) a__ = [scores[0] for scores in total_scores] a__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(__snake_case ) ,0 ) self.assertListEqual([1, 1, 1] ,__snake_case )
657
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
1
from maths.prime_factors import prime_factors def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): a__ = F'Input value of [number={number}] must be an integer' raise TypeError(__lowerCAmelCase ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(__lowerCAmelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
657
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
1
from ..utils import DummyObject, requires_backends class snake_case_ (metaclass=lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = ['''flax''', '''transformers'''] def __init__( self :Any ,*__snake_case :List[Any] ,**__snake_case :str ) -> Any: requires_backends(self ,['flax', 'transformers'] ) @classmethod def lowerCamelCase__( cls :List[str] ,*__snake_case :Optional[int] ,**__snake_case :str ) -> Dict: requires_backends(cls ,['flax', 'transformers'] ) @classmethod def lowerCamelCase__( cls :Any ,*__snake_case :Dict ,**__snake_case :Any ) -> Tuple: requires_backends(cls ,['flax', 'transformers'] ) class snake_case_ (metaclass=lowerCamelCase_ ): UpperCAmelCase__ : Optional[int] = ['''flax''', '''transformers'''] def __init__( self :Optional[Any] ,*__snake_case :str ,**__snake_case :List[str] ) -> Optional[Any]: requires_backends(self ,['flax', 'transformers'] ) @classmethod def lowerCamelCase__( cls :Union[str, Any] ,*__snake_case :Tuple ,**__snake_case :List[str] ) -> List[str]: requires_backends(cls ,['flax', 'transformers'] ) @classmethod def lowerCamelCase__( cls :Any ,*__snake_case :str ,**__snake_case :Optional[Any] ) -> Dict: requires_backends(cls ,['flax', 'transformers'] ) class snake_case_ (metaclass=lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = ['''flax''', '''transformers'''] def __init__( self :Tuple ,*__snake_case :str ,**__snake_case :Optional[int] ) -> Optional[Any]: requires_backends(self ,['flax', 'transformers'] ) @classmethod def lowerCamelCase__( cls :int ,*__snake_case :Optional[Any] ,**__snake_case :Any ) -> Tuple: requires_backends(cls ,['flax', 'transformers'] ) @classmethod def lowerCamelCase__( cls :Optional[int] ,*__snake_case :Dict ,**__snake_case :str ) -> int: requires_backends(cls ,['flax', 'transformers'] ) class snake_case_ (metaclass=lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = ['''flax''', '''transformers'''] def __init__( self :Union[str, Any] ,*__snake_case :List[str] ,**__snake_case :Union[str, Any] ) -> Dict: requires_backends(self ,['flax', 'transformers'] ) @classmethod def lowerCamelCase__( cls :Dict ,*__snake_case :Optional[Any] ,**__snake_case :Tuple ) -> Union[str, Any]: requires_backends(cls ,['flax', 'transformers'] ) @classmethod def lowerCamelCase__( cls :Any ,*__snake_case :Optional[Any] ,**__snake_case :Tuple ) -> Optional[int]: requires_backends(cls ,['flax', 'transformers'] )
657
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class snake_case_ (unittest.TestCase ): @slow def lowerCamelCase__( self :List[Any] ) -> Union[str, Any]: a__ = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ,return_dict=__snake_case ).to(__snake_case ) a__ = AutoTokenizer.from_pretrained('google/mt5-small' ) a__ = tokenizer('Hello there' ,return_tensors='pt' ).input_ids a__ = tokenizer('Hi I am' ,return_tensors='pt' ).input_ids a__ = model(input_ids.to(__snake_case ) ,labels=labels.to(__snake_case ) ).loss a__ = -(labels.shape[-1] * loss.item()) a__ = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
657
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ): assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ): a__ = tmp_path / 'cache' a__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a__ = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ): a__ = tmp_path / 'cache' a__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a__ = features.copy() if features else default_expected_features a__ = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = ParquetDatasetReader(__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ): a__ = tmp_path / 'cache' a__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a__ = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , split=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str ): if issubclass(__lowerCAmelCase , __lowerCAmelCase ): a__ = parquet_path elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): a__ = [parquet_path] a__ = tmp_path / 'cache' a__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a__ = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any]=("train",) ): assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for split in splits: a__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ): a__ = tmp_path / 'cache' a__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a__ = ParquetDatasetReader( {'train': parquet_path} , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] ): a__ = tmp_path / 'cache' a__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a__ = features.copy() if features else default_expected_features a__ = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = ParquetDatasetReader({'train': parquet_path} , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): if split: a__ = {split: parquet_path} else: a__ = 'train' a__ = {'train': parquet_path, 'test': parquet_path} a__ = tmp_path / 'cache' a__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a__ = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ): a__ = ParquetDatasetWriter(__lowerCAmelCase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 a__ = pq.ParquetFile(tmp_path / 'foo.parquet' ) a__ = pf.read() assert dataset.data.table == output_table def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): a__ = str(shared_datadir / 'test_image_rgb.jpg' ) a__ = {'image': [image_path]} a__ = Features({'image': Image()} ) a__ = Dataset.from_dict(__lowerCAmelCase , features=__lowerCAmelCase ) a__ = ParquetDatasetWriter(__lowerCAmelCase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 a__ = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features a__ = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=__lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ): assert get_writer_batch_size(__lowerCAmelCase ) == expected
657
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : int = logging.get_logger(__name__) snake_case : Dict = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = '''vivit''' def __init__( self :Union[str, Any] ,__snake_case :Dict=2_24 ,__snake_case :Any=32 ,__snake_case :Any=[2, 16, 16] ,__snake_case :Optional[int]=3 ,__snake_case :Dict=7_68 ,__snake_case :Any=12 ,__snake_case :int=12 ,__snake_case :Tuple=30_72 ,__snake_case :Optional[Any]="gelu_fast" ,__snake_case :Dict=0.0 ,__snake_case :Union[str, Any]=0.0 ,__snake_case :str=0.02 ,__snake_case :Any=1E-06 ,__snake_case :Any=True ,**__snake_case :Optional[Any] ,) -> List[Any]: a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = initializer_range a__ = layer_norm_eps a__ = image_size a__ = num_frames a__ = tubelet_size a__ = num_channels a__ = qkv_bias super().__init__(**__snake_case )
657
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
1
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowercase ( __lowerCAmelCase : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , __lowerCAmelCase , ) if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): a__ = [image] if isinstance(image[0] , PIL.Image.Image ): a__ , a__ = image[0].size a__ , a__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 a__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] a__ = np.concatenate(__lowerCAmelCase , axis=0 ) a__ = np.array(__lowerCAmelCase ).astype(np.floataa ) / 255.0 a__ = image.transpose(0 , 3 , 1 , 2 ) a__ = 2.0 * image - 1.0 a__ = torch.from_numpy(__lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): a__ = torch.cat(__lowerCAmelCase , dim=0 ) return image def __lowercase ( __lowerCAmelCase : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(__lowerCAmelCase , torch.Tensor ): return mask elif isinstance(__lowerCAmelCase , PIL.Image.Image ): a__ = [mask] if isinstance(mask[0] , PIL.Image.Image ): a__ , a__ = mask[0].size a__ , a__ = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 a__ = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] a__ = np.concatenate(__lowerCAmelCase , axis=0 ) a__ = mask.astype(np.floataa ) / 255.0 a__ = 0 a__ = 1 a__ = torch.from_numpy(__lowerCAmelCase ) elif isinstance(mask[0] , torch.Tensor ): a__ = torch.cat(__lowerCAmelCase , dim=0 ) return mask class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : UNetaDModel UpperCAmelCase__ : RePaintScheduler def __init__( self :Tuple ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: super().__init__() self.register_modules(unet=__snake_case ,scheduler=__snake_case ) @torch.no_grad() def __call__( self :List[str] ,__snake_case :Union[torch.Tensor, PIL.Image.Image] ,__snake_case :Union[torch.Tensor, PIL.Image.Image] ,__snake_case :int = 2_50 ,__snake_case :float = 0.0 ,__snake_case :int = 10 ,__snake_case :int = 10 ,__snake_case :Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__snake_case :Optional[str] = "pil" ,__snake_case :bool = True ,) -> Union[ImagePipelineOutput, Tuple]: a__ = image a__ = _preprocess_image(__snake_case ) a__ = original_image.to(device=self.device ,dtype=self.unet.dtype ) a__ = _preprocess_mask(__snake_case ) a__ = mask_image.to(device=self.device ,dtype=self.unet.dtype ) a__ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__snake_case ,__snake_case ) and len(__snake_case ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) a__ = original_image.shape a__ = randn_tensor(__snake_case ,generator=__snake_case ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__snake_case ,__snake_case ,__snake_case ,self.device ) a__ = eta a__ = self.scheduler.timesteps[0] + 1 a__ = generator[0] if isinstance(__snake_case ,__snake_case ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual a__ = self.unet(__snake_case ,__snake_case ).sample # compute previous image: x_t -> x_t-1 a__ = self.scheduler.step(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ).prev_sample else: # compute the reverse: x_t-1 -> x_t a__ = self.scheduler.undo_step(__snake_case ,__snake_case ,__snake_case ) a__ = t a__ = (image / 2 + 0.5).clamp(0 ,1 ) a__ = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": a__ = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
657
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
1
from collections import namedtuple snake_case : Optional[Any] = namedtuple('''from_to''', '''from_ to''') snake_case : Optional[Any] = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 10_00), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.00454, 264.172), '''cubicyard''': from_to(0.76455, 1.30795), '''cubicfoot''': from_to(0.028, 35.3147), '''cup''': from_to(0.000236588, 4226.75), } def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : str , __lowerCAmelCase : str ): if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ', '.join(__lowerCAmelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ', '.join(__lowerCAmelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
657
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class snake_case_ : def __init__( self :int ,__snake_case :List[Any] ,__snake_case :Optional[Any]=13 ,__snake_case :Dict=7 ,__snake_case :Dict=True ,__snake_case :Tuple=True ,__snake_case :Tuple=True ,__snake_case :Optional[Any]=99 ,__snake_case :List[str]=32 ,__snake_case :Any=5 ,__snake_case :Optional[int]=4 ,__snake_case :int=37 ,__snake_case :int="gelu" ,__snake_case :Optional[Any]=0.1 ,__snake_case :Any=0.1 ,__snake_case :Union[str, Any]=5_12 ,__snake_case :str=16 ,__snake_case :str=2 ,__snake_case :int=0.02 ,__snake_case :Dict=3 ,__snake_case :Union[str, Any]=4 ,__snake_case :Dict=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :str ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :Dict ,*__snake_case :Dict ) -> List[Any]: a__ = OpenAIGPTModel(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) a__ = model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :str ,*__snake_case :List[Any] ) -> Union[str, Any]: a__ = OpenAIGPTLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Any ,__snake_case :Tuple ,__snake_case :Union[str, Any] ,__snake_case :List[Any] ,__snake_case :Tuple ,*__snake_case :Optional[int] ) -> List[str]: a__ = OpenAIGPTDoubleHeadsModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Tuple ,__snake_case :Optional[Any] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :Dict ,*__snake_case :str ) -> Dict: a__ = self.num_labels a__ = OpenAIGPTForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__( self :str ) -> str: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCAmelCase__ : int = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCAmelCase__ : Optional[Any] = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__( self :Optional[int] ,__snake_case :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Tuple ,__snake_case :List[str] ) -> List[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any=False ) -> Optional[Any]: a__ = super()._prepare_for_class(__snake_case ,__snake_case ,return_labels=__snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=__snake_case ,) a__ = inputs_dict['labels'] a__ = inputs_dict['labels'] a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=__snake_case ,) a__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__snake_case ) return inputs_dict def lowerCamelCase__( self :Optional[Any] ) -> List[Any]: a__ = OpenAIGPTModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :List[Any] ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :List[Any] ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) def lowerCamelCase__( self :str ) -> List[str]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__snake_case ) def lowerCamelCase__( self :int ) -> Optional[int]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__snake_case ) @slow def lowerCamelCase__( self :Optional[Any] ) -> List[str]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = OpenAIGPTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class snake_case_ (unittest.TestCase ): @slow def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: a__ = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(__snake_case ) a__ = torch.tensor([[4_81, 47_35, 5_44]] ,dtype=torch.long ,device=__snake_case ) # the president is a__ = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> int: if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() ,encoding='utf-8' ,check=__snake_case ,) assert hasattr(self ,'env' ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[Any]=1 ) -> Optional[Any]: # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F'{self.env.base_job_name}-single' ,instance_count=__snake_case ,instance_type=self.instance_type ,debugger_hook_config=__snake_case ,hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,py_version='py36' ,) def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[str] ) -> List[str]: TrainingJobAnalytics(__snake_case ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: # create estimator a__ = self.create_estimator() # run training estimator.fit() # result dataframe a__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis a__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) a__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping a__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' ,99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' ,'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,__snake_case )
657
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
1
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> int: a__ = inspect.getfile(accelerate.test_utils ) a__ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 a__ = test_metrics @require_cpu def lowerCamelCase__( self :int ) -> str: debug_launcher(self.test_metrics.main ,num_processes=1 ) @require_cpu def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowerCamelCase__( self :str ) -> Optional[Any]: self.test_metrics.main() @require_multi_gpu def lowerCamelCase__( self :int ) -> Tuple: print(F'Found {torch.cuda.device_count()} devices.' ) a__ = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case ,env=os.environ.copy() )
657
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging snake_case : List[Any] = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : str = ['''input_features'''] def __init__( self :Tuple ,__snake_case :Tuple=80 ,__snake_case :Any=1_60_00 ,__snake_case :Any=1_60 ,__snake_case :List[Any]=30 ,__snake_case :Optional[Any]=4_00 ,__snake_case :Tuple=0.0 ,__snake_case :Any=False ,**__snake_case :Optional[Any] ,) -> Optional[int]: super().__init__( feature_size=__snake_case ,sampling_rate=__snake_case ,padding_value=__snake_case ,return_attention_mask=__snake_case ,**__snake_case ,) a__ = n_fft a__ = hop_length a__ = chunk_length a__ = chunk_length * sampling_rate a__ = self.n_samples // hop_length a__ = sampling_rate a__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=__snake_case ,min_frequency=0.0 ,max_frequency=80_00.0 ,sampling_rate=__snake_case ,norm='slaney' ,mel_scale='slaney' ,) def lowerCamelCase__( self :Tuple ,__snake_case :np.array ) -> np.ndarray: a__ = spectrogram( __snake_case ,window_function(self.n_fft ,'hann' ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters ,log_mel='log10' ,) a__ = log_spec[:, :-1] a__ = np.maximum(__snake_case ,log_spec.max() - 8.0 ) a__ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCamelCase__( __snake_case :List[np.ndarray] ,__snake_case :List[np.ndarray] ,__snake_case :float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: a__ = np.array(__snake_case ,np.intaa ) a__ = [] for vector, length in zip(__snake_case ,attention_mask.sum(-1 ) ): a__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: a__ = padding_value normed_input_values.append(__snake_case ) else: a__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self :Optional[int] ,__snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,__snake_case :bool = True ,__snake_case :Optional[int] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[str] = "max_length" ,__snake_case :Optional[int] = None ,__snake_case :Optional[int] = None ,__snake_case :Optional[bool] = None ,**__snake_case :Dict ,) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a__ = isinstance(__snake_case ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) a__ = is_batched_numpy or ( isinstance(__snake_case ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: a__ = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__snake_case ,np.ndarray ): a__ = np.asarray(__snake_case ,dtype=np.floataa ) elif isinstance(__snake_case ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a__ = [np.asarray([raw_speech] ).T] a__ = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding a__ = self.pad( __snake_case ,padding=__snake_case ,max_length=max_length if max_length else self.n_samples ,truncation=__snake_case ,pad_to_multiple_of=__snake_case ,return_attention_mask=return_attention_mask or do_normalize ,) # zero-mean and unit-variance normalization if do_normalize: a__ = self.zero_mean_unit_var_norm( padded_inputs['input_features'] ,attention_mask=padded_inputs['attention_mask'] ,padding_value=self.padding_value ,) a__ = np.stack(padded_inputs['input_features'] ,axis=0 ) # make sure list is in array format a__ = padded_inputs.get('input_features' ).transpose(2 ,0 ,1 ) a__ = [self._np_extract_fbank_features(__snake_case ) for waveform in input_features[0]] if isinstance(input_features[0] ,__snake_case ): a__ = [np.asarray(__snake_case ,dtype=np.floataa ) for feature in input_features] else: a__ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) a__ = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: a__ = padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs def lowerCamelCase__( self :List[Any] ) -> Dict[str, Any]: a__ = copy.deepcopy(self.__dict__ ) a__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
657
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case : Optional[Any] = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = ['''LayoutLMv2FeatureExtractor'''] snake_case : Optional[Any] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys snake_case : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case : Any = logging.get_logger() @dataclass class snake_case_ : UpperCAmelCase__ : nn.Module UpperCAmelCase__ : List[nn.Module] = field(default_factory=lowerCamelCase_ ) UpperCAmelCase__ : list = field(default_factory=lowerCamelCase_ ) def lowerCamelCase__( self :Tuple ,__snake_case :str ,__snake_case :Tensor ,__snake_case :Tensor ) -> Any: a__ = len(list(m.modules() ) ) == 1 or isinstance(__snake_case ,nn.Convad ) or isinstance(__snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(__snake_case ) def __call__( self :str ,__snake_case :Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__snake_case ) [x.remove() for x in self.handles] return self @property def lowerCamelCase__( self :Optional[Any] ) -> Any: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class snake_case_ : UpperCAmelCase__ : nn.Module UpperCAmelCase__ : nn.Module UpperCAmelCase__ : int = 0 UpperCAmelCase__ : List = field(default_factory=lowerCamelCase_ ) UpperCAmelCase__ : List = field(default_factory=lowerCamelCase_ ) def __call__( self :Union[str, Any] ,__snake_case :Tensor ) -> str: a__ = Tracker(self.dest )(__snake_case ).parametrized a__ = Tracker(self.src )(__snake_case ).parametrized a__ = list(filter(lambda __snake_case : type(__snake_case ) not in self.src_skip ,__snake_case ) ) a__ = list(filter(lambda __snake_case : type(__snake_case ) not in self.dest_skip ,__snake_case ) ) if len(__snake_case ) != len(__snake_case ): raise Exception( F'Numbers of operations are different. Source module has {len(__snake_case )} operations while' F' destination module has {len(__snake_case )}.' ) for dest_m, src_m in zip(__snake_case ,__snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : ResNetConfig , __lowerCAmelCase : Path , __lowerCAmelCase : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): a__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ).eval() a__ = ResNetForImageClassification(__lowerCAmelCase ).eval() a__ = ModuleTransfer(src=__lowerCAmelCase , dest=__lowerCAmelCase ) a__ = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowerCAmelCase ) assert torch.allclose(from_model(__lowerCAmelCase ) , our_model(__lowerCAmelCase ).logits ), "The model logits don't match the original one." a__ = F'resnet{"-".join(name.split("resnet" ) )}' print(__lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=__lowerCAmelCase , ) # we can use the convnext one a__ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=__lowerCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __lowercase ( __lowerCAmelCase : Path , __lowerCAmelCase : str = None , __lowerCAmelCase : bool = True ): a__ = 'imagenet-1k-id2label.json' a__ = 1_0_0_0 a__ = (1, num_labels) a__ = 'huggingface/label-files' a__ = num_labels a__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) a__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} a__ = partial(__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) a__ = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(__lowerCAmelCase , names_to_config[model_name] , __lowerCAmelCase , __lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) snake_case : List[str] = parser.parse_args() snake_case : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
657
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
1
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
1
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL snake_case : Optional[int] = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : int ): if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCAmelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = ['''pixel_values'''] def __init__( self :Dict ,__snake_case :bool = True ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :bool = True ,__snake_case :Dict[str, int] = None ,__snake_case :bool = True ,__snake_case :Union[int, float] = 1 / 2_55 ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,**__snake_case :Optional[int] ,) -> None: super().__init__(**__snake_case ) a__ = size if size is not None else {'shortest_edge': 2_56} a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ) a__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ,param_name='crop_size' ) a__ = do_resize a__ = size a__ = do_center_crop a__ = crop_size a__ = resample a__ = do_rescale a__ = rescale_factor a__ = offset a__ = do_normalize a__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__( self :Optional[Any] ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :str ,) -> np.ndarray: a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ) if "shortest_edge" in size: a__ = get_resize_output_image_size(__snake_case ,size['shortest_edge'] ,default_to_square=__snake_case ) elif "height" in size and "width" in size: a__ = (size['height'], size['width']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__snake_case ,size=__snake_case ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :str ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__snake_case ,size=(size['height'], size['width']) ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :Union[int, float] ,__snake_case :bool = True ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :str ,) -> Union[str, Any]: a__ = image.astype(np.floataa ) if offset: a__ = image - (scale / 2) return rescale(__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :Union[float, List[float]] ,__snake_case :Union[float, List[float]] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Union[str, Any] ,) -> np.ndarray: return normalize(__snake_case ,mean=__snake_case ,std=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Optional[int] ,__snake_case :ImageInput ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :bool = None ,__snake_case :float = None ,__snake_case :bool = None ,__snake_case :bool = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[ChannelDimension] = ChannelDimension.FIRST ,) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. a__ = to_numpy_array(__snake_case ) if do_resize: a__ = self.resize(image=__snake_case ,size=__snake_case ,resample=__snake_case ) if do_center_crop: a__ = self.center_crop(__snake_case ,size=__snake_case ) if do_rescale: a__ = self.rescale(image=__snake_case ,scale=__snake_case ,offset=__snake_case ) if do_normalize: a__ = self.normalize(image=__snake_case ,mean=__snake_case ,std=__snake_case ) a__ = to_channel_dimension_format(__snake_case ,__snake_case ) return image def lowerCamelCase__( self :Any ,__snake_case :ImageInput ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :bool = None ,__snake_case :float = None ,__snake_case :bool = None ,__snake_case :bool = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :Any ,) -> PIL.Image.Image: a__ = do_resize if do_resize is not None else self.do_resize a__ = resample if resample is not None else self.resample a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = offset if offset is not None else self.offset a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = size if size is not None else self.size a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ) a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(__snake_case ,param_name='crop_size' ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) a__ = make_batched(__snake_case ) a__ = [ [ self._preprocess_image( image=__snake_case ,do_resize=__snake_case ,size=__snake_case ,resample=__snake_case ,do_center_crop=__snake_case ,crop_size=__snake_case ,do_rescale=__snake_case ,rescale_factor=__snake_case ,offset=__snake_case ,do_normalize=__snake_case ,image_mean=__snake_case ,image_std=__snake_case ,data_format=__snake_case ,) for img in video ] for video in videos ] a__ = {'pixel_values': videos} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
1
import functools def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = len(__lowerCAmelCase ) a__ = len(__lowerCAmelCase ) @functools.cache def min_distance(__lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa a__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __lowerCAmelCase ) , 1 + min_distance(__lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
657
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
1
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": snake_case : List[str] = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') snake_case : Union[str, Any] = parser.parse_args() if args.model_type == "bert": snake_case : Any = BertForMaskedLM.from_pretrained(args.model_name) snake_case : Optional[Any] = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') snake_case : Optional[Any] = model.state_dict() snake_case : int = {} for w in ["word_embeddings", "position_embeddings"]: snake_case : List[Any] = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: snake_case : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] snake_case : List[str] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: snake_case : Union[str, Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] snake_case : str = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] snake_case : List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] snake_case : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] snake_case : Union[str, Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] snake_case : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] snake_case : Any = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] snake_case : int = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 snake_case : int = state_dict['''cls.predictions.decoder.weight'''] snake_case : int = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: snake_case : Optional[int] = state_dict[f"""cls.predictions.transform.dense.{w}"""] snake_case : Optional[Any] = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
657
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets snake_case : Dict = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' snake_case : Tuple = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' snake_case : List[str] = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def __lowercase ( __lowerCAmelCase : str ): def remove_articles(__lowerCAmelCase : Optional[Any] ): a__ = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__lowerCAmelCase , ' ' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase : int ): a__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : List[str] ): return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Any ): a__ = [any(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for ref in refs ) for pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase )] return (sum(__lowerCAmelCase ) / len(__lowerCAmelCase )) * 1_0_0 def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): a__ = [rgram for rgrams in rgramslist for rgram in rgrams] a__ = Counter(__lowerCAmelCase ) a__ = Counter(__lowerCAmelCase ) a__ = Counter() for sgram, scount in sgramcounter.items(): a__ = scount * numref a__ = Counter(__lowerCAmelCase ) a__ = Counter() for cgram, ccount in cgramcounter.items(): a__ = ccount * numref # KEEP a__ = sgramcounter_rep & cgramcounter_rep a__ = keepgramcounter_rep & rgramcounter a__ = sgramcounter_rep & rgramcounter a__ = 0 a__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ = 1 a__ = 1 if len(__lowerCAmelCase ) > 0: a__ = keeptmpscorea / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) a__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) a__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: a__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION a__ = sgramcounter_rep - cgramcounter_rep a__ = delgramcounter_rep - rgramcounter a__ = sgramcounter_rep - rgramcounter a__ = 0 a__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ = 1 if len(__lowerCAmelCase ) > 0: a__ = deltmpscorea / len(__lowerCAmelCase ) # ADDITION a__ = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) a__ = set(__lowerCAmelCase ) & set(__lowerCAmelCase ) a__ = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) a__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ = 1 a__ = 1 if len(__lowerCAmelCase ) > 0: a__ = addtmpscore / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: a__ = addtmpscore / len(__lowerCAmelCase ) a__ = 0 if addscore_precision > 0 or addscore_recall > 0: a__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ): a__ = len(__lowerCAmelCase ) a__ = ssent.split(' ' ) a__ = csent.split(' ' ) a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] for rsent in rsents: a__ = rsent.split(' ' ) a__ = [] a__ = [] a__ = [] ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: a__ = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: a__ = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: a__ = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: a__ = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: a__ = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: a__ = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: a__ = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: a__ = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: a__ = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__lowerCAmelCase ) ((a__) , (a__) , (a__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((a__) , (a__) , (a__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((a__) , (a__) , (a__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((a__) , (a__) , (a__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 a__ = sum([delascore, delascore, delascore, delascore] ) / 4 a__ = sum([addascore, addascore, addascore, addascore] ) / 4 a__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : bool = True , __lowerCAmelCase : str = "13a" , __lowerCAmelCase : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: a__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: a__ = sacrebleu.metrics.bleu._get_tokenizer(__lowerCAmelCase )()(__lowerCAmelCase ) else: a__ = sacrebleu.TOKENIZERS[tokenizer]()(__lowerCAmelCase ) elif tokenizer == "moses": a__ = sacremoses.MosesTokenizer().tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase , escape=__lowerCAmelCase ) elif tokenizer == "penn": a__ = sacremoses.MosesTokenizer().penn_tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase ) else: a__ = sentence if not return_str: a__ = normalized_sent.split() return normalized_sent def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ): if not (len(__lowerCAmelCase ) == len(__lowerCAmelCase ) == len(__lowerCAmelCase )): raise ValueError('Sources length must match predictions and references lengths.' ) a__ = 0 for src, pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): sari_score += SARIsent(normalize(__lowerCAmelCase ) , normalize(__lowerCAmelCase ) , [normalize(__lowerCAmelCase ) for sent in refs] ) a__ = sari_score / len(__lowerCAmelCase ) return 1_0_0 * sari_score def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any]="exp" , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=False , __lowerCAmelCase : str=False , __lowerCAmelCase : Union[str, Any]=False , ): a__ = len(references[0] ) if any(len(__lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) a__ = [[refs[i] for refs in references] for i in range(__lowerCAmelCase )] a__ = sacrebleu.corpus_bleu( __lowerCAmelCase , __lowerCAmelCase , smooth_method=__lowerCAmelCase , smooth_value=__lowerCAmelCase , force=__lowerCAmelCase , lowercase=__lowerCAmelCase , use_effective_order=__lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :List[Any] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' ,id='sequence' ) ,id='references' ), } ) ,codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] ,reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] ,) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[Any] ,__snake_case :List[str] ,__snake_case :Any ) -> Optional[int]: a__ = {} result.update({'sari': compute_sari(sources=__snake_case ,predictions=__snake_case ,references=__snake_case )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=__snake_case ,references=__snake_case )} ) result.update({'exact': compute_em(predictions=__snake_case ,references=__snake_case )} ) return result
657
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
1
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
657
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
1
from ....configuration_utils import PretrainedConfig from ....utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : int = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[int] = '''van''' def __init__( self :List[Any] ,__snake_case :Optional[int]=2_24 ,__snake_case :Any=3 ,__snake_case :List[Any]=[7, 3, 3, 3] ,__snake_case :Tuple=[4, 2, 2, 2] ,__snake_case :Optional[int]=[64, 1_28, 3_20, 5_12] ,__snake_case :Optional[int]=[3, 3, 12, 3] ,__snake_case :Any=[8, 8, 4, 4] ,__snake_case :int="gelu" ,__snake_case :Tuple=0.02 ,__snake_case :Optional[int]=1E-6 ,__snake_case :Any=1E-2 ,__snake_case :Optional[int]=0.0 ,__snake_case :Tuple=0.0 ,**__snake_case :List[Any] ,) -> List[str]: super().__init__(**__snake_case ) a__ = image_size a__ = num_channels a__ = patch_sizes a__ = strides a__ = hidden_sizes a__ = depths a__ = mlp_ratios a__ = hidden_act a__ = initializer_range a__ = layer_norm_eps a__ = layer_scale_init_value a__ = drop_path_rate a__ = dropout_rate
657
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class snake_case_ : def __init__( self :Dict ,__snake_case :Optional[Any] ,) -> Tuple: a__ = parent a__ = 13 a__ = 7 a__ = 30 a__ = self.seq_length + self.mem_len a__ = 15 a__ = True a__ = True a__ = 99 a__ = [10, 50, 80] a__ = 32 a__ = 32 a__ = 4 a__ = 8 a__ = 1_28 a__ = 2 a__ = 2 a__ = None a__ = 1 a__ = 0 a__ = 3 a__ = self.vocab_size - 1 a__ = 0.01 def lowerCamelCase__( self :Union[str, Any] ) -> Any: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = TransfoXLConfig( vocab_size=self.vocab_size ,mem_len=self.mem_len ,clamp_len=self.clamp_len ,cutoffs=self.cutoffs ,d_model=self.hidden_size ,d_embed=self.d_embed ,n_head=self.num_attention_heads ,d_head=self.d_head ,d_inner=self.d_inner ,div_val=self.div_val ,n_layer=self.num_hidden_layers ,eos_token_id=self.eos_token_id ,pad_token_id=self.vocab_size - 1 ,init_range=self.init_range ,num_labels=self.num_labels ,) return (config, input_ids_a, input_ids_a, lm_labels) def lowerCamelCase__( self :Any ) -> Tuple: random.seed(self.seed ) tf.random.set_seed(self.seed ) def lowerCamelCase__( self :Dict ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ) -> Optional[int]: a__ = TFTransfoXLModel(__snake_case ) a__ , a__ = model(__snake_case ).to_tuple() a__ = {'input_ids': input_ids_a, 'mems': mems_a} a__ , a__ = model(__snake_case ).to_tuple() self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def lowerCamelCase__( self :str ,__snake_case :Optional[Any] ,__snake_case :Any ,__snake_case :List[Any] ,__snake_case :Optional[Any] ) -> Tuple: a__ = TFTransfoXLLMHeadModel(__snake_case ) a__ , a__ = model(__snake_case ).to_tuple() a__ = {'input_ids': input_ids_a, 'labels': lm_labels} a__ , a__ = model(__snake_case ).to_tuple() a__ , a__ = model([input_ids_a, mems_a] ).to_tuple() a__ = {'input_ids': input_ids_a, 'mems': mems_a, 'labels': lm_labels} a__ , a__ = model(__snake_case ).to_tuple() self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def lowerCamelCase__( self :Tuple ,__snake_case :Tuple ,__snake_case :Dict ,__snake_case :str ,__snake_case :List[Any] ) -> int: a__ = TFTransfoXLForSequenceClassification(__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__( self :str ) -> Any: a__ = self.prepare_config_and_inputs() ((a__) , (a__) , (a__) , (a__)) = config_and_inputs a__ = {'input_ids': input_ids_a} return config, inputs_dict @require_tf class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Any = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) UpperCAmelCase__ : str = () if is_tf_available() else () UpperCAmelCase__ : Dict = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented UpperCAmelCase__ : str = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : List[Any] = False def lowerCamelCase__( self :Dict ,__snake_case :Union[str, Any] ,__snake_case :List[str] ,__snake_case :int ,__snake_case :str ,__snake_case :List[Any] ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def lowerCamelCase__( self :Any ) -> Optional[Any]: a__ = TFTransfoXLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,d_embed=37 ) def lowerCamelCase__( self :str ) -> List[str]: self.config_tester.run_common_tests() def lowerCamelCase__( self :Dict ) -> Any: self.model_tester.set_seed() a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*__snake_case ) def lowerCamelCase__( self :int ) -> List[Any]: self.model_tester.set_seed() a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*__snake_case ) def lowerCamelCase__( self :Any ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__snake_case ) def lowerCamelCase__( self :Tuple ) -> Tuple: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: a__ = model_class(__snake_case ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: a__ = model.get_output_embeddings() assert isinstance(__snake_case ,tf.keras.layers.Layer ) a__ = model.get_bias() assert name is None else: a__ = model.get_output_embeddings() assert x is None a__ = model.get_bias() assert name is None def lowerCamelCase__( self :str ) -> Tuple: # TODO JP: Make TransfoXL XLA compliant pass @slow def lowerCamelCase__( self :Optional[Any] ) -> List[Any]: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = TFTransfoXLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.' ) def lowerCamelCase__( self :str ) -> Optional[int]: pass @require_tf class snake_case_ (unittest.TestCase ): @unittest.skip('Skip test until #12651 is resolved.' ) @slow def lowerCamelCase__( self :Any ) -> int: a__ = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103' ) # fmt: off a__ = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] ,dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off a__ = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> a__ = model.generate(__snake_case ,max_length=2_00 ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].numpy().tolist() ,__snake_case )
657
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging snake_case : Optional[Any] = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : nn.ModuleList , __lowerCAmelCase : nn.ModuleList , __lowerCAmelCase : List[int] ): a__ = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), F'{len(__lowerCAmelCase )} != {len(__lowerCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) snake_case : Any = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } snake_case : List[Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): try: a__ = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(__lowerCAmelCase ) ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(__lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __lowercase ( __lowerCAmelCase : Union[str, PreTrainedModel] , __lowerCAmelCase : Union[str, Path] = "student" , __lowerCAmelCase : Union[int, None] = None , __lowerCAmelCase : Union[int, None] = None , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : Any , ): a__ = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(__lowerCAmelCase , __lowerCAmelCase ): AutoTokenizer.from_pretrained(__lowerCAmelCase ).save_pretrained(__lowerCAmelCase ) # purely for convenience a__ = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ).eval() else: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), F'teacher must be a model or string got type {type(__lowerCAmelCase )}' a__ = teacher.config.to_diff_dict() try: a__ , a__ = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: a__ = teacher_e if d is None: a__ = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): a__ , a__ = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: a__ , a__ = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: a__ = teacher_e if d is None: a__ = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__lowerCAmelCase ) # Copy weights a__ = teacher.config_class(**__lowerCAmelCase ) a__ = AutoModelForSeqaSeqLM.from_config(__lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. a__ = student.load_state_dict(teacher.state_dict() , strict=__lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save a__ , a__ = list(range(__lowerCAmelCase ) ), list(range(__lowerCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(__lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: a__ = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) if d_layers_to_copy is None: a__ = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) try: if hasattr( __lowerCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , __lowerCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) a__ = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(__lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
657
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ (unittest.TestCase ): def __init__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Tuple=13 ,__snake_case :str=7 ,__snake_case :Tuple=True ,__snake_case :str=True ,__snake_case :Union[str, Any]=True ,__snake_case :List[str]=True ,__snake_case :Optional[int]=99 ,__snake_case :List[str]=32 ,__snake_case :Union[str, Any]=5 ,__snake_case :Union[str, Any]=4 ,__snake_case :int=37 ,__snake_case :List[Any]="gelu" ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Any=0.1 ,__snake_case :List[Any]=5_12 ,__snake_case :Optional[int]=16 ,__snake_case :int=2 ,__snake_case :str=0.02 ,__snake_case :Optional[Any]=4 ,) -> List[str]: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_attention_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_choices def lowerCamelCase__( self :Optional[Any] ) -> List[str]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_attention_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=__snake_case ,) return config, input_ids, attention_mask def lowerCamelCase__( self :Tuple ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__( self :int ) -> Optional[Any]: a__ = FlaxDistilBertModelTester(self ) @slow def lowerCamelCase__( self :int ) -> Optional[Any]: for model_class_name in self.all_model_classes: a__ = model_class_name.from_pretrained('distilbert-base-uncased' ) a__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case ) @require_flax class snake_case_ (unittest.TestCase ): @slow def lowerCamelCase__( self :Tuple ) -> Optional[Any]: a__ = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) a__ = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) a__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a__ = model(__snake_case ,attention_mask=__snake_case )[0] a__ = (1, 11, 7_68) self.assertEqual(output.shape ,__snake_case ) a__ = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,__snake_case ,atol=1E-4 ) )
657
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging snake_case : int = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): def __init__( self :Optional[int] ,__snake_case :Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Dict: super().__init__() a__ = nn.ModuleList(__snake_case ) def lowerCamelCase__( self :int ,__snake_case :torch.FloatTensor ,__snake_case :Union[torch.Tensor, float, int] ,__snake_case :torch.Tensor ,__snake_case :List[torch.tensor] ,__snake_case :List[float] ,__snake_case :Optional[torch.Tensor] = None ,__snake_case :Optional[torch.Tensor] = None ,__snake_case :Optional[torch.Tensor] = None ,__snake_case :Optional[Dict[str, Any]] = None ,__snake_case :bool = False ,__snake_case :bool = True ,) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(__snake_case ,__snake_case ,self.nets ) ): a__ , a__ = controlnet( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) # merge samples if i == 0: a__ , a__ = down_samples, mid_sample else: a__ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__snake_case ,__snake_case ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, os.PathLike] ,__snake_case :bool = True ,__snake_case :Callable = None ,__snake_case :bool = False ,__snake_case :Optional[str] = None ,) -> List[str]: a__ = 0 a__ = save_directory for controlnet in self.nets: controlnet.save_pretrained( __snake_case ,is_main_process=__snake_case ,save_function=__snake_case ,safe_serialization=__snake_case ,variant=__snake_case ,) idx += 1 a__ = model_path_to_save + F'_{idx}' @classmethod def lowerCamelCase__( cls :Union[str, Any] ,__snake_case :Optional[Union[str, os.PathLike]] ,**__snake_case :Tuple ) -> Optional[int]: a__ = 0 a__ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... a__ = pretrained_model_path while os.path.isdir(__snake_case ): a__ = ControlNetModel.from_pretrained(__snake_case ,**__snake_case ) controlnets.append(__snake_case ) idx += 1 a__ = pretrained_model_path + F'_{idx}' logger.info(F'{len(__snake_case )} controlnets loaded from {pretrained_model_path}.' ) if len(__snake_case ) == 0: raise ValueError( F'No ControlNets found under {os.path.dirname(__snake_case )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(__snake_case )
657
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class snake_case_ (unittest.TestCase ): def __init__( self :str ,__snake_case :Any ,__snake_case :List[Any]=7 ,__snake_case :Dict=3 ,__snake_case :Dict=10 ,__snake_case :Dict=18 ,__snake_case :Any=30 ,__snake_case :int=4_00 ,__snake_case :Union[str, Any]=True ,__snake_case :Union[str, Any]=None ,__snake_case :Any=True ,__snake_case :int=[0.5, 0.5, 0.5] ,__snake_case :List[Any]=[0.5, 0.5, 0.5] ,__snake_case :Any=None ,) -> Union[str, Any]: a__ = size if size is not None else {'shortest_edge': 18} a__ = crop_size if crop_size is not None else {'height': 18, 'width': 18} a__ = parent a__ = batch_size a__ = num_channels a__ = num_frames a__ = image_size a__ = min_resolution a__ = max_resolution a__ = do_resize a__ = size a__ = do_normalize a__ = image_mean a__ = image_std a__ = crop_size def lowerCamelCase__( self :List[str] ) -> Dict: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = VivitImageProcessor if is_vision_available() else None def lowerCamelCase__( self :Optional[Any] ) -> int: a__ = VivitImageProcessingTester(self ) @property def lowerCamelCase__( self :List[str] ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__( self :str ) -> Dict: a__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case ,'image_mean' ) ) self.assertTrue(hasattr(__snake_case ,'image_std' ) ) self.assertTrue(hasattr(__snake_case ,'do_normalize' ) ) self.assertTrue(hasattr(__snake_case ,'do_resize' ) ) self.assertTrue(hasattr(__snake_case ,'do_center_crop' ) ) self.assertTrue(hasattr(__snake_case ,'size' ) ) def lowerCamelCase__( self :Dict ) -> str: a__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) a__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def lowerCamelCase__( self :Any ) -> int: # Initialize image_processing a__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos a__ = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case ,__snake_case ) self.assertIsInstance(video[0] ,Image.Image ) # Test not batched input a__ = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched a__ = image_processing(__snake_case ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def lowerCamelCase__( self :str ) -> Any: # Initialize image_processing a__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__snake_case ,numpify=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case ,__snake_case ) self.assertIsInstance(video[0] ,np.ndarray ) # Test not batched input a__ = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched a__ = image_processing(__snake_case ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def lowerCamelCase__( self :Tuple ) -> Any: # Initialize image_processing a__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__snake_case ,torchify=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case ,__snake_case ) self.assertIsInstance(video[0] ,torch.Tensor ) # Test not batched input a__ = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched a__ = image_processing(__snake_case ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
657
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
1
def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ): a__ = 0 a__ = len(__lowerCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None a__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__lowerCAmelCase ): return None a__ = sorted_collection[point] if current_item == item: return point else: if point < left: a__ = left a__ = point elif point > right: a__ = right a__ = point else: if item < current_item: a__ = point - 1 else: a__ = point + 1 return None def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None a__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__lowerCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) elif point > right: return interpolation_search_by_recursion(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( __lowerCAmelCase , __lowerCAmelCase , point + 1 , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : int ): if collection != sorted(__lowerCAmelCase ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys snake_case : List[str] = 0 if debug == 1: snake_case : Union[str, Any] = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') snake_case : Optional[Any] = 67 snake_case : Union[str, Any] = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print('''Not found''')
657
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
1
from ..utils import DummyObject, requires_backends class snake_case_ (metaclass=lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = ['''torch''', '''torchsde'''] def __init__( self :Optional[int] ,*__snake_case :Optional[int] ,**__snake_case :Optional[int] ) -> Dict: requires_backends(self ,['torch', 'torchsde'] ) @classmethod def lowerCamelCase__( cls :Dict ,*__snake_case :Union[str, Any] ,**__snake_case :Union[str, Any] ) -> Tuple: requires_backends(cls ,['torch', 'torchsde'] ) @classmethod def lowerCamelCase__( cls :Any ,*__snake_case :List[Any] ,**__snake_case :Any ) -> Dict: requires_backends(cls ,['torch', 'torchsde'] )
657
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case : List[Any] = logging.getLogger(__name__) def __lowercase ( __lowerCAmelCase : str ): a__ = git.Repo(search_parent_directories=__lowerCAmelCase ) a__ = { 'repo_id': str(__lowerCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(__lowerCAmelCase , 'git_log.json' ) , 'w' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase , indent=4 ) def __lowercase ( __lowerCAmelCase : Union[str, Any] ): if params.n_gpu <= 0: a__ = 0 a__ = -1 a__ = True a__ = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 a__ = int(os.environ['WORLD_SIZE'] ) a__ = int(os.environ['N_GPU_NODE'] ) a__ = int(os.environ['RANK'] ) # number of nodes / node ID a__ = params.world_size // params.n_gpu_per_node a__ = params.global_rank // params.n_gpu_per_node a__ = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 a__ = 1 a__ = 0 a__ = 0 a__ = 0 a__ = 1 a__ = 1 a__ = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode a__ = params.node_id == 0 and params.local_rank == 0 a__ = params.n_nodes > 1 # summary a__ = F'--- Global rank: {params.global_rank} - ' logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def __lowercase ( __lowerCAmelCase : Dict ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
657
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = '''facebook/bart-large-mnli''' UpperCAmelCase__ : Optional[Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) UpperCAmelCase__ : List[str] = '''text_classifier''' UpperCAmelCase__ : List[str] = AutoTokenizer UpperCAmelCase__ : Union[str, Any] = AutoModelForSequenceClassification UpperCAmelCase__ : int = ['''text''', ['''text''']] UpperCAmelCase__ : Dict = ['''text'''] def lowerCamelCase__( self :List[str] ) -> int: super().setup() a__ = self.model.config a__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): a__ = int(__snake_case ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[str] ,__snake_case :Dict ) -> int: a__ = labels return self.pre_processor( [text] * len(__snake_case ) ,[F'This example is {label}' for label in labels] ,return_tensors='pt' ,padding='max_length' ,) def lowerCamelCase__( self :Dict ,__snake_case :List[Any] ) -> Union[str, Any]: a__ = outputs.logits a__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
657
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case_ (lowerCamelCase_ ): @require_torch def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched a__ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' a__ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' a__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache a__ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(__snake_case ) BertModel.from_pretrained(__snake_case ) BertTokenizer.from_pretrained(__snake_case ) pipeline(task='fill-mask' ,model=__snake_case ) # baseline - just load from_pretrained with normal network a__ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed a__ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__ = '1' a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def lowerCamelCase__( self :Dict ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched a__ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' a__ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' a__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache a__ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(__snake_case ) BertModel.from_pretrained(__snake_case ) BertTokenizer.from_pretrained(__snake_case ) pipeline(task='fill-mask' ,model=__snake_case ) # baseline - just load from_pretrained with normal network a__ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed a__ = self.get_env() a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def lowerCamelCase__( self :Dict ) -> Any: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched a__ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' a__ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' a__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network a__ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed a__ = self.get_env() a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # next emulate no network a__ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__ = '1' a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def lowerCamelCase__( self :str ) -> int: a__ = '\nfrom transformers import pipeline\n ' a__ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' a__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' a__ = self.get_env() a__ = '1' a__ = [sys.executable, '-c', '\n'.join([load, mock, run] )] a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,1 ,result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' ,result.stderr.decode().replace('\n' ,'' ) ,) @require_torch def lowerCamelCase__( self :List[str] ) -> Any: a__ = '\nfrom transformers import AutoModel\n ' a__ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network a__ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed a__ = self.get_env() a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__ = '1' a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() )
657
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : List[str] = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[Any] = '''convbert''' def __init__( self :int ,__snake_case :str=3_05_22 ,__snake_case :Any=7_68 ,__snake_case :List[Any]=12 ,__snake_case :Tuple=12 ,__snake_case :Tuple=30_72 ,__snake_case :Tuple="gelu" ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Any=5_12 ,__snake_case :int=2 ,__snake_case :List[Any]=0.02 ,__snake_case :List[Any]=1E-12 ,__snake_case :Union[str, Any]=1 ,__snake_case :Optional[Any]=0 ,__snake_case :Tuple=2 ,__snake_case :Tuple=7_68 ,__snake_case :Dict=2 ,__snake_case :str=9 ,__snake_case :int=1 ,__snake_case :int=None ,**__snake_case :List[str] ,) -> Optional[Any]: super().__init__( pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,**__snake_case ,) a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = initializer_range a__ = layer_norm_eps a__ = embedding_size a__ = head_ratio a__ = conv_kernel_size a__ = num_groups a__ = classifier_dropout class snake_case_ (lowerCamelCase_ ): @property def lowerCamelCase__( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
657
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
1
import cva import numpy as np class snake_case_ : def __init__( self :Tuple ,__snake_case :float ,__snake_case :int ) -> List[str]: if k in (0.04, 0.06): a__ = k a__ = window_size else: raise ValueError('invalid k value' ) def __str__( self :Optional[int] ) -> str: return str(self.k ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str ) -> tuple[cva.Mat, list[list[int]]]: a__ = cva.imread(__snake_case ,0 ) a__ , a__ = img.shape a__ = [] a__ = img.copy() a__ = cva.cvtColor(__snake_case ,cva.COLOR_GRAY2RGB ) a__ , a__ = np.gradient(__snake_case ) a__ = dx**2 a__ = dy**2 a__ = dx * dy a__ = 0.04 a__ = self.window_size // 2 for y in range(__snake_case ,h - offset ): for x in range(__snake_case ,w - offset ): a__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a__ = (wxx * wyy) - (wxy**2) a__ = wxx + wyy a__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": snake_case : int = HarrisCorner(0.04, 3) snake_case , snake_case : Union[str, Any] = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
657
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
1
def __lowercase ( __lowerCAmelCase : list ): def merge(__lowerCAmelCase : list , __lowerCAmelCase : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__lowerCAmelCase ) <= 1: return collection a__ = len(__lowerCAmelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() snake_case : Any = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
657
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
1
import random def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any ): a__ = a[left_index] a__ = left_index + 1 for j in range(left_index + 1 , __lowerCAmelCase ): if a[j] < pivot: a__ , a__ = a[i], a[j] i += 1 a__ , a__ = a[i - 1], a[left_index] return i - 1 def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): if left < right: a__ = random.randint(__lowerCAmelCase , right - 1 ) a__ , a__ = ( a[left], a[pivot], ) # switches the pivot with the left most bound a__ = partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) quick_sort_random( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowerCAmelCase , pivot_index + 1 , __lowerCAmelCase ) # recursive quicksort to the right of the pivot point def __lowercase ( ): a__ = input('Enter numbers separated by a comma:\n' ).strip() a__ = [int(__lowerCAmelCase ) for item in user_input.split(',' )] quick_sort_random(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) ) print(__lowerCAmelCase ) if __name__ == "__main__": main()
657
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __lowercase ( ): a__ = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=__lowerCAmelCase , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=__lowerCAmelCase , default=5 ) parser.add_argument('--batch_size' , type=__lowerCAmelCase , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=__lowerCAmelCase , default=1 ) parser.add_argument('--freeze' , type=__lowerCAmelCase , default=__lowerCAmelCase ) parser.add_argument('--learning_rate' , type=__lowerCAmelCase , default=5E-4 ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=0 ) parser.add_argument('--lr_scheduler_type' , type=__lowerCAmelCase , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=__lowerCAmelCase , default=1_0 ) parser.add_argument('--weight_decay' , type=__lowerCAmelCase , default=0.01 ) parser.add_argument('--output_dir' , type=__lowerCAmelCase , default='./results' ) return parser.parse_args() snake_case : Optional[int] = load('''accuracy''') def __lowercase ( __lowerCAmelCase : Dict ): a__ , a__ = eval_pred a__ = np.argmax(__lowerCAmelCase , axis=1 ) return metric.compute(predictions=__lowerCAmelCase , references=__lowerCAmelCase ) class snake_case_ (lowerCamelCase_ ): def __init__( self :Optional[int] ,__snake_case :Optional[Any] ) -> None: super().__init__() a__ = trainer def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :List[Any] ,__snake_case :Optional[int] ,**__snake_case :List[Any] ) -> Any: if control.should_evaluate: a__ = deepcopy(__snake_case ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset ,metric_key_prefix='train' ) return control_copy def __lowercase ( ): a__ = get_args() set_seed(args.seed ) a__ = load_dataset('codeparrot/codecomplex' , split='train' ) a__ = dataset.train_test_split(test_size=0.2 ) a__ = train_test['test'].train_test_split(test_size=0.5 ) a__ = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) a__ = AutoTokenizer.from_pretrained(args.model_ckpt ) a__ = tokenizer.eos_token a__ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) a__ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): a__ = False a__ = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(__lowerCAmelCase : List[Any] ): a__ = tokenizer(example['src'] , truncation=__lowerCAmelCase , max_length=1_0_2_4 ) a__ = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } a__ = train_test_validation.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=train_test_validation['train'].column_names , ) a__ = DataCollatorWithPadding(tokenizer=__lowerCAmelCase ) a__ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) a__ = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , compute_metrics=__lowerCAmelCase , ) print('Training...' ) trainer.add_callback(CustomCallback(__lowerCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
657
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
1
import os def __lowercase ( __lowerCAmelCase : str = "input.txt" ): with open(os.path.join(os.path.dirname(__lowerCAmelCase ) , __lowerCAmelCase ) ) as input_file: a__ = [ [int(__lowerCAmelCase ) for element in line.split(',' )] for line in input_file.readlines() ] a__ = len(__lowerCAmelCase ) a__ = len(matrix[0] ) a__ = [[-1 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): a__ = matrix[i][0] for j in range(1 , __lowerCAmelCase ): for i in range(__lowerCAmelCase ): a__ = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __lowerCAmelCase ): a__ = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): a__ = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
657
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __lowercase ( __lowerCAmelCase : Union[str, Any]=None ): if subparsers is not None: a__ = subparsers.add_parser('test' ) else: a__ = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=__lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=__lowerCAmelCase ) return parser def __lowercase ( __lowerCAmelCase : Optional[int] ): a__ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: a__ = script_name else: a__ = F'--config_file={args.config_file} {script_name}' a__ = ['accelerate-launch'] + test_args.split() a__ = execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def __lowercase ( ): a__ = test_command_parser() a__ = parser.parse_args() test_command(__lowerCAmelCase ) if __name__ == "__main__": main()
657
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ): a__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('RGB' ) a__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) a__ = transform(__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) return image def __lowercase ( __lowerCAmelCase : Optional[int] ): if "visual_encoder" in key: a__ = re.sub('visual_encoder*' , 'vision_model.encoder' , __lowerCAmelCase ) if "blocks" in key: a__ = re.sub(R'blocks' , 'layers' , __lowerCAmelCase ) if "attn" in key: a__ = re.sub(R'attn' , 'self_attn' , __lowerCAmelCase ) if "norm1" in key: a__ = re.sub(R'norm1' , 'layer_norm1' , __lowerCAmelCase ) if "norm2" in key: a__ = re.sub(R'norm2' , 'layer_norm2' , __lowerCAmelCase ) if "encoder.norm" in key: a__ = re.sub(R'encoder.norm' , 'post_layernorm' , __lowerCAmelCase ) if "encoder.patch_embed.proj" in key: a__ = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , __lowerCAmelCase ) if "encoder.pos_embed" in key: a__ = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , __lowerCAmelCase ) if "encoder.cls_token" in key: a__ = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , __lowerCAmelCase ) if "self_attn" in key: a__ = re.sub(R'self_attn.proj' , 'self_attn.projection' , __lowerCAmelCase ) return key @torch.no_grad() def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str]=None ): if config_path is not None: a__ = BlipConfig.from_pretrained(__lowerCAmelCase ) else: a__ = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) a__ = BlipForConditionalGeneration(__lowerCAmelCase ).eval() a__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' a__ = blip_decoder(pretrained=__lowerCAmelCase , image_size=3_8_4 , vit='base' ) a__ = pt_model.eval() a__ = pt_model.state_dict() for key in modified_state_dict.copy(): a__ = modified_state_dict.pop(__lowerCAmelCase ) a__ = rename_key(__lowerCAmelCase ) a__ = value hf_model.load_state_dict(__lowerCAmelCase ) a__ = 3_8_4 a__ = load_demo_image(image_size=__lowerCAmelCase , device='cpu' ) a__ = BertTokenizer.from_pretrained('bert-base-uncased' ) a__ = tokenizer(['a picture of'] ).input_ids a__ = hf_model.generate(__lowerCAmelCase , __lowerCAmelCase ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] a__ = hf_model.generate(__lowerCAmelCase ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__lowerCAmelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' a__ = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) a__ = blip_vqa(pretrained=__lowerCAmelCase , image_size=__lowerCAmelCase , vit='base' ) vqa_model.eval() a__ = vqa_model.state_dict() for key in modified_state_dict.copy(): a__ = modified_state_dict.pop(__lowerCAmelCase ) a__ = rename_key(__lowerCAmelCase ) a__ = value a__ = BlipForQuestionAnswering(__lowerCAmelCase ) hf_vqa_model.load_state_dict(__lowerCAmelCase ) a__ = ['How many dogs are in this image?'] a__ = tokenizer(__lowerCAmelCase , return_tensors='pt' ).input_ids a__ = hf_vqa_model.generate(__lowerCAmelCase , __lowerCAmelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) a__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' a__ = blip_itm(pretrained=__lowerCAmelCase , image_size=__lowerCAmelCase , vit='base' ) itm_model.eval() a__ = itm_model.state_dict() for key in modified_state_dict.copy(): a__ = modified_state_dict.pop(__lowerCAmelCase ) a__ = rename_key(__lowerCAmelCase ) a__ = value a__ = BlipForImageTextRetrieval(__lowerCAmelCase ) a__ = ['A picture of a woman with a dog sitting in a beach'] a__ = tokenizer( __lowerCAmelCase , return_tensors='pt' , padding='max_length' , truncation=__lowerCAmelCase , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(__lowerCAmelCase ) hf_itm_model.eval() a__ = hf_itm_model(__lowerCAmelCase , __lowerCAmelCase , use_itm_head=__lowerCAmelCase ) a__ = hf_itm_model(__lowerCAmelCase , __lowerCAmelCase , use_itm_head=__lowerCAmelCase ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') snake_case : int = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
657
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
1
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor snake_case : Union[str, Any] = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): def __init__( self :Union[str, Any] ,*__snake_case :Dict ,**__snake_case :Union[str, Any] ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' ,__snake_case ,) super().__init__(*__snake_case ,**__snake_case )
657
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class snake_case_ (unittest.TestCase ): def __init__( self :Optional[int] ,__snake_case :Optional[Any] ,__snake_case :str=7 ,__snake_case :int=3 ,__snake_case :Dict=30 ,__snake_case :List[str]=4_00 ,__snake_case :Optional[Any]=True ,__snake_case :List[Any]=None ,__snake_case :List[str]=True ,__snake_case :List[Any]=[0.5, 0.5, 0.5] ,__snake_case :List[str]=[0.5, 0.5, 0.5] ,__snake_case :Optional[int]=True ,__snake_case :str=1 / 2_55 ,__snake_case :int=True ,) -> Dict: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p a__ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} a__ = parent a__ = batch_size a__ = num_channels a__ = min_resolution a__ = max_resolution a__ = do_resize a__ = size a__ = do_normalize a__ = image_mean a__ = image_std a__ = do_rescale a__ = rescale_factor a__ = do_pad def lowerCamelCase__( self :Tuple ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase__( self :str ,__snake_case :Dict ,__snake_case :List[str]=False ) -> List[Any]: if not batched: a__ = image_inputs[0] if isinstance(__snake_case ,Image.Image ): a__ , a__ = image.size else: a__ , a__ = image.shape[1], image.shape[2] if w < h: a__ = int(self.size['shortest_edge'] * h / w ) a__ = self.size['shortest_edge'] elif w > h: a__ = self.size['shortest_edge'] a__ = int(self.size['shortest_edge'] * w / h ) else: a__ = self.size['shortest_edge'] a__ = self.size['shortest_edge'] else: a__ = [] for image in image_inputs: a__ , a__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a__ = max(__snake_case ,key=lambda __snake_case : item[0] )[0] a__ = max(__snake_case ,key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCamelCase__( self :Tuple ) -> Optional[Any]: a__ = ConditionalDetrImageProcessingTester(self ) @property def lowerCamelCase__( self :List[str] ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__( self :List[str] ) -> Optional[Any]: a__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case ,'image_mean' ) ) self.assertTrue(hasattr(__snake_case ,'image_std' ) ) self.assertTrue(hasattr(__snake_case ,'do_normalize' ) ) self.assertTrue(hasattr(__snake_case ,'do_resize' ) ) self.assertTrue(hasattr(__snake_case ,'size' ) ) def lowerCamelCase__( self :int ) -> str: a__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad ,__snake_case ) a__ = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=__snake_case ) self.assertEqual(image_processor.size ,{'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad ,__snake_case ) def lowerCamelCase__( self :Union[str, Any] ) -> Union[str, Any]: pass def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: # Initialize image_processing a__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case ,Image.Image ) # Test not batched input a__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched a__ , a__ = self.image_processor_tester.get_expected_values(__snake_case ,batched=__snake_case ) a__ = image_processing(__snake_case ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: # Initialize image_processing a__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__snake_case ,numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case ,np.ndarray ) # Test not batched input a__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched a__ = image_processing(__snake_case ,return_tensors='pt' ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(__snake_case ,batched=__snake_case ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def lowerCamelCase__( self :int ) -> Tuple: # Initialize image_processing a__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__snake_case ,torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case ,torch.Tensor ) # Test not batched input a__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched a__ = image_processing(__snake_case ,return_tensors='pt' ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(__snake_case ,batched=__snake_case ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def lowerCamelCase__( self :Dict ) -> Optional[Any]: # prepare image and target a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' ,'r' ) as f: a__ = json.loads(f.read() ) a__ = {'image_id': 3_97_69, 'annotations': target} # encode them a__ = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) a__ = image_processing(images=__snake_case ,annotations=__snake_case ,return_tensors='pt' ) # verify pixel values a__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape ,__snake_case ) a__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,__snake_case ,atol=1E-4 ) ) # verify area a__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,__snake_case ) ) # verify boxes a__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,__snake_case ) a__ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,__snake_case ,atol=1E-3 ) ) # verify image_id a__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,__snake_case ) ) # verify is_crowd a__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,__snake_case ) ) # verify class_labels a__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,__snake_case ) ) # verify orig_size a__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,__snake_case ) ) # verify size a__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,__snake_case ) ) @slow def lowerCamelCase__( self :Tuple ) -> List[Any]: # prepare image, target and masks_path a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' ,'r' ) as f: a__ = json.loads(f.read() ) a__ = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} a__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them a__ = ConditionalDetrImageProcessor(format='coco_panoptic' ) a__ = image_processing(images=__snake_case ,annotations=__snake_case ,masks_path=__snake_case ,return_tensors='pt' ) # verify pixel values a__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape ,__snake_case ) a__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,__snake_case ,atol=1E-4 ) ) # verify area a__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,__snake_case ) ) # verify boxes a__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,__snake_case ) a__ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,__snake_case ,atol=1E-3 ) ) # verify image_id a__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,__snake_case ) ) # verify is_crowd a__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,__snake_case ) ) # verify class_labels a__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,__snake_case ) ) # verify masks a__ = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() ,__snake_case ) # verify orig_size a__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,__snake_case ) ) # verify size a__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,__snake_case ) )
657
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
1
from __future__ import annotations import math class snake_case_ : def __init__( self :Tuple ,__snake_case :int ) -> None: a__ = size # approximate the overall size of segment tree with given value a__ = [0 for i in range(0 ,4 * size )] # create array to store lazy update a__ = [0 for i in range(0 ,4 * size )] a__ = [0 for i in range(0 ,4 * size )] # flag for lazy update def lowerCamelCase__( self :Tuple ,__snake_case :int ) -> int: return idx * 2 def lowerCamelCase__( self :Any ,__snake_case :int ) -> int: return idx * 2 + 1 def lowerCamelCase__( self :Any ,__snake_case :int ,__snake_case :int ,__snake_case :int ,__snake_case :list[int] ) -> None: if left_element == right_element: a__ = a[left_element - 1] else: a__ = (left_element + right_element) // 2 self.build(self.left(__snake_case ) ,__snake_case ,__snake_case ,__snake_case ) self.build(self.right(__snake_case ) ,mid + 1 ,__snake_case ,__snake_case ) a__ = max( self.segment_tree[self.left(__snake_case )] ,self.segment_tree[self.right(__snake_case )] ) def lowerCamelCase__( self :Tuple ,__snake_case :int ,__snake_case :int ,__snake_case :int ,__snake_case :int ,__snake_case :int ,__snake_case :int ) -> bool: if self.flag[idx] is True: a__ = self.lazy[idx] a__ = False if left_element != right_element: a__ = self.lazy[idx] a__ = self.lazy[idx] a__ = True a__ = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: a__ = val if left_element != right_element: a__ = val a__ = val a__ = True a__ = True return True a__ = (left_element + right_element) // 2 self.update(self.left(__snake_case ) ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) self.update(self.right(__snake_case ) ,mid + 1 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) a__ = max( self.segment_tree[self.left(__snake_case )] ,self.segment_tree[self.right(__snake_case )] ) return True def lowerCamelCase__( self :Dict ,__snake_case :int ,__snake_case :int ,__snake_case :int ,__snake_case :int ,__snake_case :int ) -> int | float: if self.flag[idx] is True: a__ = self.lazy[idx] a__ = False if left_element != right_element: a__ = self.lazy[idx] a__ = self.lazy[idx] a__ = True a__ = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] a__ = (left_element + right_element) // 2 a__ = self.query(self.left(__snake_case ) ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) a__ = self.query(self.right(__snake_case ) ,mid + 1 ,__snake_case ,__snake_case ,__snake_case ) return max(__snake_case ,__snake_case ) def __str__( self :Tuple ) -> str: return str([self.query(1 ,1 ,self.size ,__snake_case ,__snake_case ) for i in range(1 ,self.size + 1 )] ) if __name__ == "__main__": snake_case : List[str] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] snake_case : Any = 15 snake_case : List[str] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
657
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
1
def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int ): print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ): a__ = [[float('inf' ) for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): a__ = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCAmelCase ): # looping through rows of graph array for i in range(__lowerCAmelCase ): # looping through columns of graph array for j in range(__lowerCAmelCase ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): a__ = dist[i][k] + dist[k][j] _print_dist(__lowerCAmelCase , __lowerCAmelCase ) return dist, v if __name__ == "__main__": snake_case : int = int(input('''Enter number of vertices: ''')) snake_case : List[str] = int(input('''Enter number of edges: ''')) snake_case : Optional[int] = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): snake_case : Dict = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) snake_case : Union[str, Any] = int(input('''Enter source:''')) snake_case : Optional[int] = int(input('''Enter destination:''')) snake_case : Optional[int] = float(input('''Enter weight:''')) snake_case : Dict = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
657
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : str = 1 @register_to_config def __init__( self :int ,__snake_case :Any=20_00 ,__snake_case :str=0.1 ,__snake_case :List[str]=20 ,__snake_case :Dict=1E-3 ) -> List[str]: a__ = None a__ = None a__ = None def lowerCamelCase__( self :Dict ,__snake_case :List[Any] ,__snake_case :Union[str, torch.device] = None ) -> Tuple: a__ = torch.linspace(1 ,self.config.sampling_eps ,__snake_case ,device=__snake_case ) def lowerCamelCase__( self :str ,__snake_case :str ,__snake_case :str ,__snake_case :Union[str, Any] ,__snake_case :Optional[Any]=None ) -> Union[str, Any]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score a__ = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) a__ = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) a__ = std.flatten() while len(std.shape ) < len(score.shape ): a__ = std.unsqueeze(-1 ) a__ = -score / std # compute a__ = -1.0 / len(self.timesteps ) a__ = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) a__ = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): a__ = beta_t.unsqueeze(-1 ) a__ = -0.5 * beta_t * x a__ = torch.sqrt(__snake_case ) a__ = drift - diffusion**2 * score a__ = x + drift * dt # add noise a__ = randn_tensor(x.shape ,layout=x.layout ,generator=__snake_case ,device=x.device ,dtype=x.dtype ) a__ = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :Union[str, Any] ) -> Optional[int]: return self.config.num_train_timesteps
657
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() snake_case : Any = logging.get_logger(__name__) snake_case : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } snake_case : Any = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): for attribute in key.split('.' ): a__ = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: a__ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: a__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": a__ = value elif weight_type == "weight_g": a__ = value elif weight_type == "weight_v": a__ = value elif weight_type == "bias": a__ = value else: a__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Any ): a__ = [] a__ = fairseq_model.state_dict() a__ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a__ = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) a__ = True else: for key, mapped_key in MAPPING.items(): a__ = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue a__ = True if "*" in mapped_key: a__ = name.split(__lowerCAmelCase )[0].split('.' )[-2] a__ = mapped_key.replace('*' , __lowerCAmelCase ) if "weight_g" in name: a__ = 'weight_g' elif "weight_v" in name: a__ = 'weight_v' elif "bias" in name: a__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ = 'weight' else: a__ = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : int ): a__ = full_name.split('conv_layers.' )[-1] a__ = name.split('.' ) a__ = int(items[0] ) a__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) a__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) a__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Union[str, Any]=True ): if config_path is not None: a__ = UniSpeechSatConfig.from_pretrained(__lowerCAmelCase ) else: a__ = UniSpeechSatConfig() a__ = '' if is_finetuned: a__ = UniSpeechSatForCTC(__lowerCAmelCase ) else: a__ = UniSpeechSatForPreTraining(__lowerCAmelCase ) a__ , a__ , a__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) a__ = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) snake_case : Optional[int] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
657
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
1
def __lowercase ( __lowerCAmelCase : bytes ): return "".join([hex(__lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(__lowerCAmelCase )] ) def __lowercase ( __lowerCAmelCase : str ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(__lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(__lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
657
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
1
def __lowercase ( __lowerCAmelCase : str ): return " ".join( ''.join(word[::-1] ) if len(__lowerCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
657
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = DDIMPipeline UpperCAmelCase__ : Dict = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCAmelCase__ : Any = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } UpperCAmelCase__ : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCAmelCase__ : Any = False def lowerCamelCase__( self :List[Any] ) -> Any: torch.manual_seed(0 ) a__ = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) a__ = DDIMScheduler() a__ = {'unet': unet, 'scheduler': scheduler} return components def lowerCamelCase__( self :str ,__snake_case :int ,__snake_case :List[Any]=0 ) -> List[str]: if str(__snake_case ).startswith('mps' ): a__ = torch.manual_seed(__snake_case ) else: a__ = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a__ = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase__( self :List[Any] ) -> Any: a__ = 'cpu' a__ = self.get_dummy_components() a__ = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a__ = self.get_dummy_inputs(__snake_case ) a__ = pipe(**__snake_case ).images a__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 32, 32, 3) ) a__ = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) a__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case ,1E-3 ) def lowerCamelCase__( self :List[Any] ) -> Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCamelCase__( self :List[Any] ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCamelCase__( self :str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ) -> Any: a__ = 'google/ddpm-cifar10-32' a__ = UNetaDModel.from_pretrained(__snake_case ) a__ = DDIMScheduler() a__ = DDIMPipeline(unet=__snake_case ,scheduler=__snake_case ) ddim.to(__snake_case ) ddim.set_progress_bar_config(disable=__snake_case ) a__ = torch.manual_seed(0 ) a__ = ddim(generator=__snake_case ,eta=0.0 ,output_type='numpy' ).images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a__ = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__( self :Tuple ) -> int: a__ = 'google/ddpm-ema-bedroom-256' a__ = UNetaDModel.from_pretrained(__snake_case ) a__ = DDIMScheduler.from_pretrained(__snake_case ) a__ = DDIMPipeline(unet=__snake_case ,scheduler=__snake_case ) ddpm.to(__snake_case ) ddpm.set_progress_bar_config(disable=__snake_case ) a__ = torch.manual_seed(0 ) a__ = ddpm(generator=__snake_case ,output_type='numpy' ).images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) a__ = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
657
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
1
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 snake_case : Optional[int] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') snake_case : List[Any] = get_tests_dir('''fixtures/vocab.json''') snake_case : Optional[Any] = get_tests_dir('''fixtures''') class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def lowerCamelCase__( self :str ) -> Optional[Any]: a__ = 0 def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: a__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Dict ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaConfig() a__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) a__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case ,os.path.join(__snake_case ,__snake_case ) ) copyfile(__snake_case ,os.path.join(__snake_case ,'vocab.json' ) ) a__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Dict ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaFeatureExtractor() a__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) a__ = WavaVecaProcessor(__snake_case ,__snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case ,__snake_case ) ,'r' ) as f: a__ = json.load(__snake_case ) config_dict.pop('processor_class' ) with open(os.path.join(__snake_case ,__snake_case ) ,'w' ) as f: f.write(json.dumps(__snake_case ) ) a__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaFeatureExtractor() a__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) a__ = WavaVecaProcessor(__snake_case ,__snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case ,__snake_case ) ,'r' ) as f: a__ = json.load(__snake_case ) config_dict.pop('processor_class' ) with open(os.path.join(__snake_case ,__snake_case ) ,'w' ) as f: f.write(json.dumps(__snake_case ) ) a__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case ,os.path.join(__snake_case ,'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(__snake_case ,__snake_case ) ,'w' ) as f: f.write('{}' ) a__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :List[str] ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): a__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__snake_case ) a__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ ,'NewProcessor' ) a__ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) a__ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) # Test we can also load the slow version a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__snake_case ,use_fast=__snake_case ) a__ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ ,'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) def lowerCamelCase__( self :Tuple ) -> Any: try: AutoConfig.register('custom' ,__snake_case ) AutoFeatureExtractor.register(__snake_case ,__snake_case ) AutoTokenizer.register(__snake_case ,slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case ,__snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case ,__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API a__ = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: a__ = os.path.join(__snake_case ,'vocab.txt' ) with open(__snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) a__ = CustomTokenizer(__snake_case ) a__ = CustomProcessor(__snake_case ,__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) a__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__( self :str ) -> Dict: class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : str = False class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = False class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = '''AutoFeatureExtractor''' UpperCAmelCase__ : List[str] = '''AutoTokenizer''' UpperCAmelCase__ : Optional[int] = False try: AutoConfig.register('custom' ,__snake_case ) AutoFeatureExtractor.register(__snake_case ,__snake_case ) AutoTokenizer.register(__snake_case ,slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case ,__snake_case ) # If remote code is not set, the default is to use local classes. a__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ ,'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ ,'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ ,'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__( self :List[str] ) -> List[str]: a__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ ,'BertTokenizerFast' ) def lowerCamelCase__( self :Dict ) -> int: a__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ ,'ConvNextImageProcessor' ) @is_staging_test class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def lowerCamelCase__( cls :Optional[int] ) -> Tuple: a__ = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCamelCase__( cls :Union[str, Any] ) -> List[str]: try: delete_repo(token=cls._token ,repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-processor' ) except HTTPError: pass def lowerCamelCase__( self :Union[str, Any] ) -> Any: a__ = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case ,'test-processor' ) ,push_to_hub=__snake_case ,use_auth_token=self._token ) a__ = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case ,getattr(new_processor.feature_extractor ,__snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() ,processor.tokenizer.get_vocab() ) def lowerCamelCase__( self :List[Any] ) -> List[Any]: a__ = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case ,'test-processor-org' ) ,push_to_hub=__snake_case ,use_auth_token=self._token ,organization='valid_org' ,) a__ = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case ,getattr(new_processor.feature_extractor ,__snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() ,processor.tokenizer.get_vocab() ) def lowerCamelCase__( self :int ) -> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() a__ = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: a__ = os.path.join(__snake_case ,'vocab.txt' ) with open(__snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) a__ = CustomTokenizer(__snake_case ) a__ = CustomProcessor(__snake_case ,__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor' ,token=self._token ) a__ = Repository(__snake_case ,clone_from=F'{USER}/test-dynamic-processor' ,token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map ,{ 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } ,) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case ,'tokenizer_config.json' ) ) as f: a__ = json.load(__snake_case ) self.assertDictEqual( tokenizer_config['auto_map'] ,{ 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } ,) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case ,'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case ,'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case ,'custom_processing.py' ) ) ) repo.push_to_hub() a__ = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' ,trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ ,'CustomProcessor' )
657
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> int: a__ = 0 def lowerCamelCase__( self :List[str] ) -> Optional[int]: a__ = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Union[str, Any] ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: a__ = Path(__snake_case ) / 'preprocessor_config.json' a__ = Path(__snake_case ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} ,open(__snake_case ,'w' ) ,) json.dump({'model_type': 'clip'} ,open(__snake_case ,'w' ) ) a__ = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Dict: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: a__ = Path(__snake_case ) / 'preprocessor_config.json' a__ = Path(__snake_case ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} ,open(__snake_case ,'w' ) ,) json.dump({'model_type': 'clip'} ,open(__snake_case ,'w' ) ) a__ = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: a__ = CLIPConfig() # Create a dummy config file with image_proceesor_type a__ = Path(__snake_case ) / 'preprocessor_config.json' a__ = Path(__snake_case ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} ,open(__snake_case ,'w' ) ,) json.dump({'model_type': 'clip'} ,open(__snake_case ,'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a__ = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop('image_processor_type' ) a__ = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) a__ = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved a__ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: a__ = Path(__snake_case ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} ,open(__snake_case ,'w' ) ,) a__ = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Any ) -> Any: with self.assertRaisesRegex( __snake_case ,'clip-base is not a local folder and is not a valid model identifier' ): a__ = AutoImageProcessor.from_pretrained('clip-base' ) def lowerCamelCase__( self :List[str] ) -> str: with self.assertRaisesRegex( __snake_case ,R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): a__ = AutoImageProcessor.from_pretrained(__snake_case ,revision='aaaaaa' ) def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: with self.assertRaisesRegex( __snake_case ,'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' ,): a__ = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def lowerCamelCase__( self :Any ) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): a__ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): a__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' ,trust_remote_code=__snake_case ) a__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' ,trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ ,'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) a__ = AutoImageProcessor.from_pretrained(__snake_case ,trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ ,'NewImageProcessor' ) def lowerCamelCase__( self :Dict ) -> int: try: AutoConfig.register('custom' ,__snake_case ) AutoImageProcessor.register(__snake_case ,__snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case ,__snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: a__ = Path(__snake_case ) / 'preprocessor_config.json' a__ = Path(__snake_case ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} ,open(__snake_case ,'w' ) ,) json.dump({'model_type': 'clip'} ,open(__snake_case ,'w' ) ) a__ = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) a__ = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__( self :int ) -> int: class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[str] = True try: AutoConfig.register('custom' ,__snake_case ) AutoImageProcessor.register(__snake_case ,__snake_case ) # If remote code is not set, the default is to use local a__ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ ,'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' ,trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ ,'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a__ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' ,trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ ,'NewImageProcessor' ) self.assertTrue(not hasattr(__snake_case ,'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
657
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
1
from __future__ import annotations import math def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : bool , __lowerCAmelCase : list[int] , __lowerCAmelCase : float ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(__lowerCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , ) def __lowercase ( ): a__ = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] a__ = math.log(len(__lowerCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
657
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging snake_case : str = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[Any]=None ): return field(default_factory=lambda: default , metadata=__lowerCAmelCase ) @dataclass class snake_case_ : UpperCAmelCase__ : List[str] = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) UpperCAmelCase__ : List[int] = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) UpperCAmelCase__ : List[int] = list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Benchmark training of model'''} ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Verbose memory tracing'''} ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Trace memory line by line'''} ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Save result to a CSV file'''} ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Save all print statements in a log file'''} ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Whether to print environment information'''} ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) UpperCAmelCase__ : str = field( default=f'inference_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) UpperCAmelCase__ : str = field( default=f'inference_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) UpperCAmelCase__ : str = field( default=f'train_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) UpperCAmelCase__ : str = field( default=f'train_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) UpperCAmelCase__ : str = field( default=f'env_info_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) UpperCAmelCase__ : str = field( default=f'log_{round(time() )}.csv' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) UpperCAmelCase__ : int = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def lowerCamelCase__( self :List[str] ) -> str: warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' ,__snake_case ,) def lowerCamelCase__( self :Dict ) -> Dict: return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def lowerCamelCase__( self :List[Any] ) -> List[str]: if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def lowerCamelCase__( self :Dict ) -> Optional[int]: if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
657
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
1
def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): a__ = F'Input value of [number={number}] must be an integer' raise TypeError(__lowerCAmelCase ) if number < 0: return False a__ = number * number while number > 0: if number % 1_0 != number_square % 1_0: return False number //= 1_0 number_square //= 1_0 return True if __name__ == "__main__": import doctest doctest.testmod()
657
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Any = {'''vocab_file''': '''spiece.model'''} snake_case : Optional[Any] = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } snake_case : Any = {'''bert_for_seq_generation''': 5_12} class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : str = ['''input_ids''', '''attention_mask'''] def __init__( self :Tuple ,__snake_case :List[str] ,__snake_case :int="<s>" ,__snake_case :Tuple="</s>" ,__snake_case :List[Any]="<unk>" ,__snake_case :Optional[Any]="<pad>" ,__snake_case :Union[str, Any]="<::::>" ,__snake_case :Optional[Dict[str, Any]] = None ,**__snake_case :List[Any] ,) -> None: a__ = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__snake_case ,eos_token=__snake_case ,unk_token=__snake_case ,pad_token=__snake_case ,sep_token=__snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**__snake_case ,) a__ = vocab_file a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) @property def lowerCamelCase__( self :Dict ) -> Dict: return self.sp_model.get_piece_size() def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :str ) -> str: a__ = self.__dict__.copy() a__ = None return state def __setstate__( self :Optional[int] ,__snake_case :str ) -> Any: a__ = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): a__ = {} a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__( self :List[Any] ,__snake_case :str ) -> List[str]: return self.sp_model.encode(__snake_case ,out_type=__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :Optional[Any] ) -> int: return self.sp_model.piece_to_id(__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :List[str] ) -> Tuple: a__ = self.sp_model.IdToPiece(__snake_case ) return token def lowerCamelCase__( self :Optional[Any] ,__snake_case :Tuple ) -> List[str]: a__ = [] a__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__snake_case ) + token a__ = [] else: current_sub_tokens.append(__snake_case ) out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def lowerCamelCase__( self :Any ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case ,'wb' ) as fi: a__ = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
657
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
1
from typing import TYPE_CHECKING from ....utils import _LazyModule snake_case : int = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys snake_case : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
657
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowercase ( ): a__ = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('RGB' ) return image def __lowercase ( __lowerCAmelCase : Optional[int] ): a__ = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): a__ = dct.pop(__lowerCAmelCase ) a__ = val def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a__ = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) a__ = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict a__ = torch.cat((q_bias, torch.zeros_like(__lowerCAmelCase , requires_grad=__lowerCAmelCase ), v_bias) ) a__ = qkv_bias def __lowercase ( __lowerCAmelCase : Tuple ): a__ = 3_6_4 if 'coco' in model_name else 2_2_4 a__ = InstructBlipVisionConfig(image_size=__lowerCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: a__ = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a__ = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: a__ = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: a__ = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 a__ = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() a__ = InstructBlipConfig(vision_config=__lowerCAmelCase , text_config=__lowerCAmelCase , qformer_config=__lowerCAmelCase ) return config, image_size @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Optional[Any]=False ): a__ = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: a__ = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) a__ = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) a__ , a__ = get_blipa_config(__lowerCAmelCase ) a__ = InstructBlipForConditionalGeneration(__lowerCAmelCase ).eval() a__ = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } a__ , a__ = model_name_to_original[model_name] # load original model print('Loading original model...' ) a__ = 'cuda:1' if torch.cuda.is_available() else 'cpu' a__ = 'cuda:2' if torch.cuda.is_available() else 'cpu' a__ , a__ , a__ = load_model_and_preprocess( name=__lowerCAmelCase , model_type=__lowerCAmelCase , is_eval=__lowerCAmelCase , device=__lowerCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys a__ = original_model.state_dict() a__ = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a__ = state_dict.pop(__lowerCAmelCase ) if key.startswith('Qformer.bert' ): a__ = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: a__ = key.replace('self' , 'attention' ) if "llm_proj" in key: a__ = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: a__ = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): a__ = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): a__ = key.replace('t5' , 'language' ) a__ = val # read in qv biases read_in_q_v_bias(__lowerCAmelCase , __lowerCAmelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) a__ = load_demo_image() a__ = 'What is unusual about this image?' # create processor a__ = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) a__ = InstructBlipProcessor( image_processor=__lowerCAmelCase , tokenizer=__lowerCAmelCase , qformer_tokenizer=__lowerCAmelCase , ) a__ = processor(images=__lowerCAmelCase , text=__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase ) # make sure processor creates exact same pixel values a__ = vis_processors['eval'](__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) a__ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __lowerCAmelCase ) original_model.to(__lowerCAmelCase ) hf_model.to(__lowerCAmelCase ) with torch.no_grad(): if "vicuna" in model_name: a__ = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits a__ = hf_model(**__lowerCAmelCase ).logits else: a__ = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits a__ = tokenizer('\n' , return_tensors='pt' ).input_ids.to(__lowerCAmelCase ) a__ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 ) a__ = hf_model(**__lowerCAmelCase , labels=__lowerCAmelCase ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape a__ = 1E-4 if 'vicuna' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , __lowerCAmelCase , atol=__lowerCAmelCase ) print('Looks ok!' ) print('Generating with original model...' ) a__ = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) a__ = hf_model.generate( **__lowerCAmelCase , do_sample=__lowerCAmelCase , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? a__ = 2 print('Original generation:' , __lowerCAmelCase ) a__ = processor.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) a__ = [text.strip() for text in output_text] print('HF generation:' , __lowerCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if push_to_hub: processor.push_to_hub(F'Salesforce/{model_name}' ) hf_model.push_to_hub(F'Salesforce/{model_name}' ) if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser() snake_case : Optional[int] = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) snake_case : Any = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
657
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : str = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self :Dict ,__snake_case :int ,__snake_case :int ,__snake_case :Optional[int] = None ,__snake_case :int = 5_02_57 ,__snake_case :int = 10_24 ,__snake_case :int = 7_68 ,__snake_case :int = 12 ,__snake_case :int = 12 ,__snake_case :Optional[int] = None ,__snake_case :str = "gelu_new" ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 1E-5 ,__snake_case :float = 0.02 ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :bool = False ,__snake_case :bool = False ,) -> int: super().__init__() a__ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' F' `n_embd`: {n_embd} are not equal.' ) a__ = prefix_inner_dim a__ = prefix_hidden_dim a__ = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) a__ = ( nn.Linear(self.prefix_hidden_dim ,__snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) a__ = GPTaConfig( vocab_size=__snake_case ,n_positions=__snake_case ,n_embd=__snake_case ,n_layer=__snake_case ,n_head=__snake_case ,n_inner=__snake_case ,activation_function=__snake_case ,resid_pdrop=__snake_case ,embd_pdrop=__snake_case ,attn_pdrop=__snake_case ,layer_norm_epsilon=__snake_case ,initializer_range=__snake_case ,scale_attn_weights=__snake_case ,use_cache=__snake_case ,scale_attn_by_inverse_layer_idx=__snake_case ,reorder_and_upcast_attn=__snake_case ,) a__ = GPTaLMHeadModel(__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :torch.Tensor ,__snake_case :torch.Tensor ,__snake_case :Optional[torch.Tensor] = None ,__snake_case :Optional[torch.Tensor] = None ,) -> Union[str, Any]: a__ = self.transformer.transformer.wte(__snake_case ) a__ = self.encode_prefix(__snake_case ) a__ = self.decode_prefix(__snake_case ) a__ = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: a__ = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) a__ = torch.cat((dummy_token, input_ids) ,dim=1 ) a__ = self.transformer(inputs_embeds=__snake_case ,labels=__snake_case ,attention_mask=__snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase__( self :List[Any] ,__snake_case :int ,__snake_case :torch.device ) -> torch.Tensor: return torch.zeros(__snake_case ,self.prefix_length ,dtype=torch.intaa ,device=__snake_case ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[Any] ) -> Tuple: return self.encode_prefix(__snake_case ) @torch.no_grad() def lowerCamelCase__( self :Optional[Any] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :Any ) -> Dict: a__ = torch.split(__snake_case ,1 ,dim=0 ) a__ = [] a__ = [] for feature in features: a__ = self.decode_prefix(feature.to(__snake_case ) ) # back to the clip feature # Only support beam search for now a__ , a__ = self.generate_beam( input_embeds=__snake_case ,device=__snake_case ,eos_token_id=__snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) a__ = torch.stack(__snake_case ) a__ = torch.stack(__snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase__( self :Any ,__snake_case :List[Any]=None ,__snake_case :Tuple=None ,__snake_case :Optional[int]=None ,__snake_case :int = 5 ,__snake_case :int = 67 ,__snake_case :float = 1.0 ,__snake_case :Optional[int] = None ,) -> List[str]: a__ = eos_token_id a__ = None a__ = None a__ = torch.ones(__snake_case ,device=__snake_case ,dtype=torch.int ) a__ = torch.zeros(__snake_case ,device=__snake_case ,dtype=torch.bool ) if input_embeds is not None: a__ = input_embeds else: a__ = self.transformer.transformer.wte(__snake_case ) for i in range(__snake_case ): a__ = self.transformer(inputs_embeds=__snake_case ) a__ = outputs.logits a__ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) a__ = logits.softmax(-1 ).log() if scores is None: a__ , a__ = logits.topk(__snake_case ,-1 ) a__ = generated.expand(__snake_case ,*generated.shape[1:] ) a__ , a__ = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: a__ = next_tokens else: a__ = tokens.expand(__snake_case ,*tokens.shape[1:] ) a__ = torch.cat((tokens, next_tokens) ,dim=1 ) else: a__ = -float(np.inf ) a__ = 0 a__ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 a__ = scores_sum / seq_lengths[:, None] a__ , a__ = scores_sum_average.view(-1 ).topk(__snake_case ,-1 ) a__ = next_tokens // scores_sum.shape[1] a__ = seq_lengths[next_tokens_source] a__ = next_tokens % scores_sum.shape[1] a__ = next_tokens.unsqueeze(1 ) a__ = tokens[next_tokens_source] a__ = torch.cat((tokens, next_tokens) ,dim=1 ) a__ = generated[next_tokens_source] a__ = scores_sum_average * seq_lengths a__ = is_stopped[next_tokens_source] a__ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) a__ = torch.cat((generated, next_token_embed) ,dim=1 ) a__ = is_stopped + next_tokens.eq(__snake_case ).squeeze() if is_stopped.all(): break a__ = scores / seq_lengths a__ = scores.argsort(descending=__snake_case ) # tokens tensors are already padded to max_seq_length a__ = [tokens[i] for i in order] a__ = torch.stack(__snake_case ,dim=0 ) a__ = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
657
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[Any] = logging.get_logger(__name__) snake_case : Any = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[int] = '''time_series_transformer''' UpperCAmelCase__ : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self :Any ,__snake_case :Optional[int] = None ,__snake_case :Optional[int] = None ,__snake_case :str = "student_t" ,__snake_case :str = "nll" ,__snake_case :int = 1 ,__snake_case :List[int] = [1, 2, 3, 4, 5, 6, 7] ,__snake_case :Optional[Union[str, bool]] = "mean" ,__snake_case :int = 0 ,__snake_case :int = 0 ,__snake_case :int = 0 ,__snake_case :int = 0 ,__snake_case :Optional[List[int]] = None ,__snake_case :Optional[List[int]] = None ,__snake_case :int = 32 ,__snake_case :int = 32 ,__snake_case :int = 2 ,__snake_case :int = 2 ,__snake_case :int = 2 ,__snake_case :int = 2 ,__snake_case :bool = True ,__snake_case :str = "gelu" ,__snake_case :int = 64 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :int = 1_00 ,__snake_case :float = 0.02 ,__snake_case :Optional[int]=True ,**__snake_case :Optional[Any] ,) -> str: # time series specific configuration a__ = prediction_length a__ = context_length or prediction_length a__ = distribution_output a__ = loss a__ = input_size a__ = num_time_features a__ = lags_sequence a__ = scaling a__ = num_dynamic_real_features a__ = num_static_real_features a__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) a__ = cardinality else: a__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) a__ = embedding_dimension else: a__ = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] a__ = num_parallel_samples # Transformer architecture configuration a__ = input_size * len(__snake_case ) + self._number_of_features a__ = d_model a__ = encoder_attention_heads a__ = decoder_attention_heads a__ = encoder_ffn_dim a__ = decoder_ffn_dim a__ = encoder_layers a__ = decoder_layers a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = encoder_layerdrop a__ = decoder_layerdrop a__ = activation_function a__ = init_std a__ = use_cache super().__init__(is_encoder_decoder=__snake_case ,**__snake_case ) @property def lowerCamelCase__( self :Dict ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
657
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[str] = logging.get_logger(__name__) snake_case : Union[str, Any] = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = '''fnet''' def __init__( self :str ,__snake_case :List[str]=3_20_00 ,__snake_case :Union[str, Any]=7_68 ,__snake_case :List[Any]=12 ,__snake_case :Tuple=30_72 ,__snake_case :List[Any]="gelu_new" ,__snake_case :int=0.1 ,__snake_case :int=5_12 ,__snake_case :Dict=4 ,__snake_case :Dict=0.02 ,__snake_case :Tuple=1E-12 ,__snake_case :List[str]=False ,__snake_case :Any=5_12 ,__snake_case :List[Any]=3 ,__snake_case :Dict=1 ,__snake_case :Optional[int]=2 ,**__snake_case :Optional[Any] ,) -> List[Any]: super().__init__(pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,**__snake_case ) a__ = vocab_size a__ = max_position_embeddings a__ = hidden_size a__ = num_hidden_layers a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = initializer_range a__ = type_vocab_size a__ = layer_norm_eps a__ = use_tpu_fourier_optimizations a__ = tpu_short_seq_length
657
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case : Dict = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] ): a__ = state_dict.pop(__lowerCAmelCase ) a__ = val def __lowercase ( __lowerCAmelCase : Optional[Any] ): a__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: a__ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) a__ = value else: a__ = value return new_state_dict def __lowercase ( __lowerCAmelCase : List[str] ): a__ = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a__ = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) a__ = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a__ = in_proj_weight[:2_5_6, :] a__ = in_proj_bias[:2_5_6] a__ = in_proj_weight[2_5_6:5_1_2, :] a__ = in_proj_bias[2_5_6:5_1_2] a__ = in_proj_weight[-2_5_6:, :] a__ = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a__ = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a__ = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a__ = in_proj_weight[:2_5_6, :] a__ = in_proj_bias[:2_5_6] a__ = in_proj_weight[2_5_6:5_1_2, :] a__ = in_proj_bias[2_5_6:5_1_2] a__ = in_proj_weight[-2_5_6:, :] a__ = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention a__ = state_dict.pop( F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) a__ = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a__ = in_proj_weight_cross_attn[:2_5_6, :] a__ = in_proj_bias_cross_attn[:2_5_6] a__ = in_proj_weight_cross_attn[2_5_6:5_1_2, :] a__ = in_proj_bias_cross_attn[2_5_6:5_1_2] a__ = in_proj_weight_cross_attn[-2_5_6:, :] a__ = in_proj_bias_cross_attn[-2_5_6:] def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str ): a__ , a__ = image.size a__ = max(__lowerCAmelCase , __lowerCAmelCase ) a__ = 8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 a__ = target_max_size / current_max_size a__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __lowercase ( __lowerCAmelCase : str ): a__ = F.to_tensor(__lowerCAmelCase ) a__ = F.normalize(__lowerCAmelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] ): logger.info('Converting model...' ) # load original state dict a__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = rename_backbone_keys(__lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a__ = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): a__ = state_dict.pop(__lowerCAmelCase ) a__ = val # create HuggingFace model and load state dict a__ = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: a__ = 1_5 a__ = 2 a__ = {0: 'table', 1: 'table rotated'} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} else: a__ = 1_2_5 a__ = 6 a__ = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } a__ = idalabel a__ = {v: k for k, v in idalabel.items()} a__ = DetrImageProcessor( format='coco_detection' , max_size=8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 ) a__ = TableTransformerForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # verify our conversion a__ = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' a__ = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=__lowerCAmelCase ) a__ = Image.open(__lowerCAmelCase ).convert('RGB' ) a__ = normalize(resize(__lowerCAmelCase , __lowerCAmelCase ) ).unsqueeze(0 ) a__ = model(__lowerCAmelCase ) if "detection" in checkpoint_url: a__ = (1, 1_5, 3) a__ = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) a__ = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: a__ = (1, 1_2_5, 7) a__ = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) a__ = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) a__ = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(__lowerCAmelCase ) image_processor.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case : Tuple = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
657
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Optional[int] ) -> Tuple: a__ = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) a__ = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) sd_pipe.set_scheduler('sample_euler' ) a__ = 'A painting of a squirrel eating a burger' a__ = torch.manual_seed(0 ) a__ = sd_pipe([prompt] ,generator=__snake_case ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type='np' ) a__ = output.images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__( self :str ) -> Any: a__ = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) a__ = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) sd_pipe.set_scheduler('sample_euler' ) a__ = 'A painting of a squirrel eating a burger' a__ = torch.manual_seed(0 ) a__ = sd_pipe([prompt] ,generator=__snake_case ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type='np' ) a__ = output.images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowerCamelCase__( self :Dict ) -> Tuple: a__ = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) a__ = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) a__ = 'A painting of a squirrel eating a burger' a__ = torch.manual_seed(0 ) a__ = sd_pipe( [prompt] ,generator=__snake_case ,guidance_scale=7.5 ,num_inference_steps=15 ,output_type='np' ,use_karras_sigmas=__snake_case ,) a__ = output.images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
657
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ): # Initialise PyTorch model a__ = AlbertConfig.from_json_file(__lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) a__ = AlbertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) snake_case : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
657
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case : str = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = ['''PoolFormerFeatureExtractor'''] snake_case : Optional[int] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys snake_case : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
657
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
1
class snake_case_ : # Public class to implement a graph def __init__( self :Union[str, Any] ,__snake_case :int ,__snake_case :int ,__snake_case :list[list[bool]] ) -> None: a__ = row a__ = col a__ = graph def lowerCamelCase__( self :List[Any] ,__snake_case :int ,__snake_case :int ,__snake_case :list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCamelCase__( self :str ,__snake_case :int ,__snake_case :int ,__snake_case :list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element a__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order a__ = [-1, 0, 1, -1, 1, -1, 0, 1] a__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] ,j + col_nbr[k] ,__snake_case ): self.diffs(i + row_nbr[k] ,j + col_nbr[k] ,__snake_case ) def lowerCamelCase__( self :Any ) -> int: # And finally, count all islands. a__ = [[False for j in range(self.COL )] for i in range(self.ROW )] a__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__snake_case ,__snake_case ,__snake_case ) count += 1 return count
657
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
1
from ..utils import DummyObject, requires_backends class snake_case_ (metaclass=lowerCamelCase_ ): UpperCAmelCase__ : List[str] = ['''speech'''] def __init__( self :Any ,*__snake_case :Dict ,**__snake_case :List[str] ) -> Dict: requires_backends(self ,['speech'] ) class snake_case_ (metaclass=lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''speech'''] def __init__( self :Optional[Any] ,*__snake_case :List[Any] ,**__snake_case :Optional[Any] ) -> Union[str, Any]: requires_backends(self ,['speech'] )
657
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
1
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case : Any = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys snake_case : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration snake_case : Dict = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] snake_case : Union[str, Any] = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] snake_case : Union[str, Any] = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) snake_case : List[str] = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) snake_case : Union[str, Any] = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : str ): for tf_name, hf_name in patterns: a__ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def __lowercase ( __lowerCAmelCase : dict , __lowerCAmelCase : dict ): a__ = BigBirdPegasusConfig(**__lowerCAmelCase ) a__ = BigBirdPegasusForConditionalGeneration(__lowerCAmelCase ) a__ = torch_model.state_dict() a__ = {} # separating decoder weights a__ = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} a__ = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): a__ = [k.endswith(__lowerCAmelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCAmelCase ): continue a__ = DECODER_PATTERNS a__ = rename_state_dict_key(__lowerCAmelCase , __lowerCAmelCase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): a__ = v.T a__ = torch.from_numpy(__lowerCAmelCase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): a__ = [k.endswith(__lowerCAmelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCAmelCase ): continue a__ = REMAINING_PATTERNS a__ = rename_state_dict_key(__lowerCAmelCase , __lowerCAmelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): a__ = v.T a__ = torch.from_numpy(__lowerCAmelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' a__ = mapping['model.embed_positions.weight'] a__ = mapping.pop('model.embed_positions.weight' ) a__ , a__ = torch_model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) a__ = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def __lowercase ( __lowerCAmelCase : Dict ): a__ = tf.train.list_variables(__lowerCAmelCase ) a__ = {} a__ = ['global_step'] for name, shape in tqdm(__lowerCAmelCase , desc='converting tf checkpoint to dict' ): a__ = any(pat in name for pat in ignore_name ) if skip_key: continue a__ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) a__ = array return tf_weights def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : dict ): a__ = get_tf_weights_as_numpy(__lowerCAmelCase ) a__ = convert_bigbird_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') snake_case : Dict = parser.parse_args() snake_case : List[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
657
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() snake_case : int = logging.get_logger(__name__) snake_case : Dict = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def __lowercase ( __lowerCAmelCase : List[Any] ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: a__ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) if k.startswith('encoder' ): a__ = k.replace('.attn' , '.self_attn' ) a__ = k.replace('norm1' , 'self_attn_layer_norm' ) a__ = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): a__ = k.replace('norm1' , 'self_attn_layer_norm' ) a__ = k.replace('norm2' , 'encoder_attn_layer_norm' ) a__ = k.replace('norm3' , 'final_layer_norm' ) return k def __lowercase ( __lowerCAmelCase : List[str] ): a__ = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: a__ = sd.pop(__lowerCAmelCase ) a__ = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd a__ = v snake_case : List[Any] = ['''START'''] @torch.no_grad() def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any ): a__ = torch.load(__lowerCAmelCase , map_location='cpu' ) a__ = model['model'] a__ = BlenderbotConfig.from_json_file(__lowerCAmelCase ) a__ = BlenderbotForConditionalGeneration(__lowerCAmelCase ) a__ = m.model.state_dict().keys() a__ = [] a__ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue a__ = rename_state_dict_key(__lowerCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: a__ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__lowerCAmelCase ) m.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) m.half() m.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) snake_case : Any = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
657
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class snake_case_ (unittest.TestCase ): @slow def lowerCamelCase__( self :List[Any] ) -> Union[str, Any]: a__ = TFXLMRobertaModel.from_pretrained('jplu/tf-xlm-roberta-base' ) a__ = { 'input_ids': tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] ,dtype=tf.intaa ), # "My dog is cute" 'attention_mask': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] ,dtype=tf.intaa ), } a__ = model(__snake_case )['last_hidden_state'] a__ = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape ,__snake_case ) # compare the actual values for a slice. a__ = tf.convert_to_tensor( [ [ [0.0_68_17_62, 0.10_89_44_51, 0.06_77_25_04], [-0.06_42_36_68, 0.02_36_66_15, 0.04_32_93_44], [-0.06_05_72_95, 0.09_97_41_35, -0.00_07_05_84], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
657
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case : str = ['''small''', '''medium''', '''large'''] snake_case : Tuple = '''lm_head.decoder.weight''' snake_case : Dict = '''lm_head.weight''' def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = torch.load(__lowerCAmelCase ) a__ = d.pop(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) snake_case : List[Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case : List[str] = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") snake_case : Dict = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
657
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
1
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
1
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: snake_case : Optional[int] = None snake_case : Any = logging.get_logger(__name__) snake_case : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case : Any = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } snake_case : Any = { '''facebook/nllb-large-en-ro''': 10_24, '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off snake_case : List[Any] = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : str = VOCAB_FILES_NAMES UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : str = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : str = NllbTokenizer UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self :List[str] ,__snake_case :List[str]=None ,__snake_case :Any=None ,__snake_case :Dict="<s>" ,__snake_case :List[Any]="</s>" ,__snake_case :List[Any]="</s>" ,__snake_case :Any="<s>" ,__snake_case :str="<unk>" ,__snake_case :Union[str, Any]="<pad>" ,__snake_case :Dict="<mask>" ,__snake_case :Optional[Any]=None ,__snake_case :int=None ,__snake_case :Any=None ,__snake_case :str=False ,**__snake_case :Optional[int] ,) -> str: # Mask token behave like a normal word, i.e. include the space before it a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else mask_token a__ = legacy_behaviour super().__init__( vocab_file=__snake_case ,tokenizer_file=__snake_case ,bos_token=__snake_case ,eos_token=__snake_case ,sep_token=__snake_case ,cls_token=__snake_case ,unk_token=__snake_case ,pad_token=__snake_case ,mask_token=__snake_case ,src_lang=__snake_case ,tgt_lang=__snake_case ,additional_special_tokens=__snake_case ,legacy_behaviour=__snake_case ,**__snake_case ,) a__ = vocab_file a__ = False if not self.vocab_file else True a__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) a__ = { lang_code: self.convert_tokens_to_ids(__snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } a__ = src_lang if src_lang is not None else 'eng_Latn' a__ = self.convert_tokens_to_ids(self._src_lang ) a__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase__( self :List[Any] ) -> str: return self._src_lang @src_lang.setter def lowerCamelCase__( self :Optional[int] ,__snake_case :str ) -> None: a__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__( self :int ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Any ,__snake_case :str ,__snake_case :Optional[str] ,__snake_case :Optional[str] ,**__snake_case :Dict ) -> int: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) a__ = src_lang a__ = self(__snake_case ,add_special_tokens=__snake_case ,return_tensors=__snake_case ,**__snake_case ) a__ = self.convert_tokens_to_ids(__snake_case ) a__ = tgt_lang_id return inputs def lowerCamelCase__( self :List[Any] ,__snake_case :List[str] ,__snake_case :str = "eng_Latn" ,__snake_case :Optional[List[str]] = None ,__snake_case :str = "fra_Latn" ,**__snake_case :Tuple ,) -> BatchEncoding: a__ = src_lang a__ = tgt_lang return super().prepare_seqaseq_batch(__snake_case ,__snake_case ,**__snake_case ) def lowerCamelCase__( self :int ) -> Tuple: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__( self :Dict ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[Any] ) -> None: a__ = self.convert_tokens_to_ids(__snake_case ) if self.legacy_behaviour: a__ = [] a__ = [self.eos_token_id, self.cur_lang_code] else: a__ = [self.cur_lang_code] a__ = [self.eos_token_id] a__ = self.convert_ids_to_tokens(self.prefix_tokens ) a__ = self.convert_ids_to_tokens(self.suffix_tokens ) a__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def lowerCamelCase__( self :int ,__snake_case :str ) -> None: a__ = self.convert_tokens_to_ids(__snake_case ) if self.legacy_behaviour: a__ = [] a__ = [self.eos_token_id, self.cur_lang_code] else: a__ = [self.cur_lang_code] a__ = [self.eos_token_id] a__ = self.convert_ids_to_tokens(self.prefix_tokens ) a__ = self.convert_ids_to_tokens(self.suffix_tokens ) a__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def lowerCamelCase__( self :List[Any] ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file ,__snake_case ) return (out_vocab_file,)
657
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase__ : Union[str, Any] = TF_MODEL_FOR_MASKED_LM_MAPPING def lowerCamelCase__( self :List[str] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowerCamelCase__( self :List[str] ) -> str: a__ = pipeline(task='fill-mask' ,model='sshleifer/tiny-distilroberta-base' ,top_k=2 ,framework='tf' ) a__ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(__snake_case ,decimals=6 ) ,[ {'sequence': 'My name is grouped', 'score': 2.1E-05, 'token': 3_80_15, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1E-05, 'token': 2_55_06, 'token_str': ' accuser'}, ] ,) a__ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(__snake_case ,decimals=6 ) ,[ { 'sequence': 'The largest city in France is grouped', 'score': 2.1E-05, 'token': 3_80_15, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1E-05, 'token': 2_55_06, 'token_str': ' accuser', }, ] ,) a__ = unmasker('My name is <mask>' ,targets=[' Patrick', ' Clara', ' Teven'] ,top_k=3 ) self.assertEqual( nested_simplify(__snake_case ,decimals=6 ) ,[ {'sequence': 'My name is Clara', 'score': 2E-05, 'token': 1_36_06, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2E-05, 'token': 34_99, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9E-05, 'token': 29_41, 'token_str': ' Te'}, ] ,) @require_torch def lowerCamelCase__( self :List[Any] ) -> Optional[int]: a__ = pipeline(task='fill-mask' ,model='sshleifer/tiny-distilroberta-base' ,top_k=2 ,framework='pt' ) a__ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(__snake_case ,decimals=6 ) ,[ {'sequence': 'My name is Maul', 'score': 2.2E-05, 'token': 3_56_76, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2E-05, 'token': 1_64_16, 'token_str': 'ELS'}, ] ,) a__ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(__snake_case ,decimals=6 ) ,[ { 'sequence': 'The largest city in France is Maul', 'score': 2.2E-05, 'token': 3_56_76, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2E-05, 'token': 1_64_16, 'token_str': 'ELS'}, ] ,) a__ = unmasker('My name is <mask>' ,targets=[' Patrick', ' Clara', ' Teven'] ,top_k=3 ) self.assertEqual( nested_simplify(__snake_case ,decimals=6 ) ,[ {'sequence': 'My name is Patrick', 'score': 2.1E-05, 'token': 34_99, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2E-05, 'token': 29_41, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2E-05, 'token': 1_36_06, 'token_str': ' Clara'}, ] ,) a__ = unmasker('My name is <mask> <mask>' ,top_k=2 ) self.assertEqual( nested_simplify(__snake_case ,decimals=6 ) ,[ [ { 'score': 2.2E-05, 'token': 3_56_76, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2E-05, 'token': 1_64_16, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2E-05, 'token': 3_56_76, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2E-05, 'token': 1_64_16, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] ,) @require_torch_gpu def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = pipeline('fill-mask' ,model='hf-internal-testing/tiny-random-distilbert' ,device=0 ,framework='pt' ) # convert model to fp16 pipe.model.half() a__ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__snake_case ,__snake_case ) @slow @require_torch def lowerCamelCase__( self :List[Any] ) -> int: a__ = pipeline(task='fill-mask' ,model='distilroberta-base' ,top_k=2 ,framework='pt' ) self.run_large_test(__snake_case ) @slow @require_tf def lowerCamelCase__( self :Dict ) -> str: a__ = pipeline(task='fill-mask' ,model='distilroberta-base' ,top_k=2 ,framework='tf' ) self.run_large_test(__snake_case ) def lowerCamelCase__( self :int ,__snake_case :Optional[int] ) -> Union[str, Any]: a__ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(__snake_case ) ,[ {'sequence': 'My name is John', 'score': 0.0_08, 'token': 6_10, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_07, 'token': 15_73, 'token_str': ' Chris'}, ] ,) a__ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(__snake_case ) ,[ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_51, 'token': 22_01, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_14, 'token': 1_27_90, 'token_str': ' Lyon', }, ] ,) a__ = unmasker('My name is <mask>' ,targets=[' Patrick', ' Clara', ' Teven'] ,top_k=3 ) self.assertEqual( nested_simplify(__snake_case ) ,[ {'sequence': 'My name is Patrick', 'score': 0.0_05, 'token': 34_99, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_00, 'token': 1_36_06, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_00, 'token': 29_41, 'token_str': ' Te'}, ] ,) @require_torch def lowerCamelCase__( self :List[str] ) -> int: a__ = pipeline(task='fill-mask' ,model='sshleifer/tiny-distilroberta-base' ,framework='pt' ) a__ = None a__ = None self.run_pipeline_test(__snake_case ,[] ) @require_tf def lowerCamelCase__( self :Tuple ) -> Optional[int]: a__ = pipeline(task='fill-mask' ,model='sshleifer/tiny-distilroberta-base' ,framework='tf' ) a__ = None a__ = None self.run_pipeline_test(__snake_case ,[] ) def lowerCamelCase__( self :List[str] ,__snake_case :Union[str, Any] ,__snake_case :Optional[Any] ,__snake_case :int ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) a__ = FillMaskPipeline(model=__snake_case ,tokenizer=__snake_case ) a__ = [ F'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def lowerCamelCase__( self :Dict ,__snake_case :Tuple ,__snake_case :List[Any] ) -> Any: a__ = fill_masker.tokenizer a__ = fill_masker.model a__ = fill_masker( F'This is a {tokenizer.mask_token}' ,) self.assertEqual( __snake_case ,[ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ] ,) a__ = fill_masker([F'This is a {tokenizer.mask_token}'] ) self.assertEqual( __snake_case ,[ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ] ,) a__ = fill_masker([F'This is a {tokenizer.mask_token}', F'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __snake_case ,[ [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ], [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ], ] ,) with self.assertRaises(__snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__snake_case ): fill_masker('This is' ) self.run_test_top_k(__snake_case ,__snake_case ) self.run_test_targets(__snake_case ,__snake_case ) self.run_test_top_k_targets(__snake_case ,__snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(__snake_case ,__snake_case ) self.fill_mask_with_multiple_masks(__snake_case ,__snake_case ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[int] ) -> str: a__ = tokenizer.get_vocab() a__ = sorted(vocab.keys() )[:2] # Pipeline argument a__ = FillMaskPipeline(model=__snake_case ,tokenizer=__snake_case ,targets=__snake_case ) a__ = fill_masker(F'This is a {tokenizer.mask_token}' ) self.assertEqual( __snake_case ,[ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ] ,) a__ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} ,__snake_case ) a__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} ,set(__snake_case ) ) # Call argument a__ = FillMaskPipeline(model=__snake_case ,tokenizer=__snake_case ) a__ = fill_masker(F'This is a {tokenizer.mask_token}' ,targets=__snake_case ) self.assertEqual( __snake_case ,[ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ] ,) a__ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} ,__snake_case ) a__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} ,set(__snake_case ) ) # Score equivalence a__ = fill_masker(F'This is a {tokenizer.mask_token}' ,targets=__snake_case ) a__ = [top_mask['token_str'] for top_mask in outputs] a__ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ) == set(__snake_case ): a__ = fill_masker(F'This is a {tokenizer.mask_token}' ,targets=__snake_case ) a__ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__snake_case ) ,nested_simplify(__snake_case ) ) # Raises with invalid with self.assertRaises(__snake_case ): a__ = fill_masker(F'This is a {tokenizer.mask_token}' ,targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__snake_case ): a__ = fill_masker(F'This is a {tokenizer.mask_token}' ,targets=[''] ) with self.assertRaises(__snake_case ): a__ = fill_masker(F'This is a {tokenizer.mask_token}' ,targets='' ) def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> List[Any]: a__ = FillMaskPipeline(model=__snake_case ,tokenizer=__snake_case ,top_k=2 ) a__ = fill_masker(F'This is a {tokenizer.mask_token}' ) self.assertEqual( __snake_case ,[ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ] ,) a__ = FillMaskPipeline(model=__snake_case ,tokenizer=__snake_case ) a__ = fill_masker(F'This is a {tokenizer.mask_token}' ,top_k=2 ) self.assertEqual( __snake_case ,[ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ] ,) self.assertEqual(nested_simplify(__snake_case ) ,nested_simplify(__snake_case ) ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Tuple ,__snake_case :str ) -> Tuple: a__ = tokenizer.get_vocab() a__ = FillMaskPipeline(model=__snake_case ,tokenizer=__snake_case ) # top_k=2, ntargets=3 a__ = sorted(vocab.keys() )[:3] a__ = fill_masker(F'This is a {tokenizer.mask_token}' ,top_k=2 ,targets=__snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results a__ = [el['token_str'] for el in sorted(__snake_case ,key=lambda __snake_case : x["score"] ,reverse=__snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ).issubset(__snake_case ): a__ = fill_masker(F'This is a {tokenizer.mask_token}' ,top_k=3 ,targets=__snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(__snake_case ) ,nested_simplify(__snake_case ) ) def lowerCamelCase__( self :List[str] ,__snake_case :int ,__snake_case :int ) -> Tuple: a__ = FillMaskPipeline(model=__snake_case ,tokenizer=__snake_case ) a__ = tokenizer.get_vocab() # String duplicates + id duplicates a__ = sorted(vocab.keys() )[:3] a__ = [targets[0], targets[1], targets[0], targets[2], targets[1]] a__ = fill_masker(F'My name is {tokenizer.mask_token}' ,targets=__snake_case ,top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__snake_case ) ,3 ) def lowerCamelCase__( self :Tuple ,__snake_case :Optional[int] ,__snake_case :Optional[int] ) -> Union[str, Any]: a__ = FillMaskPipeline(model=__snake_case ,tokenizer=__snake_case ) a__ = fill_masker( F'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' ,top_k=2 ) self.assertEqual( __snake_case ,[ [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ], [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ], [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ], ] ,)
657
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ): a__ = OmegaConf.load(__lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase , map_location='cpu' )['model'] a__ = list(state_dict.keys() ) # extract state_dict for VQVAE a__ = {} a__ = 'first_stage_model.' for key in keys: if key.startswith(__lowerCAmelCase ): a__ = state_dict[key] # extract state_dict for UNetLDM a__ = {} a__ = 'model.diffusion_model.' for key in keys: if key.startswith(__lowerCAmelCase ): a__ = state_dict[key] a__ = config.model.params.first_stage_config.params a__ = config.model.params.unet_config.params a__ = VQModel(**__lowerCAmelCase ).eval() vqvae.load_state_dict(__lowerCAmelCase ) a__ = UNetLDMModel(**__lowerCAmelCase ).eval() unet.load_state_dict(__lowerCAmelCase ) a__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , ) a__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipeline.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : int = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) snake_case : Optional[int] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
657
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging snake_case : Optional[Any] = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : int = ['''input_features''', '''is_longer'''] def __init__( self :Union[str, Any] ,__snake_case :Optional[Any]=64 ,__snake_case :Dict=4_80_00 ,__snake_case :Any=4_80 ,__snake_case :Union[str, Any]=10 ,__snake_case :List[Any]=10_24 ,__snake_case :Dict=0.0 ,__snake_case :Any=False ,__snake_case :float = 0 ,__snake_case :float = 1_40_00 ,__snake_case :int = None ,__snake_case :str = "fusion" ,__snake_case :str = "repeatpad" ,**__snake_case :Optional[int] ,) -> Optional[int]: super().__init__( feature_size=__snake_case ,sampling_rate=__snake_case ,padding_value=__snake_case ,return_attention_mask=__snake_case ,**__snake_case ,) a__ = top_db a__ = truncation a__ = padding a__ = fft_window_size a__ = (fft_window_size >> 1) + 1 a__ = hop_length a__ = max_length_s a__ = max_length_s * sampling_rate a__ = sampling_rate a__ = frequency_min a__ = frequency_max a__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=__snake_case ,min_frequency=__snake_case ,max_frequency=__snake_case ,sampling_rate=__snake_case ,norm=__snake_case ,mel_scale='htk' ,) a__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=__snake_case ,min_frequency=__snake_case ,max_frequency=__snake_case ,sampling_rate=__snake_case ,norm='slaney' ,mel_scale='slaney' ,) def lowerCamelCase__( self :str ) -> Dict[str, Any]: a__ = copy.deepcopy(self.__dict__ ) a__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCamelCase__( self :int ,__snake_case :np.array ,__snake_case :Optional[np.array] = None ) -> np.ndarray: a__ = spectrogram( __snake_case ,window_function(self.fft_window_size ,'hann' ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=__snake_case ,log_mel='dB' ,) return log_mel_spectrogram.T def lowerCamelCase__( self :List[str] ,__snake_case :Union[str, Any] ,__snake_case :Union[str, Any] ,__snake_case :Dict ) -> Optional[Any]: a__ = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk a__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk a__ = [0] # randomly choose index for each part a__ = np.random.choice(ranges[0] ) a__ = np.random.choice(ranges[1] ) a__ = np.random.choice(ranges[2] ) a__ = mel[idx_front : idx_front + chunk_frames, :] a__ = mel[idx_middle : idx_middle + chunk_frames, :] a__ = mel[idx_back : idx_back + chunk_frames, :] a__ = torch.tensor(mel[None, None, :] ) a__ = torch.nn.functional.interpolate( __snake_case ,size=[chunk_frames, 64] ,mode='bilinear' ,align_corners=__snake_case ) a__ = mel_shrink[0][0].numpy() a__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def lowerCamelCase__( self :Tuple ,__snake_case :np.array ,__snake_case :Tuple ,__snake_case :Optional[Any] ,__snake_case :Dict ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": a__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad a__ = len(__snake_case ) - max_length a__ = np.random.randint(0 ,overflow + 1 ) a__ = waveform[idx : idx + max_length] a__ = self._np_extract_fbank_features(__snake_case ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": a__ = self._np_extract_fbank_features(__snake_case ,self.mel_filters ) a__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed a__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. a__ = np.stack([mel, mel, mel, mel] ,axis=0 ) a__ = False else: a__ = self._random_mel_fusion(__snake_case ,__snake_case ,__snake_case ) a__ = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented' ) else: a__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": a__ = int(max_length / len(__snake_case ) ) a__ = np.stack(np.tile(__snake_case ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": a__ = int(max_length / len(__snake_case ) ) a__ = np.stack(np.tile(__snake_case ,__snake_case ) ) a__ = np.pad(__snake_case ,(0, max_length - waveform.shape[0]) ,mode='constant' ,constant_values=0 ) if truncation == "fusion": a__ = self._np_extract_fbank_features(__snake_case ,self.mel_filters ) a__ = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: a__ = self._np_extract_fbank_features(__snake_case ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self :Optional[Any] ,__snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,__snake_case :str = None ,__snake_case :Optional[str] = None ,__snake_case :Optional[int] = None ,__snake_case :Optional[int] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,**__snake_case :Optional[Any] ,) -> BatchFeature: a__ = truncation if truncation is not None else self.truncation a__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a__ = isinstance(__snake_case ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) a__ = is_batched_numpy or ( isinstance(__snake_case ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: a__ = [np.asarray(__snake_case ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__snake_case ,np.ndarray ): a__ = np.asarray(__snake_case ,dtype=np.floataa ) elif isinstance(__snake_case ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a__ = [np.asarray(__snake_case )] # convert to mel spectrogram, truncate and pad if needed. a__ = [ self._get_input_mel(__snake_case ,max_length if max_length else self.nb_max_samples ,__snake_case ,__snake_case ) for waveform in raw_speech ] a__ = [] a__ = [] for mel, longer in padded_inputs: input_mel.append(__snake_case ) is_longer.append(__snake_case ) if truncation == "fusion" and sum(__snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer a__ = np.random.randint(0 ,len(__snake_case ) ) a__ = True if isinstance(input_mel[0] ,__snake_case ): a__ = [np.asarray(__snake_case ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool a__ = [[longer] for longer in is_longer] a__ = {'input_features': input_mel, 'is_longer': is_longer} a__ = BatchFeature(__snake_case ) if return_tensors is not None: a__ = input_features.convert_to_tensors(__snake_case ) return input_features
657
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
1
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: torch.manual_seed(0 ) a__ = UNetaDModel( sample_size=(32, 64) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('AttnDownBlock2D', 'DownBlock2D') ,up_block_types=('UpBlock2D', 'AttnUpBlock2D') ,) return model @property def lowerCamelCase__( self :str ) -> Tuple: torch.manual_seed(0 ) a__ = UNetaDConditionModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') ,up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') ,cross_attention_dim=10 ,) return model @property def lowerCamelCase__( self :Optional[int] ) -> List[str]: torch.manual_seed(0 ) a__ = AutoencoderKL( sample_size=(1_28, 64) ,in_channels=1 ,out_channels=1 ,latent_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,) a__ = UNetaDModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('AttnDownBlock2D', 'DownBlock2D') ,up_block_types=('UpBlock2D', 'AttnUpBlock2D') ,) return vqvae, unet @slow def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = 'cpu' # ensure determinism for the device-dependent torch.Generator a__ = Mel( x_res=self.dummy_unet.config.sample_size[1] ,y_res=self.dummy_unet.config.sample_size[0] ,) a__ = DDPMScheduler() a__ = AudioDiffusionPipeline(vqvae=__snake_case ,unet=self.dummy_unet ,mel=__snake_case ,scheduler=__snake_case ) a__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a__ = torch.Generator(device=__snake_case ).manual_seed(42 ) a__ = pipe(generator=__snake_case ,steps=4 ) a__ = output.audios[0] a__ = output.images[0] a__ = torch.Generator(device=__snake_case ).manual_seed(42 ) a__ = pipe(generator=__snake_case ,steps=4 ,return_dict=__snake_case ) a__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a__ = np.frombuffer(image.tobytes() ,dtype='uint8' )[:10] a__ = np.frombuffer(image_from_tuple.tobytes() ,dtype='uint8' )[:10] a__ = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] ,y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] ,) a__ = DDIMScheduler() a__ = self.dummy_vqvae_and_unet a__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=dummy_vqvae_and_unet[1] ,mel=__snake_case ,scheduler=__snake_case ) a__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) np.random.seed(0 ) a__ = np.random.uniform(-1 ,1 ,((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a__ = torch.Generator(device=__snake_case ).manual_seed(42 ) a__ = pipe(raw_audio=__snake_case ,generator=__snake_case ,start_step=5 ,steps=10 ) a__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a__ = np.frombuffer(image.tobytes() ,dtype='uint8' )[:10] a__ = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a__ = self.dummy_unet_condition a__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=__snake_case ,mel=__snake_case ,scheduler=__snake_case ) a__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) np.random.seed(0 ) a__ = torch.rand((1, 1, 10) ) a__ = pipe(generator=__snake_case ,encoding=__snake_case ) a__ = output.images[0] a__ = np.frombuffer(image.tobytes() ,dtype='uint8' )[:10] a__ = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Dict ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :List[Any] ) -> List[str]: a__ = torch_device a__ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) a__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a__ = torch.Generator(device=__snake_case ).manual_seed(42 ) a__ = pipe(generator=__snake_case ) a__ = output.audios[0] a__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a__ = np.frombuffer(image.tobytes() ,dtype='uint8' )[:10] a__ = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
657
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml snake_case : int = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : bool , __lowerCAmelCase : bool ): def run_func(__lowerCAmelCase : Any ): @wraps(__lowerCAmelCase ) def run_in_eager_mode(*__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : List[Any] ): return func(*__lowerCAmelCase , **__lowerCAmelCase ) @wraps(__lowerCAmelCase ) @tf.function(experimental_compile=__lowerCAmelCase ) def run_in_graph_mode(*__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : int ): return func(*__lowerCAmelCase , **__lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): a__ = random.Random() a__ = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : TensorFlowBenchmarkArguments UpperCAmelCase__ : PretrainedConfig UpperCAmelCase__ : str = "TensorFlow" @property def lowerCamelCase__( self :Any ) -> Tuple: return tf.__version__ def lowerCamelCase__( self :str ,__snake_case :str ,__snake_case :int ,__snake_case :int ) -> float: # initialize GPU on separate process a__ = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) a__ = self._prepare_inference_func(__snake_case ,__snake_case ,__snake_case ) return self._measure_speed(_inference ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :str ,__snake_case :int ,__snake_case :int ) -> float: a__ = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) a__ = self._prepare_train_func(__snake_case ,__snake_case ,__snake_case ) return self._measure_speed(_train ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str ,__snake_case :int ,__snake_case :int ) -> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,__snake_case ) a__ = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) a__ = self._prepare_inference_func(__snake_case ,__snake_case ,__snake_case ) return self._measure_memory(_inference ) def lowerCamelCase__( self :Tuple ,__snake_case :str ,__snake_case :int ,__snake_case :int ) -> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,__snake_case ) a__ = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) a__ = self._prepare_train_func(__snake_case ,__snake_case ,__snake_case ) return self._measure_memory(_train ) def lowerCamelCase__( self :int ,__snake_case :str ,__snake_case :int ,__snake_case :int ) -> Callable[[], None]: a__ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) a__ = ( hasattr(__snake_case ,'architectures' ) and isinstance(config.architectures ,__snake_case ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: a__ = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model a__ = __import__('transformers' ,fromlist=[model_class] ) a__ = getattr(__snake_case ,__snake_case ) a__ = model_cls(__snake_case ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: a__ = TF_MODEL_MAPPING[config.__class__](__snake_case ) # encoder-decoder has vocab size saved differently a__ = config.vocab_size if hasattr(__snake_case ,'vocab_size' ) else config.encoder.vocab_size a__ = random_input_ids(__snake_case ,__snake_case ,__snake_case ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_forward(): return model(__snake_case ,decoder_input_ids=__snake_case ,training=__snake_case ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_forward(): return model(__snake_case ,training=__snake_case ) a__ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCamelCase__( self :Optional[int] ,__snake_case :str ,__snake_case :int ,__snake_case :int ) -> Callable[[], None]: a__ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) a__ = ( hasattr(__snake_case ,'architectures' ) and isinstance(config.architectures ,__snake_case ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: a__ = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model a__ = __import__('transformers' ,fromlist=[model_class] ) a__ = getattr(__snake_case ,__snake_case ) a__ = model_cls(__snake_case ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: a__ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__snake_case ) # encoder-decoder has vocab size saved differently a__ = config.vocab_size if hasattr(__snake_case ,'vocab_size' ) else config.encoder.vocab_size a__ = random_input_ids(__snake_case ,__snake_case ,__snake_case ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_train(): a__ = model(__snake_case ,decoder_input_ids=__snake_case ,labels=__snake_case ,training=__snake_case )[0] a__ = tf.gradients(__snake_case ,model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_train(): a__ = model(__snake_case ,labels=__snake_case ,training=__snake_case )[0] a__ = tf.gradients(__snake_case ,model.trainable_variables ) return gradients a__ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ) -> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(__snake_case ,repeat=1 ,number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average a__ = timeit.repeat( __snake_case ,repeat=self.args.repeat ,number=10 ,) return min(__snake_case ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) def lowerCamelCase__( self :str ,__snake_case :Callable[[], None] ) -> [Memory, MemorySummary]: logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) a__ = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) a__ = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() a__ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) a__ = nvml.nvmlDeviceGetMemoryInfo(__snake_case ) a__ = meminfo.used a__ = Memory(__snake_case ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) a__ = None else: a__ = measure_peak_memory_cpu(__snake_case ) a__ = Memory(__snake_case ) if isinstance(__snake_case ,__snake_case ) else memory_bytes if self.args.trace_memory_line_by_line: a__ = stop_memory_tracing(__snake_case ) if memory is None: a__ = summary.total else: a__ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) return "N/A", None
657
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
1
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class snake_case_ (lowerCamelCase_ ): def __init__( self :List[str] ,__snake_case :Tuple ,__snake_case :List[Any] ) -> Union[str, Any]: super().__init__() self.register_modules(unet=__snake_case ,scheduler=__snake_case ) @torch.no_grad() def __call__( self :str ,__snake_case :int = 1 ,__snake_case :Optional[torch.Generator] = None ,__snake_case :int = 50 ,__snake_case :Optional[str] = "pil" ,__snake_case :bool = True ,**__snake_case :List[str] ,) -> Union[ImagePipelineOutput, Tuple]: a__ = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) ,generator=__snake_case ,) a__ = image.to(self.device ) # set step values self.scheduler.set_timesteps(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output a__ = self.unet(__snake_case ,__snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 a__ = self.scheduler.step(__snake_case ,__snake_case ,__snake_case ).prev_sample a__ = (image / 2 + 0.5).clamp(0 ,1 ) a__ = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": a__ = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=__snake_case ), "This is a local test"
657
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable snake_case : Optional[Any] = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys snake_case : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
1
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration snake_case : Union[str, Any] = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def __lowercase ( __lowerCAmelCase : Optional[Any] ): a__ = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) snake_case : Tuple = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def __lowercase ( __lowerCAmelCase : Dict ): a__ = list(s_dict.keys() ) for key in keys: a__ = key for k, v in WHISPER_MAPPING.items(): if k in key: a__ = new_key.replace(__lowerCAmelCase , __lowerCAmelCase ) print(F'{key} -> {new_key}' ) a__ = s_dict.pop(__lowerCAmelCase ) return s_dict def __lowercase ( __lowerCAmelCase : Tuple ): a__ , a__ = emb.weight.shape a__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) a__ = emb.weight.data return lin_layer def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) a__ = os.path.basename(__lowerCAmelCase ) a__ = url.split('/' )[-2] a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ) and not os.path.isfile(__lowerCAmelCase ): raise RuntimeError(F'{download_target} exists and is not a regular file' ) if os.path.isfile(__lowerCAmelCase ): a__ = open(__lowerCAmelCase , 'rb' ).read() if hashlib.shaaaa(__lowerCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(__lowerCAmelCase ) as source, open(__lowerCAmelCase , 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) , ncols=8_0 , unit='iB' , unit_scale=__lowerCAmelCase , unit_divisor=1_0_2_4 ) as loop: while True: a__ = source.read(8_1_9_2 ) if not buffer: break output.write(__lowerCAmelCase ) loop.update(len(__lowerCAmelCase ) ) a__ = open(__lowerCAmelCase , 'rb' ).read() if hashlib.shaaaa(__lowerCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ): if ".pt" not in checkpoint_path: a__ = _download(_MODELS[checkpoint_path] ) else: a__ = torch.load(__lowerCAmelCase , map_location='cpu' ) a__ = original_checkpoint['dims'] a__ = original_checkpoint['model_state_dict'] a__ = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(__lowerCAmelCase ) rename_keys(__lowerCAmelCase ) a__ = True a__ = state_dict['decoder.layers.0.fc1.weight'].shape[0] a__ = WhisperConfig( vocab_size=dimensions['n_vocab'] , encoder_ffn_dim=__lowerCAmelCase , decoder_ffn_dim=__lowerCAmelCase , num_mel_bins=dimensions['n_mels'] , d_model=dimensions['n_audio_state'] , max_target_positions=dimensions['n_text_ctx'] , encoder_layers=dimensions['n_audio_layer'] , encoder_attention_heads=dimensions['n_audio_head'] , decoder_layers=dimensions['n_text_layer'] , decoder_attention_heads=dimensions['n_text_state'] , max_source_positions=dimensions['n_audio_ctx'] , ) a__ = WhisperForConditionalGeneration(__lowerCAmelCase ) a__ , a__ = model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0 and not set(__lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F' but all the following weights are missing {missing}' ) if tie_embeds: a__ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a__ = proj_out_weights model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') snake_case : Optional[Any] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
657
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Any = '''▁''' snake_case : Tuple = {'''vocab_file''': '''spiece.model'''} snake_case : Tuple = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } snake_case : Optional[int] = { '''google/reformer-crime-and-punishment''': 52_42_88, } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :List[str] ,__snake_case :Dict ,__snake_case :Dict="</s>" ,__snake_case :Union[str, Any]="<unk>" ,__snake_case :List[Any]=[] ,__snake_case :Optional[Dict[str, Any]] = None ,**__snake_case :Dict ,) -> None: a__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__snake_case ,unk_token=__snake_case ,additional_special_tokens=__snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**__snake_case ,) a__ = vocab_file a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) @property def lowerCamelCase__( self :str ) -> Tuple: return self.sp_model.get_piece_size() def lowerCamelCase__( self :Any ) -> Dict[str, int]: a__ = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Union[str, Any] ) -> str: a__ = self.__dict__.copy() a__ = None return state def __setstate__( self :Optional[Any] ,__snake_case :Any ) -> Optional[Any]: a__ = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): a__ = {} a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str ) -> List[str]: return self.sp_model.encode(__snake_case ,out_type=__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :List[Any] ) -> Optional[int]: return self.sp_model.piece_to_id(__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :Dict ) -> str: if index < self.sp_model.get_piece_size(): a__ = self.sp_model.IdToPiece(__snake_case ) return token def lowerCamelCase__( self :Any ,__snake_case :Union[str, Any] ) -> List[str]: a__ = [] a__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__snake_case ) + token a__ = [] else: current_sub_tokens.append(__snake_case ) out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def lowerCamelCase__( self :Optional[int] ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case ,'wb' ) as fi: a__ = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
657
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig snake_case : List[Any] = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = '''ernie_m''' UpperCAmelCase__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self :int ,__snake_case :int = 25_00_02 ,__snake_case :int = 7_68 ,__snake_case :int = 12 ,__snake_case :int = 12 ,__snake_case :int = 30_72 ,__snake_case :str = "gelu" ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :int = 5_14 ,__snake_case :float = 0.02 ,__snake_case :int = 1 ,__snake_case :float = 1E-05 ,__snake_case :str=None ,__snake_case :Optional[Any]=False ,__snake_case :Optional[Any]=0.0 ,**__snake_case :str ,) -> Dict: super().__init__(pad_token_id=__snake_case ,**__snake_case ) a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = initializer_range a__ = layer_norm_eps a__ = classifier_dropout a__ = is_decoder a__ = act_dropout
657
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __lowercase ( __lowerCAmelCase : Union[str, Any] ): a__ = SwinvaConfig() a__ = swinva_name.split('_' ) a__ = name_split[1] if "to" in name_split[3]: a__ = int(name_split[3][-3:] ) else: a__ = int(name_split[3] ) if "to" in name_split[2]: a__ = int(name_split[2][-2:] ) else: a__ = int(name_split[2][6:] ) if model_size == "tiny": a__ = 9_6 a__ = (2, 2, 6, 2) a__ = (3, 6, 1_2, 2_4) elif model_size == "small": a__ = 9_6 a__ = (2, 2, 1_8, 2) a__ = (3, 6, 1_2, 2_4) elif model_size == "base": a__ = 1_2_8 a__ = (2, 2, 1_8, 2) a__ = (4, 8, 1_6, 3_2) else: a__ = 1_9_2 a__ = (2, 2, 1_8, 2) a__ = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: a__ = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): a__ = 2_1_8_4_1 a__ = 'huggingface/label-files' a__ = 'imagenet-22k-id2label.json' a__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) a__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} else: a__ = 1_0_0_0 a__ = 'huggingface/label-files' a__ = 'imagenet-1k-id2label.json' a__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) a__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} a__ = img_size a__ = num_classes a__ = embed_dim a__ = depths a__ = num_heads a__ = window_size return config def __lowercase ( __lowerCAmelCase : List[Any] ): if "patch_embed.proj" in name: a__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a__ = 'encoder.' + name if "attn.proj" in name: a__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: a__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a__ = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: a__ = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: a__ = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: a__ = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: a__ = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": a__ = 'layernorm.weight' if name == "norm.bias": a__ = 'layernorm.bias' if "head" in name: a__ = name.replace('head' , 'classifier' ) else: a__ = 'swinv2.' + name return name def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ): for key in orig_state_dict.copy().keys(): a__ = orig_state_dict.pop(__lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: a__ = key.split('.' ) a__ = int(key_split[1] ) a__ = int(key_split[3] ) a__ = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a__ = val[:dim, :] a__ = val[dim : dim * 2, :] a__ = val[-dim:, :] else: a__ = val[:dim] a__ = val[ dim : dim * 2 ] a__ = val[-dim:] else: a__ = val return orig_state_dict def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] ): a__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() a__ = get_swinva_config(__lowerCAmelCase ) a__ = SwinvaForImageClassification(__lowerCAmelCase ) model.eval() a__ = convert_state_dict(timm_model.state_dict() , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) a__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' a__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) a__ = image_processor(images=__lowerCAmelCase , return_tensors='pt' ) a__ = timm_model(inputs['pixel_values'] ) a__ = model(**__lowerCAmelCase ).logits assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCAmelCase ) model.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) snake_case : Any = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
657
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor snake_case : Optional[Any] = random.Random() def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict=1.0 , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : List[Any]=None ): if rng is None: a__ = global_rng a__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class snake_case_ (unittest.TestCase ): def __init__( self :Any ,__snake_case :Tuple ,__snake_case :Optional[int]=7 ,__snake_case :List[Any]=4_00 ,__snake_case :Optional[int]=20_00 ,__snake_case :Tuple=24 ,__snake_case :Union[str, Any]=24 ,__snake_case :int=0.0 ,__snake_case :str=1_60_00 ,__snake_case :int=True ,__snake_case :Any=True ,) -> Optional[Any]: a__ = parent a__ = batch_size a__ = min_seq_length a__ = max_seq_length a__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__ = feature_size a__ = num_mel_bins a__ = padding_value a__ = sampling_rate a__ = return_attention_mask a__ = do_normalize def lowerCamelCase__( self :str ) -> Any: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase__( self :List[Any] ,__snake_case :List[Any]=False ,__snake_case :Optional[int]=False ) -> Dict: def _flatten(__snake_case :str ): return list(itertools.chain(*__snake_case ) ) if equal_length: a__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: a__ = [np.asarray(__snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = SpeechaTextFeatureExtractor if is_speech_available() else None def lowerCamelCase__( self :Optional[Any] ) -> Dict: a__ = SpeechaTextFeatureExtractionTester(self ) def lowerCamelCase__( self :int ,__snake_case :List[str] ) -> Optional[int]: self.assertTrue(np.all(np.mean(__snake_case ,axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__snake_case ,axis=0 ) - 1 ) < 1E-3 ) ) def lowerCamelCase__( self :List[Any] ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__ = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )] a__ = [np.asarray(__snake_case ) for speech_input in speech_inputs] # Test feature size a__ = feature_extractor(__snake_case ,padding=__snake_case ,return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input a__ = feature_extractor(speech_inputs[0] ,return_tensors='np' ).input_features a__ = feature_extractor(np_speech_inputs[0] ,return_tensors='np' ).input_features self.assertTrue(np.allclose(__snake_case ,__snake_case ,atol=1E-3 ) ) # Test batched a__ = feature_extractor(__snake_case ,return_tensors='np' ).input_features a__ = feature_extractor(__snake_case ,return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__snake_case ,__snake_case ): self.assertTrue(np.allclose(__snake_case ,__snake_case ,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] a__ = np.asarray(__snake_case ) a__ = feature_extractor(__snake_case ,return_tensors='np' ).input_features a__ = feature_extractor(__snake_case ,return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__snake_case ,__snake_case ): self.assertTrue(np.allclose(__snake_case ,__snake_case ,atol=1E-3 ) ) def lowerCamelCase__( self :List[str] ) -> str: a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )] a__ = ['longest', 'max_length', 'do_not_pad'] a__ = [None, 16, None] for max_length, padding in zip(__snake_case ,__snake_case ): a__ = feature_extractor( __snake_case ,padding=__snake_case ,max_length=__snake_case ,return_attention_mask=__snake_case ) a__ = inputs.input_features a__ = inputs.attention_mask a__ = [np.sum(__snake_case ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowerCamelCase__( self :Dict ) -> Dict: a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )] a__ = ['longest', 'max_length', 'do_not_pad'] a__ = [None, 16, None] for max_length, padding in zip(__snake_case ,__snake_case ): a__ = feature_extractor( __snake_case ,max_length=__snake_case ,padding=__snake_case ,return_tensors='np' ,return_attention_mask=__snake_case ) a__ = inputs.input_features a__ = inputs.attention_mask a__ = [np.sum(__snake_case ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowerCamelCase__( self :Optional[int] ) -> int: a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )] a__ = feature_extractor( __snake_case ,padding='max_length' ,max_length=4 ,truncation=__snake_case ,return_tensors='np' ,return_attention_mask=__snake_case ,) a__ = inputs.input_features a__ = inputs.attention_mask a__ = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowerCamelCase__( self :Tuple ) -> List[str]: a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )] a__ = feature_extractor( __snake_case ,padding='longest' ,max_length=4 ,truncation=__snake_case ,return_tensors='np' ,return_attention_mask=__snake_case ,) a__ = inputs.input_features a__ = inputs.attention_mask a__ = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape ,(3, 4, 24) ) a__ = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )] a__ = feature_extractor( __snake_case ,padding='longest' ,max_length=16 ,truncation=__snake_case ,return_tensors='np' ,return_attention_mask=__snake_case ,) a__ = inputs.input_features a__ = inputs.attention_mask a__ = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape ,(3, 6, 24) ) def lowerCamelCase__( self :str ) -> int: import torch a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = np.random.rand(1_00 ,32 ).astype(np.floataa ) a__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__ = feature_extractor.pad([{'input_features': inputs}] ,return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a__ = feature_extractor.pad([{'input_features': inputs}] ,return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Optional[Any]: from datasets import load_dataset a__ = load_dataset('hf-internal-testing/librispeech_asr_dummy' ,'clean' ,split='validation' ) # automatic decoding with librispeech a__ = ds.sort('id' ).select(range(__snake_case ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCamelCase__( self :str ) -> List[str]: # fmt: off a__ = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on a__ = self._load_datasamples(1 ) a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = feature_extractor(__snake_case ,return_tensors='pt' ).input_features self.assertEquals(input_features.shape ,(1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] ,__snake_case ,atol=1E-4 ) )
657
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer snake_case : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case : List[Any] = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } snake_case : str = { '''google/electra-small-generator''': 5_12, '''google/electra-base-generator''': 5_12, '''google/electra-large-generator''': 5_12, '''google/electra-small-discriminator''': 5_12, '''google/electra-base-discriminator''': 5_12, '''google/electra-large-discriminator''': 5_12, } snake_case : int = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = ElectraTokenizer def __init__( self :Any ,__snake_case :Dict=None ,__snake_case :Optional[int]=None ,__snake_case :List[Any]=True ,__snake_case :Union[str, Any]="[UNK]" ,__snake_case :int="[SEP]" ,__snake_case :str="[PAD]" ,__snake_case :Tuple="[CLS]" ,__snake_case :List[str]="[MASK]" ,__snake_case :Tuple=True ,__snake_case :List[str]=None ,**__snake_case :int ,) -> int: super().__init__( __snake_case ,tokenizer_file=__snake_case ,do_lower_case=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,pad_token=__snake_case ,cls_token=__snake_case ,mask_token=__snake_case ,tokenize_chinese_chars=__snake_case ,strip_accents=__snake_case ,**__snake_case ,) a__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,__snake_case ) != do_lower_case or normalizer_state.get('strip_accents' ,__snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,__snake_case ) != tokenize_chinese_chars ): a__ = getattr(__snake_case ,normalizer_state.pop('type' ) ) a__ = do_lower_case a__ = strip_accents a__ = tokenize_chinese_chars a__ = normalizer_class(**__snake_case ) a__ = do_lower_case def lowerCamelCase__( self :Dict ,__snake_case :Optional[Any] ,__snake_case :List[str]=None ) -> Union[str, Any]: a__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__( self :Any ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__( self :Tuple ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: a__ = self._tokenizer.model.save(__snake_case ,name=__snake_case ) return tuple(__snake_case )
657
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowercase ( *__lowerCAmelCase : List[Any] ): with open(__lowerCAmelCase , 'r' ) as fh: fcntl.flock(__lowerCAmelCase , fcntl.LOCK_EX ) try: print(*__lowerCAmelCase ) finally: fcntl.flock(__lowerCAmelCase , fcntl.LOCK_UN ) snake_case : Dict = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) snake_case : str = torch.device('''cuda''', local_rank) snake_case : int = socket.gethostname() snake_case : List[str] = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank snake_case : List[Any] = dist.get_rank() snake_case : List[str] = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
657
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
1
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') snake_case : Union[str, Any] = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) snake_case : Tuple = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) snake_case : int = BeautifulSoup(res.text, '''html.parser''') snake_case : Tuple = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(f"""https://google.com{link.get("href")}""")
657
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
1
import qiskit def __lowercase ( __lowerCAmelCase : int = 2 ): a__ = qubits # Using Aer's simulator a__ = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register a__ = qiskit.QuantumCircuit(__lowerCAmelCase , __lowerCAmelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , __lowerCAmelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , __lowerCAmelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(__lowerCAmelCase ) ) , list(range(__lowerCAmelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator a__ = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=1_0_0_0 ) return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": print(f"""Total count for various states are: {quantum_entanglement(3)}""")
657
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
1