code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ): a__ = int(__lowerCAmelCase ) assert noofclusters < len(__lowerCAmelCase ) # Find out the dimensionality a__ = len(vectors[0] ) # Will help select random centroids from among the available vectors a__ = list(range(len(__lowerCAmelCase ) ) ) shuffle(__lowerCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. a__ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION a__ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points a__ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__lowerCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values a__ = tf.placeholder('float64' , [dim] ) a__ = [] for centroid in centroids: cent_assigns.append(tf.assign(__lowerCAmelCase , __lowerCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) a__ = [tf.Variable(0 ) for i in range(len(__lowerCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value a__ = tf.placeholder('int32' ) a__ = [] for assignment in assignments: cluster_assigns.append(tf.assign(__lowerCAmelCase , __lowerCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input a__ = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors a__ = tf.reduce_mean(__lowerCAmelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input a__ = tf.placeholder('float' , [dim] ) a__ = tf.placeholder('float' , [dim] ) a__ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__lowerCAmelCase , __lowerCAmelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input a__ = tf.placeholder('float' , [noofclusters] ) a__ = tf.argmin(__lowerCAmelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. a__ = tf.initialize_all_variables() # Initialize all variables sess.run(__lowerCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. a__ = 1_0_0 for _ in range(__lowerCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__lowerCAmelCase ) ): a__ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. a__ = [ sess.run(__lowerCAmelCase , feed_dict={va: vect, va: sess.run(__lowerCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input a__ = sess.run( __lowerCAmelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__lowerCAmelCase ): # Collect all the vectors assigned to this cluster a__ = [ vectors[i] for i in range(len(__lowerCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location a__ = sess.run( __lowerCAmelCase , feed_dict={mean_input: array(__lowerCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments a__ = sess.run(__lowerCAmelCase ) a__ = sess.run(__lowerCAmelCase ) return centroids, assignments
712
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
0
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin snake_case : int = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right snake_case : Optional[int] = 5_00_03 snake_case : Optional[int] = 5_00_02 @require_sentencepiece @require_tokenizers class snake_case_ (_snake_case , unittest.TestCase ): UpperCAmelCase__ : Dict = PLBartTokenizer UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Union[str, Any] = False def lowerCamelCase__( self :str ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing a__ = PLBartTokenizer(__snake_case ,language_codes='base' ,keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: a__ = PLBartTokenizer(__snake_case ,language_codes='base' ,keep_accents=__snake_case ) a__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) a__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) a__ = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) a__ = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) a__ = tokenizer.vocab_size a__ = [tokenizer.convert_ids_to_tokens(__snake_case ) for x in range(end - 4 ,__snake_case )] self.assertListEqual(__snake_case ,['__java__', '__python__', '__en_XX__', '<mask>'] ) a__ = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' a__ = tokenizer(__snake_case ).input_ids self.assertEqual( tokenizer.decode(__snake_case ,skip_special_tokens=__snake_case ,clean_up_tokenization_spaces=__snake_case ) ,__snake_case ,) def lowerCamelCase__( self :Optional[int] ) -> Optional[int]: a__ = PLBartTokenizer(__snake_case ,language_codes='multi' ,keep_accents=__snake_case ) a__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) a__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) a__ = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) a__ = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) a__ = tokenizer.vocab_size a__ = [tokenizer.convert_ids_to_tokens(__snake_case ) for x in range(end - 7 ,__snake_case )] self.assertListEqual( __snake_case ,['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] ) a__ = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' a__ = tokenizer(__snake_case ).input_ids self.assertEqual( tokenizer.decode(__snake_case ,skip_special_tokens=__snake_case ,clean_up_tokenization_spaces=__snake_case ) ,__snake_case ,) @require_torch @require_sentencepiece @require_tokenizers class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : Optional[int] = 'uclanlp/plbart-python-en_XX' UpperCAmelCase__ : Dict = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] UpperCAmelCase__ : Tuple = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] UpperCAmelCase__ : str = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def lowerCamelCase__( cls :Optional[int] ) -> List[str]: a__ = PLBartTokenizer.from_pretrained( cls.checkpoint_name ,language_codes='base' ,src_lang='python' ,tgt_lang='en_XX' ) a__ = 1 return cls def lowerCamelCase__( self :Optional[int] ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] ,5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] ,5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] ,5_00_03 ) def lowerCamelCase__( self :Dict ) -> Any: a__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,__snake_case ) def lowerCamelCase__( self :Dict ) -> Union[str, Any]: self.assertIn(__snake_case ,self.tokenizer.all_special_ids ) a__ = [EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] a__ = self.tokenizer.decode(__snake_case ,skip_special_tokens=__snake_case ) a__ = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertNotIn(self.tokenizer.eos_token ,__snake_case ) def lowerCamelCase__( self :Any ) -> str: a__ = ['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] ,__snake_case ) a__ = 10 a__ = self.tokenizer(__snake_case ,max_length=__snake_case ,truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-2] ,2 ) self.assertEqual(ids[-1] ,__snake_case ) self.assertEqual(len(__snake_case ) ,__snake_case ) def lowerCamelCase__( self :Any ) -> List[str]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) ,[5_00_04, 5_00_01] ) def lowerCamelCase__( self :Union[str, Any] ) -> int: a__ = tempfile.mkdtemp() a__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) a__ = PLBartTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,__snake_case ) @require_torch def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=__snake_case ,return_tensors='pt' ) a__ = shift_tokens_right(batch['labels'] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() ,[2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] ,__snake_case ) self.assertEqual(batch.decoder_input_ids[1][-1] ,2 ) self.assertEqual(batch.labels[1][-2:].tolist() ,[2, EN_CODE] ) @require_torch def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: a__ = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=__snake_case ,truncation=__snake_case ,max_length=len(self.expected_src_tokens ) ,return_tensors='pt' ,) a__ = shift_tokens_right(batch['labels'] ,self.tokenizer.pad_token_id ) self.assertIsInstance(__snake_case ,__snake_case ) self.assertEqual((2, 26) ,batch.input_ids.shape ) self.assertEqual((2, 26) ,batch.attention_mask.shape ) a__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,__snake_case ) self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCamelCase__( self :str ) -> Dict: a__ = self.tokenizer(self.src_text ,padding=__snake_case ,truncation=__snake_case ,max_length=3 ,return_tensors='pt' ) a__ = self.tokenizer( text_target=self.tgt_text ,padding=__snake_case ,truncation=__snake_case ,max_length=10 ,return_tensors='pt' ) a__ = targets['input_ids'] a__ = shift_tokens_right(__snake_case ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def lowerCamelCase__( self :Any ) -> int: a__ = self.tokenizer._build_translation_inputs( 'A test' ,return_tensors='pt' ,src_lang='en_XX' ,tgt_lang='java' ) self.assertEqual( nested_simplify(__snake_case ) ,{ # A, test, EOS, en_XX 'input_ids': [[1_50, 2_42, 2, 5_00_03]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 5_00_01, } ,)
713
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
0
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = DownBlockaD # noqa F405 UpperCAmelCase__ : Any = '''down''' def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: a__ = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = ResnetDownsampleBlockaD # noqa F405 UpperCAmelCase__ : Optional[int] = '''down''' def lowerCamelCase__( self :int ) -> Optional[Any]: a__ = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[Any] = AttnDownBlockaD # noqa F405 UpperCAmelCase__ : Optional[int] = '''down''' def lowerCamelCase__( self :List[Any] ) -> Union[str, Any]: a__ = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = CrossAttnDownBlockaD # noqa F405 UpperCAmelCase__ : List[str] = '''down''' def lowerCamelCase__( self :List[Any] ) -> Any: a__ , a__ = super().prepare_init_args_and_inputs_for_common() a__ = 32 return init_dict, inputs_dict def lowerCamelCase__( self :Tuple ) -> str: a__ = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = SimpleCrossAttnDownBlockaD # noqa F405 UpperCAmelCase__ : Optional[int] = '''down''' @property def lowerCamelCase__( self :Optional[int] ) -> Optional[Any]: return super().get_dummy_input(include_encoder_hidden_states=_UpperCAmelCase ) def lowerCamelCase__( self :Optional[int] ) -> Tuple: a__ , a__ = super().prepare_init_args_and_inputs_for_common() a__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' ,'MPS result is not consistent' ) def lowerCamelCase__( self :Optional[int] ) -> Dict: a__ = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = SkipDownBlockaD # noqa F405 UpperCAmelCase__ : List[Any] = '''down''' @property def lowerCamelCase__( self :Optional[Any] ) -> List[Any]: return super().get_dummy_input(include_skip_sample=_UpperCAmelCase ) def lowerCamelCase__( self :List[str] ) -> int: a__ = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = AttnSkipDownBlockaD # noqa F405 UpperCAmelCase__ : int = '''down''' @property def lowerCamelCase__( self :str ) -> str: return super().get_dummy_input(include_skip_sample=_UpperCAmelCase ) def lowerCamelCase__( self :str ) -> Tuple: a__ = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = DownEncoderBlockaD # noqa F405 UpperCAmelCase__ : Optional[int] = '''down''' @property def lowerCamelCase__( self :List[Any] ) -> List[Any]: return super().get_dummy_input(include_temb=_UpperCAmelCase ) def lowerCamelCase__( self :Optional[int] ) -> Dict: a__ = { 'in_channels': 32, 'out_channels': 32, } a__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = AttnDownEncoderBlockaD # noqa F405 UpperCAmelCase__ : str = '''down''' @property def lowerCamelCase__( self :Optional[Any] ) -> List[Any]: return super().get_dummy_input(include_temb=_UpperCAmelCase ) def lowerCamelCase__( self :Optional[int] ) -> List[Any]: a__ = { 'in_channels': 32, 'out_channels': 32, } a__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__( self :str ) -> Dict: a__ = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = UNetMidBlockaD # noqa F405 UpperCAmelCase__ : Tuple = '''mid''' def lowerCamelCase__( self :Optional[Any] ) -> int: a__ = { 'in_channels': 32, 'temb_channels': 1_28, } a__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__( self :Any ) -> Any: a__ = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = UNetMidBlockaDCrossAttn # noqa F405 UpperCAmelCase__ : str = '''mid''' def lowerCamelCase__( self :Any ) -> str: a__ , a__ = super().prepare_init_args_and_inputs_for_common() a__ = 32 return init_dict, inputs_dict def lowerCamelCase__( self :Any ) -> Tuple: a__ = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = UNetMidBlockaDSimpleCrossAttn # noqa F405 UpperCAmelCase__ : Optional[Any] = '''mid''' @property def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: return super().get_dummy_input(include_encoder_hidden_states=_UpperCAmelCase ) def lowerCamelCase__( self :str ) -> List[Any]: a__ , a__ = super().prepare_init_args_and_inputs_for_common() a__ = 32 return init_dict, inputs_dict def lowerCamelCase__( self :List[str] ) -> Any: a__ = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = UpBlockaD # noqa F405 UpperCAmelCase__ : int = '''up''' @property def lowerCamelCase__( self :Dict ) -> Union[str, Any]: return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: a__ = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = ResnetUpsampleBlockaD # noqa F405 UpperCAmelCase__ : Dict = '''up''' @property def lowerCamelCase__( self :Optional[int] ) -> Optional[int]: return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowerCamelCase__( self :List[str] ) -> int: a__ = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = CrossAttnUpBlockaD # noqa F405 UpperCAmelCase__ : int = '''up''' @property def lowerCamelCase__( self :int ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowerCamelCase__( self :Any ) -> Any: a__ , a__ = super().prepare_init_args_and_inputs_for_common() a__ = 32 return init_dict, inputs_dict def lowerCamelCase__( self :List[str] ) -> Optional[Any]: a__ = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 UpperCAmelCase__ : Optional[int] = '''up''' @property def lowerCamelCase__( self :Optional[Any] ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ,include_encoder_hidden_states=_UpperCAmelCase ) def lowerCamelCase__( self :Any ) -> str: a__ , a__ = super().prepare_init_args_and_inputs_for_common() a__ = 32 return init_dict, inputs_dict def lowerCamelCase__( self :Optional[Any] ) -> List[str]: a__ = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = AttnUpBlockaD # noqa F405 UpperCAmelCase__ : Tuple = '''up''' @property def lowerCamelCase__( self :str ) -> int: return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) @unittest.skipIf(torch_device == 'mps' ,'MPS result is not consistent' ) def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: a__ = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = SkipUpBlockaD # noqa F405 UpperCAmelCase__ : int = '''up''' @property def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowerCamelCase__( self :List[str] ) -> Any: a__ = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = AttnSkipUpBlockaD # noqa F405 UpperCAmelCase__ : Dict = '''up''' @property def lowerCamelCase__( self :Union[str, Any] ) -> int: return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowerCamelCase__( self :Union[str, Any] ) -> Dict: a__ = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = UpDecoderBlockaD # noqa F405 UpperCAmelCase__ : Optional[Any] = '''up''' @property def lowerCamelCase__( self :Optional[int] ) -> Any: return super().get_dummy_input(include_temb=_UpperCAmelCase ) def lowerCamelCase__( self :Any ) -> str: a__ = {'in_channels': 32, 'out_channels': 32} a__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__( self :int ) -> Dict: a__ = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(_UpperCAmelCase ) class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = AttnUpDecoderBlockaD # noqa F405 UpperCAmelCase__ : Tuple = '''up''' @property def lowerCamelCase__( self :Optional[int] ) -> List[str]: return super().get_dummy_input(include_temb=_UpperCAmelCase ) def lowerCamelCase__( self :Union[str, Any] ) -> int: a__ = {'in_channels': 32, 'out_channels': 32} a__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__( self :Optional[Any] ) -> Any: a__ = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(_UpperCAmelCase )
714
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
0
def __lowercase ( __lowerCAmelCase : Optional[Any] ): def merge(__lowerCAmelCase : Any , __lowerCAmelCase : Dict ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__A ) <= 1: return collection a__ = len(__A ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case : Dict = input('''Enter numbers separated by a comma:\n''').strip() snake_case : Dict = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
715
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
0
from __future__ import annotations def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): a__ = [] a__ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) a__ = result + left + right return input_list def __lowercase ( __lowerCAmelCase : Optional[int] ): if len(_lowerCamelCase ) <= 1: return input_list a__ = list(_lowerCamelCase ) # iteration for two-way merging a__ = 2 while p <= len(_lowerCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): a__ = i a__ = i + p - 1 a__ = (low + high + 1) // 2 a__ = merge(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # final merge of last two parts if p * 2 >= len(_lowerCamelCase ): a__ = i a__ = merge(_lowerCamelCase , 0 , _lowerCamelCase , len(_lowerCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": snake_case : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": snake_case : List[str] = [] else: snake_case : int = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
716
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class snake_case_ (nn.Module ): def __init__( self :Any ,__snake_case :int ,__snake_case :int ,__snake_case :int ,__snake_case :int=0.0 ,__snake_case :Optional[int] = None ,__snake_case :str = "geglu" ,__snake_case :Optional[int] = None ,__snake_case :bool = False ,__snake_case :bool = False ,__snake_case :bool = False ,__snake_case :bool = False ,__snake_case :bool = True ,__snake_case :str = "layer_norm" ,__snake_case :bool = False ,) -> Union[str, Any]: super().__init__() a__ = only_cross_attention a__ = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" a__ = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: a__ = AdaLayerNorm(__lowerCamelCase ,__lowerCamelCase ) elif self.use_ada_layer_norm_zero: a__ = AdaLayerNormZero(__lowerCamelCase ,__lowerCamelCase ) else: a__ = nn.LayerNorm(__lowerCamelCase ,elementwise_affine=__lowerCamelCase ) a__ = Attention( query_dim=__lowerCamelCase ,heads=__lowerCamelCase ,dim_head=__lowerCamelCase ,dropout=__lowerCamelCase ,bias=__lowerCamelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=__lowerCamelCase ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. a__ = ( AdaLayerNorm(__lowerCamelCase ,__lowerCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(__lowerCamelCase ,elementwise_affine=__lowerCamelCase ) ) a__ = Attention( query_dim=__lowerCamelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=__lowerCamelCase ,dim_head=__lowerCamelCase ,dropout=__lowerCamelCase ,bias=__lowerCamelCase ,upcast_attention=__lowerCamelCase ,) # is self-attn if encoder_hidden_states is none else: a__ = None a__ = None # 3. Feed-forward a__ = nn.LayerNorm(__lowerCamelCase ,elementwise_affine=__lowerCamelCase ) a__ = FeedForward(__lowerCamelCase ,dropout=__lowerCamelCase ,activation_fn=__lowerCamelCase ,final_dropout=__lowerCamelCase ) # let chunk size default to None a__ = None a__ = 0 def lowerCamelCase__( self :int ,__snake_case :Optional[int] ,__snake_case :int ) -> Union[str, Any]: # Sets chunk feed-forward a__ = chunk_size a__ = dim def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :Optional[torch.FloatTensor] = None ,__snake_case :Optional[torch.FloatTensor] = None ,__snake_case :Optional[torch.FloatTensor] = None ,__snake_case :Optional[torch.LongTensor] = None ,__snake_case :Dict[str, Any] = None ,__snake_case :Optional[torch.LongTensor] = None ,) -> str: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: a__ = self.norma(__lowerCamelCase ,__lowerCamelCase ) elif self.use_ada_layer_norm_zero: a__ = self.norma( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,hidden_dtype=hidden_states.dtype ) else: a__ = self.norma(__lowerCamelCase ) a__ = cross_attention_kwargs if cross_attention_kwargs is not None else {} a__ = self.attna( __lowerCamelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=__lowerCamelCase ,**__lowerCamelCase ,) if self.use_ada_layer_norm_zero: a__ = gate_msa.unsqueeze(1 ) * attn_output a__ = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: a__ = ( self.norma(__lowerCamelCase ,__lowerCamelCase ) if self.use_ada_layer_norm else self.norma(__lowerCamelCase ) ) a__ = self.attna( __lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,attention_mask=__lowerCamelCase ,**__lowerCamelCase ,) a__ = attn_output + hidden_states # 3. Feed-forward a__ = self.norma(__lowerCamelCase ) if self.use_ada_layer_norm_zero: a__ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) a__ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size a__ = torch.cat( [self.ff(__lowerCamelCase ) for hid_slice in norm_hidden_states.chunk(__lowerCamelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: a__ = self.ff(__lowerCamelCase ) if self.use_ada_layer_norm_zero: a__ = gate_mlp.unsqueeze(1 ) * ff_output a__ = ff_output + hidden_states return hidden_states class snake_case_ (nn.Module ): def __init__( self :int ,__snake_case :int ,__snake_case :Optional[int] = None ,__snake_case :int = 4 ,__snake_case :float = 0.0 ,__snake_case :str = "geglu" ,__snake_case :bool = False ,) -> Dict: super().__init__() a__ = int(dim * mult ) a__ = dim_out if dim_out is not None else dim if activation_fn == "gelu": a__ = GELU(__lowerCamelCase ,__lowerCamelCase ) if activation_fn == "gelu-approximate": a__ = GELU(__lowerCamelCase ,__lowerCamelCase ,approximate='tanh' ) elif activation_fn == "geglu": a__ = GEGLU(__lowerCamelCase ,__lowerCamelCase ) elif activation_fn == "geglu-approximate": a__ = ApproximateGELU(__lowerCamelCase ,__lowerCamelCase ) a__ = nn.ModuleList([] ) # project in self.net.append(__lowerCamelCase ) # project dropout self.net.append(nn.Dropout(__lowerCamelCase ) ) # project out self.net.append(nn.Linear(__lowerCamelCase ,__lowerCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__lowerCamelCase ) ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ) -> List[str]: for module in self.net: a__ = module(__lowerCamelCase ) return hidden_states class snake_case_ (nn.Module ): def __init__( self :Optional[int] ,__snake_case :int ,__snake_case :int ,__snake_case :str = "none" ) -> Optional[Any]: super().__init__() a__ = nn.Linear(__lowerCamelCase ,__lowerCamelCase ) a__ = approximate def lowerCamelCase__( self :Optional[Any] ,__snake_case :str ) -> List[str]: if gate.device.type != "mps": return F.gelu(__lowerCamelCase ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def lowerCamelCase__( self :List[Any] ,__snake_case :str ) -> List[Any]: a__ = self.proj(__lowerCamelCase ) a__ = self.gelu(__lowerCamelCase ) return hidden_states class snake_case_ (nn.Module ): def __init__( self :List[str] ,__snake_case :int ,__snake_case :int ) -> Optional[Any]: super().__init__() a__ = nn.Linear(__lowerCamelCase ,dim_out * 2 ) def lowerCamelCase__( self :List[str] ,__snake_case :Union[str, Any] ) -> Optional[int]: if gate.device.type != "mps": return F.gelu(__lowerCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ) -> Tuple: a__ = self.proj(__lowerCamelCase ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(__lowerCamelCase ) class snake_case_ (nn.Module ): def __init__( self :Tuple ,__snake_case :int ,__snake_case :int ) -> Union[str, Any]: super().__init__() a__ = nn.Linear(__lowerCamelCase ,__lowerCamelCase ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Union[str, Any] ) -> Optional[Any]: a__ = self.proj(__lowerCamelCase ) return x * torch.sigmoid(1.7_02 * x ) class snake_case_ (nn.Module ): def __init__( self :List[str] ,__snake_case :Union[str, Any] ,__snake_case :Optional[int] ) -> Union[str, Any]: super().__init__() a__ = nn.Embedding(__lowerCamelCase ,__lowerCamelCase ) a__ = nn.SiLU() a__ = nn.Linear(__lowerCamelCase ,embedding_dim * 2 ) a__ = nn.LayerNorm(__lowerCamelCase ,elementwise_affine=__lowerCamelCase ) def lowerCamelCase__( self :Optional[int] ,__snake_case :Any ,__snake_case :Any ) -> Optional[int]: a__ = self.linear(self.silu(self.emb(__lowerCamelCase ) ) ) a__ = torch.chunk(__lowerCamelCase ,2 ) a__ = self.norm(__lowerCamelCase ) * (1 + scale) + shift return x class snake_case_ (nn.Module ): def __init__( self :Union[str, Any] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> Optional[int]: super().__init__() a__ = CombinedTimestepLabelEmbeddings(__lowerCamelCase ,__lowerCamelCase ) a__ = nn.SiLU() a__ = nn.Linear(__lowerCamelCase ,6 * embedding_dim ,bias=__lowerCamelCase ) a__ = nn.LayerNorm(__lowerCamelCase ,elementwise_affine=__lowerCamelCase ,eps=1E-6 ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Tuple ,__snake_case :Any ,__snake_case :Dict=None ) -> Dict: a__ = self.linear(self.silu(self.emb(__lowerCamelCase ,__lowerCamelCase ,hidden_dtype=__lowerCamelCase ) ) ) a__ = emb.chunk(6 ,dim=1 ) a__ = self.norm(__lowerCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class snake_case_ (nn.Module ): def __init__( self :str ,__snake_case :int ,__snake_case :int ,__snake_case :int ,__snake_case :Optional[str] = None ,__snake_case :float = 1E-5 ) -> Dict: super().__init__() a__ = num_groups a__ = eps if act_fn is None: a__ = None else: a__ = get_activation(__lowerCamelCase ) a__ = nn.Linear(__lowerCamelCase ,out_dim * 2 ) def lowerCamelCase__( self :str ,__snake_case :Union[str, Any] ,__snake_case :int ) -> str: if self.act: a__ = self.act(__lowerCamelCase ) a__ = self.linear(__lowerCamelCase ) a__ = emb[:, :, None, None] a__ = emb.chunk(2 ,dim=1 ) a__ = F.group_norm(__lowerCamelCase ,self.num_groups ,eps=self.eps ) a__ = x * (1 + scale) + shift return x
717
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() snake_case : List[str] = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : Dict ): a__ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: a__ = 1_2_8 elif "12-12" in model_name: a__ = 1_2 a__ = 1_2 elif "14-14" in model_name: a__ = 1_4 a__ = 1_4 elif "16-16" in model_name: a__ = 1_6 a__ = 1_6 else: raise ValueError('Model not supported' ) a__ = '''huggingface/label-files''' if "speech-commands" in model_name: a__ = 3_5 a__ = '''speech-commands-v2-id2label.json''' else: a__ = 5_2_7 a__ = '''audioset-id2label.json''' a__ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) a__ = {int(a_ ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} return config def __lowercase ( __lowerCAmelCase : List[str] ): if "module.v" in name: a__ = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: a__ = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: a__ = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: a__ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: a__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: a__ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: a__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: a__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a__ = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: a__ = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: a__ = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: a__ = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] ): for key in orig_state_dict.copy().keys(): a__ = orig_state_dict.pop(a_ ) if "qkv" in key: a__ = key.split('.' ) a__ = int(key_split[3] ) a__ = config.hidden_size if "weight" in key: a__ = val[:dim, :] a__ = val[dim : dim * 2, :] a__ = val[-dim:, :] else: a__ = val[:dim] a__ = val[dim : dim * 2] a__ = val[-dim:] else: a__ = val return orig_state_dict def __lowercase ( __lowerCAmelCase : str ): a__ = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(a_ , a_ ) @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=False ): a__ = get_audio_spectrogram_transformer_config(a_ ) a__ = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict a__ = model_name_to_url[model_name] a__ = torch.hub.load_state_dict_from_url(a_ , map_location='cpu' ) # remove some keys remove_keys(a_ ) # rename some keys a__ = convert_state_dict(a_ , a_ ) # load 🤗 model a__ = ASTForAudioClassification(a_ ) model.eval() model.load_state_dict(a_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 a__ = -4.2_677_393 if '''speech-commands''' not in model_name else -6.845_978 a__ = 4.5_689_974 if '''speech-commands''' not in model_name else 5.5_654_526 a__ = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8 a__ = ASTFeatureExtractor(mean=a_ , std=a_ , max_length=a_ ) if "speech-commands" in model_name: a__ = load_dataset('speech_commands' , 'v0.02' , split='validation' ) a__ = dataset[0]['''audio''']['''array'''] else: a__ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) a__ = torchaudio.load(a_ ) a__ = waveform.squeeze().numpy() a__ = feature_extractor(a_ , sampling_rate=1_6_0_0_0 , return_tensors='pt' ) # forward pass a__ = model(**a_ ) a__ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": a__ = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": a__ = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": a__ = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": a__ = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": a__ = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": a__ = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": a__ = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": a__ = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , a_ , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(a_ ).mkdir(exist_ok=a_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(a_ ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(a_ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case : Tuple = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
718
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
0
def __lowercase ( __lowerCAmelCase : List[str] ): a__ = len(_A ) for i in range(_A ): for j in range(i + 1 , _A ): if numbers[j] < numbers[i]: a__ , a__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": snake_case : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() snake_case : Optional[int] = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
719
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
0
def __lowercase ( __lowerCAmelCase : Tuple = 2_0_0_0_0_0_0 ): a__ = [0 for i in range(n + 1 )] a__ = 1 a__ = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , __lowerCAmelCase ): a__ = 1 a__ = 0 for i in range(__lowerCAmelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
720
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
0
import json import sys def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : List[str] ): with open(__UpperCamelCase , encoding='utf-8' ) as f: a__ = json.load(__UpperCamelCase ) a__ = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(__UpperCamelCase ): a__ = results[benchmark_name] a__ = benchmark_name.split('/' )[-1] output_md.append(F'### Benchmark: {benchmark_file_name}' ) a__ = """| metric |""" a__ = """|--------|""" a__ = """| new / old (diff) |""" for metric_name in sorted(__UpperCamelCase ): a__ = benchmark_res[metric_name] a__ = metric_vals["""new"""] a__ = metric_vals.get('old' , __UpperCamelCase ) a__ = metric_vals.get('diff' , __UpperCamelCase ) a__ = F' {new_val:f}' if isinstance(__UpperCamelCase , (int, float) ) else """None""" if old_val is not None: val_str += F' / {old_val:f}' if isinstance(__UpperCamelCase , (int, float) ) else "None" if dif_val is not None: val_str += F' ({dif_val:f})' if isinstance(__UpperCamelCase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(__UpperCamelCase ) ) if __name__ == "__main__": snake_case : Dict = sys.argv[1] snake_case : str = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
721
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __lowercase ( __lowerCAmelCase : Optional[int] ): a__ = 3_8_4 if "tiny" in model_name: a__ = [3, 3, 9, 3] a__ = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: a__ = [3, 3, 2_7, 3] a__ = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: a__ = [3, 3, 2_7, 3] a__ = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] a__ = 5_1_2 if "large" in model_name: a__ = [3, 3, 2_7, 3] a__ = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] a__ = 7_6_8 if "xlarge" in model_name: a__ = [3, 3, 2_7, 3] a__ = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] a__ = 1_0_2_4 # set label information a__ = 1_5_0 a__ = 'huggingface/label-files' a__ = 'ade20k-id2label.json' a__ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) a__ = {int(snake_case__ ): v for k, v in idalabel.items()} a__ = {v: k for k, v in idalabel.items()} a__ = ConvNextConfig( depths=snake_case__ , hidden_sizes=snake_case__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) a__ = UperNetConfig( backbone_config=snake_case__ , auxiliary_in_channels=snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ , ) return config def __lowercase ( __lowerCAmelCase : Any ): a__ = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ): a__ = dct.pop(snake_case__ ) a__ = val def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Tuple ): a__ = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } a__ = model_name_to_url[model_name] a__ = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' )['state_dict'] a__ = get_upernet_config(snake_case__ ) a__ = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a__ = state_dict.pop(snake_case__ ) if "bn" in key: a__ = key.replace('bn' , 'batch_norm' ) a__ = val # rename keys a__ = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image a__ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' a__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) a__ = SegformerImageProcessor() a__ = processor(snake_case__ , return_tensors='pt' ).pixel_values with torch.no_grad(): a__ = model(snake_case__ ) if model_name == "upernet-convnext-tiny": a__ = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": a__ = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": a__ = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": a__ = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": a__ = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[f"""upernet-convnext-{size}""" for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case : Any = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
0
'''simple docstring''' from __future__ import annotations class snake_case_ : def __init__( self :Any ,__snake_case :int ,__snake_case :int ) -> str: a__ , a__ = text, pattern a__ , a__ = len(__snake_case ), len(__snake_case ) def lowerCamelCase__( self :Dict ,__snake_case :Any ) -> Dict: for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def lowerCamelCase__( self :List[Any] ,__snake_case :List[Any] ) -> Any: for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: # searches pattern in text and returns index positions a__ = [] for i in range(self.textLen - self.patLen + 1 ): a__ = self.mismatch_in_text(__snake_case ) if mismatch_index == -1: positions.append(__snake_case ) else: a__ = self.match_in_pattern(self.text[mismatch_index] ) a__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions snake_case : Tuple = '''ABAABA''' snake_case : Dict = '''AB''' snake_case : Tuple = BoyerMooreSearch(text, pattern) snake_case : List[str] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
701
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
0
import os def __lowercase ( ): a__ = os.path.dirname(os.path.realpath(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'triangle.txt' ) with open(__lowerCAmelCase ) as f: a__ = f.readlines() a__ = [] for line in triangle: a__ = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(__lowerCAmelCase ) ) a.append(__lowerCAmelCase ) for i in range(1 , len(__lowerCAmelCase ) ): for j in range(len(a[i] ) ): a__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 a__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__lowerCAmelCase , __lowerCAmelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
702
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class snake_case_ (UpperCamelCase_ ): def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A ,'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__A ,'num_attention_heads' ) ) class snake_case_ : def __init__( self :Any ,__snake_case :Optional[int] ,__snake_case :Dict=13 ,__snake_case :Union[str, Any]=64 ,__snake_case :int=3 ,__snake_case :List[str]=3 ,__snake_case :Optional[Any]=2 ,__snake_case :Dict=1 ,__snake_case :Optional[int]=16 ,__snake_case :Any=[1_28, 2_56, 3_84] ,__snake_case :List[str]=[4, 6, 8] ,__snake_case :Optional[Any]=[2, 3, 4] ,__snake_case :str=[16, 16, 16] ,__snake_case :Dict=0 ,__snake_case :Dict=[2, 2, 2] ,__snake_case :Dict=[2, 2, 2] ,__snake_case :Dict=0.02 ,__snake_case :Dict=True ,__snake_case :Dict=True ,__snake_case :str=2 ,) -> Optional[Any]: a__ = parent a__ = batch_size a__ = image_size a__ = num_channels a__ = kernel_size a__ = stride a__ = padding a__ = hidden_sizes a__ = num_attention_heads a__ = depths a__ = key_dim a__ = drop_path_rate a__ = patch_size a__ = attention_ratio a__ = mlp_ratio a__ = initializer_range a__ = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] a__ = is_training a__ = use_labels a__ = num_labels a__ = initializer_range def lowerCamelCase__( self :Tuple ) -> Any: a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.num_labels ) a__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__( self :Dict ) -> Optional[Any]: return LevitConfig( image_size=self.image_size ,num_channels=self.num_channels ,kernel_size=self.kernel_size ,stride=self.stride ,padding=self.padding ,patch_size=self.patch_size ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,depths=self.depths ,key_dim=self.key_dim ,drop_path_rate=self.drop_path_rate ,mlp_ratio=self.mlp_ratio ,attention_ratio=self.attention_ratio ,initializer_range=self.initializer_range ,down_ops=self.down_ops ,) def lowerCamelCase__( self :Dict ,__snake_case :int ,__snake_case :List[str] ,__snake_case :List[str] ) -> Tuple: a__ = LevitModel(config=__A ) model.to(__A ) model.eval() a__ = model(__A ) a__ = (self.image_size, self.image_size) a__ = image_size[0], image_size[1] for _ in range(4 ): a__ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) a__ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) ,) def lowerCamelCase__( self :Dict ,__snake_case :Tuple ,__snake_case :Optional[int] ,__snake_case :Optional[Any] ) -> Optional[int]: a__ = self.num_labels a__ = LevitForImageClassification(__A ) model.to(__A ) model.eval() a__ = model(__A ,labels=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: a__ = self.prepare_config_and_inputs() a__ = config_and_inputs a__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCAmelCase__ : Tuple = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : int = False def lowerCamelCase__( self :Any ) -> Tuple: a__ = LevitModelTester(self ) a__ = ConfigTester(self ,config_class=__A ,has_text_modality=__A ,hidden_size=37 ) def lowerCamelCase__( self :List[str] ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__( self :Optional[int] ) -> Dict: return @unittest.skip(reason='Levit does not use inputs_embeds' ) def lowerCamelCase__( self :Dict ) -> Optional[Any]: pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def lowerCamelCase__( self :str ) -> int: pass @unittest.skip(reason='Levit does not output attentions' ) def lowerCamelCase__( self :Optional[int] ) -> Dict: pass def lowerCamelCase__( self :int ) -> Optional[Any]: a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__A ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__A ) def lowerCamelCase__( self :Tuple ) -> Any: def check_hidden_states_output(__snake_case :Any ,__snake_case :Dict ,__snake_case :Any ): a__ = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(__A ,__A ) ) a__ = outputs.hidden_states a__ = len(self.model_tester.depths ) + 1 self.assertEqual(len(__A ) ,__A ) a__ = (self.model_tester.image_size, self.model_tester.image_size) a__ = image_size[0], image_size[1] for _ in range(4 ): a__ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) a__ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[ height * width, self.model_tester.hidden_sizes[0], ] ,) a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = True check_hidden_states_output(__A ,__A ,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ = True check_hidden_states_output(__A ,__A ,__A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Tuple ) -> Optional[Any]: pass def lowerCamelCase__( self :List[str] ,__snake_case :str ,__snake_case :Optional[int] ,__snake_case :Optional[int]=False ) -> str: a__ = super()._prepare_for_class(__A ,__A ,return_labels=__A ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase__( self :List[str] ) -> List[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def lowerCamelCase__( self :List[Any] ) -> List[str]: if not self.model_tester.is_training: return a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__A ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue a__ = model_class(__A ) model.to(__A ) model.train() a__ = self._prepare_for_class(__A ,__A ,return_labels=__A ) a__ = model(**__A ).loss loss.backward() def lowerCamelCase__( self :Tuple ) -> str: a__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a__ = False a__ = True for model_class in self.all_model_classes: if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue a__ = model_class(__A ) model.gradient_checkpointing_enable() model.to(__A ) model.train() a__ = self._prepare_for_class(__A ,__A ,return_labels=__A ) a__ = model(**__A ).loss loss.backward() def lowerCamelCase__( self :Dict ) -> Dict: a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__A ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): a__ = problem_type["title"] a__ = problem_type["num_labels"] a__ = model_class(__A ) model.to(__A ) model.train() a__ = self._prepare_for_class(__A ,__A ,return_labels=__A ) if problem_type["num_labels"] > 1: a__ = inputs["labels"].unsqueeze(1 ).repeat(1 ,problem_type['num_labels'] ) a__ = inputs["labels"].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__A ) as warning_list: a__ = model(**__A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def lowerCamelCase__( self :List[str] ) -> Any: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = LevitModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __lowercase ( ): a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case_ (unittest.TestCase ): @cached_property def lowerCamelCase__( self :Dict ) -> str: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=__A ,return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): a__ = model(**__A ) # verify the logits a__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,__A ) a__ = torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__A ,atol=1E-4 ) )
703
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
0
from jiwer import compute_measures import datasets snake_case : Optional[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" snake_case : Union[str, Any] = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" snake_case : Optional[Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/jitsi/jiwer/'] ,reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] ,) def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple=None ,__snake_case :List[str]=None ,__snake_case :Union[str, Any]=False ) -> int: if concatenate_texts: return compute_measures(__snake_case ,__snake_case )["wer"] else: a__ = 0 a__ = 0 for prediction, reference in zip(__snake_case ,__snake_case ): a__ = compute_measures(__snake_case ,__snake_case ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
704
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
0
from __future__ import annotations from math import ceil, floor, sqrt def __lowercase ( __lowerCAmelCase : int = 2_0_0_0_0_0_0 ): a__ = [0] a__ = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target a__ = 0 # the area corresponding to the grid that gives the product closest to target a__ = 0 # an estimate of b, using the quadratic formula a__ = 42 # the largest integer less than b_estimate a__ = 42 # the largest integer less than b_estimate a__ = 42 # the triangle number corresponding to b_floor a__ = 42 # the triangle number corresponding to b_ceil a__ = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): a__ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 a__ = floor(__lowerCAmelCase ) a__ = ceil(__lowerCAmelCase ) a__ = triangle_numbers[b_floor] a__ = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): a__ = triangle_b_first_guess * triangle_a a__ = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): a__ = triangle_b_second_guess * triangle_a a__ = idx_a * b_ceil return area if __name__ == "__main__": print(f"""{solution() = }""")
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __lowercase ( ): a__ = 9, 1_4 # noqa: F841 a__ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] a__ = defaultdict(snake_case__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) a__ = mst(snake_case__ ) a__ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: a__ = tuple(answer[:2] ) a__ = tuple(edge[::-1] ) assert edge in result or reverse in result
706
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
0
def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): return base * power(__snake_case , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') snake_case = int(input('''Enter the base: ''').strip()) snake_case = int(input('''Enter the exponent: ''').strip()) snake_case = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents snake_case = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
707
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ (_UpperCAmelCase ): def __init__( self :Tuple ,__snake_case :Distribution ,__snake_case :Tuple=None ,__snake_case :List[str]=None ,__snake_case :int=0 ) -> str: a__ = 1.0 if scale is None else scale a__ = 0.0 if loc is None else loc super().__init__(lowercase_ ,[AffineTransform(loc=self.loc ,scale=self.scale ,event_dim=lowercase_ )] ) @property def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: return self.base_dist.mean * self.scale + self.loc @property def lowerCamelCase__( self :Optional[int] ) -> List[Any]: return self.base_dist.variance * self.scale**2 @property def lowerCamelCase__( self :Dict ) -> int: return self.variance.sqrt() class snake_case_ (nn.Module ): def __init__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Dict[str, int] ,__snake_case :Callable[..., Tuple[torch.Tensor]] ,**__snake_case :List[Any] ) -> str: super().__init__(**lowercase_ ) a__ = args_dim a__ = nn.ModuleList([nn.Linear(lowercase_ ,lowercase_ ) for dim in args_dim.values()] ) a__ = domain_map def lowerCamelCase__( self :int ,__snake_case :torch.Tensor ) -> Optional[int]: a__ = [proj(lowercase_ ) for proj in self.proj] return self.domain_map(*lowercase_ ) class snake_case_ (nn.Module ): def __init__( self :Optional[Any] ,__snake_case :List[Any] ) -> Optional[int]: super().__init__() a__ = function def lowerCamelCase__( self :Any ,__snake_case :Tuple ,*__snake_case :Optional[int] ) -> Optional[int]: return self.function(lowercase_ ,*lowercase_ ) class snake_case_ : UpperCAmelCase__ : List[Any] = 4_2 UpperCAmelCase__ : List[Any] = 4_2 UpperCAmelCase__ : int = 4_2 def __init__( self :Dict ,__snake_case :int = 1 ) -> str: a__ = dim a__ = {k: dim * self.args_dim[k] for k in self.args_dim} def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[Any] ) -> Union[str, Any]: if self.dim == 1: return self.distribution_class(*lowercase_ ) else: return Independent(self.distribution_class(*lowercase_ ) ,1 ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str ,__snake_case :Optional[torch.Tensor] = None ,__snake_case :Optional[torch.Tensor] = None ,) -> Any: a__ = self._base_distribution(lowercase_ ) if loc is None and scale is None: return distr else: return AffineTransformed(lowercase_ ,loc=lowercase_ ,scale=lowercase_ ,event_dim=self.event_dim ) @property def lowerCamelCase__( self :Tuple ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def lowerCamelCase__( self :Dict ) -> Any: return len(self.event_shape ) @property def lowerCamelCase__( self :List[str] ) -> List[Any]: return 0.0 def lowerCamelCase__( self :str ,__snake_case :int ) -> Union[str, Any]: return ParameterProjection( in_features=lowercase_ ,args_dim=self.args_dim ,domain_map=LambdaLayer(self.domain_map ) ,) def lowerCamelCase__( self :Union[str, Any] ,*__snake_case :torch.Tensor ) -> str: raise NotImplementedError() @staticmethod def lowerCamelCase__( __snake_case :torch.Tensor ) -> List[Any]: return (x + torch.sqrt(torch.square(lowercase_ ) + 4.0 )) / 2.0 class snake_case_ (_UpperCAmelCase ): UpperCAmelCase__ : Union[str, Any] = {'''df''': 1, '''loc''': 1, '''scale''': 1} UpperCAmelCase__ : Optional[int] = StudentT @classmethod def lowerCamelCase__( cls :List[Any] ,__snake_case :torch.Tensor ,__snake_case :torch.Tensor ,__snake_case :torch.Tensor ) -> str: a__ = cls.squareplus(lowercase_ ).clamp_min(torch.finfo(scale.dtype ).eps ) a__ = 2.0 + cls.squareplus(lowercase_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case_ (_UpperCAmelCase ): UpperCAmelCase__ : List[str] = {'''loc''': 1, '''scale''': 1} UpperCAmelCase__ : Dict = Normal @classmethod def lowerCamelCase__( cls :int ,__snake_case :torch.Tensor ,__snake_case :torch.Tensor ) -> List[Any]: a__ = cls.squareplus(lowercase_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case_ (_UpperCAmelCase ): UpperCAmelCase__ : Union[str, Any] = {'''total_count''': 1, '''logits''': 1} UpperCAmelCase__ : int = NegativeBinomial @classmethod def lowerCamelCase__( cls :Optional[int] ,__snake_case :torch.Tensor ,__snake_case :torch.Tensor ) -> int: a__ = cls.squareplus(lowercase_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowerCamelCase__( self :int ,__snake_case :Tuple ) -> str: a__ = distr_args if self.dim == 1: return self.distribution_class(total_count=lowercase_ ,logits=lowercase_ ) else: return Independent(self.distribution_class(total_count=lowercase_ ,logits=lowercase_ ) ,1 ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :Optional[torch.Tensor] = None ,__snake_case :Optional[torch.Tensor] = None ) -> Tuple: a__ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
708
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
0
import colorsys from PIL import Image # type: ignore def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : int ): a__ = x a__ = y for step in range(_lowercase ): # noqa: B007 a__ = a * a - b * b + x a__ = 2 * a * b + y a__ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __lowercase ( __lowerCAmelCase : float ): if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def __lowercase ( __lowerCAmelCase : float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_lowercase , 1 , 1 ) ) def __lowercase ( __lowerCAmelCase : int = 8_0_0 , __lowerCAmelCase : int = 6_0_0 , __lowerCAmelCase : float = -0.6 , __lowerCAmelCase : float = 0 , __lowerCAmelCase : float = 3.2 , __lowerCAmelCase : int = 5_0 , __lowerCAmelCase : bool = True , ): a__ = Image.new('RGB' , (image_width, image_height) ) a__ = img.load() # loop through the image-coordinates for image_x in range(_lowercase ): for image_y in range(_lowercase ): # determine the figure-coordinates based on the image-coordinates a__ = figure_width / image_width * image_height a__ = figure_center_x + (image_x / image_width - 0.5) * figure_width a__ = figure_center_y + (image_y / image_height - 0.5) * figure_height a__ = get_distance(_lowercase , _lowercase , _lowercase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: a__ = get_color_coded_rgb(_lowercase ) else: a__ = get_black_and_white_rgb(_lowercase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure snake_case : Union[str, Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
709
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : List[str] = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class snake_case_ (UpperCAmelCase__ ): UpperCAmelCase__ : Tuple = '''roc_bert''' def __init__( self :Tuple ,__snake_case :Optional[int]=3_05_22 ,__snake_case :int=7_68 ,__snake_case :Dict=12 ,__snake_case :List[Any]=12 ,__snake_case :List[Any]=30_72 ,__snake_case :int="gelu" ,__snake_case :List[str]=0.1 ,__snake_case :List[Any]=0.1 ,__snake_case :List[str]=5_12 ,__snake_case :Union[str, Any]=2 ,__snake_case :Union[str, Any]=0.02 ,__snake_case :Tuple=1E-12 ,__snake_case :Tuple=True ,__snake_case :Union[str, Any]=0 ,__snake_case :Optional[int]="absolute" ,__snake_case :int=None ,__snake_case :List[Any]=True ,__snake_case :Union[str, Any]=True ,__snake_case :Optional[Any]=7_68 ,__snake_case :Optional[int]=9_10 ,__snake_case :List[Any]=5_12 ,__snake_case :Any=2_48_58 ,__snake_case :int=True ,**__snake_case :int ,) -> List[str]: a__ = vocab_size a__ = max_position_embeddings a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = initializer_range a__ = type_vocab_size a__ = layer_norm_eps a__ = use_cache a__ = enable_pronunciation a__ = enable_shape a__ = pronunciation_embed_dim a__ = pronunciation_vocab_size a__ = shape_embed_dim a__ = shape_vocab_size a__ = concat_input a__ = position_embedding_type a__ = classifier_dropout super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
710
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
0
from __future__ import annotations def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
711
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): snake_case : Any = 'pt' elif is_tf_available(): snake_case : str = 'tf' else: snake_case : Optional[int] = 'jax' class snake_case_ (UpperCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = PerceiverTokenizer UpperCAmelCase__ : int = False def lowerCamelCase__( self :List[Any] ) -> Optional[Any]: super().setUp() a__ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__( self :Optional[Any] ) -> Any: return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowerCamelCase__( self :Optional[Any] ,**__snake_case :Union[str, Any] ) -> Optional[Any]: return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCamelCase__ ) def lowerCamelCase__( self :List[Any] ,__snake_case :List[Any] ,__snake_case :Union[str, Any]=False ,__snake_case :Tuple=20 ,__snake_case :Dict=5 ) -> Optional[Any]: a__ = [] for i in range(len(UpperCamelCase__ ) ): try: a__ = tokenizer.decode([i] ,clean_up_tokenization_spaces=UpperCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) a__ = list(filter(lambda __snake_case : re.match(R'^[ a-zA-Z]+$' ,t[1] ) ,UpperCamelCase__ ) ) a__ = list(filter(lambda __snake_case : [t[0]] == tokenizer.encode(t[1] ,add_special_tokens=UpperCamelCase__ ) ,UpperCamelCase__ ) ) if max_length is not None and len(UpperCamelCase__ ) > max_length: a__ = toks[:max_length] if min_length is not None and len(UpperCamelCase__ ) < min_length and len(UpperCamelCase__ ) > 0: while len(UpperCamelCase__ ) < min_length: a__ = toks + toks # toks_str = [t[1] for t in toks] a__ = [t[0] for t in toks] # Ensure consistency a__ = tokenizer.decode(UpperCamelCase__ ,clean_up_tokenization_spaces=UpperCamelCase__ ) if " " not in output_txt and len(UpperCamelCase__ ) > 1: a__ = ( tokenizer.decode([toks_ids[0]] ,clean_up_tokenization_spaces=UpperCamelCase__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] ,clean_up_tokenization_spaces=UpperCamelCase__ ) ) if with_prefix_space: a__ = ''' ''' + output_txt a__ = tokenizer.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) return output_txt, output_ids def lowerCamelCase__( self :Optional[int] ) -> int: a__ = self.perceiver_tokenizer a__ = '''Unicode €.''' a__ = tokenizer(UpperCamelCase__ ) a__ = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded['input_ids'] ,UpperCamelCase__ ) # decoding a__ = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ ,'[CLS]Unicode €.[SEP]' ) a__ = tokenizer('e è é ê ë' ) a__ = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded['input_ids'] ,UpperCamelCase__ ) # decoding a__ = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ ,'[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) ,'[CLS]e è é ê ë[SEP]' ) def lowerCamelCase__( self :Union[str, Any] ) -> str: a__ = self.perceiver_tokenizer a__ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off a__ = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on a__ = tokenizer(UpperCamelCase__ ,padding=UpperCamelCase__ ,return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ ,UpperCamelCase__ ) if FRAMEWORK != "jax": a__ = list(batch.input_ids.numpy()[0] ) else: a__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) self.assertEqual((2, 38) ,batch.input_ids.shape ) self.assertEqual((2, 38) ,batch.attention_mask.shape ) def lowerCamelCase__( self :List[str] ) -> Union[str, Any]: a__ = self.perceiver_tokenizer a__ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] a__ = tokenizer(UpperCamelCase__ ,padding=UpperCamelCase__ ,return_tensors=UpperCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' ,UpperCamelCase__ ) self.assertIn('attention_mask' ,UpperCamelCase__ ) self.assertNotIn('decoder_input_ids' ,UpperCamelCase__ ) self.assertNotIn('decoder_attention_mask' ,UpperCamelCase__ ) def lowerCamelCase__( self :Any ) -> Tuple: a__ = self.perceiver_tokenizer a__ = [ '''Summary of the text.''', '''Another summary.''', ] a__ = tokenizer( text_target=UpperCamelCase__ ,max_length=32 ,padding='max_length' ,truncation=UpperCamelCase__ ,return_tensors=UpperCamelCase__ ) self.assertEqual(32 ,targets['input_ids'].shape[1] ) def lowerCamelCase__( self :List[Any] ) -> str: a__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test a__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc a__ = tempfile.mkdtemp() a__ = ''' He is very happy, UNwant\u00E9d,running''' a__ = tokenizer.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) a__ = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) a__ = after_tokenizer.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) shutil.rmtree(UpperCamelCase__ ) a__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc a__ = tempfile.mkdtemp() a__ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['bim', 'bambam'] ) a__ = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) a__ = tokenizer.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) a__ = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) a__ = after_tokenizer.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) self.assertIn('new_additional_special_token' ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) a__ = tokenizer.__class__.from_pretrained(UpperCamelCase__ ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(UpperCamelCase__ ) def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ ,'special_tokens_map.json' ) ,encoding='utf-8' ) as json_file: a__ = json.load(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ ,'tokenizer_config.json' ) ,encoding='utf-8' ) as json_file: a__ = json.load(UpperCamelCase__ ) a__ = [F'<extra_id_{i}>' for i in range(1_25 )] a__ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] a__ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(UpperCamelCase__ ,'special_tokens_map.json' ) ,'w' ,encoding='utf-8' ) as outfile: json.dump(UpperCamelCase__ ,UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ ,'tokenizer_config.json' ) ,'w' ,encoding='utf-8' ) as outfile: json.dump(UpperCamelCase__ ,UpperCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a__ = tokenizer_class.from_pretrained( UpperCamelCase__ ,) self.assertIn( 'an_additional_special_token' ,tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) ,) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a__ = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' ,lstrip=UpperCamelCase__ )] a__ = tokenizer_class.from_pretrained( UpperCamelCase__ ,additional_special_tokens=UpperCamelCase__ ,) self.assertIn('a_new_additional_special_token' ,tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] ,tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) ,) def lowerCamelCase__( self :str ) -> Any: a__ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) ,'�' ) def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: pass def lowerCamelCase__( self :Union[str, Any] ) -> Dict: pass def lowerCamelCase__( self :Optional[Any] ) -> str: pass def lowerCamelCase__( self :List[str] ) -> Dict: pass def lowerCamelCase__( self :Union[str, Any] ) -> Any: a__ = self.get_tokenizers(fast=UpperCamelCase__ ,do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): a__ = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] a__ = tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ ,UpperCamelCase__ )
712
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Optional[Any] = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : str = '''nllb-moe''' UpperCAmelCase__ : Union[str, Any] = ['''past_key_values'''] UpperCAmelCase__ : List[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self :Dict ,__snake_case :Union[str, Any]=12_81_12 ,__snake_case :Optional[int]=10_24 ,__snake_case :Union[str, Any]=12 ,__snake_case :str=40_96 ,__snake_case :Union[str, Any]=16 ,__snake_case :List[str]=12 ,__snake_case :Optional[Any]=40_96 ,__snake_case :List[str]=16 ,__snake_case :str=0.05 ,__snake_case :Optional[int]=0.05 ,__snake_case :Optional[Any]=True ,__snake_case :int=True ,__snake_case :Dict="relu" ,__snake_case :Any=10_24 ,__snake_case :Any=0.1 ,__snake_case :List[Any]=0.1 ,__snake_case :Any=0.0 ,__snake_case :Dict=0.02 ,__snake_case :List[str]=2 ,__snake_case :str=True ,__snake_case :Any=False ,__snake_case :Any="float32" ,__snake_case :Optional[int]=False ,__snake_case :Tuple=1_28 ,__snake_case :Tuple=64 ,__snake_case :Dict=4 ,__snake_case :Union[str, Any]=4 ,__snake_case :Any=0.0_01 ,__snake_case :str=0.0_01 ,__snake_case :List[str]="all" ,__snake_case :Optional[int]=False ,__snake_case :Any=False ,__snake_case :Optional[Any]=1.0 ,__snake_case :int=0.2 ,__snake_case :Union[str, Any]=1 ,__snake_case :List[Any]=0 ,__snake_case :Optional[int]=2 ,__snake_case :Optional[Any]=False ,**__snake_case :Optional[int] ,) -> Optional[Any]: a__ = vocab_size a__ = max_position_embeddings a__ = d_model a__ = encoder_ffn_dim a__ = encoder_layers a__ = encoder_attention_heads a__ = decoder_ffn_dim a__ = decoder_layers a__ = decoder_attention_heads a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = activation_function a__ = init_std a__ = encoder_layerdrop a__ = decoder_layerdrop a__ = use_cache a__ = encoder_layers a__ = scale_embedding # scale factor will be sqrt(d_model) if True a__ = router_z_loss_coef a__ = router_aux_loss_coef a__ = decoder_sparse_step a__ = encoder_sparse_step a__ = num_experts a__ = expert_capacity a__ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) a__ = router_dtype a__ = router_ignore_padding_tokens a__ = batch_prioritized_routing a__ = second_expert_policy a__ = normalize_router_prob_before_dropping a__ = moe_eval_capacity_token_fraction a__ = moe_token_dropout a__ = output_router_logits super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ,is_encoder_decoder=_SCREAMING_SNAKE_CASE ,decoder_start_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,)
713
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
0
def __lowercase ( __lowerCAmelCase : Tuple ): return str(__lowerCAmelCase ) == str(__lowerCAmelCase )[::-1] def __lowercase ( __lowerCAmelCase : List[Any] ): return int(__lowerCAmelCase ) + int(str(__lowerCAmelCase )[::-1] ) def __lowercase ( __lowerCAmelCase : Optional[int] = 1_0_0_0_0 ): a__ = [] for num in range(1 , __lowerCAmelCase ): a__ = 0 a__ = num while iterations < 5_0: a__ = sum_reverse(__lowerCAmelCase ) iterations += 1 if is_palindrome(__lowerCAmelCase ): break else: lychrel_nums.append(__lowerCAmelCase ) return len(__lowerCAmelCase ) if __name__ == "__main__": print(f"""{solution() = }""")
714
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 snake_case : str = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') snake_case : Optional[int] = get_tests_dir('''fixtures/vocab.json''') snake_case : Tuple = get_tests_dir('''fixtures''') class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: a__ = 0 def lowerCamelCase__( self :List[Any] ) -> str: a__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(__lowercase ,__lowercase ) def lowerCamelCase__( self :List[Any] ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaConfig() a__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) a__ = AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__lowercase ,os.path.join(__lowercase ,__lowercase ) ) copyfile(__lowercase ,os.path.join(__lowercase ,'vocab.json' ) ) a__ = AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) def lowerCamelCase__( self :List[str] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaFeatureExtractor() a__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) a__ = WavaVecaProcessor(__lowercase ,__lowercase ) # save in new folder processor.save_pretrained(__lowercase ) # drop `processor_class` in tokenizer with open(os.path.join(__lowercase ,__lowercase ) ,'r' ) as f: a__ = json.load(__lowercase ) config_dict.pop('processor_class' ) with open(os.path.join(__lowercase ,__lowercase ) ,'w' ) as f: f.write(json.dumps(__lowercase ) ) a__ = AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) def lowerCamelCase__( self :Dict ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaFeatureExtractor() a__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) a__ = WavaVecaProcessor(__lowercase ,__lowercase ) # save in new folder processor.save_pretrained(__lowercase ) # drop `processor_class` in feature extractor with open(os.path.join(__lowercase ,__lowercase ) ,'r' ) as f: a__ = json.load(__lowercase ) config_dict.pop('processor_class' ) with open(os.path.join(__lowercase ,__lowercase ) ,'w' ) as f: f.write(json.dumps(__lowercase ) ) a__ = AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) def lowerCamelCase__( self :Dict ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(__lowercase ) # copy relevant files copyfile(__lowercase ,os.path.join(__lowercase ,'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(__lowercase ,__lowercase ) ,'w' ) as f: f.write('{}' ) a__ = AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) def lowerCamelCase__( self :List[Any] ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase ): a__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase ): a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__lowercase ) a__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__lowercase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ ,'NewProcessor' ) a__ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) a__ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) # Test we can also load the slow version a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__lowercase ,use_fast=__lowercase ) a__ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ ,'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) def lowerCamelCase__( self :int ) -> Dict: try: AutoConfig.register('custom' ,__lowercase ) AutoFeatureExtractor.register(__lowercase ,__lowercase ) AutoTokenizer.register(__lowercase ,slow_tokenizer_class=__lowercase ) AutoProcessor.register(__lowercase ,__lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): AutoProcessor.register(__lowercase ,__lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API a__ = CustomFeatureExtractor.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: a__ = os.path.join(__lowercase ,'vocab.txt' ) with open(__lowercase ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) a__ = CustomTokenizer(__lowercase ) a__ = CustomProcessor(__lowercase ,__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__lowercase ) a__ = AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__( self :Dict ) -> Optional[Any]: class snake_case_ (lowercase__ ): UpperCAmelCase__ : Union[str, Any] = False class snake_case_ (lowercase__ ): UpperCAmelCase__ : Dict = False class snake_case_ (lowercase__ ): UpperCAmelCase__ : Union[str, Any] = """AutoFeatureExtractor""" UpperCAmelCase__ : List[str] = """AutoTokenizer""" UpperCAmelCase__ : Union[str, Any] = False try: AutoConfig.register('custom' ,__lowercase ) AutoFeatureExtractor.register(__lowercase ,__lowercase ) AutoTokenizer.register(__lowercase ,slow_tokenizer_class=__lowercase ) AutoProcessor.register(__lowercase ,__lowercase ) # If remote code is not set, the default is to use local classes. a__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ ,'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__lowercase ) self.assertEqual(processor.__class__.__name__ ,'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__lowercase ) self.assertEqual(processor.__class__.__name__ ,'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__( self :Optional[Any] ) -> int: a__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ ,'BertTokenizerFast' ) def lowerCamelCase__( self :str ) -> Union[str, Any]: a__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ ,'ConvNextImageProcessor' ) @is_staging_test class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def lowerCamelCase__( cls :Union[str, Any] ) -> List[str]: a__ = TOKEN HfFolder.save_token(__lowercase ) @classmethod def lowerCamelCase__( cls :int ) -> List[str]: try: delete_repo(token=cls._token ,repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-processor' ) except HTTPError: pass def lowerCamelCase__( self :Dict ) -> str: a__ = WavaVecaProcessor.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowercase ,'test-processor' ) ,push_to_hub=__lowercase ,use_auth_token=self._token ) a__ = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowercase ,getattr(new_processor.feature_extractor ,__lowercase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() ,processor.tokenizer.get_vocab() ) def lowerCamelCase__( self :Tuple ) -> str: a__ = WavaVecaProcessor.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowercase ,'test-processor-org' ) ,push_to_hub=__lowercase ,use_auth_token=self._token ,organization='valid_org' ,) a__ = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowercase ,getattr(new_processor.feature_extractor ,__lowercase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() ,processor.tokenizer.get_vocab() ) def lowerCamelCase__( self :List[Any] ) -> str: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() a__ = CustomFeatureExtractor.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: a__ = os.path.join(__lowercase ,'vocab.txt' ) with open(__lowercase ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) a__ = CustomTokenizer(__lowercase ) a__ = CustomProcessor(__lowercase ,__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor' ,token=self._token ) a__ = Repository(__lowercase ,clone_from=F'{USER}/test-dynamic-processor' ,token=self._token ) processor.save_pretrained(__lowercase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map ,{ 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } ,) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__lowercase ,'tokenizer_config.json' ) ) as f: a__ = json.load(__lowercase ) self.assertDictEqual( tokenizer_config['auto_map'] ,{ 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } ,) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__lowercase ,'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowercase ,'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowercase ,'custom_processing.py' ) ) ) repo.push_to_hub() a__ = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' ,trust_remote_code=__lowercase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ ,'CustomProcessor' )
715
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors snake_case : Dict = logging.getLogger(__name__) class snake_case_ (__snake_case ): UpperCAmelCase__ : Any = 'sequence-classification' def __init__( self :List[Any] ,__snake_case :Any ) -> int: if type(A_ ) == dict: a__ = Namespace(**A_ ) a__ = glue_output_modes[hparams.task] a__ = glue_tasks_num_labels[hparams.task] super().__init__(A_ ,A_ ,self.mode ) def lowerCamelCase__( self :Tuple ,**__snake_case :Union[str, Any] ) -> Union[str, Any]: return self.model(**A_ ) def lowerCamelCase__( self :List[Any] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ) -> Dict: a__ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: a__ = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None a__ = self(**A_ ) a__ = outputs[0] a__ = self.trainer.lr_schedulers[0]["scheduler"] a__ = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def lowerCamelCase__( self :List[Any] ) -> Dict: a__ = self.hparams a__ = processors[args.task]() a__ = processor.get_labels() for mode in ["train", "dev"]: a__ = self._feature_file(A_ ) if os.path.exists(A_ ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' ,A_ ) else: logger.info('Creating features from dataset file at %s' ,args.data_dir ) a__ = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) a__ = convert_examples_to_features( A_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info('Saving features into cached file %s' ,A_ ) torch.save(A_ ,A_ ) def lowerCamelCase__( self :Dict ,__snake_case :Tuple ,__snake_case :Optional[Any] ,__snake_case :int = False ) -> Union[str, Any]: a__ = "dev" if mode == "test" else mode a__ = self._feature_file(A_ ) logger.info('Loading features from cached file %s' ,A_ ) a__ = torch.load(A_ ) a__ = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) a__ = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) a__ = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": a__ = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": a__ = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(A_ ,A_ ,A_ ,A_ ) ,batch_size=A_ ,shuffle=A_ ,) def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ,__snake_case :List[str] ) -> Optional[Any]: a__ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: a__ = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None a__ = self(**A_ ) a__ = outputs[:2] a__ = logits.detach().cpu().numpy() a__ = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCamelCase__( self :List[Any] ,__snake_case :int ) -> Any: a__ = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() a__ = np.concatenate([x['pred'] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": a__ = np.argmax(A_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": a__ = np.squeeze(A_ ) a__ = np.concatenate([x['target'] for x in outputs] ,axis=0 ) a__ = [[] for _ in range(out_label_ids.shape[0] )] a__ = [[] for _ in range(out_label_ids.shape[0] )] a__ = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task ,A_ ,A_ )} a__ = dict(results.items() ) a__ = results return ret, preds_list, out_label_list def lowerCamelCase__( self :Any ,__snake_case :int ) -> int: a__ = self._eval_end(A_ ) a__ = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCamelCase__( self :int ,__snake_case :List[str] ) -> Optional[Any]: a__ = self._eval_end(A_ ) a__ = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCamelCase__( __snake_case :List[Any] ,__snake_case :int ) -> Optional[Any]: BaseTransformer.add_model_specific_args(A_ ,A_ ) parser.add_argument( '--max_seq_length' ,default=1_28 ,type=A_ ,help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) ,) parser.add_argument( '--task' ,default='' ,type=A_ ,required=A_ ,help='The GLUE task to run' ,) parser.add_argument( '--gpus' ,default=0 ,type=A_ ,help='The number of GPUs allocated for this, it is by default 0 meaning none' ,) parser.add_argument( '--overwrite_cache' ,action='store_true' ,help='Overwrite the cached training and evaluation sets' ) return parser def __lowercase ( ): a__ = argparse.ArgumentParser() add_generic_args(_lowerCAmelCase , os.getcwd() ) a__ = GLUETransformer.add_model_specific_args(_lowerCAmelCase , os.getcwd() ) a__ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: a__ = os.path.join( './results' , F'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}' , ) os.makedirs(args.output_dir ) a__ = GLUETransformer(_lowerCAmelCase ) a__ = generic_train(_lowerCAmelCase , _lowerCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: a__ = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=_lowerCAmelCase ) ) a__ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_lowerCAmelCase ) if __name__ == "__main__": main()
716
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
0
from collections import defaultdict from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 , __lowerCAmelCase : int = 1_0 ): a__ = defaultdict(__lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f"""{solution() = }""")
717
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
0
from __future__ import annotations snake_case : Optional[Any] = 10 def __lowercase ( __lowerCAmelCase : Any ): a__ = 1 a__ = max(__lowerCAmelCase ) while placement <= max_digit: # declare and initialize empty buckets a__ = [[] for _ in range(__lowerCAmelCase )] # split list_of_ints between the buckets for i in list_of_ints: a__ = int((i / placement) % RADIX ) buckets[tmp].append(__lowerCAmelCase ) # put each buckets' contents into list_of_ints a__ = 0 for b in range(__lowerCAmelCase ): for i in buckets[b]: a__ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
718
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__( self :Union[str, Any] ) -> int: a__ = 1 a__ = 3 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCAmelCase_ ) return image @property def lowerCamelCase__( self :Union[str, Any] ) -> str: torch.manual_seed(0 ) a__ = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) return model @property def lowerCamelCase__( self :Optional[int] ) -> str: torch.manual_seed(0 ) a__ = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) return model @property def lowerCamelCase__( self :Union[str, Any] ) -> int: torch.manual_seed(0 ) a__ = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=50_06 ,) return RobertaSeriesModelWithTransformation(lowerCAmelCase_ ) @property def lowerCamelCase__( self :Optional[Any] ) -> Dict: def extract(*__snake_case :int ,**__snake_case :int ): class snake_case_ : def __init__( self :int ) -> Optional[int]: a__ = torch.ones([0] ) def lowerCamelCase__( self :List[Any] ,__snake_case :Optional[int] ) -> Union[str, Any]: self.pixel_values.to(lowerCAmelCase_ ) return self return Out() return extract def lowerCamelCase__( self :List[Any] ) -> List[Any]: a__ = 'cpu' # ensure determinism for the device-dependent torch.Generator a__ = self.dummy_cond_unet a__ = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) a__ = self.dummy_vae a__ = self.dummy_text_encoder a__ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) a__ = 77 a__ = self.dummy_image.to(lowerCAmelCase_ ) a__ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk a__ = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase_ ,scheduler=lowerCAmelCase_ ,vae=lowerCAmelCase_ ,text_encoder=lowerCAmelCase_ ,tokenizer=lowerCAmelCase_ ,safety_checker=lowerCAmelCase_ ,feature_extractor=self.dummy_extractor ,) a__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=lowerCAmelCase_ ) a__ = alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a__ = 'A painting of a squirrel eating a burger' a__ = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) a__ = alt_pipe( [prompt] ,generator=lowerCAmelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='np' ,image=lowerCAmelCase_ ,) a__ = output.images a__ = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) a__ = alt_pipe( [prompt] ,generator=lowerCAmelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='np' ,image=lowerCAmelCase_ ,return_dict=lowerCAmelCase_ ,)[0] a__ = image[0, -3:, -3:, -1] a__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a__ = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' ,'This test requires a GPU' ) def lowerCamelCase__( self :Optional[int] ) -> Tuple: a__ = self.dummy_cond_unet a__ = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) a__ = self.dummy_vae a__ = self.dummy_text_encoder a__ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) a__ = 77 a__ = self.dummy_image.to(lowerCAmelCase_ ) # put models in fp16 a__ = unet.half() a__ = vae.half() a__ = bert.half() # make sure here that pndm scheduler skips prk a__ = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase_ ,scheduler=lowerCAmelCase_ ,vae=lowerCAmelCase_ ,text_encoder=lowerCAmelCase_ ,tokenizer=lowerCAmelCase_ ,safety_checker=lowerCAmelCase_ ,feature_extractor=self.dummy_extractor ,) a__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=lowerCAmelCase_ ) a__ = alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a__ = 'A painting of a squirrel eating a burger' a__ = torch.manual_seed(0 ) a__ = alt_pipe( [prompt] ,generator=lowerCAmelCase_ ,num_inference_steps=2 ,output_type='np' ,image=lowerCAmelCase_ ,).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' ,'This test requires a GPU' ) def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 a__ = init_image.resize((7_60, 5_04) ) a__ = 'BAAI/AltDiffusion' a__ = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase_ ,safety_checker=lowerCAmelCase_ ,) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() a__ = 'A fantasy landscape, trending on artstation' a__ = torch.manual_seed(0 ) a__ = pipe( prompt=lowerCAmelCase_ ,image=lowerCAmelCase_ ,strength=0.75 ,guidance_scale=7.5 ,generator=lowerCAmelCase_ ,output_type='np' ,) a__ = output.images[0] a__ = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) a__ = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Tuple ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :str ) -> Tuple: a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) a__ = init_image.resize((7_68, 5_12) ) a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) a__ = 'BAAI/AltDiffusion' a__ = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase_ ,safety_checker=lowerCAmelCase_ ,) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() a__ = 'A fantasy landscape, trending on artstation' a__ = torch.manual_seed(0 ) a__ = pipe( prompt=lowerCAmelCase_ ,image=lowerCAmelCase_ ,strength=0.75 ,guidance_scale=7.5 ,generator=lowerCAmelCase_ ,output_type='np' ,) a__ = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
719
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case : List[str] = logging.get_logger(__name__) snake_case : str = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class snake_case_ (__lowercase , __lowercase ): UpperCAmelCase__ : Any = '''nat''' UpperCAmelCase__ : List[str] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Optional[Any] ,__snake_case :int=4 ,__snake_case :Union[str, Any]=3 ,__snake_case :Optional[int]=64 ,__snake_case :Optional[int]=[3, 4, 6, 5] ,__snake_case :Optional[int]=[2, 4, 8, 16] ,__snake_case :Union[str, Any]=7 ,__snake_case :Tuple=3.0 ,__snake_case :str=True ,__snake_case :Tuple=0.0 ,__snake_case :Any=0.0 ,__snake_case :Dict=0.1 ,__snake_case :List[Any]="gelu" ,__snake_case :List[Any]=0.02 ,__snake_case :Dict=1E-5 ,__snake_case :Union[str, Any]=0.0 ,__snake_case :Optional[int]=None ,__snake_case :List[str]=None ,**__snake_case :Tuple ,) -> List[str]: super().__init__(**__a ) a__ = patch_size a__ = num_channels a__ = embed_dim a__ = depths a__ = len(__a ) a__ = num_heads a__ = kernel_size a__ = mlp_ratio a__ = qkv_bias a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = drop_path_rate a__ = hidden_act a__ = layer_norm_eps a__ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a__ = int(embed_dim * 2 ** (len(__a ) - 1) ) a__ = layer_scale_init_value a__ = ["""stem"""] + [F'stage{idx}' for idx in range(1 ,len(__a ) + 1 )] a__ = get_aligned_output_features_output_indices( out_features=__a ,out_indices=__a ,stage_names=self.stage_names )
720
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
0
from collections.abc import Sequence def __lowercase ( __lowerCAmelCase : Sequence[int] | None = None ): if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) a__ = nums[0] for i in range(1 , len(_UpperCamelCase ) ): a__ = nums[i] a__ = max(_UpperCamelCase , ans + num , _UpperCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user snake_case : str = int(input('''Enter number of elements : ''').strip()) snake_case : int = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
721
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case_ (__a ): @staticmethod @abstractmethod def lowerCamelCase__( __snake_case :str ) -> Dict: raise NotImplementedError() @abstractmethod def lowerCamelCase__( self :List[Any] ) -> List[str]: raise NotImplementedError()
700
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class snake_case_ : def __init__( self :Optional[int] ,__snake_case :Optional[int] ,__snake_case :List[str]=3 ,__snake_case :List[str]=32 ,__snake_case :Optional[Any]=3 ,__snake_case :List[Any]=10 ,__snake_case :Union[str, Any]=[8, 16, 32, 64] ,__snake_case :List[str]=[1, 1, 2, 1] ,__snake_case :List[str]=True ,__snake_case :Optional[int]=True ,__snake_case :Any="relu" ,__snake_case :Union[str, Any]=3 ,__snake_case :int=None ,__snake_case :str=["stage2", "stage3", "stage4"] ,__snake_case :List[Any]=[2, 3, 4] ,__snake_case :Union[str, Any]=1 ,) -> List[Any]: a__ = parent a__ = batch_size a__ = image_size a__ = num_channels a__ = embeddings_size a__ = hidden_sizes a__ = depths a__ = is_training a__ = use_labels a__ = hidden_act a__ = num_labels a__ = scope a__ = len(__snake_case ) a__ = out_features a__ = out_indices a__ = num_groups def lowerCamelCase__( self :Dict ) -> Optional[int]: a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.num_labels ) a__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__( self :Optional[int] ) -> Optional[int]: return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def lowerCamelCase__( self :str ,__snake_case :Any ,__snake_case :Dict ,__snake_case :Optional[int] ) -> List[Any]: a__ = BitModel(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ,__snake_case :Optional[int] ,__snake_case :List[str] ) -> List[str]: a__ = self.num_labels a__ = BitForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__( self :Tuple ,__snake_case :List[Any] ,__snake_case :List[Any] ,__snake_case :List[str] ) -> Union[str, Any]: a__ = BitBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None a__ = None a__ = BitBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def lowerCamelCase__( self :Tuple ) -> List[str]: a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase__ : Dict = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Any = False def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = BitModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,has_text_modality=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__( self :int ) -> List[str]: return @unittest.skip(reason='Bit does not output attentions' ) def lowerCamelCase__( self :List[Any] ) -> Optional[Any]: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def lowerCamelCase__( self :List[str] ) -> Dict: pass def lowerCamelCase__( self :List[str] ) -> Optional[Any]: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__snake_case ) def lowerCamelCase__( self :List[str] ) -> Union[str, Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case ) def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(config=__snake_case ) for name, module in model.named_modules(): if isinstance(__snake_case ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=F'Parameter {name} of model {model_class} seems not properly initialized' ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=F'Parameter {name} of model {model_class} seems not properly initialized' ,) def lowerCamelCase__( self :Optional[Any] ) -> List[Any]: def check_hidden_states_output(__snake_case :int ,__snake_case :Optional[Any] ,__snake_case :Dict ): a__ = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(__snake_case ,__snake_case ) ) a__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__ = self.model_tester.num_stages self.assertEqual(len(__snake_case ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: a__ = layer_type a__ = True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ = True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def lowerCamelCase__( self :Union[str, Any] ) -> int: pass def lowerCamelCase__( self :Optional[Any] ) -> Dict: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def lowerCamelCase__( self :List[Any] ) -> Optional[Any]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = BitModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def __lowercase ( ): a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case_ (unittest.TestCase ): @cached_property def lowerCamelCase__( self :Any ) -> Dict: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase__( self :Tuple ) -> Dict: a__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__snake_case ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=__snake_case ,return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): a__ = model(**__snake_case ) # verify the logits a__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,__snake_case ) a__ = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__snake_case ,atol=1E-4 ) ) @require_torch class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = (BitBackbone,) if is_torch_available() else () UpperCAmelCase__ : Any = BitConfig UpperCAmelCase__ : Optional[int] = False def lowerCamelCase__( self :Union[str, Any] ) -> Union[str, Any]: a__ = BitModelTester(self )
701
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets snake_case : Optional[int] = '''\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n''' snake_case : str = '''\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n''' snake_case : Tuple = '''\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :List[str] ) -> str: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Any ,__snake_case :str ,__snake_case :Optional[Any]=None ,__snake_case :Tuple=None ,__snake_case :Any=None ,__snake_case :int=None ,__snake_case :Dict="auto" ,__snake_case :List[Any]=-1 ,__snake_case :Tuple=0.9 ,__snake_case :Tuple=5 ,__snake_case :str=5_00 ,__snake_case :Tuple="gpt2-large" ,__snake_case :List[Any]=-1 ,__snake_case :Optional[int]=10_24 ,__snake_case :List[Any]=25 ,__snake_case :Dict=5 ,__snake_case :Tuple=True ,__snake_case :Optional[Any]=25 ,) -> Union[str, Any]: a__ = compute_mauve( p_text=__UpperCamelCase ,q_text=__UpperCamelCase ,p_features=__UpperCamelCase ,q_features=__UpperCamelCase ,p_tokens=__UpperCamelCase ,q_tokens=__UpperCamelCase ,num_buckets=__UpperCamelCase ,pca_max_data=__UpperCamelCase ,kmeans_explained_var=__UpperCamelCase ,kmeans_num_redo=__UpperCamelCase ,kmeans_max_iter=__UpperCamelCase ,featurize_model_name=__UpperCamelCase ,device_id=__UpperCamelCase ,max_text_length=__UpperCamelCase ,divergence_curve_discretization_size=__UpperCamelCase ,mauve_scaling_factor=__UpperCamelCase ,verbose=__UpperCamelCase ,seed=__UpperCamelCase ,) return out
702
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import torch def __lowercase ( ): if torch.cuda.is_available(): a__ = torch.cuda.device_count() else: a__ = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
703
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor snake_case : Optional[int] = logging.get_logger(__name__) class snake_case_ (_UpperCAmelCase ): def __init__( self :Tuple ,*__snake_case :str ,**__snake_case :int ) -> Union[str, Any]: warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
704
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
0
def __lowercase ( __lowerCAmelCase : float ): return 1_0 - x * x def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float ): # Bolzano theory in order to find if there is a root between a and b if equation(a_ ) * equation(a_ ) >= 0: raise ValueError('Wrong space!' ) a__ = a while (b - a) >= 0.01: # Find middle point a__ = (a + b) / 2 # Check if middle point is root if equation(a_ ) == 0.0: break # Decide the side to repeat the steps if equation(a_ ) * equation(a_ ) < 0: a__ = c else: a__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
from collections.abc import Generator def __lowercase ( ): a__ , a__ = 0, 1 while True: a__ , a__ = b, a + b yield b def __lowercase ( __lowerCAmelCase : int = 1_0_0_0 ): a__ = 1 a__ = fibonacci_generator() while len(str(next(__lowerCAmelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
706
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = ['''model.decoder.embed_positions.weights'''] def __lowercase ( __lowerCAmelCase : Union[str, Any] ): if "emb" in name: a__ = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: a__ = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: a__ = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: a__ = name.replace('linear1' , 'fc1' ) if "linear2" in name: a__ = name.replace('linear2' , 'fc2' ) if "norm1" in name: a__ = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: a__ = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: a__ = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: a__ = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: a__ = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: a__ = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ): a__ = list(state_dict.keys() ) a__ = {} for key in keys: a__ = state_dict.pop(lowercase_ ) a__ = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj a__ = val[:hidden_size, :] a__ = val[hidden_size : 2 * hidden_size, :] a__ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: a__ = val else: a__ = val return state_dict, enc_dec_proj_state_dict def __lowercase ( __lowerCAmelCase : Union[str, Any] ): if checkpoint == "small": # default config values a__ = 1_0_2_4 a__ = 2_4 a__ = 1_6 elif checkpoint == "medium": a__ = 1_5_3_6 a__ = 4_8 a__ = 2_4 elif checkpoint == "large": a__ = 2_0_4_8 a__ = 4_8 a__ = 3_2 else: raise ValueError(F'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) a__ = MusicgenDecoderConfig( hidden_size=lowercase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase_ , num_attention_heads=lowercase_ , ) return config @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Any="cpu" ): a__ = MusicGen.get_pretrained(lowercase_ , device=lowercase_ ) a__ = decoder_config_from_checkpoint(lowercase_ ) a__ = fairseq_model.lm.state_dict() a__ = rename_state_dict( lowercase_ , hidden_size=decoder_config.hidden_size ) a__ = TaEncoderModel.from_pretrained('t5-base' ) a__ = EncodecModel.from_pretrained('facebook/encodec_32khz' ) a__ = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection a__ = decoder.load_state_dict(lowercase_ , strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase_ ) > 0: raise ValueError(F'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model a__ = MusicgenForConditionalGeneration(text_encoder=lowercase_ , audio_encoder=lowercase_ , decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass a__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) a__ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): a__ = model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError('Incorrect shape for logits' ) # now construct the processor a__ = AutoTokenizer.from_pretrained('t5-base' ) a__ = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) a__ = MusicgenProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) # set the appropriate bos/pad token ids a__ = 2_0_4_8 a__ = 2_0_4_8 # set other default generation config params a__ = int(3_0 * audio_encoder.config.frame_rate ) a__ = True a__ = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) snake_case = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
707
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
0
snake_case : Any = 8.314462 # Unit - J mol-1 K-1 def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
708
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ) -> Optional[Any]: debug_launcher(test_script.main ) def lowerCamelCase__( self :int ) -> Dict: debug_launcher(test_ops.main )
709
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available snake_case : Tuple = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys snake_case : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
710
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml snake_case : Any = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : bool , __lowerCAmelCase : bool ): def run_func(__lowerCAmelCase : Optional[int] ): @wraps(__UpperCamelCase ) def run_in_eager_mode(*__lowerCAmelCase : Tuple , **__lowerCAmelCase : Tuple ): return func(*__UpperCamelCase , **__UpperCamelCase ) @wraps(__UpperCamelCase ) @tf.function(experimental_compile=__UpperCamelCase ) def run_in_graph_mode(*__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Optional[int] ): return func(*__UpperCamelCase , **__UpperCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): a__ = random.Random() a__ = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__UpperCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class snake_case_ (SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ : int = 4_2 UpperCAmelCase__ : Optional[int] = 4_2 UpperCAmelCase__ : Optional[Any] = '''TensorFlow''' @property def lowerCamelCase__( self :Any ) -> List[str]: return tf.__version__ def lowerCamelCase__( self :List[str] ,__snake_case :List[str] ,__snake_case :Optional[int] ,__snake_case :Optional[Any] ) -> List[str]: # initialize GPU on separate process a__ = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) a__ = self._prepare_inference_func(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) return self._measure_speed(_inference ) def lowerCamelCase__( self :List[str] ,__snake_case :Dict ,__snake_case :str ,__snake_case :Tuple ) -> Any: a__ = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) a__ = self._prepare_train_func(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) return self._measure_speed(_train ) def lowerCamelCase__( self :List[Any] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Tuple ) -> str: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,UpperCamelCase__ ) a__ = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) a__ = self._prepare_inference_func(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) return self._measure_memory(_inference ) def lowerCamelCase__( self :Tuple ,__snake_case :Tuple ,__snake_case :Union[str, Any] ,__snake_case :Dict ) -> List[str]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,UpperCamelCase__ ) a__ = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) a__ = self._prepare_train_func(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) return self._measure_memory(_train ) def lowerCamelCase__( self :Tuple ,__snake_case :str ,__snake_case :Optional[Any] ,__snake_case :int ) -> Union[str, Any]: a__ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) a__ = ( hasattr(UpperCamelCase__ ,'architectures' ) and isinstance(config.architectures ,UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: a__ = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model a__ = __import__('transformers' ,fromlist=[model_class] ) a__ = getattr(UpperCamelCase__ ,UpperCamelCase__ ) a__ = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: a__ = TF_MODEL_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently a__ = config.vocab_size if hasattr(UpperCamelCase__ ,'vocab_size' ) else config.encoder.vocab_size a__ = random_input_ids(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_forward(): return model(UpperCamelCase__ ,decoder_input_ids=UpperCamelCase__ ,training=UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_forward(): return model(UpperCamelCase__ ,training=UpperCamelCase__ ) a__ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ,__snake_case :Tuple ) -> List[str]: a__ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) a__ = ( hasattr(UpperCamelCase__ ,'architectures' ) and isinstance(config.architectures ,UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: a__ = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model a__ = __import__('transformers' ,fromlist=[model_class] ) a__ = getattr(UpperCamelCase__ ,UpperCamelCase__ ) a__ = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: a__ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently a__ = config.vocab_size if hasattr(UpperCamelCase__ ,'vocab_size' ) else config.encoder.vocab_size a__ = random_input_ids(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_train(): a__ = model(UpperCamelCase__ ,decoder_input_ids=UpperCamelCase__ ,labels=UpperCamelCase__ ,training=UpperCamelCase__ )[0] a__ = tf.gradients(UpperCamelCase__ ,model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_train(): a__ = model(UpperCamelCase__ ,labels=UpperCamelCase__ ,training=UpperCamelCase__ )[0] a__ = tf.gradients(UpperCamelCase__ ,model.trainable_variables ) return gradients a__ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCamelCase__( self :Any ,__snake_case :Tuple ) -> List[str]: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(UpperCamelCase__ ,repeat=1 ,number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average a__ = timeit.repeat( UpperCamelCase__ ,repeat=self.args.repeat ,number=10 ,) return min(UpperCamelCase__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) def lowerCamelCase__( self :str ,__snake_case :Optional[Any] ) -> Tuple: logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) a__ = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) a__ = '''N/A''' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() a__ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) a__ = nvml.nvmlDeviceGetMemoryInfo(UpperCamelCase__ ) a__ = meminfo.used a__ = Memory(UpperCamelCase__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) a__ = None else: a__ = measure_peak_memory_cpu(UpperCamelCase__ ) a__ = Memory(UpperCamelCase__ ) if isinstance(UpperCamelCase__ ,UpperCamelCase__ ) else memory_bytes if self.args.trace_memory_line_by_line: a__ = stop_memory_tracing(UpperCamelCase__ ) if memory is None: a__ = summary.total else: a__ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) return "N/A", None
711
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Any = logging.get_logger(__name__) class snake_case_ (lowerCAmelCase__ ): UpperCAmelCase__ : str = ["pixel_values"] def __init__( self :Dict ,__snake_case :Optional[int] = True ,__snake_case :Optional[int] = None ,__snake_case :Optional[int] = PILImageResampling.BICUBIC ,__snake_case :Union[str, Any] = True ,__snake_case :Any = True ,__snake_case :int = 1 / 2_55 ,__snake_case :List[Any] = None ,__snake_case :Tuple = True ,__snake_case :Dict = None ,__snake_case :List[Any] = None ,**__snake_case :Tuple ,) -> None: super().__init__(**_lowerCamelCase ) a__ = size if size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(_lowerCamelCase ) a__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(_lowerCamelCase ,default_to_square=_lowerCamelCase ,param_name='crop_size' ) a__ = do_resize a__ = do_rescale a__ = do_normalize a__ = do_center_crop a__ = crop_size a__ = size a__ = resample a__ = rescale_factor a__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase__( self :List[str] ,__snake_case :List[str] ,__snake_case :Dict ,__snake_case :Any = PILImageResampling.BILINEAR ,__snake_case :List[Any] = None ,**__snake_case :Any ,) -> np.ndarray: a__ = get_size_dict(_lowerCamelCase ) if "shortest_edge" in size: a__ = get_resize_output_image_size(_lowerCamelCase ,size=size['shortest_edge'] ,default_to_square=_lowerCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: a__ = (size['height'], size['width']) else: raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(_lowerCamelCase ,size=_lowerCamelCase ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Dict ,__snake_case :int ,__snake_case :Tuple = None ,**__snake_case :Tuple ,) -> np.ndarray: a__ = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowerCamelCase ,size=(size['height'], size['width']) ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def lowerCamelCase__( self :Any ,__snake_case :Any ,__snake_case :str ,__snake_case :Any = None ,**__snake_case :str ) -> np.ndarray: return rescale(_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :Union[str, Any] ,__snake_case :Optional[Any] = None ,**__snake_case :List[str] ,) -> np.ndarray: return normalize(_lowerCamelCase ,mean=_lowerCamelCase ,std=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def lowerCamelCase__( self :Dict ,__snake_case :Optional[Any] ,__snake_case :Optional[Any] = None ,__snake_case :Dict = None ,__snake_case :Optional[int] = None ,__snake_case :Optional[Any] = None ,__snake_case :Tuple = None ,__snake_case :Optional[int] = None ,__snake_case :Tuple = None ,__snake_case :Any = None ,__snake_case :Union[str, Any] = None ,__snake_case :Dict = None ,__snake_case :int = None ,__snake_case :str = ChannelDimension.FIRST ,**__snake_case :Dict ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(_lowerCamelCase ,param_name='crop_size' ,default_to_square=_lowerCamelCase ) a__ = resample if resample is not None else self.resample a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = size if size is not None else self.size a__ = get_size_dict(_lowerCamelCase ) if not is_batched(_lowerCamelCase ): a__ = [images] if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: a__ = [self.resize(image=_lowerCamelCase ,size=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_center_crop: a__ = [self.center_crop(image=_lowerCamelCase ,size=_lowerCamelCase ) for image in images] if do_rescale: a__ = [self.rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ) for image in images] if do_normalize: a__ = [self.normalize(image=_lowerCamelCase ,mean=_lowerCamelCase ,std=_lowerCamelCase ) for image in images] a__ = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
712
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : int ): a__ = BigBirdConfig.from_json_file(__snake_case ) print(F'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: a__ = BigBirdForQuestionAnswering(__snake_case ) else: a__ = BigBirdForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__snake_case , __snake_case , is_trivia_qa=__snake_case ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__snake_case ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) snake_case : str = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
713
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : str ): return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int="attention" ): a__ = a__ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) a__ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) a__ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) a__ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) a__ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) a__ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) a__ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) a__ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple=False ): if split_mlp_wi: a__ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] a__ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] a__ = (wi_a, wi_a) else: a__ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] a__ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] ): return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def __lowercase ( __lowerCAmelCase : List[str] , *, __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] = False ): a__ = traverse_util.flatten_dict(variables['target'] ) a__ = {'/'.join(a__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi a__ = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , a__ ) a__ = collections.OrderedDict() # Shared embeddings. a__ = old['token_embedder/embedding'] # Encoder. for i in range(a__ ): # Block i, layer 0 (Self Attention). a__ = tax_layer_norm_lookup(a__ , a__ , 'encoder' , 'pre_attention_layer_norm' ) a__ , a__ , a__ , a__ = tax_attention_lookup(a__ , a__ , 'encoder' , 'attention' ) a__ = layer_norm a__ = k.T a__ = o.T a__ = q.T a__ = v.T # Block i, layer 1 (MLP). a__ = tax_layer_norm_lookup(a__ , a__ , 'encoder' , 'pre_mlp_layer_norm' ) a__ , a__ = tax_mlp_lookup(a__ , a__ , 'encoder' , a__ ) a__ = layer_norm if split_mlp_wi: a__ = wi[0].T a__ = wi[1].T else: a__ = wi.T a__ = wo.T if scalable_attention: # convert the rel_embedding of each layer a__ = tax_relpos_bias_lookup( a__ , a__ , 'encoder' ).T a__ = old['encoder/encoder_norm/scale'] if not scalable_attention: a__ = tax_relpos_bias_lookup( a__ , 0 , 'encoder' ).T a__ = tax_relpos_bias_lookup( a__ , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(a__ ): # Block i, layer 0 (Self Attention). a__ = tax_layer_norm_lookup(a__ , a__ , 'decoder' , 'pre_self_attention_layer_norm' ) a__ , a__ , a__ , a__ = tax_attention_lookup(a__ , a__ , 'decoder' , 'self_attention' ) a__ = layer_norm a__ = k.T a__ = o.T a__ = q.T a__ = v.T # Block i, layer 1 (Cross Attention). a__ = tax_layer_norm_lookup(a__ , a__ , 'decoder' , 'pre_cross_attention_layer_norm' ) a__ , a__ , a__ , a__ = tax_attention_lookup(a__ , a__ , 'decoder' , 'encoder_decoder_attention' ) a__ = layer_norm a__ = k.T a__ = o.T a__ = q.T a__ = v.T # Block i, layer 2 (MLP). a__ = tax_layer_norm_lookup(a__ , a__ , 'decoder' , 'pre_mlp_layer_norm' ) a__ , a__ = tax_mlp_lookup(a__ , a__ , 'decoder' , a__ ) a__ = layer_norm if split_mlp_wi: a__ = wi[0].T a__ = wi[1].T else: a__ = wi.T a__ = wo.T if scalable_attention: # convert the rel_embedding of each layer a__ = tax_relpos_bias_lookup(a__ , a__ , 'decoder' ).T a__ = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: a__ = old['decoder/logits_dense/kernel'].T return new def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ): a__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: a__ = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: a__ = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) a__ = state_dict['shared.weight'] return state_dict def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): a__ = checkpoints.load_tax_checkpoint(a__ ) a__ = convert_tax_to_pytorch( a__ , num_layers=config.num_layers , is_encoder_only=a__ , scalable_attention=a__ ) a__ = make_state_dict(a__ , a__ ) model.load_state_dict(a__ , strict=a__ ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any = False , __lowerCAmelCase : Tuple = False , ): a__ = MTaConfig.from_json_file(a__ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: a__ = UMTaEncoderModel(a__ ) else: a__ = UMTaForConditionalGeneration(a__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(a__ , a__ , a__ , a__ , a__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(a__ ) # Verify that we can load the checkpoint. model.from_pretrained(a__ ) print('Done' ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) snake_case : Union[str, Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
714
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
715
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
0
def __lowercase ( __lowerCAmelCase : Dict ): return " ".join( ''.join(word[::-1] ) if len(_UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
716
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
0
def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): while second != 0: a__ = first & second first ^= second a__ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() snake_case : List[str] = int(input('''Enter the first number: ''').strip()) snake_case : str = int(input('''Enter the second number: ''').strip()) print(f"""{add(first, second) = }""")
717
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class snake_case_ (datasets.BeamBasedBuilder ): def lowerCamelCase__( self :Dict ) -> int: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) ,supervised_keys=__A ,) def lowerCamelCase__( self :Optional[int] ,__snake_case :Any ,__snake_case :List[str] ) -> str: return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'examples': get_test_dummy_examples()} )] def lowerCamelCase__( self :List[str] ,__snake_case :str ,__snake_case :List[str] ) -> Dict: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) class snake_case_ (datasets.BeamBasedBuilder ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ,supervised_keys=__A ,) def lowerCamelCase__( self :int ,__snake_case :str ,__snake_case :str ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'examples': get_test_nested_examples()} ) ] def lowerCamelCase__( self :Optional[Any] ,__snake_case :Dict ,__snake_case :int ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) def __lowercase ( ): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def __lowercase ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class snake_case_ (lowerCamelCase_ ): @require_beam def lowerCamelCase__( self :Union[str, Any] ) -> str: a__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: a__ = DummyBeamDataset(cache_dir=__A ,beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A ,builder.name ,'default' ,'0.0.0' ,F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features ,datasets.Features({'content': datasets.Value('string' )} ) ) a__ = builder.as_dataset() self.assertEqual(dset['train'].num_rows ,__A ) self.assertEqual(dset['train'].info.splits['train'].num_examples ,__A ) self.assertDictEqual(dset['train'][0] ,get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] ,get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A ,builder.name ,'default' ,'0.0.0' ,'dataset_info.json' ) ) ) del dset @require_beam def lowerCamelCase__( self :Tuple ) -> Dict: import apache_beam as beam a__ = beam.io.parquetio.WriteToParquet a__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: a__ = DummyBeamDataset(cache_dir=__A ,beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: a__ = partial(__A ,num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __A ,builder.name ,'default' ,'0.0.0' ,F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( __A ,builder.name ,'default' ,'0.0.0' ,F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features ,datasets.Features({'content': datasets.Value('string' )} ) ) a__ = builder.as_dataset() self.assertEqual(dset['train'].num_rows ,__A ) self.assertEqual(dset['train'].info.splits['train'].num_examples ,__A ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) ,sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(__A ,builder.name ,'default' ,'0.0.0' ,'dataset_info.json' ) ) ) del dset @require_beam def lowerCamelCase__( self :List[str] ) -> int: with tempfile.TemporaryDirectory() as tmp_cache_dir: a__ = DummyBeamDataset(cache_dir=__A ) self.assertRaises(datasets.builder.MissingBeamOptions ,builder.download_and_prepare ) @require_beam def lowerCamelCase__( self :List[str] ) -> List[Any]: a__ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: a__ = NestedBeamDataset(cache_dir=__A ,beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A ,builder.name ,'default' ,'0.0.0' ,F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features ,datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) a__ = builder.as_dataset() self.assertEqual(dset['train'].num_rows ,__A ) self.assertEqual(dset['train'].info.splits['train'].num_examples ,__A ) self.assertDictEqual(dset['train'][0] ,get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] ,get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A ,builder.name ,'default' ,'0.0.0' ,'dataset_info.json' ) ) ) del dset
718
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
0
def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : int ): a__ = [[] for _ in range(_lowerCamelCase )] a__ = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(_lowerCamelCase ) <= key: return input_string for position, character in enumerate(_lowerCamelCase ): a__ = position % (lowest * 2) # puts it in bounds a__ = min(_lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_lowerCamelCase ) a__ = ["""""".join(_lowerCamelCase ) for row in temp_grid] a__ = """""".join(_lowerCamelCase ) return output_string def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : int ): a__ = [] a__ = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string a__ = [[] for _ in range(_lowerCamelCase )] # generates template for position in range(len(_lowerCamelCase ) ): a__ = position % (lowest * 2) # puts it in bounds a__ = min(_lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) a__ = 0 for row in temp_grid: # fills in the characters a__ = input_string[counter : counter + len(_lowerCamelCase )] grid.append(list(_lowerCamelCase ) ) counter += len(_lowerCamelCase ) a__ = """""" # reads as zigzag for position in range(len(_lowerCamelCase ) ): a__ = position % (lowest * 2) # puts it in bounds a__ = min(_lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __lowercase ( __lowerCAmelCase : str ): a__ = {} for key_guess in range(1 , len(_lowerCamelCase ) ): # tries every key a__ = decrypt(_lowerCamelCase , _lowerCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
719
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Union[str, Any] = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = ['''pixel_values'''] def __init__( self :str ,__snake_case :int = True ,__snake_case :Optional[int] = 32 ,__snake_case :int=PILImageResampling.BILINEAR ,__snake_case :Optional[Any] = True ,**__snake_case :int ,) -> Any: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**A__ ) def lowerCamelCase__( self :int ,__snake_case :List[Any] ,__snake_case :List[str] ,__snake_case :Tuple ,__snake_case :int = None ,**__snake_case :int ) -> Optional[int]: a__ = get_image_size(A__ ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(A__ ,(new_h, new_w) ,resample=A__ ,data_format=A__ ,**A__ ) return image def lowerCamelCase__( self :Optional[int] ,__snake_case :Optional[int] ,__snake_case :str ,__snake_case :List[str] = None ,**__snake_case :int ) -> Optional[int]: return rescale(image=A__ ,scale=A__ ,data_format=A__ ,**A__ ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Tuple ,__snake_case :Optional[Any] = None ,__snake_case :str = None ,__snake_case :Optional[Any]=None ,__snake_case :str = None ,__snake_case :List[str] = None ,__snake_case :Optional[Any] = ChannelDimension.FIRST ,**__snake_case :Optional[int] ,) -> Tuple: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(A__ ) for img in images] if do_resize: a__ = [self.resize(A__ ,size_divisor=A__ ,resample=A__ ) for image in images] if do_rescale: a__ = [self.rescale(A__ ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(A__ ,A__ ) for image in images] a__ = {"""pixel_values""": images} return BatchFeature(data=A__ ,tensor_type=A__ )
720
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef snake_case : Optional[int] = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , 'sklearn' ) return (preds == labels).mean() def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ): warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , 'sklearn' ) a__ = simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ ) a__ = fa_score(y_true=lowerCAmelCase__ , y_pred=lowerCAmelCase__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ): warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , 'sklearn' ) a__ = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] a__ = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Dict ): warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , 'sklearn' ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ), F'Predictions and labels have mismatched lengths {len(lowerCAmelCase__ )} and {len(lowerCAmelCase__ )}' if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "mrpc": return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif task_name == "sts-b": return pearson_and_spearman(lowerCAmelCase__ , lowerCAmelCase__ ) elif task_name == "qqp": return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "rte": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "hans": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError(lowerCAmelCase__ ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ): warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , 'sklearn' ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError(F'Predictions and labels have mismatched lengths {len(lowerCAmelCase__ )} and {len(lowerCAmelCase__ )}' ) if task_name == "xnli": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError(lowerCAmelCase__ )
721
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class snake_case_ : UpperCAmelCase__ : int = None def lowerCamelCase__( self :Dict ) -> Dict: a__ = self.feature_extraction_class(**self.feat_extract_dict ) a__ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] ,UpperCamelCase__ ) def lowerCamelCase__( self :Optional[int] ) -> int: a__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(UpperCamelCase__ ,'feat_extract.json' ) feat_extract_first.to_json_file(UpperCamelCase__ ) a__ = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def lowerCamelCase__( self :List[Any] ) -> List[Any]: a__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) a__ = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def lowerCamelCase__( self :int ) -> Any: a__ = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
700
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowercase ( __lowerCAmelCase : Any ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E_0_0 and cp <= 0x9_F_F_F) or (cp >= 0x3_4_0_0 and cp <= 0x4_D_B_F) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_A_6_D_F) # or (cp >= 0x2_A_7_0_0 and cp <= 0x2_B_7_3_F) # or (cp >= 0x2_B_7_4_0 and cp <= 0x2_B_8_1_F) # or (cp >= 0x2_B_8_2_0 and cp <= 0x2_C_E_A_F) # or (cp >= 0xF_9_0_0 and cp <= 0xF_A_F_F) or (cp >= 0x2_F_8_0_0 and cp <= 0x2_F_A_1_F) # ): # return True return False def __lowercase ( __lowerCAmelCase : List[str] ): # word like '180' or '身高' or '神' for char in word: a__ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def __lowercase ( __lowerCAmelCase : List[str] ): a__ = set() for token in tokens: a__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) a__ = list(__lowerCAmelCase ) return word_list def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ): if not chinese_word_set: return bert_tokens a__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) a__ = bert_tokens a__ , a__ = 0, len(__lowerCAmelCase ) while start < end: a__ = True if is_chinese(bert_word[start] ): a__ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): a__ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a__ = '##' + bert_word[j] a__ = start + i a__ = False break if single_word: start += 1 return bert_word def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Any ): a__ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_0_0 ): a__ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws a__ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) a__ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_0_0 ): a__ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) a__ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): a__ = [] for id in input_ids: a__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) a__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) a__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": a__ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def __lowercase ( __lowerCAmelCase : List[Any] ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: a__ = f.readlines() a__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a__ = LTP(args.ltp ) # faster in GPU device a__ = BertTokenizer.from_pretrained(args.bert ) a__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a__ = [json.dumps(__lowerCAmelCase ) + '\n' for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Dict = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) snake_case : Dict = parser.parse_args() main(args)
701
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case : int = logging.getLogger() def __lowercase ( __lowerCAmelCase : Path , __lowerCAmelCase : list ): a__ = "\n".join(SCREAMING_SNAKE_CASE_ ) Path(SCREAMING_SNAKE_CASE_ ).open('w' ).writelines(SCREAMING_SNAKE_CASE_ ) snake_case : int = '''patrickvonplaten/t5-tiny-random''' snake_case : str = '''sshleifer/bart-tiny-random''' snake_case : Optional[int] = '''sshleifer/tiny-mbart''' snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class snake_case_ (_UpperCAmelCase ): def lowerCamelCase__( self :Tuple ,__snake_case :int ) -> Dict: a__ = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" a__ = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() a__ = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowercase__ ,lowercase__ ) a__ = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) a__ = "translation_en_to_de" if model == T5_TINY else "summarization" a__ = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(lowercase__ ,'argv' ,lowercase__ ): run_generate() assert Path(lowercase__ ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase__( self :Optional[int] ) -> List[Any]: self.run_eval_tester(lowercase__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ) -> Dict: self.run_eval_tester(lowercase__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase__( self :str ,__snake_case :Union[str, Any] ) -> int: a__ = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" a__ = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() a__ = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } a__ = Path(self.get_auto_remove_tmp_dir() ) a__ = str(tmp_dir / 'scores.json' ) a__ = str(tmp_dir / 'val.target' ) _dump_articles(lowercase__ ,text['en'] ) _dump_articles(lowercase__ ,text['de'] ) a__ = "translation_en_to_de" if model == T5_TINY else "summarization" a__ = F'\n run_eval_search.py\n {model}\n {str(lowercase__ )}\n {str(lowercase__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(lowercase__ ,'argv' ,lowercase__ ): with CaptureStdout() as cs: run_search() a__ = [" num_beams | length_penalty", model, "Best score args"] a__ = ["Info"] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(lowercase__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowercase__ ).exists() os.remove(Path(lowercase__ ) )
702
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time snake_case : Union[str, Any] = Lock() def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(SCREAMING_SNAKE_CASE_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() a__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left a__ = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(SCREAMING_SNAKE_CASE_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() a__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right a__ = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(SCREAMING_SNAKE_CASE_ ) def __lowercase ( __lowerCAmelCase : List[Any] ): a__ = [] a__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop a__ = Pipe() a__ = Pipe() process_array_.append( Process( target=SCREAMING_SNAKE_CASE_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) a__ = temp_rs a__ = temp_rr for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) - 1 ): a__ = Pipe() a__ = Pipe() process_array_.append( Process( target=SCREAMING_SNAKE_CASE_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) a__ = temp_rs a__ = temp_rr process_array_.append( Process( target=SCREAMING_SNAKE_CASE_ , args=( len(SCREAMING_SNAKE_CASE_ ) - 1, arr[len(SCREAMING_SNAKE_CASE_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(SCREAMING_SNAKE_CASE_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): a__ = result_pipe[p][0].recv() process_array_[p].join() return arr def __lowercase ( ): a__ = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*SCREAMING_SNAKE_CASE_ ) a__ = odd_even_transposition(SCREAMING_SNAKE_CASE_ ) print('Sorted List\n' ) print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
703
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : def __init__( self :int ,__snake_case :str ,__snake_case :int=13 ,__snake_case :str=7 ,__snake_case :Any=True ,__snake_case :str=True ,__snake_case :Dict=True ,__snake_case :int=True ,__snake_case :Dict=True ,__snake_case :Optional[Any]=False ,__snake_case :Optional[Any]=False ,__snake_case :Optional[int]=False ,__snake_case :Dict=2 ,__snake_case :Any=99 ,__snake_case :Optional[Any]=0 ,__snake_case :Tuple=32 ,__snake_case :Optional[Any]=5 ,__snake_case :Dict=4 ,__snake_case :int=0.1 ,__snake_case :Dict=0.1 ,__snake_case :int=5_12 ,__snake_case :int=2 ,__snake_case :Optional[int]=0.02 ,__snake_case :Optional[int]=2 ,__snake_case :Any=4 ,__snake_case :Tuple="last" ,__snake_case :Optional[Any]=True ,__snake_case :str=None ,__snake_case :List[Any]=0 ,) -> Optional[Any]: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_lengths a__ = use_token_type_ids a__ = use_labels a__ = gelu_activation a__ = sinusoidal_embeddings a__ = causal a__ = asm a__ = n_langs a__ = vocab_size a__ = n_special a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = summary_type a__ = use_proj a__ = scope a__ = bos_token_id def lowerCamelCase__( self :str ) -> List[Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_input_lengths: a__ = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,2 ).float() a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__( self :Optional[Any] ) -> Dict: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Union[str, Any] ,__snake_case :List[str] ,__snake_case :Optional[int] ,__snake_case :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :List[str] ,__snake_case :Optional[Any] ,) -> str: a__ = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,lengths=__snake_case ,langs=__snake_case ) a__ = model(__snake_case ,langs=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :Dict ,__snake_case :Dict ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :List[str] ,__snake_case :Tuple ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :Tuple ,__snake_case :str ,) -> str: a__ = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[int] ,__snake_case :Union[str, Any] ,__snake_case :Any ,__snake_case :str ,__snake_case :Tuple ,__snake_case :Union[str, Any] ,__snake_case :List[str] ,__snake_case :Optional[Any] ,__snake_case :Optional[Any] ,__snake_case :List[str] ,) -> List[str]: a__ = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) a__ = model(__snake_case ,start_positions=__snake_case ,end_positions=__snake_case ) a__ = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCamelCase__( self :Dict ,__snake_case :Optional[int] ,__snake_case :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Tuple ,__snake_case :Dict ,__snake_case :Tuple ,__snake_case :Any ,__snake_case :Optional[int] ,__snake_case :Union[str, Any] ,) -> Union[str, Any]: a__ = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) a__ = model( __snake_case ,start_positions=__snake_case ,end_positions=__snake_case ,cls_index=__snake_case ,is_impossible=__snake_case ,p_mask=__snake_case ,) a__ = model( __snake_case ,start_positions=__snake_case ,end_positions=__snake_case ,cls_index=__snake_case ,is_impossible=__snake_case ,) (a__ ) = result_with_labels.to_tuple() a__ = model(__snake_case ,start_positions=__snake_case ,end_positions=__snake_case ) (a__ ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :str ,__snake_case :int ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,) -> Union[str, Any]: a__ = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) a__ = model(__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__( self :List[Any] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :Dict ,__snake_case :Any ,__snake_case :List[Any] ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :str ,__snake_case :Optional[Any] ,) -> Tuple: a__ = self.num_labels a__ = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,attention_mask=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__( self :Any ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :List[Any] ,__snake_case :List[Any] ,__snake_case :List[Any] ,__snake_case :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,) -> List[Any]: a__ = self.num_choices a__ = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() a__ = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() a__ = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() a__ = model( __snake_case ,attention_mask=__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def lowerCamelCase__( self :Optional[int] ) -> Optional[int]: a__ = self.prepare_config_and_inputs() ( a__ ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class snake_case_ (__A , __A , __A , unittest.TestCase ): UpperCAmelCase__ : List[str] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase__ : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Any ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :List[Any] ,__snake_case :int ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__( self :str ,__snake_case :Union[str, Any] ,__snake_case :Union[str, Any] ,__snake_case :List[str]=False ) -> List[Any]: a__ = super()._prepare_for_class(__snake_case ,__snake_case ,return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__snake_case ) a__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__snake_case ) return inputs_dict def lowerCamelCase__( self :Dict ) -> Union[str, Any]: a__ = XLMModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,emb_dim=37 ) def lowerCamelCase__( self :List[Any] ) -> List[str]: self.config_tester.run_common_tests() def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def lowerCamelCase__( self :int ) -> Dict: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Dict: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def lowerCamelCase__( self :Any ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def lowerCamelCase__( self :Dict ) -> List[str]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> int: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> List[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :List[Any] ,__snake_case :Any ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any]=False ,__snake_case :List[str]=1 ) -> Union[str, Any]: self.assertIsInstance(__snake_case ,__snake_case ) self.assertListEqual( [isinstance(__snake_case ,__snake_case ) for iter_attentions in attentions] ,[True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token a__ = min_length + idx + 1 a__ = min_length + idx + 1 a__ = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(__snake_case ) ) def lowerCamelCase__( self :Tuple ,__snake_case :Optional[int] ,__snake_case :Optional[int] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :Union[str, Any] ,__snake_case :Dict=False ,__snake_case :int=1 ) -> Any: self.assertIsInstance(__snake_case ,__snake_case ) self.assertListEqual( [isinstance(__snake_case ,__snake_case ) for iter_hidden_states in hidden_states] ,[True] * len(__snake_case ) ,) self.assertEqual(len(__snake_case ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token a__ = min_length + idx + 1 a__ = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(__snake_case ) ,) pass @slow def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class snake_case_ (unittest.TestCase ): @slow def lowerCamelCase__( self :Tuple ) -> Tuple: a__ = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) a__ = torch.tensor([[14, 4_47]] ,dtype=torch.long ,device=__snake_case ) # the president a__ = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,__snake_case )
704
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Dict = '''▁''' snake_case : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} snake_case : Union[str, Any] = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } snake_case : Optional[Any] = { '''facebook/mbart-large-50-one-to-many-mmt''': 10_24, } # fmt: off snake_case : str = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class snake_case_ (__lowercase ): UpperCAmelCase__ : str = VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Optional[Any] = [] def __init__( self :Tuple ,__snake_case :str ,__snake_case :Any=None ,__snake_case :List[Any]=None ,__snake_case :List[str]="</s>" ,__snake_case :Optional[int]="</s>" ,__snake_case :List[Any]="<s>" ,__snake_case :int="<unk>" ,__snake_case :List[Any]="<pad>" ,__snake_case :List[str]="<mask>" ,__snake_case :Optional[Dict[str, Any]] = None ,**__snake_case :List[Any] ,) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it a__ = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token a__ = {} if sp_model_kwargs is None else sp_model_kwargs a__ = kwargs.get('additional_special_tokens' ,[] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_A ,tgt_lang=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,cls_token=_A ,pad_token=_A ,mask_token=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) a__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a__ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a__ = 1 a__ = len(self.sp_model ) a__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } a__ = {v: k for k, v in self.lang_code_to_id.items()} a__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a__ = src_lang if src_lang is not None else 'en_XX' a__ = self.lang_code_to_id[self._src_lang] a__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase__( self :List[str] ) -> Any: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__( self :Optional[int] ) -> str: return self._src_lang @src_lang.setter def lowerCamelCase__( self :Dict ,__snake_case :str ) -> List[Any]: a__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self :List[str] ) -> int: a__ = self.__dict__.copy() a__ = None return state def __setstate__( self :List[Any] ,__snake_case :Dict ) -> Optional[int]: a__ = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): a__ = {} a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__( self :Any ) -> str: a__ = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__( self :str ,__snake_case :str ) -> Tuple: return self.sp_model.encode(_A ,out_type=_A ) def lowerCamelCase__( self :Dict ,__snake_case :str ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a__ = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__( self :int ,__snake_case :int ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__( self :List[Any] ,__snake_case :str ) -> Tuple: a__ = [] a__ = '' a__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token a__ = True a__ = [] else: current_sub_tokens.append(_A ) a__ = False out_string += self.sp_model.decode(_A ) return out_string.strip() def lowerCamelCase__( self :Optional[int] ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Any: if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: a__ = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def lowerCamelCase__( self :Dict ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ,__snake_case :bool = False ) -> Union[str, Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) a__ = [1] * len(self.prefix_tokens ) a__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def lowerCamelCase__( self :Tuple ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[str]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :str ,__snake_case :Optional[str] ,__snake_case :Optional[str] ,**__snake_case :List[Any] ) -> Union[str, Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) a__ = src_lang a__ = self(_A ,add_special_tokens=_A ,return_tensors=_A ,**_A ) a__ = self.convert_tokens_to_ids(_A ) a__ = tgt_lang_id return inputs def lowerCamelCase__( self :int ,__snake_case :List[str] ,__snake_case :str = "en_XX" ,__snake_case :Optional[List[str]] = None ,__snake_case :str = "ro_RO" ,**__snake_case :List[str] ,) -> Optional[int]: a__ = src_lang a__ = tgt_lang return super().prepare_seqaseq_batch(_A ,_A ,**_A ) def lowerCamelCase__( self :str ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__( self :List[Any] ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__( self :Tuple ,__snake_case :str ) -> str: a__ = self.lang_code_to_id[src_lang] a__ = [self.cur_lang_code_id] a__ = [self.eos_token_id] def lowerCamelCase__( self :List[str] ,__snake_case :str ) -> Optional[int]: a__ = self.lang_code_to_id[tgt_lang] a__ = [self.cur_lang_code_id] a__ = [self.eos_token_id]
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import os from pathlib import Path def __lowercase ( ): from torch.utils.cpp_extension import load a__ = Path(lowerCAmelCase__ ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' a__ = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , lowerCAmelCase__ , with_cuda=lowerCAmelCase__ , extra_include_paths=[str(lowerCAmelCase__ )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
706
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter snake_case = True except ImportError: snake_case = False snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowercase ( __lowerCAmelCase : int ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class snake_case_ (__lowerCamelCase ): @staticmethod def lowerCamelCase__( __snake_case :Optional[Any] ) -> Optional[int]: a__ = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=a_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=a_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=a_ ) def __init__( self :str ,__snake_case :List[Any] ,__snake_case :str ,__snake_case :List[Any]=None ,*__snake_case :Any ) -> Optional[Any]: a__ = testing a__ = testing_file a__ = path def lowerCamelCase__( self :List[str] ) -> List[str]: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory a__ = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(a_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) a__ = ( Path(a_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) a__ = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(a_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: a__ = json.load(a_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=a_ ,extra_context=a_ ,) a__ = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: a__ = json.load(a_ ) a__ = configuration["lowercase_modelname"] a__ = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(F'{directory}/configuration.json' ) a__ = "PyTorch" in generate_tensorflow_pytorch_and_flax a__ = "TensorFlow" in generate_tensorflow_pytorch_and_flax a__ = "Flax" in generate_tensorflow_pytorch_and_flax a__ = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(a_ ,exist_ok=a_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=a_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(__snake_case :str ): with open(a_ ,'r' ) as f: a__ = f.readlines() with open(a_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(a_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__snake_case :Optional[Any] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ): # Create temp file a__ = mkstemp() a__ = False with fdopen(a_ ,'w' ) as new_file: with open(a_ ) as old_file: for line in old_file: new_file.write(a_ ) if line_to_copy_below in line: a__ = True for line_to_copy in lines_to_copy: new_file.write(a_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(a_ ,a_ ) # Remove original file remove(a_ ) # Move new file move(a_ ,a_ ) def skip_units(__snake_case :Optional[Any] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__snake_case :int ): with open(a_ ) as datafile: a__ = [] a__ = False a__ = False for line in datafile: if "# To replace in: " in line and "##" not in line: a__ = line.split('\"' )[1] a__ = skip_units(a_ ) elif "# Below: " in line and "##" not in line: a__ = line.split('\"' )[1] a__ = skip_units(a_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(a_ ,a_ ,a_ ) a__ = [] elif "# Replace with" in line and "##" not in line: a__ = [] elif "##" not in line: lines_to_copy.append(a_ ) remove(a_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(a_ )
707
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
0
from abc import ABC, abstractmethod from typing import List, Optional class snake_case_ (lowerCamelCase_ ): def __init__( self :int ) -> Dict: # test for the above condition self.test() def lowerCamelCase__( self :int ) -> Optional[Any]: a__ = 0 a__ = False while not completed: if counter == 1: self.reset() a__ = self.advance() if not self.does_advance(__snake_case ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) a__ , a__ , a__ = self.update(__snake_case ) counter += 1 if counter > 1_00_00: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def lowerCamelCase__( self :List[Any] ) -> Tuple: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[str] ) -> int: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ) -> List[Any]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :List[str] ) -> str: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :Any ) -> Dict: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :List[str] ,__snake_case :Tuple=False ) -> Optional[Any]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class snake_case_ (lowerCamelCase_ ): def __init__( self :int ,__snake_case :Union[str, Any] ) -> Any: super(__snake_case ,self ).__init__() if not isinstance(__snake_case ,__snake_case ) or len(__snake_case ) == 0: raise ValueError(F'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(__snake_case ,__snake_case ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) a__ = token_ids a__ = len(self.token_ids ) a__ = -1 # the index of the currently fulfilled step a__ = False def lowerCamelCase__( self :int ) -> Union[str, Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__( self :int ,__snake_case :Optional[int] ) -> int: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(__snake_case )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__( self :List[Any] ,__snake_case :str ) -> Any: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(__snake_case )}' ) a__ = False a__ = False a__ = False if self.does_advance(__snake_case ): self.fulfilled_idx += 1 a__ = True if self.fulfilled_idx == (self.seqlen - 1): a__ = True a__ = completed else: # failed to make progress. a__ = True self.reset() return stepped, completed, reset def lowerCamelCase__( self :int ) -> Union[str, Any]: a__ = False a__ = 0 def lowerCamelCase__( self :List[str] ) -> Union[str, Any]: return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[str]=False ) -> List[str]: a__ = PhrasalConstraint(self.token_ids ) if stateful: a__ = self.seqlen a__ = self.fulfilled_idx a__ = self.completed return new_constraint class snake_case_ : def __init__( self :int ,__snake_case :Optional[Any] ,__snake_case :List[Any]=True ) -> List[Any]: a__ = max([len(__snake_case ) for one in nested_token_ids] ) a__ = {} for token_ids in nested_token_ids: a__ = root for tidx, token_id in enumerate(__snake_case ): if token_id not in level: a__ = {} a__ = level[token_id] if no_subsets and self.has_subsets(__snake_case ,__snake_case ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F' {nested_token_ids}.' ) a__ = root def lowerCamelCase__( self :Tuple ,__snake_case :List[Any] ) -> Optional[int]: a__ = self.trie for current_token in current_seq: a__ = start[current_token] a__ = list(start.keys() ) return next_tokens def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ) -> Optional[int]: a__ = self.next_tokens(__snake_case ) return len(__snake_case ) == 0 def lowerCamelCase__( self :List[str] ,__snake_case :Any ) -> Union[str, Any]: a__ = list(root.values() ) if len(__snake_case ) == 0: return 1 else: return sum([self.count_leaves(__snake_case ) for nn in next_nodes] ) def lowerCamelCase__( self :Tuple ,__snake_case :List[Any] ,__snake_case :str ) -> str: a__ = self.count_leaves(__snake_case ) return len(__snake_case ) != leaf_count class snake_case_ (lowerCamelCase_ ): def __init__( self :List[str] ,__snake_case :Optional[Any] ) -> List[str]: super(__snake_case ,self ).__init__() if not isinstance(__snake_case ,__snake_case ) or len(__snake_case ) == 0: raise ValueError(F'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(__snake_case ,__snake_case ) for token_ids in nested_token_ids ): raise ValueError(F'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(__snake_case ,__snake_case ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) a__ = DisjunctiveTrie(__snake_case ) a__ = nested_token_ids a__ = self.trie.max_height a__ = [] a__ = False def lowerCamelCase__( self :Dict ) -> List[Any]: a__ = self.trie.next_tokens(self.current_seq ) if len(__snake_case ) == 0: return None else: return token_list def lowerCamelCase__( self :str ,__snake_case :Dict ) -> int: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(__snake_case )}' ) a__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase__( self :Any ,__snake_case :Optional[int] ) -> str: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(__snake_case )}' ) a__ = False a__ = False a__ = False if self.does_advance(__snake_case ): self.current_seq.append(__snake_case ) a__ = True else: a__ = True self.reset() a__ = self.trie.reached_leaf(self.current_seq ) a__ = completed return stepped, completed, reset def lowerCamelCase__( self :Dict ) -> int: a__ = False a__ = [] def lowerCamelCase__( self :Union[str, Any] ) -> Union[str, Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase__( self :Any ,__snake_case :int=False ) -> List[Any]: a__ = DisjunctiveConstraint(self.token_ids ) if stateful: a__ = self.seqlen a__ = self.current_seq a__ = self.completed return new_constraint class snake_case_ : def __init__( self :Tuple ,__snake_case :int ) -> Optional[Any]: a__ = constraints # max # of steps required to fulfill a given constraint a__ = max([c.seqlen for c in constraints] ) a__ = len(__snake_case ) a__ = False self.init_state() def lowerCamelCase__( self :Union[str, Any] ) -> Any: a__ = [] a__ = None a__ = [constraint.copy(stateful=__snake_case ) for constraint in self.constraints] def lowerCamelCase__( self :str ) -> Any: a__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase__( self :Dict ) -> Optional[Any]: a__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" a__ = constraint.advance() if isinstance(__snake_case ,__snake_case ): token_list.append(__snake_case ) elif isinstance(__snake_case ,__snake_case ): token_list.extend(__snake_case ) else: a__ = self.inprogress_constraint.advance() if isinstance(__snake_case ,__snake_case ): token_list.append(__snake_case ) elif isinstance(__snake_case ,__snake_case ): token_list.extend(__snake_case ) if len(__snake_case ) == 0: return None else: return token_list def lowerCamelCase__( self :Any ,__snake_case :Any ) -> int: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint a__ , a__ = self.add(__snake_case ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase__( self :Any ,__snake_case :int ) -> str: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` should be an `int`, but is `{token_id}`.' ) a__ , a__ = False, False if self.completed: a__ = True a__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state a__ , a__ , a__ = self.inprogress_constraint.update(__snake_case ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__snake_case ) ) a__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) a__ = None if len(self.pending_constraints ) == 0: # we're done! a__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__snake_case ): a__ , a__ , a__ = pending_constraint.update(__snake_case ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(__snake_case ) a__ = None if not complete and stepped: a__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". a__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. a__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase__( self :str ,__snake_case :List[str]=True ) -> Union[str, Any]: a__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: a__ = [ constraint.copy(stateful=__snake_case ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: a__ = self.inprogress_constraint.copy(stateful=__snake_case ) a__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
708
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = ['ConditionalDetrFeatureExtractor'] snake_case : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys snake_case : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
0
def A ( __lowerCAmelCase : Optional[int] ): a__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack a__ = set() return any( node not in visited and depth_first_search(A_ , A_ , A_ , A_ ) for node in graph ) def A ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : str ): visited.add(A_ ) rec_stk.add(A_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(A_ , A_ , A_ , A_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(A_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
710
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case : List[str] = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : List[Any] ): if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCAmelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class snake_case_ (snake_case__ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Any ,__snake_case :Any = True ,__snake_case :Optional[Any] = None ,__snake_case :Tuple = PILImageResampling.BILINEAR ,__snake_case :str = True ,__snake_case :Optional[int] = None ,__snake_case :Optional[Any] = True ,__snake_case :Tuple = 1 / 2_55 ,__snake_case :Tuple = True ,__snake_case :Union[str, Any] = None ,__snake_case :Dict = None ,**__snake_case :Optional[int] ,) -> Tuple: super().__init__(**_A ) a__ = size if size is not None else {'shortest_edge': 2_24} a__ = get_size_dict(_A ,default_to_square=_A ) a__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(_A ,param_name='crop_size' ) a__ = do_resize a__ = size a__ = do_center_crop a__ = crop_size a__ = resample a__ = do_rescale a__ = rescale_factor a__ = do_normalize a__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :int = PILImageResampling.BILINEAR ,__snake_case :Optional[int] = None ,**__snake_case :List[Any] ,) -> Any: a__ = get_size_dict(_A ,default_to_square=_A ) if "shortest_edge" in size: a__ = get_resize_output_image_size(_A ,size['shortest_edge'] ,default_to_square=_A ) elif "height" in size and "width" in size: a__ = (size['height'], size['width']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(_A ,size=_A ,resample=_A ,data_format=_A ,**_A ) def lowerCamelCase__( self :List[Any] ,__snake_case :int ,__snake_case :Dict ,__snake_case :int = None ,**__snake_case :Union[str, Any] ,) -> List[Any]: a__ = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(_A ,size=(size['height'], size['width']) ,data_format=_A ,**_A ) def lowerCamelCase__( self :Dict ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :List[str] = None ,**__snake_case :Optional[Any] ,) -> Tuple: return rescale(_A ,scale=_A ,data_format=_A ,**_A ) def lowerCamelCase__( self :int ,__snake_case :List[str] ,__snake_case :List[str] ,__snake_case :str ,__snake_case :Tuple = None ,**__snake_case :List[str] ,) -> Union[str, Any]: return normalize(_A ,mean=_A ,std=_A ,data_format=_A ,**_A ) def lowerCamelCase__( self :Tuple ,__snake_case :int ,__snake_case :Any = None ,__snake_case :str = None ,__snake_case :List[Any] = None ,__snake_case :List[Any] = None ,__snake_case :Dict = None ,__snake_case :Optional[Any] = None ,__snake_case :Optional[int] = None ,__snake_case :Any = None ,__snake_case :Dict = None ,__snake_case :Union[str, Any] = None ,__snake_case :Dict = ChannelDimension.FIRST ,) -> int: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. a__ = to_numpy_array(_A ) if do_resize: a__ = self.resize(image=_A ,size=_A ,resample=_A ) if do_center_crop: a__ = self.center_crop(_A ,size=_A ) if do_rescale: a__ = self.rescale(image=_A ,scale=_A ) if do_normalize: a__ = self.normalize(image=_A ,mean=_A ,std=_A ) a__ = to_channel_dimension_format(_A ,_A ) return image def lowerCamelCase__( self :List[Any] ,__snake_case :Optional[int] ,__snake_case :List[Any] = None ,__snake_case :Tuple = None ,__snake_case :Optional[int] = None ,__snake_case :Any = None ,__snake_case :str = None ,__snake_case :Tuple = None ,__snake_case :List[Any] = None ,__snake_case :Optional[Any] = None ,__snake_case :int = None ,__snake_case :Any = None ,__snake_case :Tuple = None ,__snake_case :List[Any] = ChannelDimension.FIRST ,**__snake_case :List[str] ,) -> Any: a__ = do_resize if do_resize is not None else self.do_resize a__ = resample if resample is not None else self.resample a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = size if size is not None else self.size a__ = get_size_dict(_A ,default_to_square=_A ) a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(_A ,param_name='crop_size' ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) a__ = make_batched(_A ) a__ = [ [ self._preprocess_image( image=_A ,do_resize=_A ,size=_A ,resample=_A ,do_center_crop=_A ,crop_size=_A ,do_rescale=_A ,rescale_factor=_A ,do_normalize=_A ,image_mean=_A ,image_std=_A ,data_format=_A ,) for img in video ] for video in videos ] a__ = {'pixel_values': videos} return BatchFeature(data=_A ,tensor_type=_A )
711
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
0
'''simple docstring''' from __future__ import annotations def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
712
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class snake_case_ (lowercase_ ): def __lt__( self :Optional[int] ,__snake_case :List[str] ) -> Dict: return self[-1] < other[-1] def __eq__( self :List[str] ,__snake_case :Dict ) -> Tuple: return self[-1] == other[-1] def __lowercase ( __lowerCAmelCase : Dict ): a__ = [] # sort into stacks for element in collection: a__ = Stack([element] ) a__ = bisect_left(lowerCamelCase_ , lowerCamelCase_ ) if i != len(lowerCamelCase_ ): stacks[i].append(lowerCamelCase_ ) else: stacks.append(lowerCamelCase_ ) # use a heap-based merge to merge stack efficiently a__ = merge(*(reversed(lowerCamelCase_ ) for stack in stacks) ) return collection if __name__ == "__main__": snake_case : str = input('''Enter numbers separated by a comma:\n''').strip() snake_case : Any = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
713
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType snake_case : Tuple = get_logger(__name__) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Any=0 ): os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): a__ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: a__ = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' a__ = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(F'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: a__ = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) a__ = os.path.join(A__ , A__ ) logger.info(F'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: a__ = os.path.join(A__ , F'{MODEL_NAME}_{model_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(F'Saving model to {ckpt_dir}' ) a__ = {'model': state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Model saved to {ckpt_dir}' ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return a__ = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' a__ = os.path.join(A__ , A__ ) logger.info(F'Loading model from {input_model_file}' ) a__ = torch.load(A__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: a__ = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) a__ = os.path.join(A__ , A__ ) logger.info(F'Loading model from {input_model_file}' ) a__ = torch.load(A__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: a__ = ( os.path.join(A__ , F'{MODEL_NAME}_{model_index}' ) if F'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(F'Loading model from {ckpt_dir}' ) a__ = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) a__ = state_dict['model'] logger.info(F'Model loaded from {ckpt_dir}' ) model.load_state_dict(A__ ) def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int]=0 ): os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): a__ = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: a__ = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) a__ = os.path.join(A__ , A__ ) logger.info(F'Saving Optimizer state to {output_optimizer_file}' ) torch.save(A__ , A__ ) logger.info(F'Optimizer state saved in {output_optimizer_file}' ) else: a__ = os.path.join(A__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(F'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Optimizer state saved in {ckpt_dir}' ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: a__ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: a__ = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) a__ = os.path.join(A__ , A__ ) logger.info(F'Loading Optimizer state from {input_optimizer_file}' ) a__ = torch.load(A__ ) logger.info(F'Optimizer state loaded from {input_optimizer_file}' ) else: a__ = ( os.path.join(A__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) if F'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(F'Loading Optimizer from {ckpt_dir}' ) a__ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(A__ ) , ) a__ = optim_state['optimizer'] logger.info(F'Optimizer loaded from {ckpt_dir}' ) a__ = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
714
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class snake_case_ (unittest.TestCase ): def __init__( self :Dict ,__snake_case :int ,__snake_case :Optional[int]=7 ,__snake_case :List[Any]=3 ,__snake_case :Dict=18 ,__snake_case :Dict=30 ,__snake_case :Optional[int]=4_00 ,__snake_case :int=True ,__snake_case :str=None ,__snake_case :Dict=True ,__snake_case :Tuple=None ,__snake_case :List[str]=True ,) -> List[str]: a__ = size if size is not None else {"shortest_edge": 20} a__ = crop_size if crop_size is not None else {"height": 18, "width": 18} a__ = parent a__ = batch_size a__ = num_channels a__ = image_size a__ = min_resolution a__ = max_resolution a__ = do_resize a__ = size a__ = do_center_crop a__ = crop_size a__ = do_flip_channel_order def lowerCamelCase__( self :List[Any] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class snake_case_ (_UpperCamelCase , unittest.TestCase ): UpperCAmelCase__ : Tuple = MobileViTImageProcessor if is_vision_available() else None def lowerCamelCase__( self :str ) -> List[str]: a__ = MobileViTImageProcessingTester(self ) @property def lowerCamelCase__( self :Optional[Any] ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__( self :Optional[int] ) -> Optional[int]: a__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case ,'do_resize' ) ) self.assertTrue(hasattr(__snake_case ,'size' ) ) self.assertTrue(hasattr(__snake_case ,'do_center_crop' ) ) self.assertTrue(hasattr(__snake_case ,'center_crop' ) ) self.assertTrue(hasattr(__snake_case ,'do_flip_channel_order' ) ) def lowerCamelCase__( self :List[Any] ) -> Dict: a__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) a__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def lowerCamelCase__( self :Tuple ) -> int: pass def lowerCamelCase__( self :Optional[Any] ) -> Tuple: # Initialize image_processing a__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case ,Image.Image ) # Test not batched input a__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched a__ = image_processing(__snake_case ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def lowerCamelCase__( self :List[Any] ) -> Any: # Initialize image_processing a__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__snake_case ,numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case ,np.ndarray ) # Test not batched input a__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched a__ = image_processing(__snake_case ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def lowerCamelCase__( self :List[str] ) -> Tuple: # Initialize image_processing a__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__snake_case ,torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case ,torch.Tensor ) # Test not batched input a__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched a__ = image_processing(__snake_case ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
715
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
0
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration snake_case : List[str] = 5_00_00 snake_case : Optional[int] = 50_00 snake_case , snake_case : Union[str, Any] = os.path.split(__file__) snake_case : int = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Dict ): for i in range(a__ ): a__ = dataset[i] @get_duration def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str ): for i in range(0 , len(a__ ) , a__ ): a__ = dataset[i : i + batch_size] @get_duration def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): with dataset.formatted_as(type=a__ ): for i in range(a__ ): a__ = dataset[i] @get_duration def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str ): with dataset.formatted_as(type=a__ ): for i in range(0 , a__ , a__ ): a__ = dataset[i : i + batch_size] def __lowercase ( ): a__ = {'num examples': SPEED_TEST_N_EXAMPLES} a__ = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0_0}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0_0_0}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_0}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_0_0_0}), ] a__ = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0_0}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0_0_0}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_0}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_0_0_0}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) a__ = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) a__ = generate_example_dataset( os.path.join(a__ , 'dataset.arrow' ) , a__ , num_examples=a__ , seq_shapes={'list': (1_0_0,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(a__ ) ) a__ = func(a__ , **a__ ) print('shuffling dataset' ) a__ = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(a__ ) ) a__ = func( a__ , **a__ ) with open(a__ , 'wb' ) as f: f.write(json.dumps(a__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
716
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
0
import os from typing import Dict, List, Tuple, TypeVar, Union snake_case : Union[str, Any] = TypeVar('''T''') snake_case : List[Any] = Union[List[T], Tuple[T, ...]] snake_case : int = Union[T, List[T], Dict[str, T]] snake_case : Tuple = Union[str, bytes, os.PathLike]
717
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer snake_case : str = logging.get_logger(__name__) snake_case : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } snake_case : Union[str, Any] = { 'yjernite/retribert-base-uncased': 5_12, } snake_case : Tuple = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Any = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Optional[Any] = RetriBertTokenizer UpperCAmelCase__ : Any = ['input_ids', 'attention_mask'] def __init__( self :Optional[int] ,__snake_case :Any=None ,__snake_case :int=None ,__snake_case :Union[str, Any]=True ,__snake_case :Dict="[UNK]" ,__snake_case :str="[SEP]" ,__snake_case :Union[str, Any]="[PAD]" ,__snake_case :Dict="[CLS]" ,__snake_case :Optional[Any]="[MASK]" ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=None ,**__snake_case :Dict ,) -> Dict: super().__init__( UpperCAmelCase__ ,tokenizer_file=UpperCAmelCase__ ,do_lower_case=UpperCAmelCase__ ,unk_token=UpperCAmelCase__ ,sep_token=UpperCAmelCase__ ,pad_token=UpperCAmelCase__ ,cls_token=UpperCAmelCase__ ,mask_token=UpperCAmelCase__ ,tokenize_chinese_chars=UpperCAmelCase__ ,strip_accents=UpperCAmelCase__ ,**UpperCAmelCase__ ,) a__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' ,UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,UpperCAmelCase__ ) != tokenize_chinese_chars ): a__ = getattr(UpperCAmelCase__ ,normalizer_state.pop('type' ) ) a__ = do_lower_case a__ = strip_accents a__ = tokenize_chinese_chars a__ = normalizer_class(**UpperCAmelCase__ ) a__ = do_lower_case def lowerCamelCase__( self :Dict ,__snake_case :Tuple ,__snake_case :Union[str, Any]=None ) -> Optional[int]: a__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> str: a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__( self :str ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple: a__ = self._tokenizer.model.save(UpperCAmelCase__ ,name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
718
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ): a__ = 1.5 a__ = int(factor * num_class_images ) a__ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__lowerCAmelCase , aesthetic_weight=0.1 ) os.makedirs(F'{class_data_dir}/images' , exist_ok=__lowerCAmelCase ) if len(list(Path(F'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: a__ = client.query(text=__lowerCAmelCase ) if len(__lowerCAmelCase ) >= factor * num_class_images or num_images > 1E4: break else: a__ = int(factor * num_images ) a__ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__lowerCAmelCase , aesthetic_weight=0.1 , ) a__ = 0 a__ = 0 a__ = tqdm(desc='downloading real regularization images' , total=__lowerCAmelCase ) with open(F'{class_data_dir}/caption.txt' , 'w' ) as fa, open(F'{class_data_dir}/urls.txt' , 'w' ) as fa, open( F'{class_data_dir}/images.txt' , 'w' ) as fa: while total < num_class_images: a__ = class_images[count] count += 1 try: a__ = requests.get(images['url'] ) if img.status_code == 2_0_0: a__ = Image.open(BytesIO(img.content ) ) with open(F'{class_data_dir}/images/{total}.jpg' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'{class_data_dir}/images/{total}.jpg' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __lowercase ( ): a__ = argparse.ArgumentParser('' , add_help=__lowerCAmelCase ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=__lowerCAmelCase , type=__lowerCAmelCase ) parser.add_argument('--class_data_dir' , help='path to save images' , required=__lowerCAmelCase , type=__lowerCAmelCase ) parser.add_argument('--num_class_images' , help='number of images to download' , default=2_0_0 , type=__lowerCAmelCase ) return parser.parse_args() if __name__ == "__main__": snake_case : List[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
719
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
0
from math import ceil def __lowercase ( __lowerCAmelCase : int = 1_0_0_1 ): a__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): a__ = 2 * i + 1 a__ = 2 * i a__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: snake_case : Tuple = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
720
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
0
import sys from pathlib import Path snake_case : Optional[int] = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) snake_case : Union[str, Any] = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} snake_case : str = """zero2""" snake_case : Tuple = """zero3""" snake_case : int = [ZEROa, ZEROa] def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): a__ = parameterized.to_safe_name('_'.join(str(__lowerCAmelCase ) for x in param.args ) ) return F'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test snake_case : int = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class snake_case_ (_snake_case ): @parameterized.expand(snake_case_ ,name_func=snake_case_ ) def lowerCamelCase__( self :int ,__snake_case :Union[str, Any] ,__snake_case :Dict ) -> Any: self.run_and_check( stage=snake_case_ ,model=snake_case_ ,distributed=snake_case_ ,fpaa=snake_case_ ,) @require_torch_multi_gpu @parameterized.expand(snake_case_ ,name_func=snake_case_ ) def lowerCamelCase__( self :List[str] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> Dict: self.run_and_check( stage=snake_case_ ,model=snake_case_ ,distributed=snake_case_ ,fpaa=snake_case_ ,) @parameterized.expand(snake_case_ ,name_func=snake_case_ ) def lowerCamelCase__( self :List[Any] ,__snake_case :Optional[int] ,__snake_case :List[Any] ) -> List[Any]: self.run_and_check( stage=snake_case_ ,model=snake_case_ ,distributed=snake_case_ ,fpaa=snake_case_ ,) @require_torch_multi_gpu @parameterized.expand(snake_case_ ,name_func=snake_case_ ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[Any] ,__snake_case :Tuple ) -> Optional[int]: self.run_and_check( stage=snake_case_ ,model=snake_case_ ,distributed=snake_case_ ,fpaa=snake_case_ ,) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ) -> Union[str, Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def lowerCamelCase__( self :Optional[Any] ,__snake_case :Union[str, Any] ,__snake_case :Dict ,__snake_case :Optional[Any] = 10 ,__snake_case :Optional[int] = True ,__snake_case :Tuple = True ,__snake_case :Optional[int] = True ,) -> Any: a__ = models[model] a__ = self.run_trainer( stage=snake_case_ ,model_name=snake_case_ ,eval_steps=snake_case_ ,num_train_epochs=1 ,distributed=snake_case_ ,fpaa=snake_case_ ,) self.do_checks(snake_case_ ) return output_dir def lowerCamelCase__( self :Dict ,__snake_case :List[Any] ,__snake_case :Tuple ,__snake_case :Any = 10 ,__snake_case :Optional[Any] = 1 ,__snake_case :Optional[int] = True ,__snake_case :Dict = True ,) -> Optional[int]: a__ = self.get_auto_remove_tmp_dir('./xxx' ,after=snake_case_ ) a__ = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(snake_case_ )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files a__ = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() a__ = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] a__ = self.get_launcher(snake_case_ ) a__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case_ ,env=self.get_env() ) return output_dir def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[str]=False ) -> Optional[int]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) a__ = min(2 ,get_gpu_count() ) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
721
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
0
def __lowercase ( __lowerCAmelCase : int ): if num <= 0: raise ValueError('Input must be a positive integer' ) a__ = [True] * (num + 1) a__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowerCAmelCase ): a__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() snake_case : Any = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
700
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
0
'''simple docstring''' import numpy as np def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] ): return np.where(vector > 0 , _lowerCAmelCase , (alpha * (np.exp(_lowerCAmelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
701
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ (unittest.TestCase ): def __init__( self :Dict ,__snake_case :List[Any] ,__snake_case :Optional[Any]=13 ,__snake_case :Optional[Any]=3 ,__snake_case :Tuple=2_24 ,__snake_case :str=30 ,__snake_case :int=4_00 ,__snake_case :Optional[Any]=True ,__snake_case :List[Any]=None ,__snake_case :List[str]=True ,__snake_case :List[str]=[0.5, 0.5, 0.5] ,__snake_case :Optional[Any]=[0.5, 0.5, 0.5] ,) -> Dict: a__ = size if size is not None else {'''height''': 18, '''width''': 18} a__ = parent a__ = batch_size a__ = num_channels a__ = image_size a__ = min_resolution a__ = max_resolution a__ = do_resize a__ = size a__ = do_normalize a__ = image_mean a__ = image_std def lowerCamelCase__( self :List[str] ) -> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case_ (lowerCamelCase__ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = ViTImageProcessor if is_vision_available() else None def lowerCamelCase__( self :Union[str, Any] ) -> str: a__ = EfficientFormerImageProcessorTester(self ) @property def lowerCamelCase__( self :str ) -> str: return self.image_proc_tester.prepare_image_processor_dict() def lowerCamelCase__( self :Optional[Any] ) -> Any: a__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase ,'image_mean' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'image_std' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'do_normalize' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'do_resize' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'size' ) ) def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: pass def lowerCamelCase__( self :int ) -> List[str]: a__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,Image.Image ) # Test not batched input a__ = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched a__ = image_processor(__lowerCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) def lowerCamelCase__( self :Any ) -> Optional[Any]: a__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowerCamelCase ,numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,np.ndarray ) # Test not batched input a__ = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched a__ = image_processor(__lowerCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowerCamelCase ,torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,torch.Tensor ) # Test not batched input a__ = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched a__ = image_processor(__lowerCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,)
702
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import math from collections.abc import Callable def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : str ): a__ = xa a__ = xa while True: if x_n == x_na or function(UpperCamelCase__ ) == function(UpperCamelCase__ ): raise ZeroDivisionError('float division by zero, could not find root' ) a__ = x_na - ( function(UpperCamelCase__ ) / ((function(UpperCamelCase__ ) - function(UpperCamelCase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na a__ = x_na a__ = x_na def __lowercase ( __lowerCAmelCase : Union[str, Any] ): return math.pow(UpperCamelCase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
703
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
0
import numpy as np class snake_case_ : def __init__( self :Tuple ,__snake_case :List[str]=None ,__snake_case :Union[str, Any]=None ,__snake_case :List[Any]=None ,__snake_case :Optional[int]=None ,__snake_case :List[Any]=None ) -> Any: self.set_matricies(red=lowercase_ ,green=lowercase_ ,blue=lowercase_ ,red_edge=lowercase_ ,nir=lowercase_ ) def lowerCamelCase__( self :List[Any] ,__snake_case :int=None ,__snake_case :Optional[int]=None ,__snake_case :Dict=None ,__snake_case :Any=None ,__snake_case :Any=None ) -> Tuple: if red is not None: a__ = red if green is not None: a__ = green if blue is not None: a__ = blue if red_edge is not None: a__ = red_edge if nir is not None: a__ = nir return True def lowerCamelCase__( self :Optional[int] ,__snake_case :str="" ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[Any]=None ,__snake_case :Tuple=None ,__snake_case :Any=None ,__snake_case :Any=None ) -> Dict: self.set_matricies(red=lowercase_ ,green=lowercase_ ,blue=lowercase_ ,red_edge=lowercase_ ,nir=lowercase_ ) a__ = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def lowerCamelCase__( self :List[str] ) -> Any: return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def lowerCamelCase__( self :Dict ) -> List[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowerCamelCase__( self :int ) -> Optional[int]: return self.nir * (self.red / (self.green**2)) def lowerCamelCase__( self :Dict ) -> Union[str, Any]: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowerCamelCase__( self :int ) -> List[Any]: return (self.nir - self.red) / (self.nir + self.red) def lowerCamelCase__( self :Any ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def lowerCamelCase__( self :List[Any] ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def lowerCamelCase__( self :Tuple ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green) def lowerCamelCase__( self :Tuple ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowerCamelCase__( self :Union[str, Any] ) -> Dict: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowerCamelCase__( self :Dict ) -> Union[str, Any]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowerCamelCase__( self :str ) -> Optional[int]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowerCamelCase__( self :List[str] ,__snake_case :List[str]=0.08 ,__snake_case :str=1.22 ,__snake_case :str=0.03 ) -> List[str]: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowerCamelCase__( self :str ) -> List[Any]: return (self.nir / self.green) - 1 def lowerCamelCase__( self :List[Any] ) -> int: return (self.nir / self.redEdge) - 1 def lowerCamelCase__( self :Optional[Any] ) -> List[Any]: return (self.red - self.blue) / self.red def lowerCamelCase__( self :Tuple ) -> List[str]: a__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def lowerCamelCase__( self :Any ) -> Optional[int]: return self.nir - self.green def lowerCamelCase__( self :Dict ) -> List[Any]: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowerCamelCase__( self :str ) -> str: a__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def lowerCamelCase__( self :Any ,__snake_case :Optional[Any]=0.16 ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green + y) def lowerCamelCase__( self :List[str] ,__snake_case :int=0.5 ) -> List[Any]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowerCamelCase__( self :int ) -> Optional[int]: return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def lowerCamelCase__( self :List[Any] ,__snake_case :Dict=None ,__snake_case :Optional[Any]=None ) -> Any: return (self.nir - b) / (a * self.red) def lowerCamelCase__( self :Optional[int] ) -> int: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowerCamelCase__( self :Any ) -> Optional[int]: return (self.red + self.green + self.blue) / 30.5 def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: return self.nir / self.red def lowerCamelCase__( self :List[str] ) -> str: return (self.rvi() - 1) / (self.rvi() + 1) def lowerCamelCase__( self :Optional[int] ) -> Tuple: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowerCamelCase__( self :Dict ) -> Optional[int]: return self.green / (self.nir + self.red + self.green) def lowerCamelCase__( self :Optional[int] ) -> str: return self.nir / (self.nir + self.red + self.green) def lowerCamelCase__( self :str ) -> Optional[int]: return self.red / (self.nir + self.red + self.green) def lowerCamelCase__( self :Tuple ) -> int: return (self.green - self.red) / (self.green + self.red) def lowerCamelCase__( self :int ) -> Tuple: return (self.red - self.green) / (self.red + self.green) def lowerCamelCase__( self :Tuple ) -> Optional[Any]: a__ = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) a__ = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowerCamelCase__( self :str ) -> str: return self.nir / self.red def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: return (self.ndvi() + 0.5) ** (1 / 2) def lowerCamelCase__( self :Dict ) -> Optional[int]: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
704
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
0
def __lowercase ( __lowerCAmelCase : Dict ): if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] a__ = grid[0] for row_n in range(1 , len(__lowerCAmelCase ) ): a__ = grid[row_n] a__ = fill_row(__lowerCAmelCase , __lowerCAmelCase ) a__ = grid[row_n] return grid[-1][-1] def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : int ): current_row[0] += row_above[0] for cell_n in range(1 , len(__lowerCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[Any] = logging.get_logger(__name__) snake_case : Tuple = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class snake_case_ (__lowercase ): UpperCAmelCase__ : Dict = '''timesformer''' def __init__( self :Union[str, Any] ,__snake_case :int=2_24 ,__snake_case :str=16 ,__snake_case :List[str]=3 ,__snake_case :str=8 ,__snake_case :Any=7_68 ,__snake_case :int=12 ,__snake_case :Tuple=12 ,__snake_case :Optional[Any]=30_72 ,__snake_case :Any="gelu" ,__snake_case :Optional[Any]=0.0 ,__snake_case :Union[str, Any]=0.0 ,__snake_case :int=0.02 ,__snake_case :str=1E-6 ,__snake_case :Any=True ,__snake_case :str="divided_space_time" ,__snake_case :Dict=0 ,**__snake_case :List[Any] ,) -> List[Any]: super().__init__(**__snake_case ) a__ = image_size a__ = patch_size a__ = num_channels a__ = num_frames a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = initializer_range a__ = layer_norm_eps a__ = qkv_bias a__ = attention_type a__ = drop_path_rate
706
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
0
def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = len(_SCREAMING_SNAKE_CASE ) a__ = [] for i in range(len(_SCREAMING_SNAKE_CASE ) - pat_len + 1 ): a__ = True for j in range(_SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: a__ = False break if match_found: position.append(_SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
707
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class snake_case_ : def __init__( self :Union[str, Any] ,__snake_case :Optional[Any] ,__snake_case :Dict=13 ,__snake_case :str=7 ,__snake_case :Any=True ,__snake_case :Tuple=True ,__snake_case :Tuple=True ,__snake_case :Dict=99 ,__snake_case :List[Any]=32 ,__snake_case :int=5 ,__snake_case :Optional[int]=4 ,__snake_case :Tuple=37 ,__snake_case :Dict="gelu" ,__snake_case :List[Any]=0.1 ,__snake_case :Optional[int]=0.1 ,__snake_case :Any=5_12 ,__snake_case :Dict=16 ,__snake_case :Tuple=2 ,__snake_case :List[Any]=0.02 ,__snake_case :Tuple=3 ,__snake_case :List[str]=4 ,__snake_case :Optional[Any]=None ,) -> str: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Any ) -> Dict: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Optional[int] ,__snake_case :Union[str, Any] ,*__snake_case :Tuple ) -> Tuple: a__ = OpenAIGPTModel(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) a__ = model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :Optional[int] ,__snake_case :Optional[Any] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[Any] ,*__snake_case :int ) -> Dict: a__ = OpenAIGPTLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :List[Any] ,__snake_case :int ,__snake_case :int ,__snake_case :int ,__snake_case :int ,*__snake_case :Union[str, Any] ) -> int: a__ = OpenAIGPTDoubleHeadsModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Tuple ,__snake_case :Optional[Any] ,__snake_case :Any ,__snake_case :Tuple ,__snake_case :List[Any] ,*__snake_case :List[Any] ) -> Dict: a__ = self.num_labels a__ = OpenAIGPTForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = self.prepare_config_and_inputs() ( a__ ) = config_and_inputs a__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class snake_case_ (A_ , A_ , A_ , unittest.TestCase ): UpperCAmelCase__ : Dict = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCAmelCase__ : Dict = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCAmelCase__ : List[Any] = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__( self :int ,__snake_case :Tuple ,__snake_case :int ,__snake_case :str ,__snake_case :List[Any] ,__snake_case :int ) -> Any: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :List[Any]=False ) -> List[str]: a__ = super()._prepare_for_class(__snake_case ,__snake_case ,return_labels=__snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=__snake_case ,) a__ = inputs_dict["""labels"""] a__ = inputs_dict["""labels"""] a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=__snake_case ,) a__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__snake_case ) return inputs_dict def lowerCamelCase__( self :Dict ) -> str: a__ = OpenAIGPTModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :Dict ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> List[str]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> Dict: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Dict: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__snake_case ) def lowerCamelCase__( self :Any ) -> List[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__snake_case ) @slow def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = OpenAIGPTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class snake_case_ (unittest.TestCase ): @slow def lowerCamelCase__( self :Dict ) -> Optional[Any]: a__ = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(__snake_case ) a__ = torch.tensor([[4_81, 47_35, 5_44]] ,dtype=torch.long ,device=__snake_case ) # the president is a__ = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
708
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Tuple = logging.get_logger(__name__) snake_case : str = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class snake_case_ (__A ): UpperCAmelCase__ : Tuple = """wav2vec2""" def __init__( self :Dict ,__snake_case :List[str]=32 ,__snake_case :List[Any]=7_68 ,__snake_case :int=12 ,__snake_case :Optional[int]=12 ,__snake_case :int=30_72 ,__snake_case :List[str]="gelu" ,__snake_case :Any=0.1 ,__snake_case :Optional[Any]=0.1 ,__snake_case :str=0.1 ,__snake_case :int=0.0 ,__snake_case :Optional[int]=0.0 ,__snake_case :List[Any]=0.1 ,__snake_case :int=0.1 ,__snake_case :str=0.02 ,__snake_case :List[Any]=1E-5 ,__snake_case :List[str]="group" ,__snake_case :List[str]="gelu" ,__snake_case :str=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) ,__snake_case :Optional[Any]=(5, 2, 2, 2, 2, 2, 2) ,__snake_case :Dict=(10, 3, 3, 3, 3, 2, 2) ,__snake_case :List[str]=False ,__snake_case :int=1_28 ,__snake_case :Tuple=16 ,__snake_case :List[str]=False ,__snake_case :Union[str, Any]=True ,__snake_case :Dict=0.05 ,__snake_case :Tuple=10 ,__snake_case :Optional[int]=2 ,__snake_case :int=0.0 ,__snake_case :List[Any]=10 ,__snake_case :List[str]=0 ,__snake_case :Tuple=3_20 ,__snake_case :int=2 ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Tuple=1_00 ,__snake_case :List[str]=2_56 ,__snake_case :Optional[Any]=2_56 ,__snake_case :Dict=0.1 ,__snake_case :Union[str, Any]="sum" ,__snake_case :Optional[Any]=False ,__snake_case :Optional[int]=False ,__snake_case :List[str]=2_56 ,__snake_case :Optional[int]=(5_12, 5_12, 5_12, 5_12, 15_00) ,__snake_case :List[Any]=(5, 3, 3, 1, 1) ,__snake_case :Optional[Any]=(1, 2, 3, 1, 1) ,__snake_case :Dict=5_12 ,__snake_case :int=0 ,__snake_case :str=1 ,__snake_case :List[Any]=2 ,__snake_case :Any=False ,__snake_case :Dict=3 ,__snake_case :Union[str, Any]=2 ,__snake_case :Optional[int]=3 ,__snake_case :Tuple=None ,__snake_case :Dict=None ,**__snake_case :Union[str, Any] ,) -> Dict: super().__init__(**UpperCamelCase__ ,pad_token_id=UpperCamelCase__ ,bos_token_id=UpperCamelCase__ ,eos_token_id=UpperCamelCase__ ) a__ = hidden_size a__ = feat_extract_norm a__ = feat_extract_activation a__ = list(UpperCamelCase__ ) a__ = list(UpperCamelCase__ ) a__ = list(UpperCamelCase__ ) a__ = conv_bias a__ = num_conv_pos_embeddings a__ = num_conv_pos_embedding_groups a__ = len(self.conv_dim ) a__ = num_hidden_layers a__ = intermediate_size a__ = hidden_act a__ = num_attention_heads a__ = hidden_dropout a__ = attention_dropout a__ = activation_dropout a__ = feat_proj_dropout a__ = final_dropout a__ = layerdrop a__ = layer_norm_eps a__ = initializer_range a__ = vocab_size a__ = do_stable_layer_norm a__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ = apply_spec_augment a__ = mask_time_prob a__ = mask_time_length a__ = mask_time_min_masks a__ = mask_feature_prob a__ = mask_feature_length a__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations a__ = num_codevectors_per_group a__ = num_codevector_groups a__ = contrastive_logits_temperature a__ = feat_quantizer_dropout a__ = num_negatives a__ = codevector_dim a__ = proj_codevector_dim a__ = diversity_loss_weight # ctc loss a__ = ctc_loss_reduction a__ = ctc_zero_infinity # adapter a__ = add_adapter a__ = adapter_kernel_size a__ = adapter_stride a__ = num_adapter_layers a__ = output_hidden_size or hidden_size a__ = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. a__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a__ = list(UpperCamelCase__ ) a__ = list(UpperCamelCase__ ) a__ = list(UpperCamelCase__ ) a__ = xvector_output_dim @property def lowerCamelCase__( self :str ) -> Tuple: return functools.reduce(operator.mul ,self.conv_stride ,1 )
709
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Any = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class snake_case_ (a__ ): UpperCAmelCase__ : int = "umt5" UpperCAmelCase__ : Optional[Any] = ["past_key_values"] def __init__( self :Optional[int] ,__snake_case :str=25_01_12 ,__snake_case :Optional[Any]=5_12 ,__snake_case :int=64 ,__snake_case :Optional[int]=10_24 ,__snake_case :Dict=8 ,__snake_case :str=None ,__snake_case :List[Any]=6 ,__snake_case :Any=32 ,__snake_case :str=1_28 ,__snake_case :int=0.1 ,__snake_case :int=1E-6 ,__snake_case :Optional[Any]=1.0 ,__snake_case :Any="gated-gelu" ,__snake_case :List[str]=True ,__snake_case :List[str]=True ,__snake_case :Optional[int]="T5Tokenizer" ,__snake_case :Optional[int]=True ,__snake_case :List[str]=0 ,__snake_case :Tuple=1 ,__snake_case :str=0 ,**__snake_case :Optional[int] ,) -> str: super().__init__( is_encoder_decoder=lowerCamelCase_ ,tokenizer_class=lowerCamelCase_ ,tie_word_embeddings=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,decoder_start_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) a__ = vocab_size a__ = d_model a__ = d_kv a__ = d_ff a__ = num_layers a__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a__ = num_heads a__ = relative_attention_num_buckets a__ = relative_attention_max_distance a__ = dropout_rate a__ = layer_norm_epsilon a__ = initializer_factor a__ = feed_forward_proj a__ = use_cache a__ = self.feed_forward_proj.split('-' ) a__ = act_info[-1] a__ = act_info[0] == 'gated' if len(lowerCamelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": a__ = 'gelu_new' @property def lowerCamelCase__( self :Optional[int] ) -> int: return self.d_model @property def lowerCamelCase__( self :int ) -> Union[str, Any]: return self.num_heads @property def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: return self.num_layers class snake_case_ (a__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowerCamelCase__( self :int ) -> Mapping[str, Mapping[int, str]]: a__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: a__ = 'past_encoder_sequence + sequence' a__ = {0: 'batch'} a__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: a__ = {0: 'batch', 1: 'decoder_sequence'} a__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ ,direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowerCamelCase__( self :Union[str, Any] ) -> int: return 13 @property def lowerCamelCase__( self :str ) -> float: return 5E-4
710
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case : Dict = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys snake_case : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
711
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
0
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case_ (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ : List[str] = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self :int ,__snake_case :int ,__snake_case :int ,__snake_case :Optional[int] = None ,__snake_case :int = 5_02_57 ,__snake_case :int = 10_24 ,__snake_case :int = 7_68 ,__snake_case :int = 12 ,__snake_case :int = 12 ,__snake_case :Optional[int] = None ,__snake_case :str = "gelu_new" ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 1E-5 ,__snake_case :float = 0.02 ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :bool = False ,__snake_case :bool = False ,) -> List[Any]: super().__init__() a__ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' F' `n_embd`: {n_embd} are not equal.' ) a__ = prefix_inner_dim a__ = prefix_hidden_dim a__ = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) a__ = ( nn.Linear(self.prefix_hidden_dim ,lowerCAmelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) a__ = GPTaConfig( vocab_size=lowerCAmelCase_ ,n_positions=lowerCAmelCase_ ,n_embd=lowerCAmelCase_ ,n_layer=lowerCAmelCase_ ,n_head=lowerCAmelCase_ ,n_inner=lowerCAmelCase_ ,activation_function=lowerCAmelCase_ ,resid_pdrop=lowerCAmelCase_ ,embd_pdrop=lowerCAmelCase_ ,attn_pdrop=lowerCAmelCase_ ,layer_norm_epsilon=lowerCAmelCase_ ,initializer_range=lowerCAmelCase_ ,scale_attn_weights=lowerCAmelCase_ ,use_cache=lowerCAmelCase_ ,scale_attn_by_inverse_layer_idx=lowerCAmelCase_ ,reorder_and_upcast_attn=lowerCAmelCase_ ,) a__ = GPTaLMHeadModel(lowerCAmelCase_ ) def lowerCamelCase__( self :int ,__snake_case :torch.Tensor ,__snake_case :torch.Tensor ,__snake_case :Optional[torch.Tensor] = None ,__snake_case :Optional[torch.Tensor] = None ,) -> Tuple: a__ = self.transformer.transformer.wte(lowerCAmelCase_ ) a__ = self.encode_prefix(lowerCAmelCase_ ) a__ = self.decode_prefix(lowerCAmelCase_ ) a__ = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: a__ = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) a__ = torch.cat((dummy_token, input_ids) ,dim=1 ) a__ = self.transformer(inputs_embeds=lowerCAmelCase_ ,labels=lowerCAmelCase_ ,attention_mask=lowerCAmelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase__( self :Optional[int] ,__snake_case :int ,__snake_case :torch.device ) -> Tuple: return torch.zeros(lowerCAmelCase_ ,self.prefix_length ,dtype=torch.intaa ,device=lowerCAmelCase_ ) def lowerCamelCase__( self :List[str] ,__snake_case :List[Any] ) -> Optional[int]: return self.encode_prefix(lowerCAmelCase_ ) @torch.no_grad() def lowerCamelCase__( self :Tuple ,__snake_case :str ,__snake_case :Dict ,__snake_case :Union[str, Any] ) -> Any: a__ = torch.split(lowerCAmelCase_ ,1 ,dim=0 ) a__ = [] a__ = [] for feature in features: a__ = self.decode_prefix(feature.to(lowerCAmelCase_ ) ) # back to the clip feature # Only support beam search for now a__ , a__ = self.generate_beam( input_embeds=lowerCAmelCase_ ,device=lowerCAmelCase_ ,eos_token_id=lowerCAmelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) a__ = torch.stack(lowerCAmelCase_ ) a__ = torch.stack(lowerCAmelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase__( self :int ,__snake_case :List[str]=None ,__snake_case :Tuple=None ,__snake_case :str=None ,__snake_case :int = 5 ,__snake_case :int = 67 ,__snake_case :float = 1.0 ,__snake_case :Optional[int] = None ,) -> Union[str, Any]: a__ = eos_token_id a__ = None a__ = None a__ = torch.ones(lowerCAmelCase_ ,device=lowerCAmelCase_ ,dtype=torch.int ) a__ = torch.zeros(lowerCAmelCase_ ,device=lowerCAmelCase_ ,dtype=torch.bool ) if input_embeds is not None: a__ = input_embeds else: a__ = self.transformer.transformer.wte(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): a__ = self.transformer(inputs_embeds=lowerCAmelCase_ ) a__ = outputs.logits a__ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) a__ = logits.softmax(-1 ).log() if scores is None: a__ , a__ = logits.topk(lowerCAmelCase_ ,-1 ) a__ = generated.expand(lowerCAmelCase_ ,*generated.shape[1:] ) a__ , a__ = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: a__ = next_tokens else: a__ = tokens.expand(lowerCAmelCase_ ,*tokens.shape[1:] ) a__ = torch.cat((tokens, next_tokens) ,dim=1 ) else: a__ = -float(np.inf ) a__ = 0 a__ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 a__ = scores_sum / seq_lengths[:, None] a__ , a__ = scores_sum_average.view(-1 ).topk(lowerCAmelCase_ ,-1 ) a__ = next_tokens // scores_sum.shape[1] a__ = seq_lengths[next_tokens_source] a__ = next_tokens % scores_sum.shape[1] a__ = next_tokens.unsqueeze(1 ) a__ = tokens[next_tokens_source] a__ = torch.cat((tokens, next_tokens) ,dim=1 ) a__ = generated[next_tokens_source] a__ = scores_sum_average * seq_lengths a__ = is_stopped[next_tokens_source] a__ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) a__ = torch.cat((generated, next_token_embed) ,dim=1 ) a__ = is_stopped + next_tokens.eq(lowerCAmelCase_ ).squeeze() if is_stopped.all(): break a__ = scores / seq_lengths a__ = scores.argsort(descending=lowerCAmelCase_ ) # tokens tensors are already padded to max_seq_length a__ = [tokens[i] for i in order] a__ = torch.stack(lowerCAmelCase_ ,dim=0 ) a__ = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
712
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Any ,__snake_case :List[str] ) -> Union[str, Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): a__ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_UpperCAmelCase ) def lowerCamelCase__( self :str ) -> List[str]: a__ = '''sshleifer/tiny-gpt2''' a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__( self :int ) -> List[Any]: a__ = '''sgugger/tiny-distilbert-classification''' a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_UpperCAmelCase ,only_pretrain_model=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__( self :Dict ) -> str: a__ = '''sshleifer/tiny-gpt2''' a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,torchscript=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' ,'Cant do half precision' ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = '''sshleifer/tiny-gpt2''' a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,fpaa=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__( self :List[str] ) -> Optional[Any]: a__ = '''sshleifer/tiny-gpt2''' a__ = AutoConfig.from_pretrained(_UpperCAmelCase ) # set architectures equal to `None` a__ = None a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ,configs=[config] ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__( self :int ) -> str: a__ = '''sshleifer/tiny-gpt2''' a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' ,'Can\'t do half precision' ) def lowerCamelCase__( self :Dict ) -> Any: a__ = '''sshleifer/tiny-gpt2''' a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,fpaa=_UpperCAmelCase ,multi_process=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: a__ = '''sshleifer/tiny-gpt2''' a__ = AutoConfig.from_pretrained(_UpperCAmelCase ) a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ,configs=[config] ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: a__ = '''sshleifer/tinier_bart''' a__ = AutoConfig.from_pretrained(_UpperCAmelCase ) a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ,configs=[config] ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__( self :Dict ) -> Any: a__ = '''sshleifer/tiny-gpt2''' a__ = AutoConfig.from_pretrained(_UpperCAmelCase ) a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ,configs=[config] ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase__( self :Tuple ) -> Tuple: a__ = '''sshleifer/tinier_bart''' a__ = AutoConfig.from_pretrained(_UpperCAmelCase ) a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ,configs=[config] ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase__( self :Optional[int] ) -> Dict: a__ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,save_to_csv=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_UpperCAmelCase ,'inf_time.csv' ) ,train_memory_csv_file=os.path.join(_UpperCAmelCase ,'train_mem.csv' ) ,inference_memory_csv_file=os.path.join(_UpperCAmelCase ,'inf_mem.csv' ) ,train_time_csv_file=os.path.join(_UpperCAmelCase ,'train_time.csv' ) ,env_info_csv_file=os.path.join(_UpperCAmelCase ,'env.csv' ) ,multi_process=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_UpperCAmelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase ,'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase ,'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase ,'env.csv' ) ).exists() ) def lowerCamelCase__( self :List[str] ) -> Any: a__ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(__snake_case :Union[str, Any] ): self.assertTrue(hasattr(_UpperCAmelCase ,'sequential' ) ) self.assertTrue(hasattr(_UpperCAmelCase ,'cumulative' ) ) self.assertTrue(hasattr(_UpperCAmelCase ,'current' ) ) self.assertTrue(hasattr(_UpperCAmelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=_UpperCAmelCase ,inference=_UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_UpperCAmelCase ,'log.txt' ) ,log_print=_UpperCAmelCase ,trace_memory_line_by_line=_UpperCAmelCase ,multi_process=_UpperCAmelCase ,) a__ = PyTorchBenchmark(_UpperCAmelCase ) a__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_UpperCAmelCase ,'log.txt' ) ).exists() )
713
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
0
import tensorflow as tf from ...tf_utils import shape_list class snake_case_ (tf.keras.layers.Layer ): def __init__( self :Optional[Any] ,__snake_case :Any ,__snake_case :int ,__snake_case :List[str] ,__snake_case :Optional[int] ,__snake_case :List[str]=1 ,__snake_case :Dict=False ,**__snake_case :Optional[Any] ) -> Any: super().__init__(**_A ) a__ = vocab_size a__ = d_embed a__ = d_proj a__ = cutoffs + [vocab_size] a__ = [0] + self.cutoffs a__ = div_val a__ = self.cutoffs[0] a__ = len(self.cutoffs ) - 1 a__ = self.shortlist_size + self.n_clusters a__ = keep_order a__ = [] a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ) -> int: if self.n_clusters > 0: a__ = self.add_weight( shape=(self.n_clusters, self.d_embed) ,initializer='zeros' ,trainable=_A ,name='cluster_weight' ) a__ = self.add_weight( shape=(self.n_clusters,) ,initializer='zeros' ,trainable=_A ,name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: a__ = self.add_weight( shape=(self.d_embed, self.d_proj) ,initializer='zeros' ,trainable=_A ,name=F'out_projs_._{i}' ,) self.out_projs.append(_A ) else: self.out_projs.append(_A ) a__ = self.add_weight( shape=(self.vocab_size, self.d_embed) ,initializer='zeros' ,trainable=_A ,name=F'out_layers_._{i}_._weight' ,) a__ = self.add_weight( shape=(self.vocab_size,) ,initializer='zeros' ,trainable=_A ,name=F'out_layers_._{i}_._bias' ,) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): a__ , a__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] a__ = self.d_embed // (self.div_val**i) a__ = self.add_weight( shape=(d_emb_i, self.d_proj) ,initializer='zeros' ,trainable=_A ,name=F'out_projs_._{i}' ) self.out_projs.append(_A ) a__ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) ,initializer='zeros' ,trainable=_A ,name=F'out_layers_._{i}_._weight' ,) a__ = self.add_weight( shape=(r_idx - l_idx,) ,initializer='zeros' ,trainable=_A ,name=F'out_layers_._{i}_._bias' ,) self.out_layers.append((weight, bias) ) super().build(_A ) @staticmethod def lowerCamelCase__( __snake_case :int ,__snake_case :Union[str, Any] ,__snake_case :List[Any] ,__snake_case :Any=None ) -> Optional[int]: a__ = x if proj is not None: a__ = tf.einsum('ibd,ed->ibe' ,_A ,_A ) return tf.einsum('ibd,nd->ibn' ,_A ,_A ) + b @staticmethod def lowerCamelCase__( __snake_case :int ,__snake_case :int ) -> Tuple: a__ = shape_list(_A ) a__ = tf.range(lp_size[0] ,dtype=target.dtype ) a__ = tf.stack([r, target] ,1 ) return tf.gather_nd(_A ,_A ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Dict ,__snake_case :Tuple=True ,__snake_case :List[Any]=False ) -> Dict: a__ = 0 if self.n_clusters == 0: a__ = self._logit(_A ,self.out_layers[0][0] ,self.out_layers[0][1] ,self.out_projs[0] ) if target is not None: a__ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_A ,logits=_A ) a__ = tf.nn.log_softmax(_A ,axis=-1 ) else: a__ = shape_list(_A ) a__ = [] a__ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): a__ , a__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: a__ = (target >= l_idx) & (target < r_idx) a__ = tf.where(_A ) a__ = tf.boolean_mask(_A ,_A ) - l_idx if self.div_val == 1: a__ = self.out_layers[0][0][l_idx:r_idx] a__ = self.out_layers[0][1][l_idx:r_idx] else: a__ = self.out_layers[i][0] a__ = self.out_layers[i][1] if i == 0: a__ = tf.concat([cur_W, self.cluster_weight] ,0 ) a__ = tf.concat([cur_b, self.cluster_bias] ,0 ) a__ = self._logit(_A ,_A ,_A ,self.out_projs[0] ) a__ = tf.nn.log_softmax(_A ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: a__ = tf.boolean_mask(_A ,_A ) a__ = self._gather_logprob(_A ,_A ) else: a__ = self._logit(_A ,_A ,_A ,self.out_projs[i] ) a__ = tf.nn.log_softmax(_A ) a__ = self.cutoffs[0] + i - 1 # No probability for the head cluster a__ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_A ) if target is not None: a__ = tf.boolean_mask(_A ,_A ) a__ = tf.boolean_mask(_A ,_A ) a__ = self._gather_logprob(_A ,_A ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_A ,-cur_logprob ,shape_list(_A ) ) a__ = tf.concat(_A ,axis=-1 ) if target is not None: if return_mean: a__ = tf.reduce_mean(_A ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_A ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_A ,name=self.name ,aggregation='mean' if return_mean else '' ) return out
714
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
0
def __lowercase ( __lowerCAmelCase : list ): a__ = False while is_sorted is False: # Until all the indices are traversed keep looping a__ = True for i in range(0 , len(UpperCAmelCase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: a__ , a__ = input_list[i + 1], input_list[i] # swapping if elements not in order a__ = False for i in range(1 , len(UpperCAmelCase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: a__ , a__ = input_list[i + 1], input_list[i] # swapping if elements not in order a__ = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') snake_case : Any = [int(x) for x in input().split()] # inputing elements of the list in one line snake_case : Tuple = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
715
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ): a__ = StableDiffusionPipeline.from_pretrained(_UpperCamelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors a__ = load_file(_UpperCamelCase ) a__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: a__ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) a__ = pipeline.text_encoder else: a__ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) a__ = pipeline.unet # find the target layer a__ = layer_infos.pop(0 ) while len(_UpperCamelCase ) > -1: try: a__ = curr_layer.__getattr__(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: a__ = layer_infos.pop(0 ) elif len(_UpperCamelCase ) == 0: break except Exception: if len(_UpperCamelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: a__ = layer_infos.pop(0 ) a__ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(_UpperCamelCase ) else: pair_keys.append(_UpperCamelCase ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: a__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) a__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCamelCase , _UpperCamelCase ).unsqueeze(2 ).unsqueeze(3 ) else: a__ = state_dict[pair_keys[0]].to(torch.floataa ) a__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCamelCase , _UpperCamelCase ) # update visited list for item in pair_keys: visited.append(_UpperCamelCase ) return pipeline if __name__ == "__main__": snake_case : Dict = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') snake_case : Tuple = parser.parse_args() snake_case : Optional[Any] = args.base_model_path snake_case : int = args.checkpoint_path snake_case : str = args.dump_path snake_case : List[str] = args.lora_prefix_unet snake_case : Optional[Any] = args.lora_prefix_text_encoder snake_case : int = args.alpha snake_case : str = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) snake_case : Optional[int] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
716
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer snake_case : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case : Any = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } snake_case : Tuple = { """google/electra-small-generator""": 5_12, """google/electra-base-generator""": 5_12, """google/electra-large-generator""": 5_12, """google/electra-small-discriminator""": 5_12, """google/electra-base-discriminator""": 5_12, """google/electra-large-discriminator""": 5_12, } snake_case : List[Any] = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class snake_case_ (__UpperCAmelCase ): UpperCAmelCase__ : Dict = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = ElectraTokenizer def __init__( self :Tuple ,__snake_case :Any=None ,__snake_case :List[str]=None ,__snake_case :List[Any]=True ,__snake_case :str="[UNK]" ,__snake_case :Optional[Any]="[SEP]" ,__snake_case :Union[str, Any]="[PAD]" ,__snake_case :Optional[int]="[CLS]" ,__snake_case :Optional[Any]="[MASK]" ,__snake_case :Union[str, Any]=True ,__snake_case :Optional[int]=None ,**__snake_case :str ,) -> Optional[Any]: super().__init__( __snake_case ,tokenizer_file=__snake_case ,do_lower_case=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,pad_token=__snake_case ,cls_token=__snake_case ,mask_token=__snake_case ,tokenize_chinese_chars=__snake_case ,strip_accents=__snake_case ,**__snake_case ,) a__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,__snake_case ) != do_lower_case or normalizer_state.get('strip_accents' ,__snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,__snake_case ) != tokenize_chinese_chars ): a__ = getattr(__snake_case ,normalizer_state.pop('type' ) ) a__ = do_lower_case a__ = strip_accents a__ = tokenize_chinese_chars a__ = normalizer_class(**__snake_case ) a__ = do_lower_case def lowerCamelCase__( self :List[Any] ,__snake_case :Union[str, Any] ,__snake_case :Dict=None ) -> Optional[Any]: a__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__( self :int ,__snake_case :Optional[int] ,__snake_case :Optional[Any] = None ) -> Any: a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__( self :Any ,__snake_case :Dict ,__snake_case :int = None ) -> Any: a__ = self._tokenizer.model.save(__snake_case ,name=__snake_case ) return tuple(__snake_case )
717
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case : List[str] = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys snake_case : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
718
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :List[str] ,__snake_case :Tuple=2 ,__snake_case :Dict=32 ,__snake_case :int=16 ,__snake_case :Dict=3 ,__snake_case :int=True ,__snake_case :Any=True ,__snake_case :Tuple=32 ,__snake_case :List[Any]=4 ,__snake_case :int=[0, 1, 2, 3] ,__snake_case :List[str]=4 ,__snake_case :List[Any]=37 ,__snake_case :Union[str, Any]="gelu" ,__snake_case :Optional[Any]=0.1 ,__snake_case :int=0.1 ,__snake_case :Dict=0.02 ,__snake_case :Dict=3 ,__snake_case :Union[str, Any]=[1, 3_84, 24, 24] ,__snake_case :List[Any]=True ,__snake_case :Union[str, Any]=None ,) -> Any: a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = backbone_out_indices a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = initializer_range a__ = num_labels a__ = backbone_featmap_shape a__ = scope a__ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) a__ = (image_size // patch_size) ** 2 a__ = num_patches + 1 def lowerCamelCase__( self :Any ) -> Union[str, Any]: a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) a__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__( self :List[Any] ) -> Union[str, Any]: a__ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 1_92, 3_84, 7_68], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,backbone_out_indices=self.backbone_out_indices ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__snake_case ,initializer_range=self.initializer_range ,is_hybrid=self.is_hybrid ,backbone_config=__snake_case ,backbone_featmap_shape=self.backbone_featmap_shape ,) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :Dict ,__snake_case :Dict ) -> Optional[int]: a__ = DPTModel(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :Tuple ,__snake_case :str ,__snake_case :List[str] ,__snake_case :str ) -> List[str]: a__ = self.num_labels a__ = DPTForDepthEstimation(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) self.parent.assertEqual(result.predicted_depth.shape ,(self.batch_size, self.image_size, self.image_size) ) def lowerCamelCase__( self :Optional[int] ,__snake_case :Optional[int] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> Any: a__ = self.num_labels a__ = DPTForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,labels=__snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCamelCase__( self :Union[str, Any] ) -> str: a__ = self.prepare_config_and_inputs() a__ = config_and_inputs a__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_ (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCAmelCase__ : Optional[Any] = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : str = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = False def lowerCamelCase__( self :str ) -> Optional[int]: a__ = DPTModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,has_text_modality=__snake_case ,hidden_size=37 ) def lowerCamelCase__( self :List[Any] ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def lowerCamelCase__( self :Dict ) -> int: pass def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case ,nn.Linear ) ) def lowerCamelCase__( self :List[str] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__snake_case ) def lowerCamelCase__( self :Tuple ) -> Dict: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__snake_case ) def lowerCamelCase__( self :List[str] ) -> Optional[int]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__snake_case ) def lowerCamelCase__( self :Dict ) -> Dict: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = True if model_class in get_values(__snake_case ): continue a__ = model_class(__snake_case ) model.to(__snake_case ) model.train() a__ = self._prepare_for_class(__snake_case ,__snake_case ,return_labels=__snake_case ) a__ = model(**__snake_case ).loss loss.backward() def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = False a__ = True if model_class in get_values(__snake_case ) or not model_class.supports_gradient_checkpointing: continue a__ = model_class(__snake_case ) model.to(__snake_case ) model.gradient_checkpointing_enable() model.train() a__ = self._prepare_for_class(__snake_case ,__snake_case ,return_labels=__snake_case ) a__ = model(**__snake_case ).loss loss.backward() def lowerCamelCase__( self :Tuple ) -> Optional[int]: a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = _config_zero_init(__snake_case ) for model_class in self.all_model_classes: a__ = model_class(config=__snake_case ) # Skip the check for the backbone a__ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": a__ = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F'Parameter {name} of model {model_class} seems not properly initialized' ,) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> int: pass @slow def lowerCamelCase__( self :str ) -> Any: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: a__ = DPTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowerCamelCase__( self :Any ) -> Union[str, Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = '''add''' with self.assertRaises(__snake_case ): a__ = DPTForDepthEstimation(__snake_case ) def __lowercase ( ): a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Tuple ) -> str: a__ = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) a__ = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(__snake_case ) a__ = prepare_img() a__ = image_processor(images=__snake_case ,return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): a__ = model(**__snake_case ) a__ = outputs.predicted_depth # verify the predicted depth a__ = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape ,__snake_case ) a__ = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 ,__snake_case ,atol=1E-4 ) )
719
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging snake_case : int = logging.get_logger(__name__) class snake_case_ (lowercase_ ): UpperCAmelCase__ : Optional[int] = ['''input_features''', '''attention_mask'''] def __init__( self :Optional[int] ,__snake_case :Tuple=80 ,__snake_case :Tuple=1_60_00 ,__snake_case :List[Any]=0.0 ,__snake_case :Union[str, Any]=10 ,__snake_case :List[str]=25 ,__snake_case :Dict="hamming_window" ,__snake_case :Any=3_27_68.0 ,__snake_case :Union[str, Any]=0.97 ,__snake_case :int=1.0 ,__snake_case :List[str]=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=False ,**__snake_case :Union[str, Any] ,) -> Optional[int]: super().__init__(feature_size=__snake_case ,sampling_rate=__snake_case ,padding_value=__snake_case ,**__snake_case ) a__ = feature_size a__ = sampling_rate a__ = padding_value a__ = hop_length a__ = win_length a__ = frame_signal_scale a__ = preemphasis_coeff a__ = mel_floor a__ = normalize_means a__ = normalize_vars a__ = win_function a__ = return_attention_mask a__ = win_length * sampling_rate // 10_00 a__ = hop_length * sampling_rate // 10_00 a__ = optimal_fft_length(self.sample_size ) a__ = (self.n_fft // 2) + 1 def lowerCamelCase__( self :List[Any] ,__snake_case :Tuple ) -> Dict: if self.win_function == "hamming_window": a__ = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=__snake_case ) else: a__ = window_function(window_length=self.sample_size ,name=self.win_function ) a__ = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,) a__ = spectrogram( one_waveform * self.frame_signal_scale ,window=__snake_case ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=__snake_case ,preemphasis=self.preemphasis_coeff ,mel_filters=__snake_case ,mel_floor=self.mel_floor ,log_mel='log' ,) return msfc_features.T def lowerCamelCase__( self :int ,__snake_case :int ,__snake_case :Any ,__snake_case :Any ) -> str: # make sure we normalize float32 arrays if self.normalize_means: a__ = x[:input_length].mean(axis=0 ) a__ = np.subtract(__snake_case ,__snake_case ) if self.normalize_vars: a__ = x[:input_length].std(axis=0 ) a__ = np.divide(__snake_case ,__snake_case ) if input_length < x.shape[0]: a__ = padding_value # make sure array is in float32 a__ = x.astype(np.floataa ) return x def lowerCamelCase__( self :Optional[Any] ,__snake_case :Tuple ,__snake_case :Optional[Any] = None ) -> int: a__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__snake_case ,__snake_case ,self.padding_value ) for x, n in zip(__snake_case ,__snake_case )] def __call__( self :List[Any] ,__snake_case :Dict ,__snake_case :Tuple = False ,__snake_case :Union[str, Any] = None ,__snake_case :Union[str, Any] = False ,__snake_case :List[str] = None ,__snake_case :Optional[int] = None ,__snake_case :List[str] = None ,__snake_case :Any = None ,**__snake_case :Tuple ,) -> int: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a__ = isinstance(__snake_case ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) a__ = is_batched_numpy or ( isinstance(__snake_case ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: a__ = [np.asarray(__snake_case ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__snake_case ,np.ndarray ): a__ = np.asarray(__snake_case ,dtype=np.floataa ) elif isinstance(__snake_case ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a__ = [raw_speech] # extract fbank features a__ = [self._extract_mfsc_features(__snake_case ) for one_waveform in raw_speech] # convert into correct format for padding a__ = BatchFeature({'input_features': features} ) a__ = self.pad( __snake_case ,padding=__snake_case ,max_length=__snake_case ,truncation=__snake_case ,pad_to_multiple_of=__snake_case ,return_attention_mask=__snake_case ,**__snake_case ,) # make sure list is in array format a__ = padded_inputs.get('input_features' ) if isinstance(input_features[0] ,__snake_case ): a__ = [np.asarray(__snake_case ,dtype=np.floataa ) for feature in input_features] a__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: a__ = [np.asarray(__snake_case ,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: a__ = ( np.array(__snake_case ,dtype=np.intaa ) if self._get_padding_strategies(__snake_case ,max_length=__snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) a__ = self.normalize( padded_inputs['input_features'] ,attention_mask=__snake_case ) if return_tensors is not None: a__ = padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs
720
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = inspect.getfile(accelerate.test_utils ) a__ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 a__ = test_metrics @require_cpu def lowerCamelCase__( self :Optional[int] ) -> Optional[int]: debug_launcher(self.test_metrics.main ,num_processes=1 ) @require_cpu def lowerCamelCase__( self :Any ) -> List[Any]: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowerCamelCase__( self :int ) -> Union[str, Any]: self.test_metrics.main() @require_multi_gpu def lowerCamelCase__( self :List[Any] ) -> Tuple: print(F'Found {torch.cuda.device_count()} devices.' ) a__ = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case ,env=os.environ.copy() )
721
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
0
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration snake_case : Union[str, Any] = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def __lowercase ( __lowerCAmelCase : Optional[Any] ): a__ = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) snake_case : Tuple = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def __lowercase ( __lowerCAmelCase : Dict ): a__ = list(s_dict.keys() ) for key in keys: a__ = key for k, v in WHISPER_MAPPING.items(): if k in key: a__ = new_key.replace(__lowerCAmelCase , __lowerCAmelCase ) print(F'{key} -> {new_key}' ) a__ = s_dict.pop(__lowerCAmelCase ) return s_dict def __lowercase ( __lowerCAmelCase : Tuple ): a__ , a__ = emb.weight.shape a__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) a__ = emb.weight.data return lin_layer def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) a__ = os.path.basename(__lowerCAmelCase ) a__ = url.split('/' )[-2] a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ) and not os.path.isfile(__lowerCAmelCase ): raise RuntimeError(F'{download_target} exists and is not a regular file' ) if os.path.isfile(__lowerCAmelCase ): a__ = open(__lowerCAmelCase , 'rb' ).read() if hashlib.shaaaa(__lowerCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(__lowerCAmelCase ) as source, open(__lowerCAmelCase , 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) , ncols=8_0 , unit='iB' , unit_scale=__lowerCAmelCase , unit_divisor=1_0_2_4 ) as loop: while True: a__ = source.read(8_1_9_2 ) if not buffer: break output.write(__lowerCAmelCase ) loop.update(len(__lowerCAmelCase ) ) a__ = open(__lowerCAmelCase , 'rb' ).read() if hashlib.shaaaa(__lowerCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ): if ".pt" not in checkpoint_path: a__ = _download(_MODELS[checkpoint_path] ) else: a__ = torch.load(__lowerCAmelCase , map_location='cpu' ) a__ = original_checkpoint['dims'] a__ = original_checkpoint['model_state_dict'] a__ = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(__lowerCAmelCase ) rename_keys(__lowerCAmelCase ) a__ = True a__ = state_dict['decoder.layers.0.fc1.weight'].shape[0] a__ = WhisperConfig( vocab_size=dimensions['n_vocab'] , encoder_ffn_dim=__lowerCAmelCase , decoder_ffn_dim=__lowerCAmelCase , num_mel_bins=dimensions['n_mels'] , d_model=dimensions['n_audio_state'] , max_target_positions=dimensions['n_text_ctx'] , encoder_layers=dimensions['n_audio_layer'] , encoder_attention_heads=dimensions['n_audio_head'] , decoder_layers=dimensions['n_text_layer'] , decoder_attention_heads=dimensions['n_text_state'] , max_source_positions=dimensions['n_audio_ctx'] , ) a__ = WhisperForConditionalGeneration(__lowerCAmelCase ) a__ , a__ = model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0 and not set(__lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F' but all the following weights are missing {missing}' ) if tie_embeds: a__ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a__ = proj_out_weights model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') snake_case : Optional[Any] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
700
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
0
'''simple docstring''' def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__lowerCAmelCase , n - 1 , __lowerCAmelCase ) * a) % mod else: a__ = binary_exponentiation(__lowerCAmelCase , n / 2 , __lowerCAmelCase ) return (b * b) % mod # a prime number snake_case : str = 7_01 snake_case : Dict = 10_00_00_00_00 snake_case : int = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
701
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
0