code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations from collections.abc import Callable snake_case : Optional[Any] = list[list[float | int]] def __lowercase ( __lowerCAmelCase : Matrix , __lowerCAmelCase : Matrix ): a__ = len(__lowerCAmelCase ) a__ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] a__ = 4_2 a__ = 4_2 a__ = 4_2 a__ = 4_2 a__ = 4_2 a__ = 4_2 for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): a__ = matrix[row][col] a__ = vector[row][0] a__ = 0 a__ = 0 while row < size and col < size: # pivoting a__ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: a__ , a__ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): a__ = augmented[rowa][col] / augmented[row][col] a__ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): a__ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 1_0 )] for row in range(__lowerCAmelCase ) ] def __lowercase ( __lowerCAmelCase : list[int] ): a__ = len(__lowerCAmelCase ) a__ = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] a__ = [[0] for _ in range(__lowerCAmelCase )] a__ = 4_2 a__ = 4_2 a__ = 4_2 a__ = 4_2 for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): a__ = (x_val + 1) ** (size - col - 1) a__ = y_val a__ = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowercase ( __lowerCAmelCase : int ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def __lowercase ( __lowerCAmelCase : Callable[[int], int] = question_function , __lowerCAmelCase : int = 1_0 ): a__ = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] a__ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] a__ = 0 a__ = 4_2 a__ = 4_2 for poly in polynomials: a__ = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
702
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import functools def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = len(__lowerCAmelCase ) a__ = len(__lowerCAmelCase ) @functools.cache def min_distance(__lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa a__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __lowerCAmelCase ) , 1 + min_distance(__lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
703
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() snake_case : Any = logging.get_logger(__name__) snake_case : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } snake_case : Any = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): for attribute in key.split('.' ): a__ = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: a__ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: a__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": a__ = value elif weight_type == "weight_g": a__ = value elif weight_type == "weight_v": a__ = value elif weight_type == "bias": a__ = value else: a__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Any ): a__ = [] a__ = fairseq_model.state_dict() a__ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a__ = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) a__ = True else: for key, mapped_key in MAPPING.items(): a__ = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue a__ = True if "*" in mapped_key: a__ = name.split(__lowerCAmelCase )[0].split('.' )[-2] a__ = mapped_key.replace('*' , __lowerCAmelCase ) if "weight_g" in name: a__ = 'weight_g' elif "weight_v" in name: a__ = 'weight_v' elif "bias" in name: a__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ = 'weight' else: a__ = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : int ): a__ = full_name.split('conv_layers.' )[-1] a__ = name.split('.' ) a__ = int(items[0] ) a__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) a__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) a__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Union[str, Any]=True ): if config_path is not None: a__ = UniSpeechSatConfig.from_pretrained(__lowerCAmelCase ) else: a__ = UniSpeechSatConfig() a__ = '' if is_finetuned: a__ = UniSpeechSatForCTC(__lowerCAmelCase ) else: a__ = UniSpeechSatForPreTraining(__lowerCAmelCase ) a__ , a__ , a__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) a__ = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) snake_case : Optional[int] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
704
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case_ : def __init__( self :List[Any] ,__snake_case :Optional[int] ,__snake_case :List[str]=13 ,__snake_case :Optional[int]=10 ,__snake_case :List[Any]=3 ,__snake_case :List[Any]=2 ,__snake_case :Optional[int]=2 ,__snake_case :int=2 ,__snake_case :str=True ,__snake_case :Any=True ,__snake_case :int=32 ,__snake_case :List[str]=5 ,__snake_case :Optional[int]=4 ,__snake_case :Optional[Any]=37 ,__snake_case :Optional[Any]="gelu" ,__snake_case :int=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=10 ,__snake_case :Dict=0.02 ,__snake_case :List[str]=0.9 ,__snake_case :Optional[int]=None ,) -> str: a__ = parent a__ = batch_size a__ = image_size a__ = num_channels a__ = patch_size a__ = tubelet_size a__ = num_frames a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range a__ = mask_ratio a__ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame a__ = (image_size // patch_size) ** 2 a__ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos a__ = int(mask_ratio * self.seq_length ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__( self :Any ) -> Optional[Any]: return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__snake_case ,initializer_range=self.initializer_range ,) def lowerCamelCase__( self :Tuple ,__snake_case :List[Any] ,__snake_case :Any ,__snake_case :Union[str, Any] ) -> Any: a__ = VideoMAEModel(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Optional[int] ,__snake_case :Dict ) -> Union[str, Any]: a__ = VideoMAEForPreTraining(__snake_case ) model.to(__snake_case ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch a__ = torch.ones((self.num_masks,) ) a__ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) a__ = mask.expand(self.batch_size ,-1 ).bool() a__ = model(__snake_case ,__snake_case ) # model only returns predictions for masked patches a__ = mask.sum().item() a__ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) ) def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : int = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) UpperCAmelCase__ : Dict = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Any = False def lowerCamelCase__( self :Optional[int] ) -> Optional[int]: a__ = VideoMAEModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,has_text_modality=__snake_case ,hidden_size=37 ) def lowerCamelCase__( self :Any ,__snake_case :List[Any] ,__snake_case :List[str] ,__snake_case :List[Any]=False ) -> Optional[int]: a__ = copy.deepcopy(__snake_case ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch a__ = torch.ones((self.model_tester.num_masks,) ) a__ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) a__ = mask.expand(self.model_tester.batch_size ,-1 ).bool() a__ = bool_masked_pos.to(__snake_case ) if return_labels: if model_class in [ *get_values(__snake_case ), ]: a__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__snake_case ) return inputs_dict def lowerCamelCase__( self :Dict ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def lowerCamelCase__( self :List[Any] ) -> Tuple: pass def lowerCamelCase__( self :Optional[Any] ) -> int: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case ,nn.Linear ) ) def lowerCamelCase__( self :Tuple ) -> Any: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__snake_case ) def lowerCamelCase__( self :int ) -> List[str]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase__( self :List[str] ) -> Optional[int]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__snake_case ) @slow def lowerCamelCase__( self :str ) -> Optional[Any]: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = VideoMAEModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowerCamelCase__( self :Tuple ) -> Any: if not self.has_attentions: pass else: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = True for model_class in self.all_model_classes: a__ = self.model_tester.seq_length - self.model_tester.num_masks a__ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) a__ = True a__ = False a__ = True a__ = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(__snake_case ,__snake_case ) ) a__ = outputs.attentions self.assertEqual(len(__snake_case ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__ = True a__ = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(__snake_case ,__snake_case ) ) a__ = outputs.attentions self.assertEqual(len(__snake_case ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) a__ = len(__snake_case ) # Check attention is always last and order is fine a__ = True a__ = True a__ = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(__snake_case ,__snake_case ) ) self.assertEqual(out_len + 1 ,len(__snake_case ) ) a__ = outputs.attentions self.assertEqual(len(__snake_case ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def lowerCamelCase__( self :List[Any] ) -> Optional[Any]: def check_hidden_states_output(__snake_case :Dict ,__snake_case :str ,__snake_case :Union[str, Any] ): a__ = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(__snake_case ,__snake_case ) ) a__ = outputs.hidden_states a__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__snake_case ) ,__snake_case ) a__ = self.model_tester.seq_length - self.model_tester.num_masks a__ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ = True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Dict ) -> Optional[int]: pass def __lowercase ( ): a__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) a__ = np.load(__lowerCAmelCase ) return list(__lowerCAmelCase ) @require_torch @require_vision class snake_case_ (unittest.TestCase ): @cached_property def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase__( self :List[str] ) -> List[Any]: a__ = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( __snake_case ) a__ = self.default_image_processor a__ = prepare_video() a__ = image_processor(__snake_case ,return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): a__ = model(**__snake_case ) # verify the logits a__ = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape ,__snake_case ) a__ = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__snake_case ,atol=1E-4 ) ) @slow def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: a__ = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(__snake_case ) a__ = self.default_image_processor a__ = prepare_video() a__ = image_processor(__snake_case ,return_tensors='pt' ).to(__snake_case ) # add boolean mask, indicating which patches to mask a__ = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' ,filename='bool_masked_pos.pt' ) a__ = torch.load(__snake_case ) # forward pass with torch.no_grad(): a__ = model(**__snake_case ) # verify the logits a__ = torch.Size([1, 14_08, 15_36] ) a__ = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ,device=__snake_case ) self.assertEqual(outputs.logits.shape ,__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,__snake_case ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) a__ = torch.tensor([0.51_42] ,device=__snake_case ) self.assertTrue(torch.allclose(outputs.loss ,__snake_case ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) a__ = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ,norm_pix_loss=__snake_case ).to( __snake_case ) with torch.no_grad(): a__ = model(**__snake_case ) a__ = torch.tensor(torch.tensor([0.64_69] ) ,device=__snake_case ) self.assertTrue(torch.allclose(outputs.loss ,__snake_case ,atol=1E-4 ) )
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowercase ( ): a__ = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=__lowerCAmelCase ) a__ = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=__lowerCAmelCase ) env_command_parser(subparsers=__lowerCAmelCase ) launch_command_parser(subparsers=__lowerCAmelCase ) tpu_command_parser(subparsers=__lowerCAmelCase ) test_command_parser(subparsers=__lowerCAmelCase ) # Let's go a__ = parser.parse_args() if not hasattr(__lowerCAmelCase , 'func' ): parser.print_help() exit(1 ) # Run args.func(__lowerCAmelCase ) if __name__ == "__main__": main()
706
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
0
def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int ): print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ): a__ = [[float('inf' ) for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): a__ = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCAmelCase ): # looping through rows of graph array for i in range(__lowerCAmelCase ): # looping through columns of graph array for j in range(__lowerCAmelCase ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): a__ = dist[i][k] + dist[k][j] _print_dist(__lowerCAmelCase , __lowerCAmelCase ) return dist, v if __name__ == "__main__": snake_case = int(input('''Enter number of vertices: ''')) snake_case = int(input('''Enter number of edges: ''')) snake_case = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): snake_case = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) snake_case = int(input('''Enter source:''')) snake_case = int(input('''Enter destination:''')) snake_case = float(input('''Enter weight:''')) snake_case = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
707
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
0
from ..utils import DummyObject, requires_backends class snake_case_ (metaclass=lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = ['''torch''', '''torchsde'''] def __init__( self :Optional[int] ,*__snake_case :Optional[int] ,**__snake_case :Optional[int] ) -> Dict: requires_backends(self ,['torch', 'torchsde'] ) @classmethod def lowerCamelCase__( cls :Dict ,*__snake_case :Union[str, Any] ,**__snake_case :Union[str, Any] ) -> Tuple: requires_backends(cls ,['torch', 'torchsde'] ) @classmethod def lowerCamelCase__( cls :Any ,*__snake_case :List[Any] ,**__snake_case :Any ) -> Dict: requires_backends(cls ,['torch', 'torchsde'] )
708
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ): # Initialise PyTorch model a__ = AlbertConfig.from_json_file(__lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) a__ = AlbertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) snake_case : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
709
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case : str = ['''small''', '''medium''', '''large'''] snake_case : Tuple = '''lm_head.decoder.weight''' snake_case : Dict = '''lm_head.weight''' def A ( __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = torch.load(__lowerCAmelCase ) a__ = d.pop(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) snake_case : List[Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case : List[str] = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") snake_case : Dict = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
710
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer snake_case : int = '''bart''' snake_case : Union[str, Any] = True @st.cache(allow_output_mutation=__lowerCAmelCase ) def __lowercase ( ): if LOAD_DENSE_INDEX: a__ = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) a__ = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) a__ = qar_model.eval() else: a__ , a__ = (None, None) if MODEL_TYPE == "bart": a__ = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) a__ = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) a__ = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) a__ = sas_model.eval() else: a__ , a__ = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __lowercase ( ): if LOAD_DENSE_INDEX: a__ = faiss.StandardGpuResources() a__ = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] a__ = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 1_2_8) , ) a__ = faiss.IndexFlatIP(1_2_8 ) a__ = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase ) wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU else: a__ , a__ = (None, None) a__ = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __lowercase ( ): a__ = datasets.load_dataset('eli5' , name='LFQA_reddit' ) a__ = elia['train_eli5'] a__ = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 1_2_8) ) a__ = faiss.IndexFlatIP(1_2_8 ) eli5_train_q_index.add(__lowerCAmelCase ) return (elia_train, eli5_train_q_index) snake_case : Optional[int] = load_indexes() snake_case : Any = load_models() snake_case : Optional[int] = load_train_data() def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int=1_0 ): a__ = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase ) a__ , a__ = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase ) a__ = [elia_train[int(__lowerCAmelCase )] for i in I[0]] return nn_examples def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int]="wiki40b" , __lowerCAmelCase : List[str]="dense" , __lowerCAmelCase : str=1_0 ): if source == "none": a__ , a__ = (' <P> '.join(['' for _ in range(1_1 )] ).strip(), []) else: if method == "dense": a__ , a__ = query_qa_dense_index( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: a__ , a__ = query_es_index( __lowerCAmelCase , __lowerCAmelCase , index_name='english_wiki40b_snippets_100w' , n_results=__lowerCAmelCase , ) a__ = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] a__ = 'question: {} context: {}'.format(__lowerCAmelCase , __lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None), } ) def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any=6_4 , __lowerCAmelCase : List[str]=2_5_6 , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : int=0.95 , __lowerCAmelCase : Optional[Any]=0.8 ): with torch.no_grad(): a__ = qa_sas_generate( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1_0_2_4 , device='cuda:0' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar snake_case : Optional[Any] = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' snake_case : str = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia snake_case : List[str] = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) snake_case : List[Any] = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] snake_case : List[Any] = st.sidebar.checkbox('''Demo options''') if demo_options: snake_case : str = st.sidebar.selectbox( '''''', action_list, index=3, ) snake_case : Optional[Any] = action_list.index(action_st) snake_case : Optional[Any] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) snake_case : List[Any] = show_type == '''Show full text of passages''' else: snake_case : Dict = 3 snake_case : str = True snake_case : List[Any] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: snake_case : List[str] = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) snake_case : Union[str, Any] = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) snake_case : Tuple = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: snake_case : Dict = '''wiki40b''' snake_case : List[str] = '''dense''' snake_case : Optional[int] = '''beam''' snake_case : List[Any] = 2 snake_case : Tuple = 64 snake_case : List[Any] = 2_56 snake_case : List[Any] = None snake_case : str = None snake_case : Union[str, Any] = st.sidebar.checkbox('''Generation options''') if generate_options: snake_case : Union[str, Any] = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) snake_case : Any = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) snake_case : Optional[int] = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) snake_case : Tuple = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": snake_case : Tuple = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: snake_case : Any = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) snake_case : Optional[int] = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) snake_case : List[Any] = None # start main text snake_case : Tuple = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] snake_case : Dict = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": snake_case : Tuple = st.text_input('''Enter your question here:''', '''''') else: snake_case : Optional[int] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": snake_case : int = make_support(question, source=wiki_source, method='''dense''', n_results=10) snake_case : Optional[int] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) snake_case : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] snake_case : Optional[int] = support_list[:10] snake_case : Dict = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: snake_case : Dict = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: snake_case : Dict = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): snake_case : str = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) snake_case : Union[str, Any] = res[1].strip() if sec_titles == "": snake_case : List[Any] = '''[{}]({})'''.format(res[0], wiki_url) else: snake_case : str = sec_titles.split(''' & ''') snake_case : Any = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: snake_case : Union[str, Any] = find_nearest_training(question) snake_case : Union[str, Any] = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) snake_case : Tuple = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) snake_case : Dict = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
711
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
0
'''simple docstring''' def __lowercase ( __lowerCAmelCase : str ): return " ".join( ''.join(word[::-1] ) if len(__lowerCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
712
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
0
class snake_case_ : def __init__( self :List[Any] ,__snake_case :str = "" ,__snake_case :bool = False ) -> None: # Mapping from the first character of the prefix of the node a__ = {} # A node will be a leaf if the tree contains its word a__ = is_leaf a__ = prefix def lowerCamelCase__( self :List[str] ,__snake_case :str ) -> tuple[str, str, str]: a__ = 0 for q, w in zip(self.prefix ,__snake_case ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :list[str] ) -> None: for word in words: self.insert(__snake_case ) def lowerCamelCase__( self :str ,__snake_case :str ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: a__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: a__ = RadixNode(prefix=__snake_case ,is_leaf=__snake_case ) else: a__ = self.nodes[word[0]] a__ , a__ , a__ = incoming_node.match( __snake_case ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__snake_case ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: a__ = remaining_prefix a__ = self.nodes[matching_string[0]] a__ = RadixNode(__snake_case ,__snake_case ) a__ = aux_node if remaining_word == "": a__ = True else: self.nodes[matching_string[0]].insert(__snake_case ) def lowerCamelCase__( self :Dict ,__snake_case :str ) -> bool: a__ = self.nodes.get(word[0] ,__snake_case ) if not incoming_node: return False else: a__ , a__ , a__ = incoming_node.match( __snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__snake_case ) def lowerCamelCase__( self :List[str] ,__snake_case :str ) -> bool: a__ = self.nodes.get(word[0] ,__snake_case ) if not incoming_node: return False else: a__ , a__ , a__ = incoming_node.match( __snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__snake_case ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: a__ = list(self.nodes.values() )[0] a__ = merging_node.is_leaf self.prefix += merging_node.prefix a__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: a__ = False # If there is 1 edge, we merge it with its child else: a__ = list(incoming_node.nodes.values() )[0] a__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix a__ = merging_node.nodes return True def lowerCamelCase__( self :str ,__snake_case :int = 0 ) -> None: if self.prefix != "": print('-' * height ,self.prefix ,' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __lowercase ( ): a__ = 'banana bananas bandana band apple all beast'.split() a__ = RadixNode() root.insert_many(__lowerCAmelCase ) assert all(root.find(__lowerCAmelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __lowercase ( ): assert test_trie() def __lowercase ( ): a__ = RadixNode() a__ = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(__lowerCAmelCase ) print('Words:' , __lowerCAmelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
713
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : str = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self :Dict ,__snake_case :int ,__snake_case :int ,__snake_case :Optional[int] = None ,__snake_case :int = 5_02_57 ,__snake_case :int = 10_24 ,__snake_case :int = 7_68 ,__snake_case :int = 12 ,__snake_case :int = 12 ,__snake_case :Optional[int] = None ,__snake_case :str = "gelu_new" ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 1E-5 ,__snake_case :float = 0.02 ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :bool = False ,__snake_case :bool = False ,) -> int: super().__init__() a__ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' F' `n_embd`: {n_embd} are not equal.' ) a__ = prefix_inner_dim a__ = prefix_hidden_dim a__ = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) a__ = ( nn.Linear(self.prefix_hidden_dim ,__snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) a__ = GPTaConfig( vocab_size=__snake_case ,n_positions=__snake_case ,n_embd=__snake_case ,n_layer=__snake_case ,n_head=__snake_case ,n_inner=__snake_case ,activation_function=__snake_case ,resid_pdrop=__snake_case ,embd_pdrop=__snake_case ,attn_pdrop=__snake_case ,layer_norm_epsilon=__snake_case ,initializer_range=__snake_case ,scale_attn_weights=__snake_case ,use_cache=__snake_case ,scale_attn_by_inverse_layer_idx=__snake_case ,reorder_and_upcast_attn=__snake_case ,) a__ = GPTaLMHeadModel(__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :torch.Tensor ,__snake_case :torch.Tensor ,__snake_case :Optional[torch.Tensor] = None ,__snake_case :Optional[torch.Tensor] = None ,) -> Union[str, Any]: a__ = self.transformer.transformer.wte(__snake_case ) a__ = self.encode_prefix(__snake_case ) a__ = self.decode_prefix(__snake_case ) a__ = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: a__ = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) a__ = torch.cat((dummy_token, input_ids) ,dim=1 ) a__ = self.transformer(inputs_embeds=__snake_case ,labels=__snake_case ,attention_mask=__snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase__( self :List[Any] ,__snake_case :int ,__snake_case :torch.device ) -> torch.Tensor: return torch.zeros(__snake_case ,self.prefix_length ,dtype=torch.intaa ,device=__snake_case ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[Any] ) -> Tuple: return self.encode_prefix(__snake_case ) @torch.no_grad() def lowerCamelCase__( self :Optional[Any] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :Any ) -> Dict: a__ = torch.split(__snake_case ,1 ,dim=0 ) a__ = [] a__ = [] for feature in features: a__ = self.decode_prefix(feature.to(__snake_case ) ) # back to the clip feature # Only support beam search for now a__ , a__ = self.generate_beam( input_embeds=__snake_case ,device=__snake_case ,eos_token_id=__snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) a__ = torch.stack(__snake_case ) a__ = torch.stack(__snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase__( self :Any ,__snake_case :List[Any]=None ,__snake_case :Tuple=None ,__snake_case :Optional[int]=None ,__snake_case :int = 5 ,__snake_case :int = 67 ,__snake_case :float = 1.0 ,__snake_case :Optional[int] = None ,) -> List[str]: a__ = eos_token_id a__ = None a__ = None a__ = torch.ones(__snake_case ,device=__snake_case ,dtype=torch.int ) a__ = torch.zeros(__snake_case ,device=__snake_case ,dtype=torch.bool ) if input_embeds is not None: a__ = input_embeds else: a__ = self.transformer.transformer.wte(__snake_case ) for i in range(__snake_case ): a__ = self.transformer(inputs_embeds=__snake_case ) a__ = outputs.logits a__ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) a__ = logits.softmax(-1 ).log() if scores is None: a__ , a__ = logits.topk(__snake_case ,-1 ) a__ = generated.expand(__snake_case ,*generated.shape[1:] ) a__ , a__ = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: a__ = next_tokens else: a__ = tokens.expand(__snake_case ,*tokens.shape[1:] ) a__ = torch.cat((tokens, next_tokens) ,dim=1 ) else: a__ = -float(np.inf ) a__ = 0 a__ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 a__ = scores_sum / seq_lengths[:, None] a__ , a__ = scores_sum_average.view(-1 ).topk(__snake_case ,-1 ) a__ = next_tokens // scores_sum.shape[1] a__ = seq_lengths[next_tokens_source] a__ = next_tokens % scores_sum.shape[1] a__ = next_tokens.unsqueeze(1 ) a__ = tokens[next_tokens_source] a__ = torch.cat((tokens, next_tokens) ,dim=1 ) a__ = generated[next_tokens_source] a__ = scores_sum_average * seq_lengths a__ = is_stopped[next_tokens_source] a__ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) a__ = torch.cat((generated, next_token_embed) ,dim=1 ) a__ = is_stopped + next_tokens.eq(__snake_case ).squeeze() if is_stopped.all(): break a__ = scores / seq_lengths a__ = scores.argsort(descending=__snake_case ) # tokens tensors are already padded to max_seq_length a__ = [tokens[i] for i in order] a__ = torch.stack(__snake_case ,dim=0 ) a__ = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
714
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case : List[str] = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys snake_case : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
715
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
716
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging snake_case : str = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[Any]=None ): return field(default_factory=lambda: default , metadata=__lowerCAmelCase ) @dataclass class snake_case_ : UpperCAmelCase__ : List[str] = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) UpperCAmelCase__ : List[int] = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) UpperCAmelCase__ : List[int] = list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Benchmark training of model'''} ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Verbose memory tracing'''} ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Trace memory line by line'''} ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Save result to a CSV file'''} ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Save all print statements in a log file'''} ) UpperCAmelCase__ : bool = field(default=lowerCamelCase_ , metadata={'''help''': '''Whether to print environment information'''} ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) UpperCAmelCase__ : str = field( default=f'inference_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) UpperCAmelCase__ : str = field( default=f'inference_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) UpperCAmelCase__ : str = field( default=f'train_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) UpperCAmelCase__ : str = field( default=f'train_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) UpperCAmelCase__ : str = field( default=f'env_info_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) UpperCAmelCase__ : str = field( default=f'log_{round(time() )}.csv' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) UpperCAmelCase__ : int = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def lowerCamelCase__( self :List[str] ) -> str: warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' ,__snake_case ,) def lowerCamelCase__( self :Dict ) -> Dict: return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def lowerCamelCase__( self :List[Any] ) -> List[str]: if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def lowerCamelCase__( self :Dict ) -> Optional[int]: if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
717
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case : Dict = logging.get_logger(__name__) snake_case : List[Any] = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = '''resnet''' UpperCAmelCase__ : List[Any] = ['''basic''', '''bottleneck'''] def __init__( self :Optional[int] ,__snake_case :int=3 ,__snake_case :Union[str, Any]=64 ,__snake_case :Any=[2_56, 5_12, 10_24, 20_48] ,__snake_case :Dict=[3, 4, 6, 3] ,__snake_case :str="bottleneck" ,__snake_case :Optional[int]="relu" ,__snake_case :Union[str, Any]=False ,__snake_case :List[str]=None ,__snake_case :Union[str, Any]=None ,**__snake_case :Dict ,) -> Dict: super().__init__(**__snake_case ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) a__ = num_channels a__ = embedding_size a__ = hidden_sizes a__ = depths a__ = layer_type a__ = hidden_act a__ = downsample_in_first_stage a__ = ['stem'] + [F'stage{idx}' for idx in range(1 ,len(__snake_case ) + 1 )] a__ , a__ = get_aligned_output_features_output_indices( out_features=__snake_case ,out_indices=__snake_case ,stage_names=self.stage_names ) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : int = version.parse('''1.11''' ) @property def lowerCamelCase__( self :Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__( self :List[str] ) -> float: return 1E-3
718
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 snake_case : Optional[int] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') snake_case : List[Any] = get_tests_dir('''fixtures/vocab.json''') snake_case : Optional[Any] = get_tests_dir('''fixtures''') class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def lowerCamelCase__( self :str ) -> Optional[Any]: a__ = 0 def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: a__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Dict ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaConfig() a__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) a__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case ,os.path.join(__snake_case ,__snake_case ) ) copyfile(__snake_case ,os.path.join(__snake_case ,'vocab.json' ) ) a__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Dict ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaFeatureExtractor() a__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) a__ = WavaVecaProcessor(__snake_case ,__snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case ,__snake_case ) ,'r' ) as f: a__ = json.load(__snake_case ) config_dict.pop('processor_class' ) with open(os.path.join(__snake_case ,__snake_case ) ,'w' ) as f: f.write(json.dumps(__snake_case ) ) a__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaFeatureExtractor() a__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) a__ = WavaVecaProcessor(__snake_case ,__snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case ,__snake_case ) ,'r' ) as f: a__ = json.load(__snake_case ) config_dict.pop('processor_class' ) with open(os.path.join(__snake_case ,__snake_case ) ,'w' ) as f: f.write(json.dumps(__snake_case ) ) a__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case ,os.path.join(__snake_case ,'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(__snake_case ,__snake_case ) ,'w' ) as f: f.write('{}' ) a__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :List[str] ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): a__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__snake_case ) a__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ ,'NewProcessor' ) a__ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) a__ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) # Test we can also load the slow version a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__snake_case ,use_fast=__snake_case ) a__ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ ,'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) def lowerCamelCase__( self :Tuple ) -> Any: try: AutoConfig.register('custom' ,__snake_case ) AutoFeatureExtractor.register(__snake_case ,__snake_case ) AutoTokenizer.register(__snake_case ,slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case ,__snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case ,__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API a__ = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: a__ = os.path.join(__snake_case ,'vocab.txt' ) with open(__snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) a__ = CustomTokenizer(__snake_case ) a__ = CustomProcessor(__snake_case ,__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) a__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__( self :str ) -> Dict: class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : str = False class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = False class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = '''AutoFeatureExtractor''' UpperCAmelCase__ : List[str] = '''AutoTokenizer''' UpperCAmelCase__ : Optional[int] = False try: AutoConfig.register('custom' ,__snake_case ) AutoFeatureExtractor.register(__snake_case ,__snake_case ) AutoTokenizer.register(__snake_case ,slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case ,__snake_case ) # If remote code is not set, the default is to use local classes. a__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ ,'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ ,'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. a__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' ,trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ ,'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__( self :List[str] ) -> List[str]: a__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ ,'BertTokenizerFast' ) def lowerCamelCase__( self :Dict ) -> int: a__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ ,'ConvNextImageProcessor' ) @is_staging_test class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def lowerCamelCase__( cls :Optional[int] ) -> Tuple: a__ = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCamelCase__( cls :Union[str, Any] ) -> List[str]: try: delete_repo(token=cls._token ,repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-processor' ) except HTTPError: pass def lowerCamelCase__( self :Union[str, Any] ) -> Any: a__ = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case ,'test-processor' ) ,push_to_hub=__snake_case ,use_auth_token=self._token ) a__ = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case ,getattr(new_processor.feature_extractor ,__snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() ,processor.tokenizer.get_vocab() ) def lowerCamelCase__( self :List[Any] ) -> List[Any]: a__ = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case ,'test-processor-org' ) ,push_to_hub=__snake_case ,use_auth_token=self._token ,organization='valid_org' ,) a__ = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case ,getattr(new_processor.feature_extractor ,__snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() ,processor.tokenizer.get_vocab() ) def lowerCamelCase__( self :int ) -> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() a__ = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: a__ = os.path.join(__snake_case ,'vocab.txt' ) with open(__snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) a__ = CustomTokenizer(__snake_case ) a__ = CustomProcessor(__snake_case ,__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor' ,token=self._token ) a__ = Repository(__snake_case ,clone_from=F'{USER}/test-dynamic-processor' ,token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map ,{ 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } ,) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case ,'tokenizer_config.json' ) ) as f: a__ = json.load(__snake_case ) self.assertDictEqual( tokenizer_config['auto_map'] ,{ 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } ,) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case ,'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case ,'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case ,'custom_processing.py' ) ) ) repo.push_to_hub() a__ = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' ,trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ ,'CustomProcessor' )
719
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str]=False ): try: a__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. a__ = default else: # KEY is set, convert it to True or False. try: a__ = strtobool(__lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value snake_case : Dict = parse_flag_from_env('''RUN_SLOW''', default=False) snake_case : str = parse_flag_from_env('''RUN_REMOTE''', default=False) snake_case : int = parse_flag_from_env('''RUN_LOCAL''', default=True) snake_case : Dict = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression snake_case : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') snake_case : Union[str, Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') snake_case : List[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio snake_case : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam snake_case : List[str] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility snake_case : Dict = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows snake_case : Tuple = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def __lowercase ( __lowerCAmelCase : List[Any] ): try: import faiss # noqa except ImportError: a__ = unittest.skip('test requires faiss' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Optional[int] ): try: import regex # noqa except ImportError: a__ = unittest.skip('test requires regex' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : int ): try: import elasticsearch # noqa except ImportError: a__ = unittest.skip('test requires elasticsearch' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : int ): try: import sqlalchemy # noqa except ImportError: a__ = unittest.skip('test requires sqlalchemy' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Optional[Any] ): if not config.TORCH_AVAILABLE: a__ = unittest.skip('test requires PyTorch' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Tuple ): if not config.TF_AVAILABLE: a__ = unittest.skip('test requires TensorFlow' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Tuple ): if not config.JAX_AVAILABLE: a__ = unittest.skip('test requires JAX' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Union[str, Any] ): if not config.PIL_AVAILABLE: a__ = unittest.skip('test requires Pillow' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Union[str, Any] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__lowerCAmelCase ) else: return test_case def __lowercase ( __lowerCAmelCase : List[Any] ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__lowerCAmelCase ) else: return test_case def __lowercase ( __lowerCAmelCase : Dict ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__lowerCAmelCase ) else: return test_case def __lowercase ( __lowerCAmelCase : Any ): def _require_spacy_model(__lowerCAmelCase : Any ): try: import spacy # noqa F401 spacy.load(__lowerCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__lowerCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__lowerCAmelCase ) )(__lowerCAmelCase ) else: return test_case return _require_spacy_model def __lowercase ( __lowerCAmelCase : Dict ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__lowerCAmelCase ) else: return test_case def __lowercase ( __lowerCAmelCase : Tuple ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__lowerCAmelCase ) else: return test_case def __lowercase ( __lowerCAmelCase : Dict ): if not _run_slow_tests or _run_slow_tests == 0: a__ = unittest.skip('test is slow' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Any ): if not _run_local_tests or _run_local_tests == 0: a__ = unittest.skip('test is local' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : str ): if not _run_packaged_tests or _run_packaged_tests == 0: a__ = unittest.skip('test is packaged' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Tuple ): if not _run_remote_tests or _run_remote_tests == 0: a__ = unittest.skip('test requires remote' )(__lowerCAmelCase ) return test_case def __lowercase ( *__lowerCAmelCase : int ): def decorate(cls : Tuple ): for name, fn in cls.__dict__.items(): if callable(__lowerCAmelCase ) and name.startswith('test' ): for decorator in decorators: a__ = decorator(__lowerCAmelCase ) setattr(cls , __lowerCAmelCase , __lowerCAmelCase ) return cls return decorate class snake_case_ (lowerCamelCase_ ): pass class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : str = 1 UpperCAmelCase__ : List[Any] = 2 @contextmanager def __lowercase ( __lowerCAmelCase : Optional[int]=OfflineSimulationMode.CONNECTION_FAILS , __lowerCAmelCase : str=1E-1_6 ): a__ = requests.Session().request def timeout_request(__lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , **__lowerCAmelCase : List[str] ): # Change the url to an invalid url so that the connection hangs a__ = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) a__ = timeout try: return online_request(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier a__ = url a__ = e.args[0] a__ = (max_retry_error.args[0].replace('10.255.255.1' , F'OfflineMock[{url}]' ),) a__ = (max_retry_error,) raise def raise_connection_error(__lowerCAmelCase : Any , __lowerCAmelCase : str , **__lowerCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__lowerCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __lowerCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __lowerCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def __lowercase ( *__lowerCAmelCase : str , **__lowerCAmelCase : Dict ): a__ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__lowerCAmelCase , **__lowerCAmelCase ) as tmp_dir: try: os.chdir(__lowerCAmelCase ) yield finally: os.chdir(__lowerCAmelCase ) @contextmanager def __lowercase ( ): import gc gc.collect() a__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __lowercase ( ): import gc gc.collect() a__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ): return deepcopy(__lowerCAmelCase ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(__lowerCAmelCase ).integers(0 , 1_0_0 , 1_0 ).tolist() def __lowercase ( __lowerCAmelCase : Any ): import decorator from requests.exceptions import HTTPError def _wrapper(__lowerCAmelCase : Any , *__lowerCAmelCase : str , **__lowerCAmelCase : int ): try: return func(*__lowerCAmelCase , **__lowerCAmelCase ) except HTTPError as err: if str(__lowerCAmelCase ).startswith('500' ) or str(__lowerCAmelCase ).startswith('502' ): pytest.xfail(str(__lowerCAmelCase ) ) raise err return decorator.decorator(_wrapper , __lowerCAmelCase ) class snake_case_ : def __init__( self :Tuple ,__snake_case :Dict ,__snake_case :int ,__snake_case :Union[str, Any] ) -> Dict: a__ = returncode a__ = stdout a__ = stderr async def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): while True: a__ = await stream.readline() if line: callback(__lowerCAmelCase ) else: break async def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : int=False , __lowerCAmelCase : Dict=False ): if echo: print('\nRunning: ' , ' '.join(__lowerCAmelCase ) ) a__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) a__ = [] a__ = [] def tee(__lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any]="" ): a__ = line.decode('utf-8' ).rstrip() sink.append(__lowerCAmelCase ) if not quiet: print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__lowerCAmelCase , ) return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Optional[Any]=1_8_0 , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Tuple=True ): a__ = asyncio.get_event_loop() a__ = loop.run_until_complete( _stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase ) ) a__ = ' '.join(__lowerCAmelCase ) if result.returncode > 0: a__ = '\n'.join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'\'{cmd_str}\' produced no output.' ) return result def __lowercase ( ): a__ = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) a__ = re.sub(R'^gw' , '' , __lowerCAmelCase , 0 , re.M ) return int(__lowerCAmelCase ) def __lowercase ( ): a__ = 2_9_5_0_0 a__ = pytest_xdist_worker_id() return port + uniq_delta
720
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration snake_case : Dict = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] snake_case : Union[str, Any] = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] snake_case : Union[str, Any] = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) snake_case : List[str] = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) snake_case : Union[str, Any] = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : str ): for tf_name, hf_name in patterns: a__ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def __lowercase ( __lowerCAmelCase : dict , __lowerCAmelCase : dict ): a__ = BigBirdPegasusConfig(**__lowerCAmelCase ) a__ = BigBirdPegasusForConditionalGeneration(__lowerCAmelCase ) a__ = torch_model.state_dict() a__ = {} # separating decoder weights a__ = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} a__ = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): a__ = [k.endswith(__lowerCAmelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCAmelCase ): continue a__ = DECODER_PATTERNS a__ = rename_state_dict_key(__lowerCAmelCase , __lowerCAmelCase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): a__ = v.T a__ = torch.from_numpy(__lowerCAmelCase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): a__ = [k.endswith(__lowerCAmelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCAmelCase ): continue a__ = REMAINING_PATTERNS a__ = rename_state_dict_key(__lowerCAmelCase , __lowerCAmelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): a__ = v.T a__ = torch.from_numpy(__lowerCAmelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' a__ = mapping['model.embed_positions.weight'] a__ = mapping.pop('model.embed_positions.weight' ) a__ , a__ = torch_model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) a__ = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def __lowercase ( __lowerCAmelCase : Dict ): a__ = tf.train.list_variables(__lowerCAmelCase ) a__ = {} a__ = ['global_step'] for name, shape in tqdm(__lowerCAmelCase , desc='converting tf checkpoint to dict' ): a__ = any(pat in name for pat in ignore_name ) if skip_key: continue a__ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) a__ = array return tf_weights def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : dict ): a__ = get_tf_weights_as_numpy(__lowerCAmelCase ) a__ = convert_bigbird_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') snake_case : Dict = parser.parse_args() snake_case : List[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
721
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = '''facebook/bart-large-mnli''' UpperCAmelCase__ : Optional[Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) UpperCAmelCase__ : List[str] = '''text_classifier''' UpperCAmelCase__ : List[str] = AutoTokenizer UpperCAmelCase__ : Union[str, Any] = AutoModelForSequenceClassification UpperCAmelCase__ : int = ['''text''', ['''text''']] UpperCAmelCase__ : Dict = ['''text'''] def lowerCamelCase__( self :List[str] ) -> int: super().setup() a__ = self.model.config a__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): a__ = int(__snake_case ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[str] ,__snake_case :Dict ) -> int: a__ = labels return self.pre_processor( [text] * len(__snake_case ) ,[F'This example is {label}' for label in labels] ,return_tensors='pt' ,padding='max_length' ,) def lowerCamelCase__( self :Dict ,__snake_case :List[Any] ) -> Union[str, Any]: a__ = outputs.logits a__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
700
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
0
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = VQModel UpperCAmelCase__ : Any = '''sample''' @property def lowerCamelCase__( self :Optional[Any] ,__snake_case :Any=(32, 32) ) -> Any: a__ = 4 a__ = 3 a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) return {"sample": image} @property def lowerCamelCase__( self :List[str] ) -> str: return (3, 32, 32) @property def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: return (3, 32, 32) def lowerCamelCase__( self :Optional[Any] ) -> Dict: a__ = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } a__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__( self :Dict ) -> List[Any]: pass def lowerCamelCase__( self :List[str] ) -> List[str]: pass def lowerCamelCase__( self :List[Any] ) -> Dict: a__ , a__ = VQModel.from_pretrained('fusing/vqgan-dummy' ,output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info['missing_keys'] ) ,0 ) model.to(__snake_case ) a__ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCamelCase__( self :Optional[int] ) -> int: a__ = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(__snake_case ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) a__ = torch.randn(1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ) a__ = image.to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ).sample a__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off a__ = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(__snake_case ,__snake_case ,atol=1E-3 ) )
701
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
0
import os def __lowercase ( __lowerCAmelCase : Optional[int] ): a__ = len(grid[0] ) a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__lowerCAmelCase ): for j in range(n_rows - 3 ): a__ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] a__ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: a__ = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: a__ = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) a__ = max( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if max_product > largest: a__ = max_product return largest def __lowercase ( ): a__ = [] with open(os.path.dirname(__lowerCAmelCase ) + '/grid.txt' ) as file: for line in file: grid.append(line.strip('\n' ).split(' ' ) ) a__ = [[int(__lowerCAmelCase ) for i in grid[j]] for j in range(len(__lowerCAmelCase ) )] return largest_product(__lowerCAmelCase ) if __name__ == "__main__": print(solution())
702
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case : int = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any]=False ): a__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" a__ = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str]=False ): for i in range(config.num_hidden_layers ): if base_model: a__ = '' else: a__ = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) a__ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a__ = in_proj_weight[ : config.hidden_size, : ] a__ = in_proj_bias[: config.hidden_size] a__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ = in_proj_weight[ -config.hidden_size :, : ] a__ = in_proj_bias[-config.hidden_size :] def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): a__ = dct.pop(__lowerCAmelCase ) a__ = val def __lowercase ( ): a__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ): a__ = DeiTConfig() # all deit models have fine-tuned heads a__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size a__ = 1_0_0_0 a__ = 'huggingface/label-files' a__ = 'imagenet-1k-id2label.json' a__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) a__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} a__ = int(deit_name[-6:-4] ) a__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): a__ = 1_9_2 a__ = 7_6_8 a__ = 1_2 a__ = 3 elif deit_name[9:].startswith('small' ): a__ = 3_8_4 a__ = 1_5_3_6 a__ = 1_2 a__ = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): a__ = 1_0_2_4 a__ = 4_0_9_6 a__ = 2_4 a__ = 1_6 # load original model from timm a__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys a__ = timm_model.state_dict() a__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model a__ = DeiTForImageClassificationWithTeacher(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor a__ = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 a__ = DeiTImageProcessor(size=__lowerCAmelCase , crop_size=config.image_size ) a__ = image_processor(images=prepare_img() , return_tensors='pt' ) a__ = encoding['pixel_values'] a__ = model(__lowerCAmelCase ) a__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) snake_case : List[str] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
703
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case : Dict = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys snake_case : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
0
from ..utils import DummyObject, requires_backends class snake_case_ (metaclass=lowerCamelCase_ ): UpperCAmelCase__ : List[str] = ['''speech'''] def __init__( self :Any ,*__snake_case :Dict ,**__snake_case :List[str] ) -> Dict: requires_backends(self ,['speech'] ) class snake_case_ (metaclass=lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''speech'''] def __init__( self :Optional[Any] ,*__snake_case :List[Any] ,**__snake_case :Optional[Any] ) -> Union[str, Any]: requires_backends(self ,['speech'] )
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import os import numpy import onnx def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ): a__ = a.name a__ = b.name a__ = '' a__ = '' a__ = a == b a__ = name_a a__ = name_b return res def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__lowerCAmelCase , __lowerCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCAmelCase , __lowerCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , __lowerCAmelCase , __lowerCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCAmelCase , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): for n in graph_proto.node: _node_replace_input_with(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): a__ = list(model.graph.initializer ) a__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i a__ = inits[i].name a__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __lowerCAmelCase , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[Any] ): a__ = os.path.dirname(__lowerCAmelCase ) a__ = os.path.basename(__lowerCAmelCase ) a__ = onnx.load(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) a__ = list(model.graph.initializer ) a__ = set() a__ = {} a__ = [] a__ = 0 for i in range(len(__lowerCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(__lowerCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__lowerCAmelCase ) dup_set.add(__lowerCAmelCase ) a__ = inits[j].data_type a__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('unexpected data type: ' , __lowerCAmelCase ) total_reduced_size += mem_size a__ = inits[i].name a__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(__lowerCAmelCase ) else: a__ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , 'GB' ) a__ = sorted(__lowerCAmelCase ) _remove_dup_initializers_from_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = 'optimized_' + model_file_name a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) onnx.save(__lowerCAmelCase , __lowerCAmelCase ) return new_model
706
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
707
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case : str = logging.getLogger() def __lowercase ( __lowerCAmelCase : Path , __lowerCAmelCase : list ): a__ = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) snake_case : Dict = '''patrickvonplaten/t5-tiny-random''' snake_case : Union[str, Any] = '''sshleifer/bart-tiny-random''' snake_case : Tuple = '''sshleifer/tiny-mbart''' snake_case : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :str ,__snake_case :List[Any] ) -> Optional[int]: a__ = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' a__ = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() a__ = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(__snake_case ,__snake_case ) a__ = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) a__ = 'translation_en_to_de' if model == T5_TINY else 'summarization' a__ = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(__snake_case ,'argv' ,__snake_case ): run_generate() assert Path(__snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase__( self :Any ) -> int: self.run_eval_tester(__snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase__( self :Optional[int] ,__snake_case :str ) -> Optional[int]: self.run_eval_tester(__snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase__( self :str ,__snake_case :Union[str, Any] ) -> Any: a__ = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' a__ = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() a__ = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } a__ = Path(self.get_auto_remove_tmp_dir() ) a__ = str(tmp_dir / 'scores.json' ) a__ = str(tmp_dir / 'val.target' ) _dump_articles(__snake_case ,text['en'] ) _dump_articles(__snake_case ,text['de'] ) a__ = 'translation_en_to_de' if model == T5_TINY else 'summarization' a__ = F'\n run_eval_search.py\n {model}\n {str(__snake_case )}\n {str(__snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(__snake_case ,'argv' ,__snake_case ): with CaptureStdout() as cs: run_search() a__ = [' num_beams | length_penalty', model, 'Best score args'] a__ = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(__snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__snake_case ).exists() os.remove(Path(__snake_case ) )
708
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Any = '''▁''' snake_case : Tuple = {'''vocab_file''': '''spiece.model'''} snake_case : Tuple = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } snake_case : Optional[int] = { '''google/reformer-crime-and-punishment''': 52_42_88, } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :List[str] ,__snake_case :Dict ,__snake_case :Dict="</s>" ,__snake_case :Union[str, Any]="<unk>" ,__snake_case :List[Any]=[] ,__snake_case :Optional[Dict[str, Any]] = None ,**__snake_case :Dict ,) -> None: a__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__snake_case ,unk_token=__snake_case ,additional_special_tokens=__snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**__snake_case ,) a__ = vocab_file a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) @property def lowerCamelCase__( self :str ) -> Tuple: return self.sp_model.get_piece_size() def lowerCamelCase__( self :Any ) -> Dict[str, int]: a__ = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Union[str, Any] ) -> str: a__ = self.__dict__.copy() a__ = None return state def __setstate__( self :Optional[Any] ,__snake_case :Any ) -> Optional[Any]: a__ = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): a__ = {} a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str ) -> List[str]: return self.sp_model.encode(__snake_case ,out_type=__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :List[Any] ) -> Optional[int]: return self.sp_model.piece_to_id(__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :Dict ) -> str: if index < self.sp_model.get_piece_size(): a__ = self.sp_model.IdToPiece(__snake_case ) return token def lowerCamelCase__( self :Any ,__snake_case :Union[str, Any] ) -> List[str]: a__ = [] a__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__snake_case ) + token a__ = [] else: current_sub_tokens.append(__snake_case ) out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def lowerCamelCase__( self :Optional[int] ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case ,'wb' ) as fi: a__ = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
709
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class snake_case_ (unittest.TestCase ): @slow def lowerCamelCase__( self :List[Any] ) -> Union[str, Any]: a__ = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ,return_dict=__snake_case ).to(__snake_case ) a__ = AutoTokenizer.from_pretrained('google/mt5-small' ) a__ = tokenizer('Hello there' ,return_tensors='pt' ).input_ids a__ = tokenizer('Hi I am' ,return_tensors='pt' ).input_ids a__ = model(input_ids.to(__snake_case ) ,labels=labels.to(__snake_case ) ).loss a__ = -(labels.shape[-1] * loss.item()) a__ = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
710
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ (unittest.TestCase ): def __init__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Tuple=13 ,__snake_case :str=7 ,__snake_case :Tuple=True ,__snake_case :str=True ,__snake_case :Union[str, Any]=True ,__snake_case :List[str]=True ,__snake_case :Optional[int]=99 ,__snake_case :List[str]=32 ,__snake_case :Union[str, Any]=5 ,__snake_case :Union[str, Any]=4 ,__snake_case :int=37 ,__snake_case :List[Any]="gelu" ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Any=0.1 ,__snake_case :List[Any]=5_12 ,__snake_case :Optional[int]=16 ,__snake_case :int=2 ,__snake_case :str=0.02 ,__snake_case :Optional[Any]=4 ,) -> List[str]: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_attention_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_choices def lowerCamelCase__( self :Optional[Any] ) -> List[str]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_attention_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=__snake_case ,) return config, input_ids, attention_mask def lowerCamelCase__( self :Tuple ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__( self :int ) -> Optional[Any]: a__ = FlaxDistilBertModelTester(self ) @slow def lowerCamelCase__( self :int ) -> Optional[Any]: for model_class_name in self.all_model_classes: a__ = model_class_name.from_pretrained('distilbert-base-uncased' ) a__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case ) @require_flax class snake_case_ (unittest.TestCase ): @slow def lowerCamelCase__( self :Tuple ) -> Optional[Any]: a__ = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) a__ = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) a__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a__ = model(__snake_case ,attention_mask=__snake_case )[0] a__ = (1, 11, 7_68) self.assertEqual(output.shape ,__snake_case ) a__ = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,__snake_case ,atol=1E-4 ) )
711
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
0
'''simple docstring''' from statistics import mean import numpy as np def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): a__ = 0 # Number of processes finished a__ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. a__ = [0] * no_of_process # List to include calculation results a__ = [0] * no_of_process # Sort by arrival time. a__ = [burst_time[i] for i in np.argsort(__lowerCAmelCase )] a__ = [process_name[i] for i in np.argsort(__lowerCAmelCase )] arrival_time.sort() while no_of_process > finished_process_count: a__ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: a__ = arrival_time[i] a__ = 0 # Index showing the location of the process being performed a__ = 0 # Saves the current response ratio. a__ = 0 for i in range(0 , __lowerCAmelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: a__ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: a__ = temp a__ = i # Calculate the turn around time a__ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. a__ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): a__ = [0] * no_of_process for i in range(0 , __lowerCAmelCase ): a__ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": snake_case : List[Any] = 5 snake_case : List[str] = ['''A''', '''B''', '''C''', '''D''', '''E'''] snake_case : Dict = [1, 2, 3, 4, 5] snake_case : List[Any] = [1, 2, 3, 4, 5] snake_case : str = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) snake_case : Optional[int] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( f"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" f"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(f"""average waiting time : {mean(waiting_time):.5f}""") print(f"""average turn around time : {mean(turn_around_time):.5f}""")
712
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
0
class snake_case_ : def __init__( self :Union[str, Any] ) -> Union[str, Any]: a__ = {} def lowerCamelCase__( self :List[str] ) -> None: print(self.vertex ) for i in self.vertex: print(__snake_case ,' -> ' ,' -> '.join([str(__snake_case ) for j in self.vertex[i]] ) ) def lowerCamelCase__( self :List[str] ,__snake_case :int ,__snake_case :int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__snake_case ) else: # else make a new vertex a__ = [to_vertex] def lowerCamelCase__( self :Optional[Any] ) -> None: # visited array for storing already visited nodes a__ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__snake_case ,__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :list ) -> None: # mark start vertex as visited a__ = True print(__snake_case ,end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__snake_case ,__snake_case ) if __name__ == "__main__": snake_case : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
713
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
0
import cva import numpy as np class snake_case_ : def __init__( self :Tuple ,__snake_case :float ,__snake_case :int ) -> List[str]: if k in (0.04, 0.06): a__ = k a__ = window_size else: raise ValueError('invalid k value' ) def __str__( self :Optional[int] ) -> str: return str(self.k ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str ) -> tuple[cva.Mat, list[list[int]]]: a__ = cva.imread(__snake_case ,0 ) a__ , a__ = img.shape a__ = [] a__ = img.copy() a__ = cva.cvtColor(__snake_case ,cva.COLOR_GRAY2RGB ) a__ , a__ = np.gradient(__snake_case ) a__ = dx**2 a__ = dy**2 a__ = dx * dy a__ = 0.04 a__ = self.window_size // 2 for y in range(__snake_case ,h - offset ): for x in range(__snake_case ,w - offset ): a__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() a__ = (wxx * wyy) - (wxy**2) a__ = wxx + wyy a__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": snake_case : int = HarrisCorner(0.04, 3) snake_case : Union[str, Any] = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
714
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : int = BarthezTokenizer UpperCAmelCase__ : List[Any] = BarthezTokenizerFast UpperCAmelCase__ : str = True UpperCAmelCase__ : Any = True def lowerCamelCase__( self :Optional[Any] ) -> List[str]: super().setUp() a__ = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ,legacy_format=__snake_case ) a__ = tokenizer def lowerCamelCase__( self :Tuple ) -> Any: a__ = '<pad>' a__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) ,__snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) ,__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Union[str, Any]: a__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-1] ,'<mask>' ) self.assertEqual(len(__snake_case ) ,10_11_22 ) def lowerCamelCase__( self :Tuple ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size ,10_11_22 ) @require_torch def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] a__ = [0, 57, 30_18, 7_03_07, 91, 2] a__ = self.tokenizer( __snake_case ,max_length=len(__snake_case ) ,padding=__snake_case ,truncation=__snake_case ,return_tensors='pt' ) self.assertIsInstance(__snake_case ,__snake_case ) self.assertEqual((2, 6) ,batch.input_ids.shape ) self.assertEqual((2, 6) ,batch.attention_mask.shape ) a__ = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case ,__snake_case ) def lowerCamelCase__( self :Any ) -> List[Any]: if not self.test_rust_tokenizer: return a__ = self.get_tokenizer() a__ = self.get_rust_tokenizer() a__ = 'I was born in 92000, and this is falsé.' a__ = tokenizer.tokenize(__snake_case ) a__ = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case ,__snake_case ) a__ = tokenizer.encode(__snake_case ,add_special_tokens=__snake_case ) a__ = rust_tokenizer.encode(__snake_case ,add_special_tokens=__snake_case ) self.assertListEqual(__snake_case ,__snake_case ) a__ = self.get_rust_tokenizer() a__ = tokenizer.encode(__snake_case ) a__ = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case ,__snake_case ) @slow def lowerCamelCase__( self :Dict ) -> Any: # fmt: off a__ = {'input_ids': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. a__ = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=__snake_case ,model_name='moussaKam/mbarthez' ,revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' ,sequences=__snake_case ,)
715
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: torch.manual_seed(0 ) a__ = UNetaDModel( sample_size=(32, 64) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('AttnDownBlock2D', 'DownBlock2D') ,up_block_types=('UpBlock2D', 'AttnUpBlock2D') ,) return model @property def lowerCamelCase__( self :str ) -> Tuple: torch.manual_seed(0 ) a__ = UNetaDConditionModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') ,up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') ,cross_attention_dim=10 ,) return model @property def lowerCamelCase__( self :Optional[int] ) -> List[str]: torch.manual_seed(0 ) a__ = AutoencoderKL( sample_size=(1_28, 64) ,in_channels=1 ,out_channels=1 ,latent_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,) a__ = UNetaDModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=('AttnDownBlock2D', 'DownBlock2D') ,up_block_types=('UpBlock2D', 'AttnUpBlock2D') ,) return vqvae, unet @slow def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = 'cpu' # ensure determinism for the device-dependent torch.Generator a__ = Mel( x_res=self.dummy_unet.config.sample_size[1] ,y_res=self.dummy_unet.config.sample_size[0] ,) a__ = DDPMScheduler() a__ = AudioDiffusionPipeline(vqvae=__snake_case ,unet=self.dummy_unet ,mel=__snake_case ,scheduler=__snake_case ) a__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a__ = torch.Generator(device=__snake_case ).manual_seed(42 ) a__ = pipe(generator=__snake_case ,steps=4 ) a__ = output.audios[0] a__ = output.images[0] a__ = torch.Generator(device=__snake_case ).manual_seed(42 ) a__ = pipe(generator=__snake_case ,steps=4 ,return_dict=__snake_case ) a__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a__ = np.frombuffer(image.tobytes() ,dtype='uint8' )[:10] a__ = np.frombuffer(image_from_tuple.tobytes() ,dtype='uint8' )[:10] a__ = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] ,y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] ,) a__ = DDIMScheduler() a__ = self.dummy_vqvae_and_unet a__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=dummy_vqvae_and_unet[1] ,mel=__snake_case ,scheduler=__snake_case ) a__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) np.random.seed(0 ) a__ = np.random.uniform(-1 ,1 ,((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a__ = torch.Generator(device=__snake_case ).manual_seed(42 ) a__ = pipe(raw_audio=__snake_case ,generator=__snake_case ,start_step=5 ,steps=10 ) a__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a__ = np.frombuffer(image.tobytes() ,dtype='uint8' )[:10] a__ = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a__ = self.dummy_unet_condition a__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=__snake_case ,mel=__snake_case ,scheduler=__snake_case ) a__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) np.random.seed(0 ) a__ = torch.rand((1, 1, 10) ) a__ = pipe(generator=__snake_case ,encoding=__snake_case ) a__ = output.images[0] a__ = np.frombuffer(image.tobytes() ,dtype='uint8' )[:10] a__ = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Dict ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :List[Any] ) -> List[str]: a__ = torch_device a__ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) a__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a__ = torch.Generator(device=__snake_case ).manual_seed(42 ) a__ = pipe(generator=__snake_case ) a__ = output.audios[0] a__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a__ = np.frombuffer(image.tobytes() ,dtype='uint8' )[:10] a__ = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
716
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys snake_case : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
717
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets snake_case : Dict = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' snake_case : Tuple = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' snake_case : List[str] = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def __lowercase ( __lowerCAmelCase : str ): def remove_articles(__lowerCAmelCase : Optional[Any] ): a__ = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__lowerCAmelCase , ' ' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase : int ): a__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : List[str] ): return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Any ): a__ = [any(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for ref in refs ) for pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase )] return (sum(__lowerCAmelCase ) / len(__lowerCAmelCase )) * 1_0_0 def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): a__ = [rgram for rgrams in rgramslist for rgram in rgrams] a__ = Counter(__lowerCAmelCase ) a__ = Counter(__lowerCAmelCase ) a__ = Counter() for sgram, scount in sgramcounter.items(): a__ = scount * numref a__ = Counter(__lowerCAmelCase ) a__ = Counter() for cgram, ccount in cgramcounter.items(): a__ = ccount * numref # KEEP a__ = sgramcounter_rep & cgramcounter_rep a__ = keepgramcounter_rep & rgramcounter a__ = sgramcounter_rep & rgramcounter a__ = 0 a__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ = 1 a__ = 1 if len(__lowerCAmelCase ) > 0: a__ = keeptmpscorea / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) a__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) a__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: a__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION a__ = sgramcounter_rep - cgramcounter_rep a__ = delgramcounter_rep - rgramcounter a__ = sgramcounter_rep - rgramcounter a__ = 0 a__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ = 1 if len(__lowerCAmelCase ) > 0: a__ = deltmpscorea / len(__lowerCAmelCase ) # ADDITION a__ = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) a__ = set(__lowerCAmelCase ) & set(__lowerCAmelCase ) a__ = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) a__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ = 1 a__ = 1 if len(__lowerCAmelCase ) > 0: a__ = addtmpscore / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: a__ = addtmpscore / len(__lowerCAmelCase ) a__ = 0 if addscore_precision > 0 or addscore_recall > 0: a__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ): a__ = len(__lowerCAmelCase ) a__ = ssent.split(' ' ) a__ = csent.split(' ' ) a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] for rsent in rsents: a__ = rsent.split(' ' ) a__ = [] a__ = [] a__ = [] ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: a__ = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: a__ = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: a__ = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: a__ = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: a__ = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: a__ = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: a__ = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: a__ = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: a__ = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__lowerCAmelCase ) ((a__) , (a__) , (a__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((a__) , (a__) , (a__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((a__) , (a__) , (a__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((a__) , (a__) , (a__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 a__ = sum([delascore, delascore, delascore, delascore] ) / 4 a__ = sum([addascore, addascore, addascore, addascore] ) / 4 a__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : bool = True , __lowerCAmelCase : str = "13a" , __lowerCAmelCase : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: a__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: a__ = sacrebleu.metrics.bleu._get_tokenizer(__lowerCAmelCase )()(__lowerCAmelCase ) else: a__ = sacrebleu.TOKENIZERS[tokenizer]()(__lowerCAmelCase ) elif tokenizer == "moses": a__ = sacremoses.MosesTokenizer().tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase , escape=__lowerCAmelCase ) elif tokenizer == "penn": a__ = sacremoses.MosesTokenizer().penn_tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase ) else: a__ = sentence if not return_str: a__ = normalized_sent.split() return normalized_sent def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ): if not (len(__lowerCAmelCase ) == len(__lowerCAmelCase ) == len(__lowerCAmelCase )): raise ValueError('Sources length must match predictions and references lengths.' ) a__ = 0 for src, pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): sari_score += SARIsent(normalize(__lowerCAmelCase ) , normalize(__lowerCAmelCase ) , [normalize(__lowerCAmelCase ) for sent in refs] ) a__ = sari_score / len(__lowerCAmelCase ) return 1_0_0 * sari_score def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any]="exp" , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=False , __lowerCAmelCase : str=False , __lowerCAmelCase : Union[str, Any]=False , ): a__ = len(references[0] ) if any(len(__lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) a__ = [[refs[i] for refs in references] for i in range(__lowerCAmelCase )] a__ = sacrebleu.corpus_bleu( __lowerCAmelCase , __lowerCAmelCase , smooth_method=__lowerCAmelCase , smooth_value=__lowerCAmelCase , force=__lowerCAmelCase , lowercase=__lowerCAmelCase , use_effective_order=__lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :List[Any] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' ,id='sequence' ) ,id='references' ), } ) ,codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] ,reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] ,) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[Any] ,__snake_case :List[str] ,__snake_case :Any ) -> Optional[int]: a__ = {} result.update({'sari': compute_sari(sources=__snake_case ,predictions=__snake_case ,references=__snake_case )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=__snake_case ,references=__snake_case )} ) result.update({'exact': compute_em(predictions=__snake_case ,references=__snake_case )} ) return result
718
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
0
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class snake_case_ : @staticmethod def lowerCamelCase__( *__snake_case :Tuple ,**__snake_case :Tuple ) -> List[str]: pass def __lowercase ( __lowerCAmelCase : Image ): a__ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase__( self :List[str] ,__snake_case :List[str] ,__snake_case :str ,__snake_case :int ) -> List[str]: a__ = DepthEstimationPipeline(model=__snake_case ,image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__( self :List[Any] ,__snake_case :Union[str, Any] ,__snake_case :int ) -> str: a__ = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} ,__snake_case ) import datasets a__ = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' ,'image' ,split='test' ) a__ = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] ,__snake_case ,) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def lowerCamelCase__( self :List[Any] ) -> List[Any]: pass @slow @require_torch def lowerCamelCase__( self :Dict ) -> Dict: a__ = 'Intel/dpt-large' a__ = pipeline('depth-estimation' ,model=__snake_case ) a__ = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) a__ = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) ,29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) ,2.6_62 ) @require_torch def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
719
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
0
def __lowercase ( __lowerCAmelCase : int | float | str ): try: a__ = float(__lowerCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) a__ = decimal - int(__lowerCAmelCase ) if fractional_part == 0: return int(__lowerCAmelCase ), 1 else: a__ = len(str(__lowerCAmelCase ).split('.' )[1] ) a__ = int(decimal * (1_0**number_of_frac_digits) ) a__ = 1_0**number_of_frac_digits a__ , a__ = denominator, numerator while True: a__ = dividend % divisor if remainder == 0: break a__ , a__ = divisor, remainder a__ , a__ = numerator / divisor, denominator / divisor return int(__lowerCAmelCase ), int(__lowerCAmelCase ) if __name__ == "__main__": print(f"""{decimal_to_fraction(2) = }""") print(f"""{decimal_to_fraction(89.0) = }""") print(f"""{decimal_to_fraction("67") = }""") print(f"""{decimal_to_fraction("45.0") = }""") print(f"""{decimal_to_fraction(1.5) = }""") print(f"""{decimal_to_fraction("6.25") = }""") print(f"""{decimal_to_fraction("78td") = }""")
720
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
0
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor snake_case : Optional[Any] = random.Random() def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict=1.0 , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : List[Any]=None ): if rng is None: a__ = global_rng a__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class snake_case_ (unittest.TestCase ): def __init__( self :Any ,__snake_case :Tuple ,__snake_case :Optional[int]=7 ,__snake_case :List[Any]=4_00 ,__snake_case :Optional[int]=20_00 ,__snake_case :Tuple=24 ,__snake_case :Union[str, Any]=24 ,__snake_case :int=0.0 ,__snake_case :str=1_60_00 ,__snake_case :int=True ,__snake_case :Any=True ,) -> Optional[Any]: a__ = parent a__ = batch_size a__ = min_seq_length a__ = max_seq_length a__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__ = feature_size a__ = num_mel_bins a__ = padding_value a__ = sampling_rate a__ = return_attention_mask a__ = do_normalize def lowerCamelCase__( self :str ) -> Any: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase__( self :List[Any] ,__snake_case :List[Any]=False ,__snake_case :Optional[int]=False ) -> Dict: def _flatten(__snake_case :str ): return list(itertools.chain(*__snake_case ) ) if equal_length: a__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: a__ = [np.asarray(__snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = SpeechaTextFeatureExtractor if is_speech_available() else None def lowerCamelCase__( self :Optional[Any] ) -> Dict: a__ = SpeechaTextFeatureExtractionTester(self ) def lowerCamelCase__( self :int ,__snake_case :List[str] ) -> Optional[int]: self.assertTrue(np.all(np.mean(__snake_case ,axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__snake_case ,axis=0 ) - 1 ) < 1E-3 ) ) def lowerCamelCase__( self :List[Any] ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__ = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )] a__ = [np.asarray(__snake_case ) for speech_input in speech_inputs] # Test feature size a__ = feature_extractor(__snake_case ,padding=__snake_case ,return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input a__ = feature_extractor(speech_inputs[0] ,return_tensors='np' ).input_features a__ = feature_extractor(np_speech_inputs[0] ,return_tensors='np' ).input_features self.assertTrue(np.allclose(__snake_case ,__snake_case ,atol=1E-3 ) ) # Test batched a__ = feature_extractor(__snake_case ,return_tensors='np' ).input_features a__ = feature_extractor(__snake_case ,return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__snake_case ,__snake_case ): self.assertTrue(np.allclose(__snake_case ,__snake_case ,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] a__ = np.asarray(__snake_case ) a__ = feature_extractor(__snake_case ,return_tensors='np' ).input_features a__ = feature_extractor(__snake_case ,return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__snake_case ,__snake_case ): self.assertTrue(np.allclose(__snake_case ,__snake_case ,atol=1E-3 ) ) def lowerCamelCase__( self :List[str] ) -> str: a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )] a__ = ['longest', 'max_length', 'do_not_pad'] a__ = [None, 16, None] for max_length, padding in zip(__snake_case ,__snake_case ): a__ = feature_extractor( __snake_case ,padding=__snake_case ,max_length=__snake_case ,return_attention_mask=__snake_case ) a__ = inputs.input_features a__ = inputs.attention_mask a__ = [np.sum(__snake_case ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowerCamelCase__( self :Dict ) -> Dict: a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )] a__ = ['longest', 'max_length', 'do_not_pad'] a__ = [None, 16, None] for max_length, padding in zip(__snake_case ,__snake_case ): a__ = feature_extractor( __snake_case ,max_length=__snake_case ,padding=__snake_case ,return_tensors='np' ,return_attention_mask=__snake_case ) a__ = inputs.input_features a__ = inputs.attention_mask a__ = [np.sum(__snake_case ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowerCamelCase__( self :Optional[int] ) -> int: a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )] a__ = feature_extractor( __snake_case ,padding='max_length' ,max_length=4 ,truncation=__snake_case ,return_tensors='np' ,return_attention_mask=__snake_case ,) a__ = inputs.input_features a__ = inputs.attention_mask a__ = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowerCamelCase__( self :Tuple ) -> List[str]: a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )] a__ = feature_extractor( __snake_case ,padding='longest' ,max_length=4 ,truncation=__snake_case ,return_tensors='np' ,return_attention_mask=__snake_case ,) a__ = inputs.input_features a__ = inputs.attention_mask a__ = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape ,(3, 4, 24) ) a__ = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )] a__ = feature_extractor( __snake_case ,padding='longest' ,max_length=16 ,truncation=__snake_case ,return_tensors='np' ,return_attention_mask=__snake_case ,) a__ = inputs.input_features a__ = inputs.attention_mask a__ = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape ,(3, 6, 24) ) def lowerCamelCase__( self :str ) -> int: import torch a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = np.random.rand(1_00 ,32 ).astype(np.floataa ) a__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__ = feature_extractor.pad([{'input_features': inputs}] ,return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a__ = feature_extractor.pad([{'input_features': inputs}] ,return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Optional[Any]: from datasets import load_dataset a__ = load_dataset('hf-internal-testing/librispeech_asr_dummy' ,'clean' ,split='validation' ) # automatic decoding with librispeech a__ = ds.sort('id' ).select(range(__snake_case ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCamelCase__( self :str ) -> List[str]: # fmt: off a__ = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on a__ = self._load_datasamples(1 ) a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = feature_extractor(__snake_case ,return_tensors='pt' ).input_features self.assertEquals(input_features.shape ,(1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] ,__snake_case ,atol=1E-4 ) )
721
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case : Any = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys snake_case : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : Any = logging.get_logger(__name__) snake_case : List[str] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } snake_case : Optional[Any] = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } snake_case : Tuple = {'''facebook/blenderbot_small-90M''': 5_12} def __lowercase ( __lowerCAmelCase : Union[str, Any] ): a__ = set() a__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a__ = char a__ = set(__lowerCAmelCase ) return pairs class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : int = ['''input_ids''', '''attention_mask'''] def __init__( self :str ,__snake_case :Any ,__snake_case :Tuple ,__snake_case :Optional[int]="__start__" ,__snake_case :List[str]="__end__" ,__snake_case :Tuple="__unk__" ,__snake_case :Dict="__null__" ,**__snake_case :int ,) -> List[Any]: super().__init__(unk_token=__snake_case ,bos_token=__snake_case ,eos_token=__snake_case ,pad_token=__snake_case ,**__snake_case ) with open(__snake_case ,encoding='utf-8' ) as vocab_handle: a__ = json.load(__snake_case ) a__ = {v: k for k, v in self.encoder.items()} with open(__snake_case ,encoding='utf-8' ) as merges_handle: a__ = merges_handle.read().split('\n' )[1:-1] a__ = [tuple(merge.split() ) for merge in merges] a__ = dict(zip(__snake_case ,range(len(__snake_case ) ) ) ) a__ = {} @property def lowerCamelCase__( self :Optional[Any] ) -> int: return len(self.encoder ) def lowerCamelCase__( self :Dict ) -> Dict: return dict(self.encoder ,**self.added_tokens_encoder ) def lowerCamelCase__( self :str ,__snake_case :str ) -> str: if token in self.cache: return self.cache[token] a__ = re.sub('([.,!?()])' ,R' \1' ,__snake_case ) a__ = re.sub('(\')' ,R' \1 ' ,__snake_case ) a__ = re.sub(R'\s{2,}' ,' ' ,__snake_case ) if "\n" in token: a__ = token.replace('\n' ,' __newln__' ) a__ = token.split(' ' ) a__ = [] for token in tokens: if not len(__snake_case ): continue a__ = token.lower() a__ = tuple(__snake_case ) a__ = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) a__ = get_pairs(__snake_case ) if not pairs: words.append(__snake_case ) continue while True: a__ = min(__snake_case ,key=lambda __snake_case : self.bpe_ranks.get(__snake_case ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ = bigram a__ = [] a__ = 0 while i < len(__snake_case ): try: a__ = word.index(__snake_case ,__snake_case ) new_word.extend(word[i:j] ) a__ = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ = tuple(__snake_case ) a__ = new_word if len(__snake_case ) == 1: break else: a__ = get_pairs(__snake_case ) a__ = '@@ '.join(__snake_case ) a__ = word[:-4] a__ = word words.append(__snake_case ) return " ".join(__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :str ) -> List[str]: a__ = [] a__ = re.findall(R'\S+\n?' ,__snake_case ) for token in words: split_tokens.extend(list(self.bpe(__snake_case ).split(' ' ) ) ) return split_tokens def lowerCamelCase__( self :List[str] ,__snake_case :str ) -> int: a__ = token.lower() return self.encoder.get(__snake_case ,self.encoder.get(self.unk_token ) ) def lowerCamelCase__( self :List[Any] ,__snake_case :int ) -> str: return self.decoder.get(__snake_case ,self.unk_token ) def lowerCamelCase__( self :Tuple ,__snake_case :List[str] ) -> str: a__ = ' '.join(__snake_case ).replace('@@ ' ,'' ).strip() return out_string def lowerCamelCase__( self :Optional[int] ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__snake_case ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__snake_case ,ensure_ascii=__snake_case ) + '\n' ) a__ = 0 with open(__snake_case ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) a__ = token_index writer.write(' '.join(__snake_case ) + '\n' ) index += 1 return vocab_file, merge_file
701
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : List[Any]=1E-1_2 ): a__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__lowerCAmelCase , axis=1 ) , a_min=__lowerCAmelCase ) ).T a__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__lowerCAmelCase , axis=1 ) , a_min=__lowerCAmelCase ) ).T return jnp.matmul(__lowerCAmelCase , norm_emb_a.T ) class snake_case_ (nn.Module ): UpperCAmelCase__ : CLIPConfig UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :str ) -> Optional[int]: a__ = FlaxCLIPVisionModule(self.config.vision_config ) a__ = nn.Dense(self.config.projection_dim ,use_bias=__snake_case ,dtype=self.dtype ) a__ = self.param('concept_embeds' ,jax.nn.initializers.ones ,(17, self.config.projection_dim) ) a__ = self.param( 'special_care_embeds' ,jax.nn.initializers.ones ,(3, self.config.projection_dim) ) a__ = self.param('concept_embeds_weights' ,jax.nn.initializers.ones ,(17,) ) a__ = self.param('special_care_embeds_weights' ,jax.nn.initializers.ones ,(3,) ) def __call__( self :Optional[Any] ,__snake_case :List[str] ) -> Dict: a__ = self.vision_model(__snake_case )[1] a__ = self.visual_projection(__snake_case ) a__ = jax_cosine_distance(__snake_case ,self.special_care_embeds ) a__ = jax_cosine_distance(__snake_case ,self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs a__ = 0.0 a__ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment a__ = jnp.round(__snake_case ,3 ) a__ = jnp.any(special_scores > 0 ,axis=1 ,keepdims=__snake_case ) # Use a lower threshold if an image has any special care concept a__ = is_special_care * 0.01 a__ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment a__ = jnp.round(__snake_case ,3 ) a__ = jnp.any(concept_scores > 0 ,axis=1 ) return has_nsfw_concepts class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = CLIPConfig UpperCAmelCase__ : Tuple = '''clip_input''' UpperCAmelCase__ : List[Any] = FlaxStableDiffusionSafetyCheckerModule def __init__( self :List[Any] ,__snake_case :CLIPConfig ,__snake_case :Optional[Tuple] = None ,__snake_case :int = 0 ,__snake_case :jnp.dtype = jnp.floataa ,__snake_case :bool = True ,**__snake_case :int ,) -> List[str]: if input_shape is None: a__ = (1, 2_24, 2_24, 3) a__ = self.module_class(config=__snake_case ,dtype=__snake_case ,**__snake_case ) super().__init__(__snake_case ,__snake_case ,input_shape=__snake_case ,seed=__snake_case ,dtype=__snake_case ,_do_init=_do_init ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :jax.random.KeyArray ,__snake_case :Tuple ,__snake_case :FrozenDict = None ) -> FrozenDict: # init input tensor a__ = jax.random.normal(__snake_case ,__snake_case ) a__ , a__ = jax.random.split(__snake_case ) a__ = {'params': params_rng, 'dropout': dropout_rng} a__ = self.module.init(__snake_case ,__snake_case )['params'] return random_params def __call__( self :List[Any] ,__snake_case :int ,__snake_case :dict = None ,) -> List[Any]: a__ = jnp.transpose(__snake_case ,(0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} ,jnp.array(__snake_case ,dtype=jnp.floataa ) ,rngs={} ,)
702
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __lowercase ( __lowerCAmelCase : Union[str, Any]=None ): if subparsers is not None: a__ = subparsers.add_parser('test' ) else: a__ = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=__lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=__lowerCAmelCase ) return parser def __lowercase ( __lowerCAmelCase : Optional[int] ): a__ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: a__ = script_name else: a__ = F'--config_file={args.config_file} {script_name}' a__ = ['accelerate-launch'] + test_args.split() a__ = execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def __lowercase ( ): a__ = test_command_parser() a__ = parser.parse_args() test_command(__lowerCAmelCase ) if __name__ == "__main__": main()
703
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : str = logging.get_logger(__name__) snake_case : Tuple = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : int = '''markuplm''' def __init__( self :List[str] ,__snake_case :Union[str, Any]=3_05_22 ,__snake_case :Dict=7_68 ,__snake_case :int=12 ,__snake_case :int=12 ,__snake_case :Tuple=30_72 ,__snake_case :Union[str, Any]="gelu" ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :int=5_12 ,__snake_case :Dict=2 ,__snake_case :str=0.02 ,__snake_case :int=1E-12 ,__snake_case :Optional[int]=0 ,__snake_case :Union[str, Any]=0 ,__snake_case :Union[str, Any]=2 ,__snake_case :Optional[Any]=2_56 ,__snake_case :List[Any]=10_24 ,__snake_case :Optional[Any]=2_16 ,__snake_case :int=10_01 ,__snake_case :List[Any]=32 ,__snake_case :int=50 ,__snake_case :List[Any]="absolute" ,__snake_case :int=True ,__snake_case :Any=None ,**__snake_case :Optional[Any] ,) -> int: super().__init__( pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,**__snake_case ,) a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = hidden_act a__ = intermediate_size a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = initializer_range a__ = layer_norm_eps a__ = position_embedding_type a__ = use_cache a__ = classifier_dropout # additional properties a__ = max_depth a__ = max_xpath_tag_unit_embeddings a__ = max_xpath_subs_unit_embeddings a__ = tag_pad_id a__ = subs_pad_id a__ = xpath_unit_hidden_size
704
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[str] = logging.get_logger(__name__) snake_case : Union[str, Any] = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = '''fnet''' def __init__( self :str ,__snake_case :List[str]=3_20_00 ,__snake_case :Union[str, Any]=7_68 ,__snake_case :List[Any]=12 ,__snake_case :Tuple=30_72 ,__snake_case :List[Any]="gelu_new" ,__snake_case :int=0.1 ,__snake_case :int=5_12 ,__snake_case :Dict=4 ,__snake_case :Dict=0.02 ,__snake_case :Tuple=1E-12 ,__snake_case :List[str]=False ,__snake_case :Any=5_12 ,__snake_case :List[Any]=3 ,__snake_case :Dict=1 ,__snake_case :Optional[int]=2 ,**__snake_case :Optional[Any] ,) -> List[Any]: super().__init__(pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,**__snake_case ) a__ = vocab_size a__ = max_position_embeddings a__ = hidden_size a__ = num_hidden_layers a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = initializer_range a__ = type_vocab_size a__ = layer_norm_eps a__ = use_tpu_fourier_optimizations a__ = tpu_short_seq_length
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> int: a__ = inspect.getfile(accelerate.test_utils ) a__ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 a__ = test_metrics @require_cpu def lowerCamelCase__( self :int ) -> str: debug_launcher(self.test_metrics.main ,num_processes=1 ) @require_cpu def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowerCamelCase__( self :str ) -> Optional[Any]: self.test_metrics.main() @require_multi_gpu def lowerCamelCase__( self :int ) -> Tuple: print(F'Found {torch.cuda.device_count()} devices.' ) a__ = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case ,env=os.environ.copy() )
706
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
0
import itertools import string from collections.abc import Generator, Iterable def __lowercase ( __lowerCAmelCase : Iterable[str] , __lowerCAmelCase : int ): a__ = iter(__lowerCAmelCase ) while True: a__ = tuple(itertools.islice(__lowerCAmelCase , __lowerCAmelCase ) ) if not chunk: return yield chunk def __lowercase ( __lowerCAmelCase : str ): a__ = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) a__ = '' if len(__lowerCAmelCase ) < 2: return dirty for i in range(len(__lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__lowerCAmelCase ) & 1: clean += "X" return clean def __lowercase ( __lowerCAmelCase : str ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) a__ = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler a__ = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__lowerCAmelCase ) return table def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = generate_table(__lowerCAmelCase ) a__ = prepare_input(__lowerCAmelCase ) a__ = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): a__ , a__ = divmod(table.index(__lowerCAmelCase ) , 5 ) a__ , a__ = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = generate_table(__lowerCAmelCase ) a__ = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): a__ , a__ = divmod(table.index(__lowerCAmelCase ) , 5 ) a__ , a__ = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
707
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 snake_case : Optional[Any] = data_utils.TransfoXLTokenizer snake_case : Dict = data_utils.TransfoXLCorpus snake_case : Optional[Any] = data_utils snake_case : str = data_utils def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__lowerCAmelCase , 'rb' ) as fp: a__ = pickle.load(__lowerCAmelCase , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) a__ = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) a__ = corpus.vocab.__dict__ torch.save(__lowerCAmelCase , __lowerCAmelCase ) a__ = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , __lowerCAmelCase ) a__ = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model a__ = os.path.abspath(__lowerCAmelCase ) a__ = os.path.abspath(__lowerCAmelCase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": a__ = TransfoXLConfig() else: a__ = TransfoXLConfig.from_json_file(__lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) a__ = TransfoXLLMHeadModel(__lowerCAmelCase ) a__ = load_tf_weights_in_transfo_xl(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F'Save PyTorch model to {os.path.abspath(__lowerCAmelCase )}' ) torch.save(model.state_dict() , __lowerCAmelCase ) print(F'Save configuration file to {os.path.abspath(__lowerCAmelCase )}' ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) snake_case : Any = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
708
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
709
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class snake_case_ : def __init__( self :int ,__snake_case :List[Any] ,__snake_case :Optional[Any]=13 ,__snake_case :Dict=7 ,__snake_case :Dict=True ,__snake_case :Tuple=True ,__snake_case :Tuple=True ,__snake_case :Optional[Any]=99 ,__snake_case :List[str]=32 ,__snake_case :Any=5 ,__snake_case :Optional[int]=4 ,__snake_case :int=37 ,__snake_case :int="gelu" ,__snake_case :Optional[Any]=0.1 ,__snake_case :Any=0.1 ,__snake_case :Union[str, Any]=5_12 ,__snake_case :str=16 ,__snake_case :str=2 ,__snake_case :int=0.02 ,__snake_case :Dict=3 ,__snake_case :Union[str, Any]=4 ,__snake_case :Dict=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :str ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :Dict ,*__snake_case :Dict ) -> List[Any]: a__ = OpenAIGPTModel(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) a__ = model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :str ,*__snake_case :List[Any] ) -> Union[str, Any]: a__ = OpenAIGPTLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Any ,__snake_case :Tuple ,__snake_case :Union[str, Any] ,__snake_case :List[Any] ,__snake_case :Tuple ,*__snake_case :Optional[int] ) -> List[str]: a__ = OpenAIGPTDoubleHeadsModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Tuple ,__snake_case :Optional[Any] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :Dict ,*__snake_case :str ) -> Dict: a__ = self.num_labels a__ = OpenAIGPTForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__( self :str ) -> str: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCAmelCase__ : int = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCAmelCase__ : Optional[Any] = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__( self :Optional[int] ,__snake_case :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Tuple ,__snake_case :List[str] ) -> List[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any=False ) -> Optional[Any]: a__ = super()._prepare_for_class(__snake_case ,__snake_case ,return_labels=__snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=__snake_case ,) a__ = inputs_dict['labels'] a__ = inputs_dict['labels'] a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=__snake_case ,) a__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__snake_case ) return inputs_dict def lowerCamelCase__( self :Optional[Any] ) -> List[Any]: a__ = OpenAIGPTModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :List[Any] ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :List[Any] ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) def lowerCamelCase__( self :str ) -> List[str]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__snake_case ) def lowerCamelCase__( self :int ) -> Optional[int]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__snake_case ) @slow def lowerCamelCase__( self :Optional[Any] ) -> List[str]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = OpenAIGPTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class snake_case_ (unittest.TestCase ): @slow def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: a__ = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(__snake_case ) a__ = torch.tensor([[4_81, 47_35, 5_44]] ,dtype=torch.long ,device=__snake_case ) # the president is a__ = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
710
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): a__ = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] a__ = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } a__ = F'{src_lang}-{tgt_lang}' a__ = F'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=__lowerCAmelCase , exist_ok=__lowerCAmelCase ) a__ = os.path.join(__lowerCAmelCase , 'README.md' ) print(F'Generating {path}' ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(__lowerCAmelCase ) # make sure we are under the root of the project snake_case : Any = Path(__file__).resolve().parent.parent.parent snake_case : int = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: snake_case : List[str] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
711
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : int = XLNetTokenizer UpperCAmelCase__ : Optional[Any] = XLNetTokenizerFast UpperCAmelCase__ : int = True UpperCAmelCase__ : int = True def lowerCamelCase__( self :Optional[int] ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing a__ = XLNetTokenizer(__snake_case ,keep_accents=__snake_case ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: a__ = '<s>' a__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) ,__snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) ,__snake_case ) def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: a__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<unk>' ) self.assertEqual(vocab_keys[1] ,'<s>' ) self.assertEqual(vocab_keys[-1] ,'<eod>' ) self.assertEqual(len(__snake_case ) ,10_06 ) def lowerCamelCase__( self :List[Any] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__( self :List[Any] ) -> List[Any]: a__ = XLNetTokenizer(__snake_case ,keep_accents=__snake_case ) a__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) ,[2_85, 46, 10, 1_70, 3_82] ) a__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) a__ = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual(__snake_case ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) a__ = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) def lowerCamelCase__( self :Optional[int] ) -> List[Any]: a__ = XLNetTokenizer(__snake_case ,do_lower_case=__snake_case ) a__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case ,[ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] ,) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['▁he', 'll', 'o'] ) def lowerCamelCase__( self :int ) -> List[Any]: a__ = XLNetTokenizer(__snake_case ,do_lower_case=__snake_case ) a__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] ,) @slow def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = XLNetTokenizer.from_pretrained('xlnet-base-cased' ) a__ = tokenizer.encode('sequence builders' ,add_special_tokens=__snake_case ) a__ = tokenizer.encode('multi-sequence build' ,add_special_tokens=__snake_case ) a__ = tokenizer.build_inputs_with_special_tokens(__snake_case ) a__ = tokenizer.build_inputs_with_special_tokens(__snake_case ,__snake_case ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__( self :Any ) -> Optional[int]: # fmt: off a__ = {'input_ids': [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case ,model_name='xlnet-base-cased' ,revision='c841166438c31ec7ca9a106dee7bb312b73ae511' ,)
712
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
0
import os from distutils.util import strtobool def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ): for e in env_keys: a__ = int(os.environ.get(__lowerCAmelCase , -1 ) ) if val >= 0: return val return default def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=False ): a__ = os.environ.get(__lowerCAmelCase , str(__lowerCAmelCase ) ) return strtobool(__lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : List[Any]="no" ): a__ = os.environ.get(__lowerCAmelCase , str(__lowerCAmelCase ) ) return value
713
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
0
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
714
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
0
snake_case : Union[str, Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' snake_case : int = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] snake_case : Union[str, Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
715
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
0
def __lowercase ( __lowerCAmelCase : int ): if num <= 0: raise ValueError('Input must be a positive integer' ) a__ = [True] * (num + 1) a__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowerCAmelCase ): a__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() snake_case : int = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
716
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
0
def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): a__ = F'Input value of [number={number}] must be an integer' raise TypeError(__lowerCAmelCase ) if number < 0: return False a__ = number * number while number > 0: if number % 1_0 != number_square % 1_0: return False number //= 1_0 number_square //= 1_0 return True if __name__ == "__main__": import doctest doctest.testmod()
717
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp snake_case : Optional[int] = 5 snake_case : Optional[int] = 10 @require_sentencepiece @require_tokenizers class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = SpeechaTextTokenizer UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Optional[int] = True def lowerCamelCase__( self :Any ) -> Union[str, Any]: super().setUp() a__ = sp.SentencePieceProcessor() spm_model.Load(__snake_case ) a__ = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__snake_case ) )] a__ = dict(zip(__snake_case ,range(len(__snake_case ) ) ) ) a__ = Path(self.tmpdirname ) save_json(__snake_case ,save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case ,save_dir / VOCAB_FILES_NAMES['spm_file'] ) a__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__( self :List[str] ) -> Union[str, Any]: a__ = '<pad>' a__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) ,__snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) ,__snake_case ) def lowerCamelCase__( self :List[str] ) -> Union[str, Any]: a__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-1] ,'j' ) self.assertEqual(len(__snake_case ) ,10_01 ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size ,10_01 ) def lowerCamelCase__( self :List[str] ) -> List[Any]: a__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) a__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) ,[2_89, 50, 14, 1_74, 3_86] ,) a__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case ,[SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] ,) a__ = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual(__snake_case ,[12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) a__ = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case ,[SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] ,) @slow def lowerCamelCase__( self :Any ) -> List[Any]: # fmt: off a__ = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case ,model_name='facebook/s2t-small-mustc-en-de-st' ,revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' ,) @require_sentencepiece class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = '''valhalla/s2t_mustc_multilinguial_medium''' UpperCAmelCase__ : str = '''C\'est trop cool''' UpperCAmelCase__ : Optional[Any] = '''Esto es genial''' @classmethod def lowerCamelCase__( cls :Any ) -> str: a__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowerCamelCase__( self :Optional[Any] ) -> str: self.assertEqual(self.tokenizer.lang_code_to_id['pt'] ,4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] ,6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] ,9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] ,11 ) def lowerCamelCase__( self :Any ) -> str: self.assertEqual(self.tokenizer.vocab_size ,1_00_00 ) def lowerCamelCase__( self :Any ) -> List[str]: self.assertIn(__snake_case ,self.tokenizer.all_special_ids ) a__ = [ES_CODE, 4, 16_01, 47, 76_47, 2] a__ = self.tokenizer.decode(__snake_case ,skip_special_tokens=__snake_case ) a__ = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertNotIn(self.tokenizer.eos_token ,__snake_case ) def lowerCamelCase__( self :Tuple ) -> int: a__ = 'fr' a__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] ,__snake_case ) self.assertEqual(encoded[-1] ,self.tokenizer.eos_token_id ) def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens ,[FR_CODE] ) a__ = 'es' self.assertListEqual(self.tokenizer.prefix_tokens ,[ES_CODE] )
718
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = TransfoXLTokenizer UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : int = False def lowerCamelCase__( self :Any ) -> Dict: super().setUp() a__ = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] a__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCamelCase__( self :str ,**__snake_case :Optional[Any] ) -> Union[str, Any]: a__ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**__snake_case ) def lowerCamelCase__( self :str ,__snake_case :Union[str, Any] ) -> Union[str, Any]: a__ = '<unk> UNwanted , running' a__ = '<unk> unwanted, running' return input_text, output_text def lowerCamelCase__( self :Union[str, Any] ) -> Union[str, Any]: a__ = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=__snake_case ) a__ = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(__snake_case ,['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) ,[0, 4, 8, 7] ) def lowerCamelCase__( self :Optional[Any] ) -> List[Any]: a__ = TransfoXLTokenizer(lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = TransfoXLTokenizer(lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: a__ = TransfoXLTokenizer(lower_case=__snake_case ) a__ = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' a__ = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(__snake_case ) ,__snake_case ) self.assertEqual(tokenizer.convert_tokens_to_string(__snake_case ) ,__snake_case ) def lowerCamelCase__( self :List[Any] ) -> List[Any]: a__ = self.get_tokenizer() a__ = len(__snake_case ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' ,1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__snake_case ) ,original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) ,[1] ) self.assertEqual(tokenizer.decode([1] ) ,'new1' )
719
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 snake_case : Optional[int] = get_tests_dir('''fixtures''') snake_case : Tuple = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') snake_case : str = get_tests_dir('''fixtures/dummy-config.json''') class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :List[Any] ) -> Union[str, Any]: a__ = 0 def lowerCamelCase__( self :Any ) -> List[str]: a__ = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Dict ) -> str: a__ = AutoFeatureExtractor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally a__ = AutoFeatureExtractor.from_pretrained(__snake_case ).to_dict() config_dict.pop('feature_extractor_type' ) a__ = WavaVecaFeatureExtractor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) a__ = AutoFeatureExtractor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved a__ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :Tuple ) -> Optional[Any]: a__ = AutoFeatureExtractor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) def lowerCamelCase__( self :List[str] ) -> Tuple: with self.assertRaisesRegex( __snake_case ,'bert-base is not a local folder and is not a valid model identifier' ): a__ = AutoFeatureExtractor.from_pretrained('bert-base' ) def lowerCamelCase__( self :List[str] ) -> Dict: with self.assertRaisesRegex( __snake_case ,R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): a__ = AutoFeatureExtractor.from_pretrained(__snake_case ,revision='aaaaaa' ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: with self.assertRaisesRegex( __snake_case ,'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' ,): a__ = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def lowerCamelCase__( self :Optional[int] ) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ,trust_remote_code=__snake_case ) a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ,trust_remote_code=__snake_case ) self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__snake_case ) a__ = AutoFeatureExtractor.from_pretrained(__snake_case ,trust_remote_code=__snake_case ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: try: AutoConfig.register('custom' ,__snake_case ) AutoFeatureExtractor.register(__snake_case ,__snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoFeatureExtractor.register(__snake_case ,__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API a__ = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__snake_case ) a__ = AutoFeatureExtractor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__( self :List[Any] ) -> Any: class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = True try: AutoConfig.register('custom' ,__snake_case ) AutoFeatureExtractor.register(__snake_case ,__snake_case ) # If remote code is not set, the default is to use local a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ,trust_remote_code=__snake_case ) self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ,trust_remote_code=__snake_case ) self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) self.assertTrue(not hasattr(__snake_case ,'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
720
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case : Tuple = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys snake_case : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
0
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available snake_case : int = logging.getLogger(__name__) @dataclass class snake_case_ : UpperCAmelCase__ : str UpperCAmelCase__ : List[str] UpperCAmelCase__ : Optional[List[str]] @dataclass class snake_case_ : UpperCAmelCase__ : List[int] UpperCAmelCase__ : List[int] UpperCAmelCase__ : Optional[List[int]] = None UpperCAmelCase__ : Optional[List[int]] = None class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[Any] = '''train''' UpperCAmelCase__ : str = '''dev''' UpperCAmelCase__ : Union[str, Any] = '''test''' class snake_case_ : @staticmethod def lowerCamelCase__( __snake_case :List[str] ,__snake_case :Union[Split, str] ) -> List[InputExample]: raise NotImplementedError @staticmethod def lowerCamelCase__( __snake_case :str ) -> List[str]: raise NotImplementedError @staticmethod def lowerCamelCase__( __snake_case :List[InputExample] ,__snake_case :List[str] ,__snake_case :int ,__snake_case :PreTrainedTokenizer ,__snake_case :List[Any]=False ,__snake_case :str="[CLS]" ,__snake_case :List[str]=1 ,__snake_case :str="[SEP]" ,__snake_case :Optional[int]=False ,__snake_case :List[str]=False ,__snake_case :List[Any]=0 ,__snake_case :Optional[int]=0 ,__snake_case :int=-1_00 ,__snake_case :str=0 ,__snake_case :Union[str, Any]=True ,) -> List[InputFeatures]: a__ = {label: i for i, label in enumerate(__snake_case )} a__ = [] for ex_index, example in enumerate(__snake_case ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d of %d' ,__snake_case ,len(__snake_case ) ) a__ = [] a__ = [] for word, label in zip(example.words ,example.labels ): a__ = tokenizer.tokenize(__snake_case ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__snake_case ) > 0: tokens.extend(__snake_case ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__snake_case ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. a__ = tokenizer.num_special_tokens_to_add() if len(__snake_case ) > max_seq_length - special_tokens_count: a__ = tokens[: (max_seq_length - special_tokens_count)] a__ = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] a__ = [sequence_a_segment_id] * len(__snake_case ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: a__ = [cls_token] + tokens a__ = [pad_token_label_id] + label_ids a__ = [cls_token_segment_id] + segment_ids a__ = tokenizer.convert_tokens_to_ids(__snake_case ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. a__ = [1 if mask_padding_with_zero else 0] * len(__snake_case ) # Zero-pad up to the sequence length. a__ = max_seq_length - len(__snake_case ) if pad_on_left: a__ = ([pad_token] * padding_length) + input_ids a__ = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask a__ = ([pad_token_segment_id] * padding_length) + segment_ids a__ = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__snake_case ) == max_seq_length assert len(__snake_case ) == max_seq_length assert len(__snake_case ) == max_seq_length assert len(__snake_case ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' ,example.guid ) logger.info('tokens: %s' ,' '.join([str(__snake_case ) for x in tokens] ) ) logger.info('input_ids: %s' ,' '.join([str(__snake_case ) for x in input_ids] ) ) logger.info('input_mask: %s' ,' '.join([str(__snake_case ) for x in input_mask] ) ) logger.info('segment_ids: %s' ,' '.join([str(__snake_case ) for x in segment_ids] ) ) logger.info('label_ids: %s' ,' '.join([str(__snake_case ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: a__ = None features.append( InputFeatures( input_ids=__snake_case ,attention_mask=__snake_case ,token_type_ids=__snake_case ,label_ids=__snake_case ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[InputFeatures] UpperCAmelCase__ : int = nn.CrossEntropyLoss().ignore_index def __init__( self :Union[str, Any] ,__snake_case :TokenClassificationTask ,__snake_case :str ,__snake_case :PreTrainedTokenizer ,__snake_case :List[str] ,__snake_case :str ,__snake_case :Optional[int] = None ,__snake_case :Tuple=False ,__snake_case :Split = Split.train ,) -> List[Any]: # Load data features from cache or dataset file a__ = os.path.join( __snake_case ,'cached_{}_{}_{}'.format(mode.value ,tokenizer.__class__.__name__ ,str(__snake_case ) ) ,) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a__ = cached_features_file + '.lock' with FileLock(__snake_case ): if os.path.exists(__snake_case ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) a__ = torch.load(__snake_case ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) a__ = token_classification_task.read_examples_from_file(__snake_case ,__snake_case ) # TODO clean up all this to leverage built-in features of tokenizers a__ = token_classification_task.convert_examples_to_features( __snake_case ,__snake_case ,__snake_case ,__snake_case ,cls_token_at_end=bool(model_type in ['xlnet'] ) ,cls_token=tokenizer.cls_token ,cls_token_segment_id=2 if model_type in ['xlnet'] else 0 ,sep_token=tokenizer.sep_token ,sep_token_extra=__snake_case ,pad_on_left=bool(tokenizer.padding_side == 'left' ) ,pad_token=tokenizer.pad_token_id ,pad_token_segment_id=tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,) logger.info(F'Saving features into cached file {cached_features_file}' ) torch.save(self.features ,__snake_case ) def __len__( self :List[Any] ) -> str: return len(self.features ) def __getitem__( self :Tuple ,__snake_case :Any ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class snake_case_ : UpperCAmelCase__ : List[InputFeatures] UpperCAmelCase__ : int = -1_0_0 def __init__( self :Optional[Any] ,__snake_case :TokenClassificationTask ,__snake_case :str ,__snake_case :PreTrainedTokenizer ,__snake_case :List[str] ,__snake_case :str ,__snake_case :Optional[int] = None ,__snake_case :Optional[int]=False ,__snake_case :Split = Split.train ,) -> List[str]: a__ = token_classification_task.read_examples_from_file(__snake_case ,__snake_case ) # TODO clean up all this to leverage built-in features of tokenizers a__ = token_classification_task.convert_examples_to_features( __snake_case ,__snake_case ,__snake_case ,__snake_case ,cls_token_at_end=bool(model_type in ['xlnet'] ) ,cls_token=tokenizer.cls_token ,cls_token_segment_id=2 if model_type in ['xlnet'] else 0 ,sep_token=tokenizer.sep_token ,sep_token_extra=__snake_case ,pad_on_left=bool(tokenizer.padding_side == 'left' ) ,pad_token=tokenizer.pad_token_id ,pad_token_segment_id=tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: a__ = tf.data.Dataset.from_generator( __snake_case ,({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) ,( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) ,) else: a__ = tf.data.Dataset.from_generator( __snake_case ,({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) ,( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) ,) def lowerCamelCase__( self :int ) -> Union[str, Any]: a__ = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self :Optional[int] ) -> Tuple: return len(self.features ) def __getitem__( self :Union[str, Any] ,__snake_case :int ) -> InputFeatures: return self.features[i]
700
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
0
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
701
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
0
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __lowercase ( ): a__ = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=__lowerCAmelCase , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=__lowerCAmelCase , default=5 ) parser.add_argument('--batch_size' , type=__lowerCAmelCase , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=__lowerCAmelCase , default=1 ) parser.add_argument('--freeze' , type=__lowerCAmelCase , default=__lowerCAmelCase ) parser.add_argument('--learning_rate' , type=__lowerCAmelCase , default=5E-4 ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=0 ) parser.add_argument('--lr_scheduler_type' , type=__lowerCAmelCase , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=__lowerCAmelCase , default=1_0 ) parser.add_argument('--weight_decay' , type=__lowerCAmelCase , default=0.01 ) parser.add_argument('--output_dir' , type=__lowerCAmelCase , default='./results' ) return parser.parse_args() snake_case : Optional[int] = load('''accuracy''') def __lowercase ( __lowerCAmelCase : Dict ): a__ , a__ = eval_pred a__ = np.argmax(__lowerCAmelCase , axis=1 ) return metric.compute(predictions=__lowerCAmelCase , references=__lowerCAmelCase ) class snake_case_ (lowerCamelCase_ ): def __init__( self :Optional[int] ,__snake_case :Optional[Any] ) -> None: super().__init__() a__ = trainer def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :List[Any] ,__snake_case :Optional[int] ,**__snake_case :List[Any] ) -> Any: if control.should_evaluate: a__ = deepcopy(__snake_case ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset ,metric_key_prefix='train' ) return control_copy def __lowercase ( ): a__ = get_args() set_seed(args.seed ) a__ = load_dataset('codeparrot/codecomplex' , split='train' ) a__ = dataset.train_test_split(test_size=0.2 ) a__ = train_test['test'].train_test_split(test_size=0.5 ) a__ = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) a__ = AutoTokenizer.from_pretrained(args.model_ckpt ) a__ = tokenizer.eos_token a__ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) a__ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): a__ = False a__ = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(__lowerCAmelCase : List[Any] ): a__ = tokenizer(example['src'] , truncation=__lowerCAmelCase , max_length=1_0_2_4 ) a__ = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } a__ = train_test_validation.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=train_test_validation['train'].column_names , ) a__ = DataCollatorWithPadding(tokenizer=__lowerCAmelCase ) a__ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) a__ = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , compute_metrics=__lowerCAmelCase , ) print('Training...' ) trainer.add_callback(CustomCallback(__lowerCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
702
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
703
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig snake_case : List[Any] = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = '''ernie_m''' UpperCAmelCase__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self :int ,__snake_case :int = 25_00_02 ,__snake_case :int = 7_68 ,__snake_case :int = 12 ,__snake_case :int = 12 ,__snake_case :int = 30_72 ,__snake_case :str = "gelu" ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :int = 5_14 ,__snake_case :float = 0.02 ,__snake_case :int = 1 ,__snake_case :float = 1E-05 ,__snake_case :str=None ,__snake_case :Optional[Any]=False ,__snake_case :Optional[Any]=0.0 ,**__snake_case :str ,) -> Dict: super().__init__(pad_token_id=__snake_case ,**__snake_case ) a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = initializer_range a__ = layer_norm_eps a__ = classifier_dropout a__ = is_decoder a__ = act_dropout
704
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case : Optional[Any] = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = ['''LayoutLMv2FeatureExtractor'''] snake_case : Optional[Any] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys snake_case : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Dict = KandinskyVaaPipeline UpperCAmelCase__ : Union[str, Any] = [ '''image_embeds''', '''negative_image_embeds''', ] UpperCAmelCase__ : Any = ['''image_embeds''', '''negative_image_embeds'''] UpperCAmelCase__ : Tuple = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ : Any = False @property def lowerCamelCase__( self :Tuple ) -> Dict: return 32 @property def lowerCamelCase__( self :List[Any] ) -> Any: return 32 @property def lowerCamelCase__( self :Any ) -> Any: return self.time_input_dim @property def lowerCamelCase__( self :int ) -> Tuple: return self.time_input_dim * 4 @property def lowerCamelCase__( self :str ) -> Optional[Any]: return 1_00 @property def lowerCamelCase__( self :List[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) a__ = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } a__ = UNetaDConditionModel(**__snake_case ) return model @property def lowerCamelCase__( self :int ) -> Any: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__( self :str ) -> Dict: torch.manual_seed(0 ) a__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__( self :Tuple ) -> str: a__ = self.dummy_unet a__ = self.dummy_movq a__ = DDIMScheduler( num_train_timesteps=10_00 ,beta_schedule='linear' ,beta_start=0.0_00_85 ,beta_end=0.0_12 ,clip_sample=__snake_case ,set_alpha_to_one=__snake_case ,steps_offset=1 ,prediction_type='epsilon' ,thresholding=__snake_case ,) a__ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCamelCase__( self :Tuple ,__snake_case :Tuple ,__snake_case :List[str]=0 ) -> Dict: a__ = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(__snake_case ) ).to(__snake_case ) a__ = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( __snake_case ) if str(__snake_case ).startswith('mps' ): a__ = torch.manual_seed(__snake_case ) else: a__ = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a__ = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = 'cpu' a__ = self.get_dummy_components() a__ = self.pipeline_class(**__snake_case ) a__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a__ = pipe(**self.get_dummy_inputs(__snake_case ) ) a__ = output.images a__ = pipe( **self.get_dummy_inputs(__snake_case ) ,return_dict=__snake_case ,)[0] a__ = image[0, -3:, -3:, -1] a__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a__ = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) a__ = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' ,torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) a__ = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' ,torch_dtype=torch.floataa ) a__ = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) a__ = 'red cat, 4k photo' a__ = torch.Generator(device='cuda' ).manual_seed(0 ) a__ , a__ = pipe_prior( __snake_case ,generator=__snake_case ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() a__ = torch.Generator(device='cuda' ).manual_seed(0 ) a__ = pipeline( image_embeds=__snake_case ,negative_image_embeds=__snake_case ,generator=__snake_case ,num_inference_steps=1_00 ,output_type='np' ,) a__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case ,__snake_case )
706
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case_ (lowerCamelCase_ ): @require_torch def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched a__ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' a__ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' a__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache a__ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(__snake_case ) BertModel.from_pretrained(__snake_case ) BertTokenizer.from_pretrained(__snake_case ) pipeline(task='fill-mask' ,model=__snake_case ) # baseline - just load from_pretrained with normal network a__ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed a__ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__ = '1' a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def lowerCamelCase__( self :Dict ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched a__ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' a__ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' a__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache a__ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(__snake_case ) BertModel.from_pretrained(__snake_case ) BertTokenizer.from_pretrained(__snake_case ) pipeline(task='fill-mask' ,model=__snake_case ) # baseline - just load from_pretrained with normal network a__ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed a__ = self.get_env() a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def lowerCamelCase__( self :Dict ) -> Any: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched a__ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' a__ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' a__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network a__ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed a__ = self.get_env() a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # next emulate no network a__ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__ = '1' a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def lowerCamelCase__( self :str ) -> int: a__ = '\nfrom transformers import pipeline\n ' a__ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' a__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' a__ = self.get_env() a__ = '1' a__ = [sys.executable, '-c', '\n'.join([load, mock, run] )] a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,1 ,result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' ,result.stderr.decode().replace('\n' ,'' ) ,) @require_torch def lowerCamelCase__( self :List[str] ) -> Any: a__ = '\nfrom transformers import AutoModel\n ' a__ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network a__ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed a__ = self.get_env() a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__ = '1' a__ = subprocess.run(__snake_case ,env=__snake_case ,check=__snake_case ,capture_output=__snake_case ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() )
707
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
0
def __lowercase ( __lowerCAmelCase : float ): return 1_0 - x * x def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float ): # Bolzano theory in order to find if there is a root between a and b if equation(__lowerCAmelCase ) * equation(__lowerCAmelCase ) >= 0: raise ValueError('Wrong space!' ) a__ = a while (b - a) >= 0.01: # Find middle point a__ = (a + b) / 2 # Check if middle point is root if equation(__lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCAmelCase ) * equation(__lowerCAmelCase ) < 0: a__ = c else: a__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
708
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
0
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path snake_case : Any = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) snake_case : Tuple = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} snake_case : int = '''zero2''' snake_case : List[str] = '''zero3''' snake_case : Optional[Any] = [ZEROa, ZEROa] def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param a__ = parameterized.to_safe_name('_'.join(str(__lowerCAmelCase ) for x in param.args ) ) return F'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test snake_case : List[str] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class snake_case_ (lowerCamelCase_ ): @parameterized.expand(__snake_case ,name_func=__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :List[str] ,__snake_case :int ) -> Optional[Any]: self.run_and_check( stage=__snake_case ,model=__snake_case ,distributed=__snake_case ,fpaa=__snake_case ,) @require_torch_multi_gpu @parameterized.expand(__snake_case ,name_func=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Union[str, Any] ,__snake_case :Tuple ) -> Tuple: self.run_and_check( stage=__snake_case ,model=__snake_case ,distributed=__snake_case ,fpaa=__snake_case ,) @parameterized.expand(__snake_case ,name_func=__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :Any ,__snake_case :str ) -> List[Any]: self.run_and_check( stage=__snake_case ,model=__snake_case ,distributed=__snake_case ,fpaa=__snake_case ,) @require_torch_multi_gpu @parameterized.expand(__snake_case ,name_func=__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Optional[Any]: self.run_and_check( stage=__snake_case ,model=__snake_case ,distributed=__snake_case ,fpaa=__snake_case ,) def lowerCamelCase__( self :Optional[int] ,__snake_case :int ) -> Any: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :int = 10 ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :bool = True ,) -> str: a__ = models[model] a__ = self.run_trainer( stage=__snake_case ,model_name=__snake_case ,eval_steps=__snake_case ,num_train_epochs=1 ,distributed=__snake_case ,fpaa=__snake_case ,) self.do_checks(__snake_case ) return output_dir def lowerCamelCase__( self :Any ,__snake_case :str ,__snake_case :str ,__snake_case :int = 10 ,__snake_case :int = 1 ,__snake_case :bool = True ,__snake_case :bool = True ,) -> Tuple: a__ = self.get_auto_remove_tmp_dir('./xxx' ,after=__snake_case ) a__ = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(__snake_case )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files a__ = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() a__ = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] a__ = self.get_launcher(__snake_case ) a__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__snake_case ,env=self.get_env() ) return output_dir def lowerCamelCase__( self :Optional[Any] ,__snake_case :Any=False ) -> Optional[Any]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) a__ = min(2 ,get_gpu_count() ) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
709
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : str = 1 @register_to_config def __init__( self :int ,__snake_case :Any=20_00 ,__snake_case :str=0.1 ,__snake_case :List[str]=20 ,__snake_case :Dict=1E-3 ) -> List[str]: a__ = None a__ = None a__ = None def lowerCamelCase__( self :Dict ,__snake_case :List[Any] ,__snake_case :Union[str, torch.device] = None ) -> Tuple: a__ = torch.linspace(1 ,self.config.sampling_eps ,__snake_case ,device=__snake_case ) def lowerCamelCase__( self :str ,__snake_case :str ,__snake_case :str ,__snake_case :Union[str, Any] ,__snake_case :Optional[Any]=None ) -> Union[str, Any]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score a__ = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) a__ = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) a__ = std.flatten() while len(std.shape ) < len(score.shape ): a__ = std.unsqueeze(-1 ) a__ = -score / std # compute a__ = -1.0 / len(self.timesteps ) a__ = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) a__ = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): a__ = beta_t.unsqueeze(-1 ) a__ = -0.5 * beta_t * x a__ = torch.sqrt(__snake_case ) a__ = drift - diffusion**2 * score a__ = x + drift * dt # add noise a__ = randn_tensor(x.shape ,layout=x.layout ,generator=__snake_case ,device=x.device ,dtype=x.dtype ) a__ = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :Union[str, Any] ) -> Optional[int]: return self.config.num_train_timesteps
710
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowercase ( ): a__ = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('RGB' ) return image def __lowercase ( __lowerCAmelCase : Optional[int] ): a__ = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): a__ = dct.pop(__lowerCAmelCase ) a__ = val def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a__ = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) a__ = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict a__ = torch.cat((q_bias, torch.zeros_like(__lowerCAmelCase , requires_grad=__lowerCAmelCase ), v_bias) ) a__ = qkv_bias def __lowercase ( __lowerCAmelCase : Tuple ): a__ = 3_6_4 if 'coco' in model_name else 2_2_4 a__ = InstructBlipVisionConfig(image_size=__lowerCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: a__ = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a__ = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: a__ = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: a__ = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 a__ = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() a__ = InstructBlipConfig(vision_config=__lowerCAmelCase , text_config=__lowerCAmelCase , qformer_config=__lowerCAmelCase ) return config, image_size @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Optional[Any]=False ): a__ = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: a__ = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) a__ = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) a__ , a__ = get_blipa_config(__lowerCAmelCase ) a__ = InstructBlipForConditionalGeneration(__lowerCAmelCase ).eval() a__ = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } a__ , a__ = model_name_to_original[model_name] # load original model print('Loading original model...' ) a__ = 'cuda:1' if torch.cuda.is_available() else 'cpu' a__ = 'cuda:2' if torch.cuda.is_available() else 'cpu' a__ , a__ , a__ = load_model_and_preprocess( name=__lowerCAmelCase , model_type=__lowerCAmelCase , is_eval=__lowerCAmelCase , device=__lowerCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys a__ = original_model.state_dict() a__ = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a__ = state_dict.pop(__lowerCAmelCase ) if key.startswith('Qformer.bert' ): a__ = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: a__ = key.replace('self' , 'attention' ) if "llm_proj" in key: a__ = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: a__ = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): a__ = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): a__ = key.replace('t5' , 'language' ) a__ = val # read in qv biases read_in_q_v_bias(__lowerCAmelCase , __lowerCAmelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) a__ = load_demo_image() a__ = 'What is unusual about this image?' # create processor a__ = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) a__ = InstructBlipProcessor( image_processor=__lowerCAmelCase , tokenizer=__lowerCAmelCase , qformer_tokenizer=__lowerCAmelCase , ) a__ = processor(images=__lowerCAmelCase , text=__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase ) # make sure processor creates exact same pixel values a__ = vis_processors['eval'](__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) a__ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __lowerCAmelCase ) original_model.to(__lowerCAmelCase ) hf_model.to(__lowerCAmelCase ) with torch.no_grad(): if "vicuna" in model_name: a__ = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits a__ = hf_model(**__lowerCAmelCase ).logits else: a__ = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits a__ = tokenizer('\n' , return_tensors='pt' ).input_ids.to(__lowerCAmelCase ) a__ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 ) a__ = hf_model(**__lowerCAmelCase , labels=__lowerCAmelCase ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape a__ = 1E-4 if 'vicuna' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , __lowerCAmelCase , atol=__lowerCAmelCase ) print('Looks ok!' ) print('Generating with original model...' ) a__ = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) a__ = hf_model.generate( **__lowerCAmelCase , do_sample=__lowerCAmelCase , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? a__ = 2 print('Original generation:' , __lowerCAmelCase ) a__ = processor.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) a__ = [text.strip() for text in output_text] print('HF generation:' , __lowerCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if push_to_hub: processor.push_to_hub(F'Salesforce/{model_name}' ) hf_model.push_to_hub(F'Salesforce/{model_name}' ) if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser() snake_case : Optional[int] = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) snake_case : Any = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
711
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
0
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case : List[Any] = logging.getLogger(__name__) def __lowercase ( __lowerCAmelCase : str ): a__ = git.Repo(search_parent_directories=__lowerCAmelCase ) a__ = { 'repo_id': str(__lowerCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(__lowerCAmelCase , 'git_log.json' ) , 'w' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase , indent=4 ) def __lowercase ( __lowerCAmelCase : Union[str, Any] ): if params.n_gpu <= 0: a__ = 0 a__ = -1 a__ = True a__ = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 a__ = int(os.environ['WORLD_SIZE'] ) a__ = int(os.environ['N_GPU_NODE'] ) a__ = int(os.environ['RANK'] ) # number of nodes / node ID a__ = params.world_size // params.n_gpu_per_node a__ = params.global_rank // params.n_gpu_per_node a__ = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 a__ = 1 a__ = 0 a__ = 0 a__ = 0 a__ = 1 a__ = 1 a__ = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode a__ = params.node_id == 0 and params.local_rank == 0 a__ = params.n_nodes > 1 # summary a__ = F'--- Global rank: {params.global_rank} - ' logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def __lowercase ( __lowerCAmelCase : Dict ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
712
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
713
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Any = {'''vocab_file''': '''spiece.model'''} snake_case : Optional[Any] = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } snake_case : Any = {'''bert_for_seq_generation''': 5_12} class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : str = ['''input_ids''', '''attention_mask'''] def __init__( self :Tuple ,__snake_case :List[str] ,__snake_case :int="<s>" ,__snake_case :Tuple="</s>" ,__snake_case :List[Any]="<unk>" ,__snake_case :Optional[Any]="<pad>" ,__snake_case :Union[str, Any]="<::::>" ,__snake_case :Optional[Dict[str, Any]] = None ,**__snake_case :List[Any] ,) -> None: a__ = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__snake_case ,eos_token=__snake_case ,unk_token=__snake_case ,pad_token=__snake_case ,sep_token=__snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**__snake_case ,) a__ = vocab_file a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) @property def lowerCamelCase__( self :Dict ) -> Dict: return self.sp_model.get_piece_size() def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :str ) -> str: a__ = self.__dict__.copy() a__ = None return state def __setstate__( self :Optional[int] ,__snake_case :str ) -> Any: a__ = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): a__ = {} a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__( self :List[Any] ,__snake_case :str ) -> List[str]: return self.sp_model.encode(__snake_case ,out_type=__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :Optional[Any] ) -> int: return self.sp_model.piece_to_id(__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :List[str] ) -> Tuple: a__ = self.sp_model.IdToPiece(__snake_case ) return token def lowerCamelCase__( self :Optional[Any] ,__snake_case :Tuple ) -> List[str]: a__ = [] a__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__snake_case ) + token a__ = [] else: current_sub_tokens.append(__snake_case ) out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def lowerCamelCase__( self :Any ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case ,'wb' ) as fi: a__ = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
714
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal snake_case : int = datasets.utils.logging.get_logger(__name__) snake_case : List[Any] = ['''names''', '''prefix'''] snake_case : List[Any] = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] snake_case : List[Any] = ['''encoding_errors''', '''on_bad_lines'''] snake_case : str = ['''date_format'''] @dataclass class snake_case_ (datasets.BuilderConfig ): UpperCAmelCase__ : str = "," UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[Union[int, List[int], str]] = "infer" UpperCAmelCase__ : Optional[List[str]] = None UpperCAmelCase__ : Optional[List[str]] = None UpperCAmelCase__ : Optional[Union[int, str, List[int], List[str]]] = None UpperCAmelCase__ : Optional[Union[List[int], List[str]]] = None UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : bool = True UpperCAmelCase__ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCAmelCase__ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCAmelCase__ : Optional[list] = None UpperCAmelCase__ : Optional[list] = None UpperCAmelCase__ : bool = False UpperCAmelCase__ : Optional[Union[int, List[int]]] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[Union[str, List[str]]] = None UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = True UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : str = "." UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : str = '"' UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = True UpperCAmelCase__ : int = 0 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : int = 1_0_0_0_0 UpperCAmelCase__ : Optional[datasets.Features] = None UpperCAmelCase__ : Optional[str] = "strict" UpperCAmelCase__ : Literal["error", "warn", "skip"] = "error" UpperCAmelCase__ : Optional[str] = None def lowerCamelCase__( self :str ) -> Optional[int]: if self.delimiter is not None: a__ = self.delimiter if self.column_names is not None: a__ = self.column_names @property def lowerCamelCase__( self :Tuple ) -> str: a__ = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() ,__snake_case ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case_ (datasets.ArrowBasedBuilder ): UpperCAmelCase__ : Optional[Any] = CsvConfig def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__( self :str ,__snake_case :Tuple ) -> int: if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) a__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case ,(str, list, tuple) ): a__ = data_files if isinstance(__snake_case ,__snake_case ): a__ = [files] a__ = [dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'files': files} )] a__ = [] for split_name, files in data_files.items(): if isinstance(__snake_case ,__snake_case ): a__ = [files] a__ = [dl_manager.iter_files(__snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=__snake_case ,gen_kwargs={'files': files} ) ) return splits def lowerCamelCase__( self :int ,__snake_case :pa.Table ) -> pa.Table: if self.config.features is not None: a__ = self.config.features.arrow_schema if all(not require_storage_cast(__snake_case ) for feature in self.config.features.values() ): # cheaper cast a__ = pa.Table.from_arrays([pa_table[field.name] for field in schema] ,schema=__snake_case ) else: # more expensive cast; allows str <-> int/float or str to Audio for example a__ = table_cast(__snake_case ,__snake_case ) return pa_table def lowerCamelCase__( self :Tuple ,__snake_case :Optional[Any] ) -> Dict: a__ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str a__ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__snake_case ) else object for name, dtype, feature in zip(schema.names ,schema.types ,self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): a__ = pd.read_csv(__snake_case ,iterator=__snake_case ,dtype=__snake_case ,**self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__snake_case ): a__ = pa.Table.from_pandas(__snake_case ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__snake_case ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(__snake_case )}: {e}' ) raise
715
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Dict ) -> Any: a__ = ['a', 'b', 'c'] # Defaults to last layer if both are None a__ , a__ = get_aligned_output_features_output_indices(__snake_case ,__snake_case ,__snake_case ) self.assertEqual(__snake_case ,['c'] ) self.assertEqual(__snake_case ,[2] ) # Out indices set to match out features a__ , a__ = get_aligned_output_features_output_indices(['a', 'c'] ,__snake_case ,__snake_case ) self.assertEqual(__snake_case ,['a', 'c'] ) self.assertEqual(__snake_case ,[0, 2] ) # Out features set to match out indices a__ , a__ = get_aligned_output_features_output_indices(__snake_case ,[0, 2] ,__snake_case ) self.assertEqual(__snake_case ,['a', 'c'] ) self.assertEqual(__snake_case ,[0, 2] ) # Out features selected from negative indices a__ , a__ = get_aligned_output_features_output_indices(__snake_case ,[-3, -1] ,__snake_case ) self.assertEqual(__snake_case ,['a', 'c'] ) self.assertEqual(__snake_case ,[-3, -1] ) def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: # Stage names must be set with self.assertRaises(__snake_case ): verify_out_features_out_indices(['a', 'b'] ,(0, 1) ,__snake_case ) # Out features must be a list with self.assertRaises(__snake_case ): verify_out_features_out_indices(('a', 'b') ,(0, 1) ,['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(__snake_case ): verify_out_features_out_indices(['a', 'b'] ,(0, 1) ,['a'] ) # Out indices must be a list or tuple with self.assertRaises(__snake_case ): verify_out_features_out_indices(__snake_case ,0 ,['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(__snake_case ): verify_out_features_out_indices(__snake_case ,(0, 1) ,['a'] ) # Out features and out indices must be the same length with self.assertRaises(__snake_case ): verify_out_features_out_indices(['a', 'b'] ,(0,) ,['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(__snake_case ): verify_out_features_out_indices(['a', 'b'] ,(0, 2) ,['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(__snake_case ): verify_out_features_out_indices(['b', 'a'] ,(0, 1) ,['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] ,(0, 1, -1) ,['a', 'b', 'c', 'd'] ) def lowerCamelCase__( self :List[Any] ) -> Optional[int]: a__ = BackboneMixin() a__ = ['a', 'b', 'c'] a__ = ['a', 'c'] a__ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features ,['a', 'c'] ) self.assertEqual(backbone.out_indices ,[0, 2] ) # Check out features and indices are updated correctly a__ = ['a', 'b'] self.assertEqual(backbone.out_features ,['a', 'b'] ) self.assertEqual(backbone.out_indices ,[0, 1] ) a__ = [-3, -1] self.assertEqual(backbone.out_features ,['a', 'c'] ) self.assertEqual(backbone.out_indices ,[-3, -1] )
716
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : List[Any] = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : str = '''trocr''' UpperCAmelCase__ : List[Any] = ['''past_key_values'''] UpperCAmelCase__ : Optional[Any] = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self :Any ,__snake_case :int=5_02_65 ,__snake_case :Dict=10_24 ,__snake_case :List[str]=12 ,__snake_case :List[Any]=16 ,__snake_case :Optional[int]=40_96 ,__snake_case :Union[str, Any]="gelu" ,__snake_case :Optional[int]=5_12 ,__snake_case :Tuple=0.1 ,__snake_case :Any=0.0 ,__snake_case :str=0.0 ,__snake_case :Optional[Any]=2 ,__snake_case :Union[str, Any]=0.02 ,__snake_case :List[str]=0.0 ,__snake_case :Union[str, Any]=True ,__snake_case :List[Any]=False ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Union[str, Any]=1 ,__snake_case :List[str]=0 ,__snake_case :List[Any]=2 ,**__snake_case :List[Any] ,) -> Optional[Any]: a__ = vocab_size a__ = d_model a__ = decoder_layers a__ = decoder_attention_heads a__ = decoder_ffn_dim a__ = activation_function a__ = max_position_embeddings a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = init_std a__ = decoder_layerdrop a__ = use_cache a__ = scale_embedding a__ = use_learned_position_embeddings a__ = layernorm_embedding super().__init__( pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,decoder_start_token_id=__snake_case ,**__snake_case ,)
717
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case : Optional[Any] = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys snake_case : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
718
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py snake_case : Union[str, Any] = '''src/diffusers''' snake_case : int = '''.''' # This is to make sure the diffusers module imported is the one in the repo. snake_case : int = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) snake_case : Union[str, Any] = spec.loader.load_module() def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : int ): return line.startswith(__lowerCAmelCase ) or len(__lowerCAmelCase ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , __lowerCAmelCase ) is not None def __lowercase ( __lowerCAmelCase : Any ): a__ = object_name.split('.' ) a__ = 0 # First let's find the module where our object lives. a__ = parts[i] while i < len(__lowerCAmelCase ) and not os.path.isfile(os.path.join(__lowerCAmelCase , F'{module}.py' ) ): i += 1 if i < len(__lowerCAmelCase ): a__ = os.path.join(__lowerCAmelCase , parts[i] ) if i >= len(__lowerCAmelCase ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(__lowerCAmelCase , F'{module}.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: a__ = f.readlines() # Now let's find the class / func in the code! a__ = '' a__ = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCAmelCase ) and re.search(RF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCAmelCase ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). a__ = line_index while line_index < len(__lowerCAmelCase ) and _should_continue(lines[line_index] , __lowerCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a__ = lines[start_index:line_index] return "".join(__lowerCAmelCase ) snake_case : List[Any] = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') snake_case : Tuple = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') snake_case : str = re.compile(r'''<FILL\s+[^>]*>''') def __lowercase ( __lowerCAmelCase : Union[str, Any] ): a__ = code.split('\n' ) a__ = 0 while idx < len(__lowerCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCAmelCase ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def __lowercase ( __lowerCAmelCase : Any ): a__ = len(get_indent(__lowerCAmelCase ) ) > 0 if has_indent: a__ = F'class Bla:\n{code}' a__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=__lowerCAmelCase ) a__ = black.format_str(__lowerCAmelCase , mode=__lowerCAmelCase ) a__ , a__ = style_docstrings_in_code(__lowerCAmelCase ) return result[len('class Bla:\n' ) :] if has_indent else result def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict=False ): with open(__lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: a__ = f.readlines() a__ = [] a__ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCAmelCase ): a__ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. a__ , a__ , a__ = search.groups() a__ = find_code_in_diffusers(__lowerCAmelCase ) a__ = get_indent(__lowerCAmelCase ) a__ = line_index + 1 if indent == theoretical_indent else line_index + 2 a__ = theoretical_indent a__ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. a__ = True while line_index < len(__lowerCAmelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCAmelCase ): break a__ = lines[line_index] a__ = _should_continue(__lowerCAmelCase , __lowerCAmelCase ) and re.search(F'^{indent}# End copy' , __lowerCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a__ = lines[start_index:line_index] a__ = ''.join(__lowerCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies a__ = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(__lowerCAmelCase ) is None] a__ = '\n'.join(__lowerCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCAmelCase ) > 0: a__ = replace_pattern.replace('with' , '' ).split(',' ) a__ = [_re_replace_pattern.search(__lowerCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue a__ , a__ , a__ = pattern.groups() a__ = re.sub(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if option.strip() == "all-casing": a__ = re.sub(obja.lower() , obja.lower() , __lowerCAmelCase ) a__ = re.sub(obja.upper() , obja.upper() , __lowerCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line a__ = blackify(lines[start_index - 1] + theoretical_code ) a__ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: a__ = lines[:start_index] + [theoretical_code] + lines[line_index:] a__ = start_index + 1 if overwrite and len(__lowerCAmelCase ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__lowerCAmelCase ) return diffs def __lowercase ( __lowerCAmelCase : bool = False ): a__ = glob.glob(os.path.join(__lowerCAmelCase , '**/*.py' ) , recursive=__lowerCAmelCase ) a__ = [] for filename in all_files: a__ = is_copy_consistent(__lowerCAmelCase , __lowerCAmelCase ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(__lowerCAmelCase ) > 0: a__ = '\n'.join(__lowerCAmelCase ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') snake_case : str = parser.parse_args() check_copies(args.fix_and_overwrite)
719
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=None , __lowerCAmelCase : str=None , __lowerCAmelCase : str=None , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Tuple=None , ): if attention_mask is None: a__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: a__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: a__ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__lowerCAmelCase ) if decoder_head_mask is None: a__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__lowerCAmelCase ) if cross_attn_head_mask is None: a__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__lowerCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class snake_case_ : def __init__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Dict=13 ,__snake_case :str=7 ,__snake_case :Tuple=True ,__snake_case :Optional[int]=False ,__snake_case :List[Any]=99 ,__snake_case :str=16 ,__snake_case :Optional[Any]=2 ,__snake_case :List[str]=4 ,__snake_case :Optional[Any]=4 ,__snake_case :int="relu" ,__snake_case :Dict=0.1 ,__snake_case :List[str]=0.1 ,__snake_case :Union[str, Any]=0.0 ,__snake_case :Any=0.0 ,__snake_case :List[str]=20 ,__snake_case :Tuple=2 ,__snake_case :Dict=1 ,__snake_case :Optional[Any]=0 ,) -> List[Any]: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = encoder_layerdrop a__ = decoder_layerdrop a__ = max_position_embeddings a__ = eos_token_id a__ = pad_token_id a__ = bos_token_id def lowerCamelCase__( self :Any ) -> List[str]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = self.eos_token_id # Eos Token a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input a__ = input_ids.clamp(self.pad_token_id + 1 ) a__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) a__ = self.get_config() a__ = prepare_mam_aaa_inputs_dict(__snake_case ,__snake_case ,__snake_case ) return config, inputs_dict def lowerCamelCase__( self :List[str] ) -> str: return MaMaaaConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,encoder_layerdrop=self.encoder_layerdrop ,decoder_layerdrop=self.decoder_layerdrop ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :int ) -> str: a__ , a__ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Dict ,__snake_case :Optional[Any] ) -> Union[str, Any]: a__ = MaMaaaModel(config=__snake_case ).get_decoder().to(__snake_case ).eval() a__ = inputs_dict['input_ids'] a__ = inputs_dict['attention_mask'] a__ = inputs_dict['head_mask'] # first forward pass a__ = model(__snake_case ,attention_mask=__snake_case ,head_mask=__snake_case ,use_cache=__snake_case ) a__ , a__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids a__ = ids_tensor((self.batch_size, 3) ,config.vocab_size ) a__ = ids_tensor((self.batch_size, 3) ,2 ) # append to next input_ids and a__ = torch.cat([input_ids, next_tokens] ,dim=-1 ) a__ = torch.cat([attention_mask, next_attn_mask] ,dim=-1 ) a__ = model(__snake_case ,attention_mask=__snake_case )['last_hidden_state'] a__ = model(__snake_case ,attention_mask=__snake_case ,past_key_values=__snake_case )[ 'last_hidden_state' ] # select random slice a__ = ids_tensor((1,) ,output_from_past.shape[-1] ).item() a__ = output_from_no_past[:, -3:, random_slice_idx].detach() a__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case ,__snake_case ,atol=1E-2 ) ) def lowerCamelCase__( self :Tuple ,__snake_case :Any ,__snake_case :Dict ) -> Optional[int]: a__ = MaMaaaModel(config=__snake_case ).to(__snake_case ).eval() a__ = model(**__snake_case ) a__ = outputs.encoder_last_hidden_state a__ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: a__ = model.get_encoder() encoder.save_pretrained(__snake_case ) a__ = MaMaaaEncoder.from_pretrained(__snake_case ).to(__snake_case ) a__ = encoder(inputs_dict['input_ids'] ,attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: a__ = model.get_decoder() decoder.save_pretrained(__snake_case ) a__ = MaMaaaDecoder.from_pretrained(__snake_case ).to(__snake_case ) a__ = decoder( input_ids=inputs_dict['decoder_input_ids'] ,attention_mask=inputs_dict['decoder_attention_mask'] ,encoder_hidden_states=__snake_case ,encoder_attention_mask=inputs_dict['attention_mask'] ,)[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) UpperCAmelCase__ : int = (MaMaaaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ : str = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) UpperCAmelCase__ : int = True UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Union[str, Any] = False def lowerCamelCase__( self :Dict ,__snake_case :int ,__snake_case :Any ,__snake_case :List[Any] ,__snake_case :List[str] ,__snake_case :List[Any] ) -> Tuple: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCamelCase__( self :List[Any] ) -> Dict: a__ = MaMaaaModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ) def lowerCamelCase__( self :int ) -> Dict: self.config_tester.run_common_tests() def lowerCamelCase__( self :List[str] ) -> List[Any]: a__ , a__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__snake_case ) a__ , a__ = model_class.from_pretrained(__snake_case ,output_loading_info=__snake_case ) self.assertEqual(info['missing_keys'] ,[] ) def lowerCamelCase__( self :Tuple ) -> Optional[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__snake_case ) def lowerCamelCase__( self :Dict ) -> Optional[Any]: a__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__snake_case ) def lowerCamelCase__( self :Union[str, Any] ) -> str: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): a__ = model_class(__snake_case ) model.to(__snake_case ) model.eval() a__ = copy.deepcopy(self._prepare_for_class(__snake_case ,__snake_case ) ) if not self.is_encoder_decoder: a__ = inputs['input_ids'] del inputs["input_ids"] else: a__ = inputs['input_ids'] a__ = inputs.get('decoder_input_ids' ,__snake_case ) del inputs["input_ids"] inputs.pop('decoder_input_ids' ,__snake_case ) a__ = model.get_input_embeddings() if not self.is_encoder_decoder: a__ = wte(__snake_case ) else: a__ = wte(__snake_case ) a__ = wte(__snake_case ) with torch.no_grad(): model(**__snake_case )[0] def lowerCamelCase__( self :Any ) -> Tuple: a__ , a__ = self.model_tester.prepare_config_and_inputs() a__ = input_dict['input_ids'] a__ = input_ids.ne(1 ).to(__snake_case ) a__ = MaMaaaForConditionalGeneration(__snake_case ).eval().to(__snake_case ) if torch_device == "cuda": model.half() model.generate(__snake_case ,attention_mask=__snake_case ) model.generate(num_beams=4 ,do_sample=__snake_case ,early_stopping=__snake_case ,num_return_sequences=3 ) def __lowercase ( __lowerCAmelCase : Optional[int] ): return torch.tensor(__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase ) snake_case : Any = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class snake_case_ (unittest.TestCase ): @cached_property def lowerCamelCase__( self :Optional[int] ) -> Optional[Any]: return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def lowerCamelCase__( self :Union[str, Any] ) -> Optional[Any]: a__ = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(__snake_case ) a__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) a__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) a__ = prepare_mam_aaa_inputs_dict(model.config ,__snake_case ,__snake_case ) with torch.no_grad(): a__ = model(**__snake_case )[0] a__ = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape ,__snake_case ) # change to expected output here a__ = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] ,device=__snake_case ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__snake_case ,atol=__snake_case ) ) def lowerCamelCase__( self :Tuple ) -> Optional[int]: a__ = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__snake_case ) # change to intended input a__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) a__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) a__ = prepare_mam_aaa_inputs_dict(model.config ,__snake_case ,__snake_case ) with torch.no_grad(): a__ = model(**__snake_case )[0] a__ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape ,__snake_case ) # change to expected output here a__ = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] ,device=__snake_case ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__snake_case ,atol=__snake_case ) ) def lowerCamelCase__( self :Dict ) -> Union[str, Any]: a__ = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__snake_case ) a__ = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ,src_lang='fr' ,tgt_lang='en' ) a__ = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams a__ = tokenizer(__snake_case ,padding=__snake_case ,return_tensors='pt' ) a__ = model.generate( input_ids=dct['input_ids'].to(__snake_case ) ,attention_mask=dct['attention_mask'].to(__snake_case ) ,num_beams=5 ,forced_bos_token_id=tokenizer.get_lang_id('en' ) ,) a__ = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] a__ = tokenizer.batch_decode( hypotheses_batch.tolist() ,clean_up_tokenization_spaces=__snake_case ,skip_special_tokens=__snake_case ) assert generated == expected_en
720
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING snake_case : List[str] = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = '''upernet''' def __init__( self :Union[str, Any] ,__snake_case :Optional[Any]=None ,__snake_case :Optional[Any]=5_12 ,__snake_case :List[Any]=0.02 ,__snake_case :List[Any]=[1, 2, 3, 6] ,__snake_case :Union[str, Any]=True ,__snake_case :Union[str, Any]=0.4 ,__snake_case :List[str]=3_84 ,__snake_case :Union[str, Any]=2_56 ,__snake_case :int=1 ,__snake_case :Any=False ,__snake_case :str=2_55 ,**__snake_case :List[str] ,) -> List[str]: super().__init__(**__snake_case ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) a__ = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(__snake_case ,__snake_case ): a__ = backbone_config.get('model_type' ) a__ = CONFIG_MAPPING[backbone_model_type] a__ = config_class.from_dict(__snake_case ) a__ = backbone_config a__ = hidden_size a__ = initializer_range a__ = pool_scales a__ = use_auxiliary_head a__ = auxiliary_loss_weight a__ = auxiliary_in_channels a__ = auxiliary_channels a__ = auxiliary_num_convs a__ = auxiliary_concat_input a__ = loss_ignore_index def lowerCamelCase__( self :List[str] ) -> str: a__ = copy.deepcopy(self.__dict__ ) a__ = self.backbone_config.to_dict() a__ = self.__class__.model_type return output
721
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
700
def __lowercase ( __lowerCAmelCase : int ): if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL snake_case : Optional[int] = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : int ): if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCAmelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = ['''pixel_values'''] def __init__( self :Dict ,__snake_case :bool = True ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :bool = True ,__snake_case :Dict[str, int] = None ,__snake_case :bool = True ,__snake_case :Union[int, float] = 1 / 2_55 ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,**__snake_case :Optional[int] ,) -> None: super().__init__(**__snake_case ) a__ = size if size is not None else {'shortest_edge': 2_56} a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ) a__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ,param_name='crop_size' ) a__ = do_resize a__ = size a__ = do_center_crop a__ = crop_size a__ = resample a__ = do_rescale a__ = rescale_factor a__ = offset a__ = do_normalize a__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__( self :Optional[Any] ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :str ,) -> np.ndarray: a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ) if "shortest_edge" in size: a__ = get_resize_output_image_size(__snake_case ,size['shortest_edge'] ,default_to_square=__snake_case ) elif "height" in size and "width" in size: a__ = (size['height'], size['width']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__snake_case ,size=__snake_case ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :str ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__snake_case ,size=(size['height'], size['width']) ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :Union[int, float] ,__snake_case :bool = True ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :str ,) -> Union[str, Any]: a__ = image.astype(np.floataa ) if offset: a__ = image - (scale / 2) return rescale(__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :Union[float, List[float]] ,__snake_case :Union[float, List[float]] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Union[str, Any] ,) -> np.ndarray: return normalize(__snake_case ,mean=__snake_case ,std=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Optional[int] ,__snake_case :ImageInput ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :bool = None ,__snake_case :float = None ,__snake_case :bool = None ,__snake_case :bool = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[ChannelDimension] = ChannelDimension.FIRST ,) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. a__ = to_numpy_array(__snake_case ) if do_resize: a__ = self.resize(image=__snake_case ,size=__snake_case ,resample=__snake_case ) if do_center_crop: a__ = self.center_crop(__snake_case ,size=__snake_case ) if do_rescale: a__ = self.rescale(image=__snake_case ,scale=__snake_case ,offset=__snake_case ) if do_normalize: a__ = self.normalize(image=__snake_case ,mean=__snake_case ,std=__snake_case ) a__ = to_channel_dimension_format(__snake_case ,__snake_case ) return image def lowerCamelCase__( self :Any ,__snake_case :ImageInput ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :bool = None ,__snake_case :float = None ,__snake_case :bool = None ,__snake_case :bool = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :Any ,) -> PIL.Image.Image: a__ = do_resize if do_resize is not None else self.do_resize a__ = resample if resample is not None else self.resample a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = offset if offset is not None else self.offset a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = size if size is not None else self.size a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ) a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(__snake_case ,param_name='crop_size' ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) a__ = make_batched(__snake_case ) a__ = [ [ self._preprocess_image( image=__snake_case ,do_resize=__snake_case ,size=__snake_case ,resample=__snake_case ,do_center_crop=__snake_case ,crop_size=__snake_case ,do_rescale=__snake_case ,rescale_factor=__snake_case ,offset=__snake_case ,do_normalize=__snake_case ,image_mean=__snake_case ,image_std=__snake_case ,data_format=__snake_case ,) for img in video ] for video in videos ] a__ = {'pixel_values': videos} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
701
def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a__ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order a__ = sorted(__lowerCAmelCase ) # declaring useful variables a__ = len(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a__ = sorted_profit_by_weight[length - i - 1] a__ = profit_by_weight.index(__lowerCAmelCase ) a__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Tuple = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Optional[int] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : List[str] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
657
0
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case : Dict = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] ): a__ = state_dict.pop(__lowerCAmelCase ) a__ = val def __lowercase ( __lowerCAmelCase : Optional[Any] ): a__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: a__ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) a__ = value else: a__ = value return new_state_dict def __lowercase ( __lowerCAmelCase : List[str] ): a__ = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a__ = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) a__ = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a__ = in_proj_weight[:2_5_6, :] a__ = in_proj_bias[:2_5_6] a__ = in_proj_weight[2_5_6:5_1_2, :] a__ = in_proj_bias[2_5_6:5_1_2] a__ = in_proj_weight[-2_5_6:, :] a__ = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a__ = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a__ = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a__ = in_proj_weight[:2_5_6, :] a__ = in_proj_bias[:2_5_6] a__ = in_proj_weight[2_5_6:5_1_2, :] a__ = in_proj_bias[2_5_6:5_1_2] a__ = in_proj_weight[-2_5_6:, :] a__ = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention a__ = state_dict.pop( F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) a__ = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a__ = in_proj_weight_cross_attn[:2_5_6, :] a__ = in_proj_bias_cross_attn[:2_5_6] a__ = in_proj_weight_cross_attn[2_5_6:5_1_2, :] a__ = in_proj_bias_cross_attn[2_5_6:5_1_2] a__ = in_proj_weight_cross_attn[-2_5_6:, :] a__ = in_proj_bias_cross_attn[-2_5_6:] def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str ): a__ , a__ = image.size a__ = max(__lowerCAmelCase , __lowerCAmelCase ) a__ = 8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 a__ = target_max_size / current_max_size a__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __lowercase ( __lowerCAmelCase : str ): a__ = F.to_tensor(__lowerCAmelCase ) a__ = F.normalize(__lowerCAmelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] ): logger.info('Converting model...' ) # load original state dict a__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = rename_backbone_keys(__lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a__ = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): a__ = state_dict.pop(__lowerCAmelCase ) a__ = val # create HuggingFace model and load state dict a__ = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: a__ = 1_5 a__ = 2 a__ = {0: 'table', 1: 'table rotated'} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} else: a__ = 1_2_5 a__ = 6 a__ = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } a__ = idalabel a__ = {v: k for k, v in idalabel.items()} a__ = DetrImageProcessor( format='coco_detection' , max_size=8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 ) a__ = TableTransformerForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # verify our conversion a__ = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' a__ = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=__lowerCAmelCase ) a__ = Image.open(__lowerCAmelCase ).convert('RGB' ) a__ = normalize(resize(__lowerCAmelCase , __lowerCAmelCase ) ).unsqueeze(0 ) a__ = model(__lowerCAmelCase ) if "detection" in checkpoint_url: a__ = (1, 1_5, 3) a__ = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) a__ = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: a__ = (1, 1_2_5, 7) a__ = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) a__ = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) a__ = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(__lowerCAmelCase ) image_processor.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case : Tuple = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
702
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
from maths.prime_factors import prime_factors def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): a__ = F'Input value of [number={number}] must be an integer' raise TypeError(__lowerCAmelCase ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(__lowerCAmelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
703
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : int = logging.get_logger(__name__) snake_case : Dict = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = '''vivit''' def __init__( self :Union[str, Any] ,__snake_case :Dict=2_24 ,__snake_case :Any=32 ,__snake_case :Any=[2, 16, 16] ,__snake_case :Optional[int]=3 ,__snake_case :Dict=7_68 ,__snake_case :Any=12 ,__snake_case :int=12 ,__snake_case :Tuple=30_72 ,__snake_case :Optional[Any]="gelu_fast" ,__snake_case :Dict=0.0 ,__snake_case :Union[str, Any]=0.0 ,__snake_case :str=0.02 ,__snake_case :Any=1E-06 ,__snake_case :Any=True ,**__snake_case :Optional[Any] ,) -> List[Any]: a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = initializer_range a__ = layer_norm_eps a__ = image_size a__ = num_frames a__ = tubelet_size a__ = num_channels a__ = qkv_bias super().__init__(**__snake_case )
704
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = 1 @register_to_config def __init__( self :Optional[int] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :Any ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :int ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any ) -> Optional[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Any ) -> Union[str, Any]: return self.config.num_train_timesteps
657
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') snake_case : List[Any] = logging.getLogger(__name__) @dataclass class snake_case_ : UpperCAmelCase__ : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCAmelCase__ : Optional[int] = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ : Optional[int] = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ : Optional[int] = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class snake_case_ : UpperCAmelCase__ : str = field( default=lowerCamelCase_ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase__ : str = field( default=lowerCamelCase_ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) UpperCAmelCase__ : Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) UpperCAmelCase__ : Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase__ : Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase__ : Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCAmelCase__ : Optional[bool] = field( default=lowerCamelCase_ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCAmelCase__ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def __lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) a__ , a__ , a__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , __lowerCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a__ = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) datasets.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. a__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: a__ = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: a__ = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) a__ = train_dataset.features['label'].names if training_args.do_eval: a__ = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) a__ = eval_dataset.features['label'].names if training_args.do_predict: a__ = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) a__ = predict_dataset.features['label'].names # Labels a__ = len(__lowerCAmelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCAmelCase , idalabel={str(__lowerCAmelCase ): label for i, label in enumerate(__lowerCAmelCase )} , labelaid={label: i for i, label in enumerate(__lowerCAmelCase )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a__ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: a__ = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch a__ = False def preprocess_function(__lowerCAmelCase : List[Any] ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=__lowerCAmelCase , max_length=data_args.max_seq_length , truncation=__lowerCAmelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: a__ = min(len(__lowerCAmelCase ) , data_args.max_train_samples ) a__ = train_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): a__ = train_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(__lowerCAmelCase ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: a__ = min(len(__lowerCAmelCase ) , data_args.max_eval_samples ) a__ = eval_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): a__ = eval_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: a__ = min(len(__lowerCAmelCase ) , data_args.max_predict_samples ) a__ = predict_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): a__ = predict_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function a__ = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase : EvalPrediction ): a__ = p.predictions[0] if isinstance(p.predictions , __lowerCAmelCase ) else p.predictions a__ = np.argmax(__lowerCAmelCase , axis=1 ) return metric.compute(predictions=__lowerCAmelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: a__ = default_data_collator elif training_args.fpaa: a__ = DataCollatorWithPadding(__lowerCAmelCase , pad_to_multiple_of=8 ) else: a__ = None # Initialize our Trainer a__ = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: a__ = None if training_args.resume_from_checkpoint is not None: a__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: a__ = last_checkpoint a__ = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) a__ = train_result.metrics a__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCAmelCase ) ) a__ = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __lowerCAmelCase ) trainer.save_metrics('train' , __lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) a__ = trainer.evaluate(eval_dataset=__lowerCAmelCase ) a__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCAmelCase ) a__ = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics('eval' , __lowerCAmelCase ) trainer.save_metrics('eval' , __lowerCAmelCase ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) a__ , a__ , a__ = trainer.predict(__lowerCAmelCase , metric_key_prefix='predict' ) a__ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__lowerCAmelCase ) ) a__ = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics('predict' , __lowerCAmelCase ) trainer.save_metrics('predict' , __lowerCAmelCase ) a__ = np.argmax(__lowerCAmelCase , axis=1 ) a__ = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(__lowerCAmelCase ): a__ = label_list[item] writer.write(F'{index}\t{item}\n' ) if __name__ == "__main__": main()
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Any = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor'''] snake_case : int = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import math def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float ): return math.pow(__lowerCAmelCase , 2 ) - a def __lowercase ( __lowerCAmelCase : float ): return 2 * x def __lowercase ( __lowerCAmelCase : float ): a__ = 2.0 while start <= a: a__ = math.pow(__lowerCAmelCase , 2 ) return start def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : int = 9_9_9_9 , __lowerCAmelCase : float = 0.00_000_000_000_001 ): if a < 0: raise ValueError('math domain error' ) a__ = get_initial_point(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ): a__ = value a__ = value - fx(__lowerCAmelCase , __lowerCAmelCase ) / fx_derivative(__lowerCAmelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
706
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
0
from __future__ import annotations import math snake_case = '''2020.9.26''' snake_case = '''xcodz-dot, cclaus, dhruvmanila''' def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): if not all(isinstance(__lowerCAmelCase , (float, int) ) for val in locals().values() ): a__ = F'Input values must either be float or int: {list(locals().values() )}' raise TypeError(__lowerCAmelCase ) a__ = ((x * distance) / (z + distance)) * scale a__ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : str , __lowerCAmelCase : float ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Axis must be a str' ) a__ = locals() del input_variables["axis"] if not all(isinstance(__lowerCAmelCase , (float, int) ) for val in input_variables.values() ): a__ = ( 'Input values except axis must either be float or int: ' F'{list(input_variables.values() )}' ) raise TypeError(__lowerCAmelCase ) a__ = (angle % 3_6_0) / 4_5_0 * 1_8_0 / math.pi if axis == "z": a__ = x * math.cos(__lowerCAmelCase ) - y * math.sin(__lowerCAmelCase ) a__ = y * math.cos(__lowerCAmelCase ) + x * math.sin(__lowerCAmelCase ) a__ = z elif axis == "x": a__ = y * math.cos(__lowerCAmelCase ) - z * math.sin(__lowerCAmelCase ) a__ = z * math.cos(__lowerCAmelCase ) + y * math.sin(__lowerCAmelCase ) a__ = x elif axis == "y": a__ = x * math.cos(__lowerCAmelCase ) - z * math.sin(__lowerCAmelCase ) a__ = z * math.cos(__lowerCAmelCase ) + x * math.sin(__lowerCAmelCase ) a__ = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
707
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = XLMTokenizer UpperCAmelCase__ : Optional[Any] = False def lowerCamelCase__( self :Dict ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] a__ = dict(zip(__snake_case ,range(len(__snake_case ) ) ) ) a__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] a__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) a__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ) as fp: fp.write(json.dumps(__snake_case ) ) with open(self.merges_file ,'w' ) as fp: fp.write('\n'.join(__snake_case ) ) def lowerCamelCase__( self :Tuple ,__snake_case :Optional[Any] ) -> List[str]: a__ = 'lower newer' a__ = 'lower newer' return input_text, output_text def lowerCamelCase__( self :Tuple ) -> int: a__ = XLMTokenizer(self.vocab_file ,self.merges_file ) a__ = 'lower' a__ = ['low', 'er</w>'] a__ = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case ,__snake_case ) a__ = tokens + ['<unk>'] a__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) ,__snake_case ) @slow def lowerCamelCase__( self :int ) -> List[Any]: a__ = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) a__ = tokenizer.encode('sequence builders' ,add_special_tokens=__snake_case ) a__ = tokenizer.encode('multi-sequence build' ,add_special_tokens=__snake_case ) a__ = tokenizer.build_inputs_with_special_tokens(__snake_case ) a__ = tokenizer.build_inputs_with_special_tokens(__snake_case ,__snake_case ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
708
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
657
0
import os def __lowercase ( ): with open(os.path.dirname(__lowerCAmelCase ) + '/p022_names.txt' ) as file: a__ = str(file.readlines()[0] ) a__ = names.replace('"' , '' ).split(',' ) names.sort() a__ = 0 a__ = 0 for i, name in enumerate(__lowerCAmelCase ): for letter in name: name_score += ord(__lowerCAmelCase ) - 6_4 total_score += (i + 1) * name_score a__ = 0 return total_score if __name__ == "__main__": print(solution())
709
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Any = logging.get_logger(__name__) snake_case : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :Dict=None ,__snake_case :int=None ,*__snake_case :str ,**__snake_case :Union[str, Any] ) -> Tuple: super().__init__(*__snake_case ,**__snake_case ) if config is None: assert isinstance(self.model ,__snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) a__ = self.model.config else: a__ = config a__ = data_args a__ = self.config.tgt_vocab_size if isinstance(self.config ,__snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: a__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ = label_smoothed_nll_loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ) -> Tuple: if self.optimizer is None: a__ = ['bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] a__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ = Adafactor a__ = {'scale_parameter': False, 'relative_step': False} else: a__ = AdamW a__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } a__ = self.args.learning_rate if self.sharded_ddp: a__ = OSS( params=__snake_case ,optim=__snake_case ,**__snake_case ,) else: a__ = optimizer_cls(__snake_case ,**__snake_case ) if self.lr_scheduler is None: a__ = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ) -> Union[str, Any]: a__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a__ = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__snake_case ) return scheduler def lowerCamelCase__( self :Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :Any ) -> Optional[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ = model(**__snake_case ,labels=__snake_case ,use_cache=__snake_case )[:2] else: # compute label smoothed loss a__ = model(**__snake_case ,use_cache=__snake_case )[0] a__ = torch.nn.functional.log_softmax(__snake_case ,dim=-1 ) a__ , a__ = self.loss_fn(__snake_case ,__snake_case ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> Any: a__ = inputs.pop('labels' ) a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) return loss def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ,__snake_case :bool ,__snake_case :Optional[List[str]] = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a__ = self._prepare_inputs(__snake_case ) a__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**__snake_case ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) a__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data a__ , a__ = self._compute_loss(__snake_case ,__snake_case ,__snake_case ) a__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ = self._pad_tensors_to_max_len(__snake_case ,gen_kwargs['max_length'] ) return (loss, logits, labels) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :Union[str, Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined a__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) a__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a__ = tensor return padded_tensor
657
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run snake_case : str = True except (ImportError, AttributeError): snake_case : Dict = object def A ( *__lowerCAmelCase : Any , **__lowerCAmelCase : Optional[Any] ): pass snake_case : Dict = False snake_case : Dict = logging.get_logger('''transformers-cli/serving''') def A ( __lowerCAmelCase : Namespace ): a__ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__lowerCAmelCase , args.host , args.port , args.workers ) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : dict class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[str] UpperCAmelCase__ : Optional[List[int]] class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : str class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Any class snake_case_ (lowerCamelCase_ ): @staticmethod def lowerCamelCase__( __snake_case :ArgumentParser ) -> Any: a__ = parser.add_parser( 'serve' ,help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' ,type=__snake_case ,choices=get_supported_tasks() ,help='The task to run the pipeline on' ,) serve_parser.add_argument('--host' ,type=__snake_case ,default='localhost' ,help='Interface the server will listen on.' ) serve_parser.add_argument('--port' ,type=__snake_case ,default=88_88 ,help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' ,type=__snake_case ,default=1 ,help='Number of http workers' ) serve_parser.add_argument('--model' ,type=__snake_case ,help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' ,type=__snake_case ,help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' ,type=__snake_case ,help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' ,type=__snake_case ,default=-1 ,help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' ,) serve_parser.set_defaults(func=__snake_case ) def __init__( self :int ,__snake_case :Pipeline ,__snake_case :str ,__snake_case :int ,__snake_case :int ) -> Optional[int]: a__ = pipeline a__ = host a__ = port a__ = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(F'Serving model over {host}:{port}' ) a__ = FastAPI( routes=[ APIRoute( '/' ,self.model_info ,response_model=__snake_case ,response_class=__snake_case ,methods=['GET'] ,), APIRoute( '/tokenize' ,self.tokenize ,response_model=__snake_case ,response_class=__snake_case ,methods=['POST'] ,), APIRoute( '/detokenize' ,self.detokenize ,response_model=__snake_case ,response_class=__snake_case ,methods=['POST'] ,), APIRoute( '/forward' ,self.forward ,response_model=__snake_case ,response_class=__snake_case ,methods=['POST'] ,), ] ,timeout=6_00 ,) def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: run(self._app ,host=self.host ,port=self.port ,workers=self.workers ) def lowerCamelCase__( self :List[Any] ) -> List[Any]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowerCamelCase__( self :str ,__snake_case :str = Body(__snake_case ,embed=__snake_case ) ,__snake_case :bool = Body(__snake_case ,embed=__snake_case ) ) -> Dict: try: a__ = self._pipeline.tokenizer.tokenize(__snake_case ) if return_ids: a__ = self._pipeline.tokenizer.convert_tokens_to_ids(__snake_case ) return ServeTokenizeResult(tokens=__snake_case ,tokens_ids=__snake_case ) else: return ServeTokenizeResult(tokens=__snake_case ) except Exception as e: raise HTTPException(status_code=5_00 ,detail={'model': '', 'error': str(__snake_case )} ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[int] = Body(__snake_case ,embed=__snake_case ) ,__snake_case :bool = Body(__snake_case ,embed=__snake_case ) ,__snake_case :bool = Body(__snake_case ,embed=__snake_case ) ,) -> str: try: a__ = self._pipeline.tokenizer.decode(__snake_case ,__snake_case ,__snake_case ) return ServeDeTokenizeResult(model='' ,text=__snake_case ) except Exception as e: raise HTTPException(status_code=5_00 ,detail={'model': '', 'error': str(__snake_case )} ) async def lowerCamelCase__( self :Tuple ,__snake_case :List[Any]=Body(__snake_case ,embed=__snake_case ) ) -> Dict: # Check we don't have empty string if len(__snake_case ) == 0: return ServeForwardResult(output=[] ,attention=[] ) try: # Forward through the model a__ = self._pipeline(__snake_case ) return ServeForwardResult(output=__snake_case ) except Exception as e: raise HTTPException(5_00 ,{'error': str(__snake_case )} )
710
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
0
from __future__ import annotations import math def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : bool , __lowerCAmelCase : list[int] , __lowerCAmelCase : float ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(__lowerCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , ) def __lowercase ( ): a__ = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] a__ = math.log(len(__lowerCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
711
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[str] = logging.get_logger(__name__) snake_case : int = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Any = '''mgp-str''' def __init__( self :List[Any] ,__snake_case :str=[32, 1_28] ,__snake_case :int=4 ,__snake_case :Any=3 ,__snake_case :int=27 ,__snake_case :str=38 ,__snake_case :List[Any]=5_02_57 ,__snake_case :str=3_05_22 ,__snake_case :List[str]=7_68 ,__snake_case :Dict=12 ,__snake_case :Any=12 ,__snake_case :List[Any]=4.0 ,__snake_case :Optional[Any]=True ,__snake_case :Optional[Any]=False ,__snake_case :List[str]=1E-5 ,__snake_case :Optional[Any]=0.0 ,__snake_case :List[str]=0.0 ,__snake_case :int=0.0 ,__snake_case :List[str]=False ,__snake_case :int=0.02 ,**__snake_case :List[Any] ,) -> Any: super().__init__(**__snake_case ) a__ = image_size a__ = patch_size a__ = num_channels a__ = max_token_length a__ = num_character_labels a__ = num_bpe_labels a__ = num_wordpiece_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = mlp_ratio a__ = distilled a__ = layer_norm_eps a__ = drop_rate a__ = qkv_bias a__ = attn_drop_rate a__ = drop_path_rate a__ = output_aa_attentions a__ = initializer_range
712
def __lowercase ( __lowerCAmelCase : int = 2_0_0 ): a__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] a__ = [0] * (pence + 1) a__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
657
0
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Any ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :str ,__snake_case :Dict=None ,__snake_case :str=1 ,__snake_case :Optional[int]="binary" ,__snake_case :Union[str, Any]=None ) -> Tuple: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
713
from manim import * class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = Rectangle(height=0.5 ,width=0.5 ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a__ = Rectangle(height=0.25 ,width=0.25 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('CPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(4 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('GPU' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Model' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a__ = [] a__ = [] for i, rect in enumerate(__snake_case ): a__ = fill.copy().set_fill(__snake_case ,opacity=0.8 ) target.move_to(__snake_case ) model_arr.append(__snake_case ) a__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case ,*__snake_case ) a__ = [meta_mem.copy() for i in range(6 )] a__ = [meta_mem.copy() for i in range(6 )] a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(*__snake_case ).arrange(__snake_case ,buff=0 ) a__ = VGroup(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0 ) a__ = Text('Disk' ,font_size=24 ) a__ = Group(__snake_case ,__snake_case ).arrange(__snake_case ,buff=0.5 ,aligned_edge=__snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(__snake_case ,__snake_case ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case ,__snake_case ) a__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(__snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__snake_case ) a__ = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) ) a__ = Square(0.3 ) input.set_fill(__snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__snake_case ,buff=0.5 ) self.play(Write(__snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__snake_case ,buff=0.02 ) self.play(MoveToTarget(__snake_case ) ) self.play(FadeOut(__snake_case ) ) a__ = Arrow(start=__snake_case ,end=__snake_case ,color=__snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a__ = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ) a__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__snake_case ) ,Circumscribe(model_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) a__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) a__ = AnimationGroup( FadeOut(__snake_case ,run_time=0.5 ) ,MoveToTarget(__snake_case ,run_time=0.5 ) ,FadeIn(__snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**__snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,Circumscribe(model_arr[i + 1] ,color=__snake_case ,**__snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=__snake_case ,**__snake_case ) ,Circumscribe(gpu_rect[0] ,color=__snake_case ,**__snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) a__ = a_c a__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__snake_case ) ,FadeOut(__snake_case ,run_time=0.5 ) ,) a__ = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ,run_time=3 ) ,MoveToTarget(__snake_case ) ) self.wait()
657
0