code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : List[str] = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[Any] = '''convbert''' def __init__( self :int ,__snake_case :str=3_05_22 ,__snake_case :Any=7_68 ,__snake_case :List[Any]=12 ,__snake_case :Tuple=12 ,__snake_case :Tuple=30_72 ,__snake_case :Tuple="gelu" ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Any=5_12 ,__snake_case :int=2 ,__snake_case :List[Any]=0.02 ,__snake_case :List[Any]=1E-12 ,__snake_case :Union[str, Any]=1 ,__snake_case :Optional[Any]=0 ,__snake_case :Tuple=2 ,__snake_case :Tuple=7_68 ,__snake_case :Dict=2 ,__snake_case :str=9 ,__snake_case :int=1 ,__snake_case :int=None ,**__snake_case :List[str] ,) -> Optional[Any]: super().__init__( pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,**__snake_case ,) a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = initializer_range a__ = layer_norm_eps a__ = embedding_size a__ = head_ratio a__ = conv_kernel_size a__ = num_groups a__ = classifier_dropout class snake_case_ (lowerCamelCase_ ): @property def lowerCamelCase__( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
714
from math import pi def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
657
0
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
715
from math import sqrt def __lowercase ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_1 ): a__ = 0 a__ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
657
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[Any] = logging.get_logger(__name__) snake_case : Any = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[int] = '''time_series_transformer''' UpperCAmelCase__ : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self :Any ,__snake_case :Optional[int] = None ,__snake_case :Optional[int] = None ,__snake_case :str = "student_t" ,__snake_case :str = "nll" ,__snake_case :int = 1 ,__snake_case :List[int] = [1, 2, 3, 4, 5, 6, 7] ,__snake_case :Optional[Union[str, bool]] = "mean" ,__snake_case :int = 0 ,__snake_case :int = 0 ,__snake_case :int = 0 ,__snake_case :int = 0 ,__snake_case :Optional[List[int]] = None ,__snake_case :Optional[List[int]] = None ,__snake_case :int = 32 ,__snake_case :int = 32 ,__snake_case :int = 2 ,__snake_case :int = 2 ,__snake_case :int = 2 ,__snake_case :int = 2 ,__snake_case :bool = True ,__snake_case :str = "gelu" ,__snake_case :int = 64 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :int = 1_00 ,__snake_case :float = 0.02 ,__snake_case :Optional[int]=True ,**__snake_case :Optional[Any] ,) -> str: # time series specific configuration a__ = prediction_length a__ = context_length or prediction_length a__ = distribution_output a__ = loss a__ = input_size a__ = num_time_features a__ = lags_sequence a__ = scaling a__ = num_dynamic_real_features a__ = num_static_real_features a__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) a__ = cardinality else: a__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) a__ = embedding_dimension else: a__ = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] a__ = num_parallel_samples # Transformer architecture configuration a__ = input_size * len(__snake_case ) + self._number_of_features a__ = d_model a__ = encoder_attention_heads a__ = decoder_attention_heads a__ = encoder_ffn_dim a__ = decoder_ffn_dim a__ = encoder_layers a__ = decoder_layers a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = encoder_layerdrop a__ = decoder_layerdrop a__ = activation_function a__ = init_std a__ = use_cache super().__init__(is_encoder_decoder=__snake_case ,**__snake_case ) @property def lowerCamelCase__( self :Dict ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
716
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class snake_case_ (unittest.TestCase ): def __init__( self :str ,__snake_case :Any ,__snake_case :List[Any]=7 ,__snake_case :Dict=3 ,__snake_case :Dict=10 ,__snake_case :Dict=18 ,__snake_case :Any=30 ,__snake_case :int=4_00 ,__snake_case :Union[str, Any]=True ,__snake_case :Union[str, Any]=None ,__snake_case :Any=True ,__snake_case :int=[0.5, 0.5, 0.5] ,__snake_case :List[Any]=[0.5, 0.5, 0.5] ,__snake_case :Any=None ,) -> Union[str, Any]: a__ = size if size is not None else {'shortest_edge': 18} a__ = crop_size if crop_size is not None else {'height': 18, 'width': 18} a__ = parent a__ = batch_size a__ = num_channels a__ = num_frames a__ = image_size a__ = min_resolution a__ = max_resolution a__ = do_resize a__ = size a__ = do_normalize a__ = image_mean a__ = image_std a__ = crop_size def lowerCamelCase__( self :List[str] ) -> Dict: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = VivitImageProcessor if is_vision_available() else None def lowerCamelCase__( self :Optional[Any] ) -> int: a__ = VivitImageProcessingTester(self ) @property def lowerCamelCase__( self :List[str] ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__( self :str ) -> Dict: a__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case ,'image_mean' ) ) self.assertTrue(hasattr(__snake_case ,'image_std' ) ) self.assertTrue(hasattr(__snake_case ,'do_normalize' ) ) self.assertTrue(hasattr(__snake_case ,'do_resize' ) ) self.assertTrue(hasattr(__snake_case ,'do_center_crop' ) ) self.assertTrue(hasattr(__snake_case ,'size' ) ) def lowerCamelCase__( self :Dict ) -> str: a__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) a__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def lowerCamelCase__( self :Any ) -> int: # Initialize image_processing a__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos a__ = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case ,__snake_case ) self.assertIsInstance(video[0] ,Image.Image ) # Test not batched input a__ = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched a__ = image_processing(__snake_case ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def lowerCamelCase__( self :str ) -> Any: # Initialize image_processing a__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__snake_case ,numpify=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case ,__snake_case ) self.assertIsInstance(video[0] ,np.ndarray ) # Test not batched input a__ = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched a__ = image_processing(__snake_case ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def lowerCamelCase__( self :Tuple ) -> Any: # Initialize image_processing a__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__snake_case ,torchify=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case ,__snake_case ) self.assertIsInstance(video[0] ,torch.Tensor ) # Test not batched input a__ = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched a__ = image_processing(__snake_case ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
717
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class snake_case_ (unittest.TestCase ): @require_torch def lowerCamelCase__( self :List[str] ) -> Optional[Any]: a__ = pipeline( task='zero-shot-audio-classification' ,model='hf-internal-testing/tiny-clap-htsat-unfused' ) a__ = load_dataset('ashraq/esc50' ) a__ = dataset['train']['audio'][-1]['array'] a__ = audio_classifier(__snake_case ,candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__snake_case ) ,[{'score': 0.5_01, 'label': 'Sound of a dog'}, {'score': 0.4_99, 'label': 'Sound of vaccum cleaner'}] ,) @unittest.skip('No models are available in TF' ) def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: pass @slow @require_torch def lowerCamelCase__( self :Any ) -> Optional[Any]: a__ = pipeline( task='zero-shot-audio-classification' ,model='laion/clap-htsat-unfused' ,) # This is an audio of a dog a__ = load_dataset('ashraq/esc50' ) a__ = dataset['train']['audio'][-1]['array'] a__ = audio_classifier(__snake_case ,candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__snake_case ) ,[ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ] ,) a__ = audio_classifier([audio] * 5 ,candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__snake_case ) ,[ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 ,) a__ = audio_classifier( [audio] * 5 ,candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ,batch_size=5 ) self.assertEqual( nested_simplify(__snake_case ) ,[ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 ,) @unittest.skip('No models are available in TF' ) def lowerCamelCase__( self :List[str] ) -> Optional[int]: pass
718
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Tuple = IFPipeline UpperCAmelCase__ : Optional[int] = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} UpperCAmelCase__ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : int = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowerCamelCase__( self :Any ) -> List[Any]: return self._get_dummy_components() def lowerCamelCase__( self :List[Any] ,__snake_case :int ,__snake_case :int=0 ) -> Optional[Any]: if str(__snake_case ).startswith('mps' ): a__ = torch.manual_seed(__snake_case ) else: a__ = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase__( self :Dict ) -> str: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' ,reason='float16 requires CUDA' ) def lowerCamelCase__( self :Optional[int] ) -> List[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase__( self :Any ) -> List[str]: self._test_save_load_local() def lowerCamelCase__( self :List[str] ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def lowerCamelCase__( self :Union[str, Any] ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :List[str] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Dict ) -> List[Any]: # if a__ = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' ,variant='fp16' ,torch_dtype=torch.floataa ) a__ = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' ,variant='fp16' ,torch_dtype=torch.floataa ,text_encoder=__snake_case ,tokenizer=__snake_case ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) a__ , a__ = pipe_a.encode_prompt('anime turtle' ,device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() a__ = None a__ = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__snake_case ,__snake_case ,__snake_case ,__snake_case ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img a__ = IFImgaImgPipeline(**pipe_a.components ) a__ = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__snake_case ,__snake_case ,__snake_case ,__snake_case ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting a__ = IFInpaintingPipeline(**pipe_a.components ) a__ = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__snake_case ,__snake_case ,__snake_case ,__snake_case ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :List[str] ,__snake_case :Optional[Any] ,__snake_case :int ) -> Any: # pipeline 1 _start_torch_memory_measurement() a__ = torch.Generator(device='cpu' ).manual_seed(0 ) a__ = pipe_a( prompt_embeds=__snake_case ,negative_prompt_embeds=__snake_case ,num_inference_steps=2 ,generator=__snake_case ,output_type='np' ,) a__ = output.images[0] assert image.shape == (64, 64, 3) a__ = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__snake_case ,__snake_case ) # pipeline 2 _start_torch_memory_measurement() a__ = torch.Generator(device='cpu' ).manual_seed(0 ) a__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(__snake_case ) a__ = pipe_a( prompt_embeds=__snake_case ,negative_prompt_embeds=__snake_case ,image=__snake_case ,generator=__snake_case ,num_inference_steps=2 ,output_type='np' ,) a__ = output.images[0] assert image.shape == (2_56, 2_56, 3) a__ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__snake_case ,__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :str ,__snake_case :Any ,__snake_case :Union[str, Any] ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() a__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(__snake_case ) a__ = torch.Generator(device='cpu' ).manual_seed(0 ) a__ = pipe_a( prompt_embeds=__snake_case ,negative_prompt_embeds=__snake_case ,image=__snake_case ,num_inference_steps=2 ,generator=__snake_case ,output_type='np' ,) a__ = output.images[0] assert image.shape == (64, 64, 3) a__ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__snake_case ,__snake_case ) # pipeline 2 _start_torch_memory_measurement() a__ = torch.Generator(device='cpu' ).manual_seed(0 ) a__ = floats_tensor((1, 3, 2_56, 2_56) ,rng=random.Random(0 ) ).to(__snake_case ) a__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(__snake_case ) a__ = pipe_a( prompt_embeds=__snake_case ,negative_prompt_embeds=__snake_case ,image=__snake_case ,original_image=__snake_case ,generator=__snake_case ,num_inference_steps=2 ,output_type='np' ,) a__ = output.images[0] assert image.shape == (2_56, 2_56, 3) a__ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__snake_case ,__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Dict ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :Dict ) -> Union[str, Any]: # pipeline 1 _start_torch_memory_measurement() a__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(__snake_case ) a__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(1 ) ).to(__snake_case ) a__ = torch.Generator(device='cpu' ).manual_seed(0 ) a__ = pipe_a( prompt_embeds=__snake_case ,negative_prompt_embeds=__snake_case ,image=__snake_case ,mask_image=__snake_case ,num_inference_steps=2 ,generator=__snake_case ,output_type='np' ,) a__ = output.images[0] assert image.shape == (64, 64, 3) a__ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__snake_case ,__snake_case ) # pipeline 2 _start_torch_memory_measurement() a__ = torch.Generator(device='cpu' ).manual_seed(0 ) a__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(__snake_case ) a__ = floats_tensor((1, 3, 2_56, 2_56) ,rng=random.Random(0 ) ).to(__snake_case ) a__ = floats_tensor((1, 3, 2_56, 2_56) ,rng=random.Random(1 ) ).to(__snake_case ) a__ = pipe_a( prompt_embeds=__snake_case ,negative_prompt_embeds=__snake_case ,image=__snake_case ,mask_image=__snake_case ,original_image=__snake_case ,generator=__snake_case ,num_inference_steps=2 ,output_type='np' ,) a__ = output.images[0] assert image.shape == (2_56, 2_56, 3) a__ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__snake_case ,__snake_case ) def __lowercase ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
719
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Dict = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = ['''pixel_values'''] def __init__( self :Optional[Any] ,__snake_case :bool = True ,__snake_case :int = 32 ,__snake_case :Union[str, Any]=PILImageResampling.BILINEAR ,__snake_case :bool = True ,**__snake_case :Tuple ,) -> None: a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :int ,__snake_case :Tuple ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :List[Any] ) -> np.ndarray: a__ , a__ = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(__snake_case ,(new_h, new_w) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) return image def lowerCamelCase__( self :List[str] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[ChannelDimension] = None ,**__snake_case :str ) -> np.ndarray: return rescale(image=__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__snake_case :Optional[bool] = None ,__snake_case :Optional[int] = None ,__snake_case :Union[str, Any]=None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[TensorType, str]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :List[Any] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for img in images] if do_resize: a__ = [self.resize(__snake_case ,size_divisor=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(__snake_case ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Optional[int] ) -> Tuple: a__ = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) a__ = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) sd_pipe.set_scheduler('sample_euler' ) a__ = 'A painting of a squirrel eating a burger' a__ = torch.manual_seed(0 ) a__ = sd_pipe([prompt] ,generator=__snake_case ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type='np' ) a__ = output.images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__( self :str ) -> Any: a__ = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) a__ = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) sd_pipe.set_scheduler('sample_euler' ) a__ = 'A painting of a squirrel eating a burger' a__ = torch.manual_seed(0 ) a__ = sd_pipe([prompt] ,generator=__snake_case ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type='np' ) a__ = output.images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowerCamelCase__( self :Dict ) -> Tuple: a__ = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) a__ = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) a__ = 'A painting of a squirrel eating a burger' a__ = torch.manual_seed(0 ) a__ = sd_pipe( [prompt] ,generator=__snake_case ,guidance_scale=7.5 ,num_inference_steps=15 ,output_type='np' ,use_karras_sigmas=__snake_case ,) a__ = output.images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
720
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) snake_case : Optional[int] = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys snake_case : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
0
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _snake_case = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } _snake_case = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = create_model( "HTSAT-tiny" , "roberta" , _lowerCamelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_lowerCamelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = r".*sequential.(\d+).*" _lowerCAmelCase : Optional[int] = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _lowerCAmelCase : Union[str, Any] = key.replace(_lowerCamelCase , _lowerCamelCase ) if re.match(_lowerCamelCase , _lowerCamelCase ): # replace sequential layers with list _lowerCAmelCase : Optional[Any] = re.match(_lowerCamelCase , _lowerCamelCase ).group(1 ) _lowerCAmelCase : Tuple = key.replace(F"sequential.{sequential_layer}." , F"layers.{int(_lowerCamelCase )//3}.linear." ) elif re.match(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : str = int(re.match(_lowerCamelCase , _lowerCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _lowerCAmelCase : Optional[Any] = 1 if projecton_layer == 0 else 2 _lowerCAmelCase : Any = key.replace(F"_projection.{projecton_layer}." , F"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value _lowerCAmelCase : int = value _lowerCAmelCase : str = mixed_qkv.size(0 ) // 3 _lowerCAmelCase : Optional[int] = mixed_qkv[:qkv_dim] _lowerCAmelCase : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] _lowerCAmelCase : Dict = mixed_qkv[qkv_dim * 2 :] _lowerCAmelCase : Tuple = query_layer _lowerCAmelCase : Optional[int] = key_layer _lowerCAmelCase : Optional[Any] = value_layer else: _lowerCAmelCase : str = value return model_state_dict def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = init_clap(_lowerCamelCase , enable_fusion=_lowerCamelCase ) clap_model.eval() _lowerCAmelCase : Tuple = clap_model.state_dict() _lowerCAmelCase : List[Any] = rename_state_dict(_lowerCamelCase ) _lowerCAmelCase : List[str] = ClapConfig() _lowerCAmelCase : Tuple = enable_fusion _lowerCAmelCase : str = ClapModel(_lowerCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) transformers_config.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") _snake_case = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
658
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = tempfile.mkdtemp() _lowerCAmelCase : Optional[int] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] _lowerCAmelCase : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) _lowerCAmelCase : Optional[int] = { "do_resize": True, "size": {"height": 224, "width": 224}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], "do_convert_rgb": True, } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Dict = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : str = self.get_image_processor() _lowerCAmelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : Dict = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : str = self.get_tokenizer(cls_token="(CLS)", sep_token="(SEP)") _lowerCAmelCase : Any = self.get_image_processor(do_normalize=__a) _lowerCAmelCase : Optional[int] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token="(CLS)", sep_token="(SEP)", do_normalize=__a) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : List[str] = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = self.prepare_image_inputs() _lowerCAmelCase : List[Any] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Tuple = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Optional[Any] = "Alexandra,T-shirt的价格是15便士。" _lowerCAmelCase : str = processor(text=__a) _lowerCAmelCase : int = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "Alexandra,T-shirt的价格是15便士。" _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(__a) _lowerCAmelCase : int = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : List[Any] = ChineseCLIPProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Optional[int] = "Alexandra,T-shirt的价格是15便士。" _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Dict = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
658
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
1
def A ( _lowerCamelCase = 10 , _lowerCamelCase = 22 ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = range(1 , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = range(1 , _lowerCamelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
1
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = ['pixel_values'] def __init__( self, __a = True, __a = None, __a = PILImageResampling.BILINEAR, __a = True, __a = 1 / 255, __a = True, __a = None, __a = True, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : int = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase : Optional[int] = get_size_dict(__a, default_to_square=__a) _lowerCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 256, "width": 256} _lowerCAmelCase : Dict = get_size_dict(__a, param_name="crop_size") _lowerCAmelCase : Any = do_resize _lowerCAmelCase : Optional[int] = size _lowerCAmelCase : int = resample _lowerCAmelCase : Union[str, Any] = do_rescale _lowerCAmelCase : int = rescale_factor _lowerCAmelCase : str = do_center_crop _lowerCAmelCase : Any = crop_size _lowerCAmelCase : str = do_flip_channel_order def snake_case__ ( self, __a, __a, __a = PIL.Image.BILINEAR, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = get_size_dict(__a, default_to_square=__a) if "shortest_edge" not in size: raise ValueError(f"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}") _lowerCAmelCase : int = get_resize_output_image_size(__a, size=size["shortest_edge"], default_to_square=__a) return resize(__a, size=__a, resample=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Any = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(__a, size=(size["height"], size["width"]), data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' return rescale(__a, scale=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return flip_channel_order(__a, data_format=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Any = resample if resample is not None else self.resample _lowerCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : List[str] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _lowerCAmelCase : Optional[int] = size if size is not None else self.size _lowerCAmelCase : List[Any] = get_size_dict(__a, default_to_square=__a) _lowerCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : Union[str, Any] = get_size_dict(__a, param_name="crop_size") _lowerCAmelCase : Optional[int] = make_list_of_images(__a) if not valid_images(__a): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") # All transformations expect numpy arrays. _lowerCAmelCase : int = [to_numpy_array(__a) for image in images] if do_resize: _lowerCAmelCase : int = [self.resize(image=__a, size=__a, resample=__a) for image in images] if do_center_crop: _lowerCAmelCase : List[Any] = [self.center_crop(image=__a, size=__a) for image in images] if do_rescale: _lowerCAmelCase : Union[str, Any] = [self.rescale(image=__a, scale=__a) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _lowerCAmelCase : List[str] = [self.flip_channel_order(image=__a) for image in images] _lowerCAmelCase : Union[str, Any] = [to_channel_dimension_format(__a, __a) for image in images] _lowerCAmelCase : Tuple = {"pixel_values": images} return BatchFeature(data=__a, tensor_type=__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a) != len(__a): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(__a): _lowerCAmelCase : Tuple = target_sizes.numpy() _lowerCAmelCase : int = [] for idx in range(len(__a)): _lowerCAmelCase : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=__a) _lowerCAmelCase : Tuple = resized_logits[0].argmax(dim=0) semantic_segmentation.append(__a) else: _lowerCAmelCase : List[str] = logits.argmax(dim=1) _lowerCAmelCase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
658
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
1
print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
658
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
1
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = "▁" _snake_case = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = BigBirdTokenizer lowerCamelCase__ = BigBirdTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : List[str] = self.tokenizer_class(__a, keep_accents=__a) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = "<s>" _lowerCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a), __a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<unk>") self.assertEqual(vocab_keys[1], "<s>") self.assertEqual(vocab_keys[-1], "[MASK]") self.assertEqual(len(__a), 1004) def snake_case__ ( self): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1000) def snake_case__ ( self): '''simple docstring''' if not self.test_rust_tokenizer: return _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = self.get_rust_tokenizer() _lowerCAmelCase : List[Any] = "I was born in 92000, and this is falsé." _lowerCAmelCase : Optional[int] = tokenizer.tokenize(__a) _lowerCAmelCase : Any = rust_tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : int = tokenizer.encode(__a, add_special_tokens=__a) _lowerCAmelCase : Dict = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : str = self.get_rust_tokenizer() _lowerCAmelCase : List[Any] = tokenizer.encode(__a) _lowerCAmelCase : Any = rust_tokenizer.encode(__a) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = BigBirdTokenizer(__a, keep_accents=__a) _lowerCAmelCase : List[Any] = tokenizer.tokenize("This is a test") self.assertListEqual(__a, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a), [285, 46, 10, 170, 382], ) _lowerCAmelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __a, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) _lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(__a) self.assertListEqual( __a, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], ) _lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual( __a, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) @cached_property def snake_case__ ( self): '''simple docstring''' return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = "Hello World!" _lowerCAmelCase : Any = [65, 1_8536, 2260, 101, 66] self.assertListEqual(__a, self.big_tokenizer.encode(__a)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off _lowerCAmelCase : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(__a, self.big_tokenizer.encode(__a)) @require_torch @slow def snake_case__ ( self): '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _lowerCAmelCase : Any = list(self.big_tokenizer.get_vocab().keys())[:10] _lowerCAmelCase : str = " ".join(__a) _lowerCAmelCase : int = self.big_tokenizer.encode_plus(__a, return_tensors="pt", return_token_type_ids=__a) _lowerCAmelCase : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence], return_tensors="pt", return_token_type_ids=__a) _lowerCAmelCase : Tuple = BigBirdConfig(attention_type="original_full") _lowerCAmelCase : List[Any] = BigBirdModel(__a) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a) model(**__a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") _lowerCAmelCase : Tuple = tokenizer.decode(tokenizer("Paris is the [MASK].").input_ids) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]") @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = {"input_ids": [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a, model_name="google/bigbird-roberta-base", revision="215c99f1600e06f83acce68422f2035b2b5c3510", )
658
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _snake_case = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) _snake_case = [] _snake_case = [] _snake_case = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} _snake_case = [ { "type": "header", "text": { "type": "plain_text", "text": f'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', "emoji": True, }, } ] _snake_case = 0 for log in Path().glob("*.log"): _snake_case = 0 with open(log, "r") as f: for line in f: _snake_case = json.loads(line) if line.get("nodeid", "") != "": _snake_case = line["nodeid"] if line.get("duration", None) is not None: _snake_case = f'''{line["duration"]:.4f}''' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _snake_case = [] log.unlink() _snake_case = "" _snake_case = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" _snake_case = [] _snake_case = {} for test in failed_tests: _snake_case = test[0].split("::") _snake_case = data[0].split("/")[-1] if data[0] not in filesafailed: _snake_case = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _snake_case = [test[0] for test in failed_table] _snake_case = list(set(files)) # Count number of instances in failed_tests _snake_case = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _snake_case = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: _snake_case = "Too many failed tests, please see the full report in the Action results." _snake_case = len(err) + 10 _snake_case = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: _snake_case = "No failed tests! 🤗" print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient _snake_case = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": _snake_case = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) _snake_case = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) _snake_case = { "type": "context", "elements": [ { "type": "plain_text", "text": f'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) _snake_case = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) _snake_case = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _snake_case = "" for i, row in enumerate(test_failures): if row[0] != test_class: _snake_case = row[0] else: _snake_case = "" _snake_case = { "type": "section", "text": { "type": "mrkdwn", "text": f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
658
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
658
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase_ : def __init__( self, __a, __a=2, __a=True, __a=False, __a=10, __a=3, __a=32 * 4, __a=32 * 6, __a=4, __a=32, ): '''simple docstring''' _lowerCAmelCase : Any = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : Any = use_auxiliary_loss _lowerCAmelCase : Any = num_queries _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Optional[Any] = min_size _lowerCAmelCase : Optional[Any] = max_size _lowerCAmelCase : int = num_labels _lowerCAmelCase : Any = mask_feature_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( __a) _lowerCAmelCase : Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size], device=__a) _lowerCAmelCase : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=__a) > 0.5 ).float() _lowerCAmelCase : Optional[int] = (torch.rand((self.batch_size, self.num_labels), device=__a) > 0.5).long() _lowerCAmelCase : Any = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def snake_case__ ( self): '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1], ), decoder_config=DetrConfig( decoder_ffn_dim=128, num_queries=self.num_queries, decoder_attention_heads=2, d_model=self.mask_feature_size, ), mask_feature_size=self.mask_feature_size, fpn_feature_size=self.mask_feature_size, num_channels=self.num_channels, num_labels=self.num_labels, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() _lowerCAmelCase : int = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : str = output.encoder_hidden_states _lowerCAmelCase : List[Any] = output.pixel_decoder_hidden_states _lowerCAmelCase : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__a), len(config.backbone_config.depths)) self.parent.assertTrue(len(__a), len(config.backbone_config.depths)) self.parent.assertTrue(len(__a), config.decoder_config.decoder_layers) def snake_case__ ( self, __a, __a, __a, __a=False): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase : List[str] = MaskFormerModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : List[Any] = model(pixel_values=__a, pixel_mask=__a) _lowerCAmelCase : str = model(__a, output_hidden_states=__a) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.mask_feature_size), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(__a, __a) def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = MaskFormerForInstanceSegmentation(config=__a) model.to(__a) model.eval() def comm_check_on_output(__a): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): _lowerCAmelCase : List[Any] = model(pixel_values=__a, pixel_mask=__a) _lowerCAmelCase : int = model(__a) comm_check_on_output(__a) _lowerCAmelCase : Any = model( pixel_values=__a, pixel_mask=__a, mask_labels=__a, class_labels=__a) comm_check_on_output(__a) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape, torch.Size([1])) @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCamelCase__ = ( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = MaskFormerModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, has_text_modality=__a) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__a, **__a, output_hidden_states=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__a) @unittest.skip(reason="MaskFormer does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="MaskFormer is not a generative model") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="MaskFormer does not use token embeddings") def snake_case__ ( self): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = model_class(__a) _lowerCAmelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: _lowerCAmelCase : str = MaskFormerModel.from_pretrained(__a) self.assertIsNotNone(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = (self.model_tester.min_size,) * 2 _lowerCAmelCase : Any = { "pixel_values": torch.randn((2, 3, *size), device=__a), "mask_labels": torch.randn((2, 10, *size), device=__a), "class_labels": torch.zeros(2, 10, device=__a).long(), } _lowerCAmelCase : str = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(__a) _lowerCAmelCase : Tuple = model(**__a) self.assertTrue(outputs.loss is not None) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__a, **__a, output_hidden_states=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = model_class(__a).to(__a) _lowerCAmelCase : Tuple = model(**__a, output_attentions=__a) self.assertTrue(outputs.attentions is not None) def snake_case__ ( self): '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _lowerCAmelCase : Any = self.all_model_classes[1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : List[str] = model_class(__a) model.to(__a) model.train() _lowerCAmelCase : Optional[int] = model(__a, mask_labels=__a, class_labels=__a).loss loss.backward() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.all_model_classes[1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : Dict = True _lowerCAmelCase : str = True _lowerCAmelCase : List[Any] = model_class(__a) model.to(__a) model.train() _lowerCAmelCase : Optional[Any] = model(__a, mask_labels=__a, class_labels=__a) _lowerCAmelCase : List[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCAmelCase : Optional[Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _lowerCAmelCase : Optional[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCAmelCase : Optional[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__a) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) _snake_case = 1e-4 def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco") if is_vision_available() else None ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco").to(__a) _lowerCAmelCase : str = self.default_image_processor _lowerCAmelCase : List[Any] = prepare_img() _lowerCAmelCase : Union[str, Any] = image_processor(__a, return_tensors="pt").to(__a) _lowerCAmelCase : Tuple = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(__a, (1, 3, 800, 1088)) with torch.no_grad(): _lowerCAmelCase : int = model(**__a) _lowerCAmelCase : Optional[Any] = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]]).to(__a) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], __a, atol=__a)) _lowerCAmelCase : List[Any] = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]]).to(__a) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], __a, atol=__a)) _lowerCAmelCase : Optional[int] = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]]).to(__a) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], __a, atol=__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco") .to(__a) .eval() ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : List[Any] = prepare_img() _lowerCAmelCase : Any = image_processor(__a, return_tensors="pt").to(__a) _lowerCAmelCase : Union[str, Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(__a, (1, 3, 800, 1088)) with torch.no_grad(): _lowerCAmelCase : int = model(**__a) # masks_queries_logits _lowerCAmelCase : List[str] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4), ) _lowerCAmelCase : List[str] = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] _lowerCAmelCase : Tuple = torch.tensor(__a).to(__a) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], __a, atol=__a)) # class_queries_logits _lowerCAmelCase : int = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) _lowerCAmelCase : List[str] = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ]).to(__a) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], __a, atol=__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff") .to(__a) .eval() ) _lowerCAmelCase : List[Any] = self.default_image_processor _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : Dict = image_processor(__a, return_tensors="pt").to(__a) _lowerCAmelCase : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(__a, (1, 3, 800, 1088)) with torch.no_grad(): _lowerCAmelCase : str = model(**__a) # masks_queries_logits _lowerCAmelCase : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4), ) _lowerCAmelCase : List[Any] = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] _lowerCAmelCase : int = torch.tensor(__a).to(__a) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], __a, atol=__a)) # class_queries_logits _lowerCAmelCase : int = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) _lowerCAmelCase : Dict = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]]).to(__a) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], __a, atol=__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco") .to(__a) .eval() ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = image_processor( [np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))], segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)], return_tensors="pt", ) _lowerCAmelCase : int = inputs["pixel_values"].to(__a) _lowerCAmelCase : List[Any] = [el.to(__a) for el in inputs["mask_labels"]] _lowerCAmelCase : Dict = [el.to(__a) for el in inputs["class_labels"]] with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(**__a) self.assertTrue(outputs.loss is not None)
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = "▁" _snake_case = {"vocab_file": "sentencepiece.bpe.model"} _snake_case = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _snake_case = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self, __a, __a="<s>", __a="</s>", __a="</s>", __a="<s>", __a="<unk>", __a="<pad>", __a="<mask>", __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else mask_token _lowerCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a, eos_token=__a, unk_token=__a, sep_token=__a, cls_token=__a, pad_token=__a, mask_token=__a, sp_model_kwargs=self.sp_model_kwargs, **__a, ) _lowerCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__a)) _lowerCAmelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase : Optional[int] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : List[Any] = len(self.sp_model) + self.fairseq_offset _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.__dict__.copy() _lowerCAmelCase : Tuple = None _lowerCAmelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): _lowerCAmelCase : List[str] = {} _lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def snake_case__ ( self, __a, __a = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] _lowerCAmelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a, token_ids_a=__a, already_has_special_tokens=__a) if token_ids_a is None: return [1] + ([0] * len(__a)) + [1] return [1] + ([0] * len(__a)) + [1, 1] + ([0] * len(__a)) + [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Dict = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def snake_case__ ( self): '''simple docstring''' return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = {self.convert_ids_to_tokens(__a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def snake_case__ ( self, __a): '''simple docstring''' return self.sp_model.encode(__a, out_type=__a) def snake_case__ ( self, __a): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : Dict = self.sp_model.PieceToId(__a) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case__ ( self, __a): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int = "".join(__a).replace(__a, " ").strip() return out_string def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(__a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : Tuple = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, __a) elif not os.path.isfile(self.vocab_file): with open(__a, "wb") as fi: _lowerCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(__a) return (out_vocab_file,)
658
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _lowerCAmelCase : str = s_dict.pop(_lowerCamelCase ) elif "subsample" in key: _lowerCAmelCase : Optional[int] = s_dict.pop(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Tuple = emb.weight.shape _lowerCAmelCase : Any = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) _lowerCAmelCase : List[Any] = emb.weight.data return lin_layer def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : Optional[Any] = mam_aaa["args"] _lowerCAmelCase : Optional[Any] = mam_aaa["model"] _lowerCAmelCase : str = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(_lowerCamelCase ) rename_keys(_lowerCamelCase ) _lowerCAmelCase : str = state_dict["decoder.embed_tokens.weight"].shape[0] _lowerCAmelCase : str = args.share_decoder_input_output_embed _lowerCAmelCase : List[Any] = [int(_lowerCamelCase ) for i in args.conv_kernel_sizes.split("," )] _lowerCAmelCase : Any = SpeechaTextConfig( vocab_size=_lowerCamelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(_lowerCamelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=_lowerCamelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_lowerCamelCase , num_beams=5 , max_length=200 , use_cache=_lowerCamelCase , decoder_start_token_id=2 , early_stopping=_lowerCamelCase , ) _lowerCAmelCase : str = SpeechaTextForConditionalGeneration(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Dict = model.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) if len(_lowerCamelCase ) > 0 and not set(_lowerCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F" but all the following weights are missing {missing}" ) if tie_embeds: _lowerCAmelCase : Tuple = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCAmelCase : str = lm_head_weights model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _snake_case = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
658
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'vivit' def __init__( self, __a=224, __a=32, __a=[2, 16, 16], __a=3, __a=768, __a=12, __a=12, __a=3072, __a="gelu_fast", __a=0.0, __a=0.0, __a=0.02, __a=1E-06, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : str = num_frames _lowerCAmelCase : Optional[Any] = tubelet_size _lowerCAmelCase : Optional[int] = num_channels _lowerCAmelCase : List[str] = qkv_bias super().__init__(**__a)
658
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _snake_case = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for attribute in key.split("." ): _lowerCAmelCase : int = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCAmelCase : Dict = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCAmelCase : str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Optional[Any] = value elif weight_type == "weight_g": _lowerCAmelCase : List[str] = value elif weight_type == "weight_v": _lowerCAmelCase : Dict = value elif weight_type == "bias": _lowerCAmelCase : int = value elif weight_type == "running_mean": _lowerCAmelCase : Optional[Any] = value elif weight_type == "running_var": _lowerCAmelCase : Tuple = value elif weight_type == "num_batches_tracked": _lowerCAmelCase : Tuple = value elif weight_type == "inv_freq": _lowerCAmelCase : List[Any] = value else: _lowerCAmelCase : Tuple = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[int] = fairseq_model.state_dict() _lowerCAmelCase : Dict = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : Tuple = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCAmelCase : Tuple = True else: for key, mapped_key in MAPPING.items(): _lowerCAmelCase : Union[str, Any] = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCAmelCase : str = True if "*" in mapped_key: _lowerCAmelCase : Union[str, Any] = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCAmelCase : Tuple = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCAmelCase : Optional[Any] = None elif "pos_bias_v" in name: _lowerCAmelCase : List[Any] = None elif "weight_g" in name: _lowerCAmelCase : List[str] = "weight_g" elif "weight_v" in name: _lowerCAmelCase : Union[str, Any] = "weight_v" elif "bias" in name: _lowerCAmelCase : int = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : Any = "weight" elif "running_mean" in name: _lowerCAmelCase : List[str] = "running_mean" elif "inv_freq" in name: _lowerCAmelCase : Any = "inv_freq" elif "running_var" in name: _lowerCAmelCase : List[str] = "running_var" elif "num_batches_tracked" in name: _lowerCAmelCase : Optional[int] = "num_batches_tracked" else: _lowerCAmelCase : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = full_name.split("conv_layers." )[-1] _lowerCAmelCase : Any = name.split("." ) _lowerCAmelCase : Optional[int] = int(items[0] ) _lowerCAmelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _lowerCAmelCase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : int = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ): '''simple docstring''' if config_path is not None: _lowerCAmelCase : int = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCAmelCase : Union[str, Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCAmelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCAmelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase : Dict = target_dict.pad_index _lowerCAmelCase : Optional[Any] = target_dict.bos_index _lowerCAmelCase : List[Any] = target_dict.eos_index _lowerCAmelCase : List[str] = len(target_dict.symbols ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCAmelCase : List[str] = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : str = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCAmelCase : Dict = True if config.feat_extract_norm == "layer" else False _lowerCAmelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCAmelCase : str = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCAmelCase : Dict = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCAmelCase : int = argparse.Namespace(task="audio_pretraining" ) _lowerCAmelCase : Dict = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _snake_case = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
658
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] if isinstance(_lowerCamelCase , _lowerCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(_lowerCamelCase ) ) elif isinstance(_lowerCamelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(_lowerCamelCase ) ) elif isinstance(_lowerCamelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = [] for d in reversed(_lowerCamelCase ): idx.append(flat_idx % d ) _lowerCAmelCase : Any = flat_idx // d return tuple(reversed(_lowerCamelCase ) ) @torch.jit.ignore def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , ): '''simple docstring''' def reduce_edge_list(_lowerCamelCase ) -> None: _lowerCAmelCase : Dict = True for i in range(len(_lowerCamelCase ) ): _lowerCAmelCase : Tuple = -1 * (i + 1) l[reversed_idx] &= tally _lowerCAmelCase : List[str] = l[reversed_idx] if start_edges is None: _lowerCAmelCase : List[Any] = [s == 0 for s in start] reduce_edge_list(_lowerCamelCase ) if end_edges is None: _lowerCAmelCase : Dict = [e == (d - 1) for e, d in zip(_lowerCamelCase , _lowerCamelCase )] reduce_edge_list(_lowerCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_lowerCamelCase ) == 0: return [()] elif len(_lowerCamelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _lowerCAmelCase : List[Tuple[slice, ...]] = [] _lowerCAmelCase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(_lowerCamelCase , _lowerCamelCase ): if s == e: path_list.append(slice(_lowerCamelCase , s + 1 ) ) else: break _lowerCAmelCase : Tuple[slice, ...] = tuple(_lowerCamelCase ) _lowerCAmelCase : str = len(_lowerCamelCase ) # start == end, and we're done if divergence_idx == len(_lowerCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowerCAmelCase : List[Any] = start[divergence_idx] return tuple( path + (slice(_lowerCamelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowerCAmelCase : Tuple = end[divergence_idx] return tuple( path + (slice(_lowerCamelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _lowerCAmelCase : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = t.shape[:no_batch_dims] _lowerCAmelCase : int = list(_flat_idx_to_idx(_lowerCamelCase , _lowerCamelCase ) ) # _get_minimal_slice_set is inclusive _lowerCAmelCase : Union[str, Any] = list(_flat_idx_to_idx(flat_end - 1 , _lowerCamelCase ) ) # Get an ordered list of slices to perform _lowerCAmelCase : List[str] = _get_minimal_slice_set( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) _lowerCAmelCase : Dict = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = False , ): '''simple docstring''' if not (len(_lowerCamelCase ) > 0): raise ValueError("Must provide at least one input" ) _lowerCAmelCase : Tuple = [shape[:no_batch_dims] for shape in _fetch_dims(_lowerCamelCase )] _lowerCAmelCase : Union[str, Any] = tuple([max(_lowerCamelCase ) for s in zip(*_lowerCamelCase )] ) def _prep_inputs(_lowerCamelCase ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _lowerCAmelCase : int = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _lowerCAmelCase : Dict = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _lowerCAmelCase : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _lowerCAmelCase : Dict[str, Any] = tensor_tree_map(_prep_inputs , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = None if _out is not None: _lowerCAmelCase : List[Any] = tensor_tree_map(lambda _lowerCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _lowerCAmelCase : Union[str, Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d _lowerCAmelCase : Union[str, Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_lowerCamelCase ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[int] = prepped_outputs for _ in range(_lowerCamelCase ): # Chunk the input if not low_mem: _lowerCAmelCase : Dict = _select_chunk else: _lowerCAmelCase : Any = partial( _chunk_slice , flat_start=_lowerCamelCase , flat_end=min(_lowerCamelCase , i + chunk_size ) , no_batch_dims=len(_lowerCamelCase ) , ) _lowerCAmelCase : Dict[str, Any] = tensor_tree_map(_lowerCamelCase , _lowerCamelCase ) # Run the layer on the chunk _lowerCAmelCase : Union[str, Any] = layer(**_lowerCamelCase ) # Allocate space for the output if out is None: _lowerCAmelCase : str = tensor_tree_map(lambda _lowerCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _lowerCamelCase ) # Put the chunk in its pre-allocated space if isinstance(_lowerCamelCase , _lowerCamelCase ): def assign(_lowerCamelCase , _lowerCamelCase ) -> None: for k, v in da.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): assign(_lowerCamelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _lowerCAmelCase : Any = da[k] assign(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): for xa, xa in zip(_lowerCamelCase , _lowerCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: _lowerCAmelCase : Dict = xa elif isinstance(_lowerCamelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _lowerCAmelCase : List[Any] = output_chunk else: raise ValueError("Not supported" ) i += chunk_size _lowerCAmelCase : Dict = tensor_tree_map(lambda _lowerCamelCase : t.view(orig_batch_dims + t.shape[1:] ) , _lowerCamelCase ) return out class UpperCAmelCase_ : def __init__( self, __a = 512, ): '''simple docstring''' _lowerCAmelCase : List[str] = max_chunk_size _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[tuple] = None def snake_case__ ( self, __a, __a, __a): '''simple docstring''' logging.info("Tuning chunk size...") if min_chunk_size >= self.max_chunk_size: return min_chunk_size _lowerCAmelCase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size, 2)) + 1)] _lowerCAmelCase : Dict = [c for c in candidates if c > min_chunk_size] _lowerCAmelCase : Optional[int] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__a) -> bool: try: with torch.no_grad(): fn(*__a, chunk_size=__a) return True except RuntimeError: return False _lowerCAmelCase : Any = 0 _lowerCAmelCase : Tuple = len(__a) - 1 while i > min_viable_chunk_size_index: _lowerCAmelCase : int = test_chunk_size(candidates[i]) if not viable: _lowerCAmelCase : Tuple = (min_viable_chunk_size_index + i) // 2 else: _lowerCAmelCase : Optional[Any] = i _lowerCAmelCase : Optional[Any] = (i + len(__a) - 1) // 2 return candidates[min_viable_chunk_size_index] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : str = True for aa, aa in zip(__a, __a): assert type(__a) == type(__a) if isinstance(__a, (list, tuple)): consistent &= self._compare_arg_caches(__a, __a) elif isinstance(__a, __a): _lowerCAmelCase : Any = [v for _, v in sorted(aa.items(), key=lambda __a: x[0])] _lowerCAmelCase : Optional[Any] = [v for _, v in sorted(aa.items(), key=lambda __a: x[0])] consistent &= self._compare_arg_caches(__a, __a) else: consistent &= aa == aa return consistent def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Tuple = True _lowerCAmelCase : tuple = tree_map(lambda __a: a.shape if isinstance(__a, torch.Tensor) else a, __a, __a) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(__a) _lowerCAmelCase : Dict = self._compare_arg_caches(self.cached_arg_data, __a) else: # Otherwise, we can reuse the precomputed value _lowerCAmelCase : Dict = False if not consistent: _lowerCAmelCase : Union[str, Any] = self._determine_favorable_chunk_size( __a, __a, __a, ) _lowerCAmelCase : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
658
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase_ : def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : Dict = str(id_) _lowerCAmelCase : List[str] = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Tuple = {} # {vertex:distance} def __lt__( self, __a): '''simple docstring''' return self.key < other.key def __repr__( self): '''simple docstring''' return self.id def snake_case__ ( self, __a): '''simple docstring''' self.neighbors.append(__a) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = weight def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowerCamelCase ) graph[b - 1].add_edge(graph[a - 1] , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] for u in graph: _lowerCAmelCase : List[Any] = math.inf _lowerCAmelCase : List[str] = None _lowerCAmelCase : str = 0 _lowerCAmelCase : Any = graph[:] while q: _lowerCAmelCase : Any = min(_lowerCamelCase ) q.remove(_lowerCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCAmelCase : Union[str, Any] = u _lowerCAmelCase : str = u.edges[v.id] for i in range(1 , len(_lowerCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for u in graph: _lowerCAmelCase : str = math.inf _lowerCAmelCase : List[str] = None _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = list(_lowerCamelCase ) hq.heapify(_lowerCamelCase ) while h: _lowerCAmelCase : List[Any] = hq.heappop(_lowerCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCAmelCase : str = u _lowerCAmelCase : Dict = u.edges[v.id] hq.heapify(_lowerCamelCase ) for i in range(1 , len(_lowerCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
658
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
1
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class UpperCAmelCase_ : lowerCamelCase__ = LEDConfig lowerCamelCase__ = {} lowerCamelCase__ = 'gelu' def __init__( self, __a, __a=13, __a=7, __a=True, __a=False, __a=99, __a=32, __a=2, __a=4, __a=37, __a=0.1, __a=0.1, __a=20, __a=2, __a=1, __a=0, __a=4, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Union[str, Any] = batch_size _lowerCAmelCase : Optional[Any] = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : str = use_labels _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : List[str] = eos_token_id _lowerCAmelCase : Optional[int] = pad_token_id _lowerCAmelCase : str = bos_token_id _lowerCAmelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _lowerCAmelCase : Dict = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _lowerCAmelCase : Optional[int] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) _lowerCAmelCase : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) _lowerCAmelCase : Optional[int] = tf.concat([input_ids, eos_tensor], axis=1) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Optional[int] = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, attention_window=self.attention_window, **self.config_updates, ) _lowerCAmelCase : Optional[int] = prepare_led_inputs_dict(__a, __a, __a) _lowerCAmelCase : List[str] = tf.concat( [tf.zeros_like(__a)[:, :-1], tf.ones_like(__a)[:, -1:]], axis=-1, ) _lowerCAmelCase : str = global_attention_mask return config, inputs_dict def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = TFLEDModel(config=__a).get_decoder() _lowerCAmelCase : int = inputs_dict["input_ids"] _lowerCAmelCase : Tuple = input_ids[:1, :] _lowerCAmelCase : Union[str, Any] = inputs_dict["attention_mask"][:1, :] _lowerCAmelCase : Any = 1 # first forward pass _lowerCAmelCase : Tuple = model(__a, attention_mask=__a, use_cache=__a) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase : List[str] = ids_tensor((self.batch_size, 3), config.vocab_size) _lowerCAmelCase : Tuple = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.inta) # append to next input_ids and _lowerCAmelCase : Dict = tf.concat([input_ids, next_tokens], axis=-1) _lowerCAmelCase : str = tf.concat([attention_mask, next_attn_mask], axis=-1) _lowerCAmelCase : str = model(__a, attention_mask=__a)[0] _lowerCAmelCase : Optional[int] = model(__a, attention_mask=__a, past_key_values=__a)[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice _lowerCAmelCase : Dict = int(ids_tensor((1,), output_from_past.shape[-1])) _lowerCAmelCase : str = output_from_no_past[:, -3:, random_slice_idx] _lowerCAmelCase : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a, __a, rtol=1E-3) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): '''simple docstring''' if attention_mask is None: _lowerCAmelCase : Dict = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCAmelCase : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCAmelCase : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFLEDModelTester(self) _lowerCAmelCase : Any = ConfigTester(self, config_class=__a) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Dict = tf.zeros_like(inputs_dict["attention_mask"]) _lowerCAmelCase : Tuple = 2 _lowerCAmelCase : Tuple = tf.where( tf.range(self.model_tester.seq_length)[None, :] < num_global_attn_indices, 1, inputs_dict["global_attention_mask"], ) _lowerCAmelCase : Tuple = True _lowerCAmelCase : Any = self.model_tester.seq_length _lowerCAmelCase : Any = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a): _lowerCAmelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length, seq_length], ) def check_encoder_attentions_output(__a): _lowerCAmelCase : List[str] = [t.numpy() for t in outputs.encoder_attentions] _lowerCAmelCase : int = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length, seq_length], ) self.assertListEqual( list(global_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices], ) for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = True _lowerCAmelCase : int = False _lowerCAmelCase : Dict = False _lowerCAmelCase : Optional[int] = model_class(__a) _lowerCAmelCase : Dict = model(self._prepare_for_class(__a, __a)) _lowerCAmelCase : str = len(__a) self.assertEqual(config.output_hidden_states, __a) check_encoder_attentions_output(__a) if self.is_encoder_decoder: _lowerCAmelCase : Optional[Any] = model_class(__a) _lowerCAmelCase : Union[str, Any] = model(self._prepare_for_class(__a, __a)) self.assertEqual(config.output_hidden_states, __a) check_decoder_attentions_output(__a) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCAmelCase : Any = True _lowerCAmelCase : int = model_class(__a) _lowerCAmelCase : Optional[int] = model(self._prepare_for_class(__a, __a)) self.assertEqual(config.output_hidden_states, __a) check_encoder_attentions_output(__a) # Check attention is always last and order is fine _lowerCAmelCase : int = True _lowerCAmelCase : Any = True _lowerCAmelCase : Dict = model_class(__a) _lowerCAmelCase : Optional[int] = model(self._prepare_for_class(__a, __a)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(__a)) self.assertEqual(model.config.output_hidden_states, __a) check_encoder_attentions_output(__a) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing.") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass def A ( _lowerCamelCase ): '''simple docstring''' return tf.constant(_lowerCamelCase , dtype=tf.intaa ) _snake_case = 1e-4 @slow @require_tf class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384").led # change to intended input here _lowerCAmelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) _lowerCAmelCase : Optional[int] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) _lowerCAmelCase : Dict = prepare_led_inputs_dict(model.config, __a, __a) _lowerCAmelCase : Optional[Any] = model(**__a)[0] _lowerCAmelCase : Any = (1, 1024, 768) self.assertEqual(output.shape, __a) # change to expected output here _lowerCAmelCase : str = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]], ) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-3) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384") # change to intended input here _lowerCAmelCase : List[str] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) _lowerCAmelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) _lowerCAmelCase : Optional[int] = prepare_led_inputs_dict(model.config, __a, __a) _lowerCAmelCase : Optional[Any] = model(**__a)[0] _lowerCAmelCase : Tuple = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape, __a) # change to expected output here _lowerCAmelCase : Any = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]], ) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-3, rtol=1E-3)
658
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
1
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum): lowerCamelCase__ = 0 lowerCamelCase__ = 1 lowerCamelCase__ = 2 @add_end_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self, *__a, **__a): '''simple docstring''' super().__init__(*__a, **__a) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _lowerCAmelCase : Tuple = None if self.model.config.prefix is not None: _lowerCAmelCase : Union[str, Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _lowerCAmelCase : Any = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self._sanitize_parameters(prefix=__a, **self._forward_params) _lowerCAmelCase : str = {**self._preprocess_params, **preprocess_params} _lowerCAmelCase : str = {**self._forward_params, **forward_params} def snake_case__ ( self, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, **__a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = {} if prefix is not None: _lowerCAmelCase : str = prefix if prefix: _lowerCAmelCase : Dict = self.tokenizer( __a, padding=__a, add_special_tokens=__a, return_tensors=self.framework) _lowerCAmelCase : Any = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" " [None, 'hole']") _lowerCAmelCase : int = handle_long_generation preprocess_params.update(__a) _lowerCAmelCase : List[str] = generate_kwargs _lowerCAmelCase : Dict = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`") if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`") _lowerCAmelCase : Optional[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`") _lowerCAmelCase : Any = ReturnType.TENSORS if return_type is not None: _lowerCAmelCase : Tuple = return_type if clean_up_tokenization_spaces is not None: _lowerCAmelCase : Tuple = clean_up_tokenization_spaces if stop_sequence is not None: _lowerCAmelCase : str = self.tokenizer.encode(__a, add_special_tokens=__a) if len(__a) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim.") _lowerCAmelCase : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case__ ( self, *__a, **__a): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True}) return super()._parse_and_tokenize(*__a, **__a) def __call__( self, __a, **__a): '''simple docstring''' return super().__call__(__a, **__a) def snake_case__ ( self, __a, __a="", __a=None, **__a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.tokenizer( prefix + prompt_text, padding=__a, add_special_tokens=__a, return_tensors=self.framework) _lowerCAmelCase : Optional[Any] = prompt_text if handle_long_generation == "hole": _lowerCAmelCase : List[Any] = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: _lowerCAmelCase : Tuple = generate_kwargs["max_new_tokens"] else: _lowerCAmelCase : int = generate_kwargs.get("max_length", self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected") if cur_len + new_tokens > self.tokenizer.model_max_length: _lowerCAmelCase : str = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length") _lowerCAmelCase : Dict = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: _lowerCAmelCase : Optional[Any] = inputs["attention_mask"][:, -keep_length:] return inputs def snake_case__ ( self, __a, **__a): '''simple docstring''' _lowerCAmelCase : Tuple = model_inputs["input_ids"] _lowerCAmelCase : Dict = model_inputs.get("attention_mask", __a) # Allow empty prompts if input_ids.shape[1] == 0: _lowerCAmelCase : List[str] = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Union[str, Any] = 1 else: _lowerCAmelCase : str = input_ids.shape[0] _lowerCAmelCase : List[str] = model_inputs.pop("prompt_text") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _lowerCAmelCase : str = generate_kwargs.pop("prefix_length", 0) if prefix_length > 0: _lowerCAmelCase : List[str] = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: _lowerCAmelCase : Optional[int] = generate_kwargs.get("max_length") or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _lowerCAmelCase : Dict = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _lowerCAmelCase : Optional[Any] = self.model.generate(input_ids=__a, attention_mask=__a, **__a) _lowerCAmelCase : Tuple = generated_sequence.shape[0] if self.framework == "pt": _lowerCAmelCase : Dict = generated_sequence.reshape(__a, out_b // in_b, *generated_sequence.shape[1:]) elif self.framework == "tf": _lowerCAmelCase : Union[str, Any] = tf.reshape(__a, (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def snake_case__ ( self, __a, __a=ReturnType.FULL_TEXT, __a=True): '''simple docstring''' _lowerCAmelCase : int = model_outputs["generated_sequence"][0] _lowerCAmelCase : Union[str, Any] = model_outputs["input_ids"] _lowerCAmelCase : int = model_outputs["prompt_text"] _lowerCAmelCase : Tuple = generated_sequence.numpy().tolist() _lowerCAmelCase : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _lowerCAmelCase : int = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _lowerCAmelCase : Optional[int] = self.tokenizer.decode( __a, skip_special_tokens=__a, clean_up_tokenization_spaces=__a, ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _lowerCAmelCase : int = 0 else: _lowerCAmelCase : Optional[Any] = len( self.tokenizer.decode( input_ids[0], skip_special_tokens=__a, clean_up_tokenization_spaces=__a, )) if return_type == ReturnType.FULL_TEXT: _lowerCAmelCase : List[str] = prompt_text + text[prompt_length:] else: _lowerCAmelCase : List[Any] = text[prompt_length:] _lowerCAmelCase : List[Any] = {"generated_text": all_text} records.append(__a) return records
658
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
1
from __future__ import annotations import os from typing import Any import requests _snake_case = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user _snake_case = BASE_URL + "/user" # https://github.com/settings/tokens _snake_case = os.environ.get("USER_TOKEN", "") def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = { "Authorization": F"token {auth_token}", "Accept": "application/vnd.github.v3+json", } return requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError("'USER_TOKEN' field cannot be empty.")
658
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = hf_hub_url(repo_id=_lowerCamelCase , path=_lowerCamelCase , revision=_lowerCamelCase ) assert url == F"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(_lowerCamelCase )}"
658
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase_ ( a , a , a): lowerCamelCase__ = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self, __a, __a, __a = None, __a = 5_0257, __a = 1024, __a = 768, __a = 12, __a = 12, __a = None, __a = "gelu_new", __a = 0.1, __a = 0.1, __a = 0.1, __a = 1E-5, __a = 0.02, __a = True, __a = True, __a = False, __a = False, ): '''simple docstring''' super().__init__() _lowerCAmelCase : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal.") _lowerCAmelCase : int = prefix_inner_dim _lowerCAmelCase : List[str] = prefix_hidden_dim _lowerCAmelCase : List[Any] = ( nn.Linear(self.prefix_inner_dim, self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCAmelCase : Union[str, Any] = ( nn.Linear(self.prefix_hidden_dim, __a) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCAmelCase : Union[str, Any] = GPTaConfig( vocab_size=__a, n_positions=__a, n_embd=__a, n_layer=__a, n_head=__a, n_inner=__a, activation_function=__a, resid_pdrop=__a, embd_pdrop=__a, attn_pdrop=__a, layer_norm_epsilon=__a, initializer_range=__a, scale_attn_weights=__a, use_cache=__a, scale_attn_by_inverse_layer_idx=__a, reorder_and_upcast_attn=__a, ) _lowerCAmelCase : List[str] = GPTaLMHeadModel(__a) def snake_case__ ( self, __a, __a, __a = None, __a = None, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.transformer.transformer.wte(__a) _lowerCAmelCase : Any = self.encode_prefix(__a) _lowerCAmelCase : List[Any] = self.decode_prefix(__a) _lowerCAmelCase : int = torch.cat((prefix_embeds, embedding_text), dim=1) if labels is not None: _lowerCAmelCase : Optional[int] = self.get_dummy_token(input_ids.shape[0], input_ids.device) _lowerCAmelCase : Union[str, Any] = torch.cat((dummy_token, input_ids), dim=1) _lowerCAmelCase : Any = self.transformer(inputs_embeds=__a, labels=__a, attention_mask=__a) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.zeros(__a, self.prefix_length, dtype=torch.intaa, device=__a) def snake_case__ ( self, __a): '''simple docstring''' return self.encode_prefix(__a) @torch.no_grad() def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = torch.split(__a, 1, dim=0) _lowerCAmelCase : int = [] _lowerCAmelCase : List[str] = [] for feature in features: _lowerCAmelCase : Dict = self.decode_prefix(feature.to(__a)) # back to the clip feature # Only support beam search for now _lowerCAmelCase , _lowerCAmelCase : List[str] = self.generate_beam( input_embeds=__a, device=__a, eos_token_id=__a) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) _lowerCAmelCase : List[Any] = torch.stack(__a) _lowerCAmelCase : Any = torch.stack(__a) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case__ ( self, __a=None, __a=None, __a=None, __a = 5, __a = 67, __a = 1.0, __a = None, ): '''simple docstring''' _lowerCAmelCase : Tuple = eos_token_id _lowerCAmelCase : List[str] = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Union[str, Any] = torch.ones(__a, device=__a, dtype=torch.int) _lowerCAmelCase : Dict = torch.zeros(__a, device=__a, dtype=torch.bool) if input_embeds is not None: _lowerCAmelCase : int = input_embeds else: _lowerCAmelCase : Any = self.transformer.transformer.wte(__a) for i in range(__a): _lowerCAmelCase : List[Any] = self.transformer(inputs_embeds=__a) _lowerCAmelCase : Dict = outputs.logits _lowerCAmelCase : Optional[Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _lowerCAmelCase : int = logits.softmax(-1).log() if scores is None: _lowerCAmelCase , _lowerCAmelCase : int = logits.topk(__a, -1) _lowerCAmelCase : List[Any] = generated.expand(__a, *generated.shape[1:]) _lowerCAmelCase , _lowerCAmelCase : List[str] = next_tokens.permute(1, 0), scores.squeeze(0) if tokens is None: _lowerCAmelCase : Union[str, Any] = next_tokens else: _lowerCAmelCase : int = tokens.expand(__a, *tokens.shape[1:]) _lowerCAmelCase : Union[str, Any] = torch.cat((tokens, next_tokens), dim=1) else: _lowerCAmelCase : str = -float(np.inf) _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : int = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _lowerCAmelCase : Any = scores_sum / seq_lengths[:, None] _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = scores_sum_average.view(-1).topk(__a, -1) _lowerCAmelCase : Optional[Any] = next_tokens // scores_sum.shape[1] _lowerCAmelCase : Tuple = seq_lengths[next_tokens_source] _lowerCAmelCase : List[Any] = next_tokens % scores_sum.shape[1] _lowerCAmelCase : List[Any] = next_tokens.unsqueeze(1) _lowerCAmelCase : Any = tokens[next_tokens_source] _lowerCAmelCase : str = torch.cat((tokens, next_tokens), dim=1) _lowerCAmelCase : List[Any] = generated[next_tokens_source] _lowerCAmelCase : Dict = scores_sum_average * seq_lengths _lowerCAmelCase : Any = is_stopped[next_tokens_source] _lowerCAmelCase : int = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) _lowerCAmelCase : Dict = torch.cat((generated, next_token_embed), dim=1) _lowerCAmelCase : List[str] = is_stopped + next_tokens.eq(__a).squeeze() if is_stopped.all(): break _lowerCAmelCase : Union[str, Any] = scores / seq_lengths _lowerCAmelCase : Union[str, Any] = scores.argsort(descending=__a) # tokens tensors are already padded to max_seq_length _lowerCAmelCase : Optional[int] = [tokens[i] for i in order] _lowerCAmelCase : Dict = torch.stack(__a, dim=0) _lowerCAmelCase : Optional[int] = torch.tensor([seq_lengths[i] for i in order], dtype=seq_lengths.dtype) return output_texts, seq_lengths
658
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
1
def A ( _lowerCamelCase ): '''simple docstring''' if number > 0: raise ValueError("input must be a negative integer" ) _lowerCAmelCase : int = len(bin(_lowerCamelCase )[3:] ) _lowerCAmelCase : Any = bin(abs(_lowerCamelCase ) - (1 << binary_number_length) )[3:] _lowerCAmelCase : Optional[Any] = ( ( "1" + "0" * (binary_number_length - len(_lowerCamelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCAmelCase_ ( a): def __init__( self, __a, __a = None, __a = None, __a = None, __a = False, __a = False, __a = None, __a = None, **__a, ): '''simple docstring''' super().__init__( __a, split=__a, features=__a, cache_dir=__a, keep_in_memory=__a, streaming=__a, num_proc=__a, **__a, ) _lowerCAmelCase : List[Any] = field _lowerCAmelCase : Tuple = path_or_paths if isinstance(__a, __a) else {self.split: path_or_paths} _lowerCAmelCase : str = Json( cache_dir=__a, data_files=__a, features=__a, field=__a, **__a, ) def snake_case__ ( self): '''simple docstring''' if self.streaming: _lowerCAmelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : str = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Union[str, Any] = None self.builder.download_and_prepare( download_config=__a, download_mode=__a, verification_mode=__a, base_path=__a, num_proc=self.num_proc, ) _lowerCAmelCase : Optional[Any] = self.builder.as_dataset( split=self.split, verification_mode=__a, in_memory=self.keep_in_memory) return dataset class UpperCAmelCase_ : def __init__( self, __a, __a, __a = None, __a = None, **__a, ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0.") _lowerCAmelCase : int = dataset _lowerCAmelCase : Dict = path_or_buf _lowerCAmelCase : Any = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCAmelCase : int = num_proc _lowerCAmelCase : Dict = "utf-8" _lowerCAmelCase : List[str] = to_json_kwargs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.to_json_kwargs.pop("path_or_buf", __a) _lowerCAmelCase : List[Any] = self.to_json_kwargs.pop("orient", "records") _lowerCAmelCase : int = self.to_json_kwargs.pop("lines", True if orient == "records" else False) _lowerCAmelCase : List[Any] = self.to_json_kwargs.pop("index", False if orient in ["split", "table"] else True) _lowerCAmelCase : Dict = self.to_json_kwargs.pop("compression", __a) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"`datasets` currently does not support {compression} compression") if isinstance(self.path_or_buf, (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf, "wb", compression=__a) as buffer: _lowerCAmelCase : Dict = self._write(file_obj=__a, orient=__a, lines=__a, index=__a, **self.to_json_kwargs) else: if compression: raise NotImplementedError( f"The compression parameter is not supported when writing to a buffer, but compression={compression}" " was passed. Please provide a local path instead.") _lowerCAmelCase : Tuple = self._write( file_obj=self.path_or_buf, orient=__a, lines=__a, index=__a, **self.to_json_kwargs) return written def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = args _lowerCAmelCase : Optional[int] = query_table( table=self.dataset.data, key=slice(__a, offset + self.batch_size), indices=self.dataset._indices, ) _lowerCAmelCase : str = batch.to_pandas().to_json( path_or_buf=__a, orient=__a, lines=__a, index=__a, **__a) if not json_str.endswith("\n"): json_str += "\n" return json_str.encode(self.encoding) def snake_case__ ( self, __a, __a, __a, __a, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0, len(self.dataset), self.batch_size), unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating json from Arrow format", ): _lowerCAmelCase : Any = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(__a) else: _lowerCAmelCase , _lowerCAmelCase : Tuple = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json, [(offset, orient, lines, index, to_json_kwargs) for offset in range(0, __a, __a)], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating json from Arrow format", ): written += file_obj.write(__a) return written
658
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _snake_case = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys())}) lowerCamelCase__ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'}) lowerCamelCase__ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached training and evaluation sets'}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.task_name.lower() class UpperCAmelCase_ ( a): lowerCamelCase__ = 'train' lowerCamelCase__ = 'dev' lowerCamelCase__ = 'test' class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self, __a, __a, __a = None, __a = Split.train, __a = None, ): '''simple docstring''' warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py", __a, ) _lowerCAmelCase : Optional[Any] = args _lowerCAmelCase : Tuple = glue_processors[args.task_name]() _lowerCAmelCase : Union[str, Any] = glue_output_modes[args.task_name] if isinstance(__a, __a): try: _lowerCAmelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name") # Load data features from cache or dataset file _lowerCAmelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir, f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}", ) _lowerCAmelCase : List[Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowerCAmelCase , _lowerCAmelCase : Tuple = label_list[2], label_list[1] _lowerCAmelCase : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase : List[str] = cached_features_file + ".lock" with FileLock(__a): if os.path.exists(__a) and not args.overwrite_cache: _lowerCAmelCase : Dict = time.time() _lowerCAmelCase : Union[str, Any] = torch.load(__a) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start) else: logger.info(f"Creating features from dataset file at {args.data_dir}") if mode == Split.dev: _lowerCAmelCase : Tuple = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: _lowerCAmelCase : str = self.processor.get_test_examples(args.data_dir) else: _lowerCAmelCase : Optional[Any] = self.processor.get_train_examples(args.data_dir) if limit_length is not None: _lowerCAmelCase : Any = examples[:limit_length] _lowerCAmelCase : Any = glue_convert_examples_to_features( __a, __a, max_length=args.max_seq_length, label_list=__a, output_mode=self.output_mode, ) _lowerCAmelCase : int = time.time() torch.save(self.features, __a) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]") def __len__( self): '''simple docstring''' return len(self.features) def __getitem__( self, __a): '''simple docstring''' return self.features[i] def snake_case__ ( self): '''simple docstring''' return self.label_list
658
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = BertTokenizer lowerCamelCase__ = BertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCAmelCase : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "UNwant\u00E9d,running" _lowerCAmelCase : Dict = "unwanted, running" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file) _lowerCAmelCase : Union[str, Any] = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(__a, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a), [9, 6, 7, 12, 10, 11]) def snake_case__ ( self): '''simple docstring''' if not self.test_rust_tokenizer: return _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = self.get_rust_tokenizer() _lowerCAmelCase : Optional[int] = "UNwant\u00E9d,running" _lowerCAmelCase : List[str] = tokenizer.tokenize(__a) _lowerCAmelCase : Dict = rust_tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : List[str] = tokenizer.encode(__a, add_special_tokens=__a) _lowerCAmelCase : str = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() _lowerCAmelCase : Optional[int] = tokenizer.encode(__a) _lowerCAmelCase : Any = rust_tokenizer.encode(__a) self.assertListEqual(__a, __a) # With lower casing _lowerCAmelCase : Optional[Any] = self.get_tokenizer(do_lower_case=__a) _lowerCAmelCase : Dict = self.get_rust_tokenizer(do_lower_case=__a) _lowerCAmelCase : Union[str, Any] = "UNwant\u00E9d,running" _lowerCAmelCase : Optional[Any] = tokenizer.tokenize(__a) _lowerCAmelCase : List[str] = rust_tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : List[str] = tokenizer.encode(__a, add_special_tokens=__a) _lowerCAmelCase : List[str] = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : List[Any] = self.get_rust_tokenizer() _lowerCAmelCase : List[Any] = tokenizer.encode(__a) _lowerCAmelCase : Dict = rust_tokenizer.encode(__a) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=__a, strip_accents=__a) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = BasicTokenizer(do_lower_case=__a, strip_accents=__a) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = BasicTokenizer(do_lower_case=__a, strip_accents=__a) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = BasicTokenizer(do_lower_case=__a, strip_accents=__a) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = BasicTokenizer(do_lower_case=__a, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = BasicTokenizer() _lowerCAmelCase : Optional[int] = "a\n'll !!to?'d of, can't." _lowerCAmelCase : int = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."] self.assertListEqual(tokenizer.tokenize(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _lowerCAmelCase : int = {} for i, token in enumerate(__a): _lowerCAmelCase : Dict = i _lowerCAmelCase : Tuple = WordpieceTokenizer(vocab=__a, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) def snake_case__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def snake_case__ ( self): '''simple docstring''' self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def snake_case__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.get_tokenizer() _lowerCAmelCase : List[str] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]) self.assertListEqual( [rust_tokenizer.tokenize(__a) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained("bert-base-uncased") _lowerCAmelCase : str = tokenizer.encode("sequence builders", add_special_tokens=__a) _lowerCAmelCase : List[str] = tokenizer.encode("multi-sequence build", add_special_tokens=__a) _lowerCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__a) _lowerCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(__a, __a) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def snake_case__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : str = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _lowerCAmelCase : Any = tokenizer_r.encode_plus( __a, return_attention_mask=__a, return_token_type_ids=__a, return_offsets_mapping=__a, add_special_tokens=__a, ) _lowerCAmelCase : Optional[int] = tokenizer_r.do_lower_case if hasattr(__a, "do_lower_case") else False _lowerCAmelCase : str = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])) self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = ["的", "人", "有"] _lowerCAmelCase : Optional[int] = "".join(__a) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : Tuple = True _lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : List[Any] = tokenizer_p.encode(__a, add_special_tokens=__a) _lowerCAmelCase : List[Any] = tokenizer_r.encode(__a, add_special_tokens=__a) _lowerCAmelCase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(__a) _lowerCAmelCase : int = tokenizer_p.convert_ids_to_tokens(__a) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a, __a) self.assertListEqual(__a, __a) _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : Optional[int] = tokenizer_r.encode(__a, add_special_tokens=__a) _lowerCAmelCase : Any = tokenizer_p.encode(__a, add_special_tokens=__a) _lowerCAmelCase : str = tokenizer_r.convert_ids_to_tokens(__a) _lowerCAmelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a) # it is expected that only the first Chinese character is not preceded by "##". _lowerCAmelCase : Any = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(__a) ] self.assertListEqual(__a, __a) self.assertListEqual(__a, __a)
658
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( nn.Module): lowerCamelCase__ = 42 lowerCamelCase__ = (16, 32, 96, 256) lowerCamelCase__ = jnp.floataa def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = nn.Conv( self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) _lowerCAmelCase : List[Any] = [] for i in range(len(self.block_out_channels) - 1): _lowerCAmelCase : List[Any] = self.block_out_channels[i] _lowerCAmelCase : Dict = self.block_out_channels[i + 1] _lowerCAmelCase : Any = nn.Conv( __a, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(__a) _lowerCAmelCase : Any = nn.Conv( __a, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(__a) _lowerCAmelCase : Tuple = blocks _lowerCAmelCase : Union[str, Any] = nn.Conv( self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.conv_in(__a) _lowerCAmelCase : str = nn.silu(__a) for block in self.blocks: _lowerCAmelCase : str = block(__a) _lowerCAmelCase : Dict = nn.silu(__a) _lowerCAmelCase : str = self.conv_out(__a) return embedding @flax_register_to_config class UpperCAmelCase_ ( nn.Module , a , a): lowerCamelCase__ = 32 lowerCamelCase__ = 4 lowerCamelCase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCamelCase__ = False lowerCamelCase__ = (320, 640, 1280, 1280) lowerCamelCase__ = 2 lowerCamelCase__ = 8 lowerCamelCase__ = None lowerCamelCase__ = 1280 lowerCamelCase__ = 0.0 lowerCamelCase__ = False lowerCamelCase__ = jnp.floataa lowerCamelCase__ = True lowerCamelCase__ = 0 lowerCamelCase__ = "rgb" lowerCamelCase__ = (16, 32, 96, 256) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = (1, self.in_channels, self.sample_size, self.sample_size) _lowerCAmelCase : Dict = jnp.zeros(__a, dtype=jnp.floataa) _lowerCAmelCase : Any = jnp.ones((1,), dtype=jnp.intaa) _lowerCAmelCase : int = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa) _lowerCAmelCase : List[Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) _lowerCAmelCase : List[str] = jnp.zeros(__a, dtype=jnp.floataa) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = jax.random.split(__a) _lowerCAmelCase : List[str] = {"params": params_rng, "dropout": dropout_rng} return self.init(__a, __a, __a, __a, __a)["params"] def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.block_out_channels _lowerCAmelCase : Any = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _lowerCAmelCase : Union[str, Any] = self.num_attention_heads or self.attention_head_dim # input _lowerCAmelCase : Dict = nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time _lowerCAmelCase : List[str] = FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift) _lowerCAmelCase : Tuple = FlaxTimestepEmbedding(__a, dtype=self.dtype) _lowerCAmelCase : List[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, ) _lowerCAmelCase : List[str] = self.only_cross_attention if isinstance(__a, __a): _lowerCAmelCase : List[str] = (only_cross_attention,) * len(self.down_block_types) if isinstance(__a, __a): _lowerCAmelCase : Any = (num_attention_heads,) * len(self.down_block_types) # down _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Any = block_out_channels[0] _lowerCAmelCase : Any = nn.Conv( __a, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(__a) for i, down_block_type in enumerate(self.down_block_types): _lowerCAmelCase : Optional[Any] = output_channel _lowerCAmelCase : Optional[int] = block_out_channels[i] _lowerCAmelCase : List[Any] = i == len(__a) - 1 if down_block_type == "CrossAttnDownBlock2D": _lowerCAmelCase : Dict = FlaxCrossAttnDownBlockaD( in_channels=__a, out_channels=__a, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, ) else: _lowerCAmelCase : Optional[Any] = FlaxDownBlockaD( in_channels=__a, out_channels=__a, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(__a) for _ in range(self.layers_per_block): _lowerCAmelCase : str = nn.Conv( __a, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(__a) if not is_final_block: _lowerCAmelCase : int = nn.Conv( __a, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(__a) _lowerCAmelCase : Optional[int] = down_blocks _lowerCAmelCase : int = controlnet_down_blocks # mid _lowerCAmelCase : Dict = block_out_channels[-1] _lowerCAmelCase : Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=__a, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, ) _lowerCAmelCase : str = nn.Conv( __a, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, __a, __a, __a, __a, __a = 1.0, __a = True, __a = False, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.controlnet_conditioning_channel_order if channel_order == "bgr": _lowerCAmelCase : List[str] = jnp.flip(__a, axis=1) # 1. time if not isinstance(__a, jnp.ndarray): _lowerCAmelCase : List[str] = jnp.array([timesteps], dtype=jnp.intaa) elif isinstance(__a, jnp.ndarray) and len(timesteps.shape) == 0: _lowerCAmelCase : Optional[int] = timesteps.astype(dtype=jnp.floataa) _lowerCAmelCase : int = jnp.expand_dims(__a, 0) _lowerCAmelCase : Union[str, Any] = self.time_proj(__a) _lowerCAmelCase : Optional[int] = self.time_embedding(__a) # 2. pre-process _lowerCAmelCase : List[str] = jnp.transpose(__a, (0, 2, 3, 1)) _lowerCAmelCase : int = self.conv_in(__a) _lowerCAmelCase : Optional[Any] = jnp.transpose(__a, (0, 2, 3, 1)) _lowerCAmelCase : Tuple = self.controlnet_cond_embedding(__a) sample += controlnet_cond # 3. down _lowerCAmelCase : Any = (sample,) for down_block in self.down_blocks: if isinstance(__a, __a): _lowerCAmelCase , _lowerCAmelCase : Tuple = down_block(__a, __a, __a, deterministic=not train) else: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = down_block(__a, __a, deterministic=not train) down_block_res_samples += res_samples # 4. mid _lowerCAmelCase : Any = self.mid_block(__a, __a, __a, deterministic=not train) # 5. contronet blocks _lowerCAmelCase : str = () for down_block_res_sample, controlnet_block in zip(__a, self.controlnet_down_blocks): _lowerCAmelCase : str = controlnet_block(__a) controlnet_down_block_res_samples += (down_block_res_sample,) _lowerCAmelCase : int = controlnet_down_block_res_samples _lowerCAmelCase : List[Any] = self.controlnet_mid_block(__a) # 6. scaling _lowerCAmelCase : List[str] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__a, mid_block_res_sample=__a)
658
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'vit_msn' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-06, __a=224, __a=16, __a=3, __a=True, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : Dict = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : Optional[int] = qkv_bias
658
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
1
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = ['input_features', 'attention_mask'] def __init__( self, __a=80, __a=1_6000, __a=0.0, __a=10, __a=25, __a="hamming_window", __a=32_768.0, __a=0.97, __a=1.0, __a=True, __a=True, __a=False, **__a, ): '''simple docstring''' super().__init__(feature_size=__a, sampling_rate=__a, padding_value=__a, **__a) _lowerCAmelCase : List[Any] = feature_size _lowerCAmelCase : Tuple = sampling_rate _lowerCAmelCase : List[Any] = padding_value _lowerCAmelCase : int = hop_length _lowerCAmelCase : str = win_length _lowerCAmelCase : Any = frame_signal_scale _lowerCAmelCase : str = preemphasis_coeff _lowerCAmelCase : Optional[int] = mel_floor _lowerCAmelCase : Optional[Any] = normalize_means _lowerCAmelCase : List[Any] = normalize_vars _lowerCAmelCase : Union[str, Any] = win_function _lowerCAmelCase : Dict = return_attention_mask _lowerCAmelCase : Union[str, Any] = win_length * sampling_rate // 1000 _lowerCAmelCase : int = hop_length * sampling_rate // 1000 _lowerCAmelCase : Optional[int] = optimal_fft_length(self.sample_size) _lowerCAmelCase : List[str] = (self.n_fft // 2) + 1 def snake_case__ ( self, __a): '''simple docstring''' if self.win_function == "hamming_window": _lowerCAmelCase : Optional[int] = window_function(window_length=self.sample_size, name=self.win_function, periodic=__a) else: _lowerCAmelCase : List[Any] = window_function(window_length=self.sample_size, name=self.win_function) _lowerCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.n_freqs, num_mel_filters=self.feature_size, min_frequency=0.0, max_frequency=self.sampling_rate / 2.0, sampling_rate=self.sampling_rate, ) _lowerCAmelCase : Union[str, Any] = spectrogram( one_waveform * self.frame_signal_scale, window=__a, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, center=__a, preemphasis=self.preemphasis_coeff, mel_filters=__a, mel_floor=self.mel_floor, log_mel="log", ) return msfc_features.T def snake_case__ ( self, __a, __a, __a): '''simple docstring''' if self.normalize_means: _lowerCAmelCase : Optional[Any] = x[:input_length].mean(axis=0) _lowerCAmelCase : List[Any] = np.subtract(__a, __a) if self.normalize_vars: _lowerCAmelCase : Optional[int] = x[:input_length].std(axis=0) _lowerCAmelCase : int = np.divide(__a, __a) if input_length < x.shape[0]: _lowerCAmelCase : List[Any] = padding_value # make sure array is in float32 _lowerCAmelCase : Dict = x.astype(np.floataa) return x def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Any = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__a, __a, self.padding_value) for x, n in zip(__a, __a)] def __call__( self, __a, __a = False, __a = None, __a = False, __a = None, __a = None, __a = None, __a = None, **__a, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug.") _lowerCAmelCase : str = isinstance(__a, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") _lowerCAmelCase : int = is_batched_numpy or ( isinstance(__a, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: _lowerCAmelCase : List[Any] = [np.asarray(__a, dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(__a, np.ndarray): _lowerCAmelCase : Dict = np.asarray(__a, dtype=np.floataa) elif isinstance(__a, np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): _lowerCAmelCase : int = raw_speech.astype(np.floataa) # always return batch if not is_batched: _lowerCAmelCase : Union[str, Any] = [raw_speech] # extract fbank features _lowerCAmelCase : Optional[int] = [self._extract_mfsc_features(__a) for one_waveform in raw_speech] # convert into correct format for padding _lowerCAmelCase : Any = BatchFeature({"input_features": features}) _lowerCAmelCase : Dict = self.pad( __a, padding=__a, max_length=__a, truncation=__a, pad_to_multiple_of=__a, return_attention_mask=__a, **__a, ) # make sure list is in array format _lowerCAmelCase : Any = padded_inputs.get("input_features") if isinstance(input_features[0], __a): _lowerCAmelCase : List[Any] = [np.asarray(__a, dtype=np.floataa) for feature in input_features] _lowerCAmelCase : str = padded_inputs.get("attention_mask") if attention_mask is not None: _lowerCAmelCase : Dict = [np.asarray(__a, dtype=np.intaa) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCAmelCase : List[Any] = ( np.array(__a, dtype=np.intaa) if self._get_padding_strategies(__a, max_length=__a) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCAmelCase : str = self.normalize( padded_inputs["input_features"], attention_mask=__a) if return_tensors is not None: _lowerCAmelCase : Tuple = padded_inputs.convert_to_tensors(__a) return padded_inputs
658
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _snake_case = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" _snake_case = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" _snake_case = R"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string"), "references": datasets.Value("string"), }), homepage="https://github.com/hendrycks/math", codebase_urls=["https://github.com/hendrycks/math"], ) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = 0.0 for i, j in zip(__a, __a): n_correct += 1.0 if math_equivalence.is_equiv(__a, __a) else 0.0 _lowerCAmelCase : Dict = n_correct / len(__a) return { "accuracy": accuracy, }
658
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
1
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowerCAmelCase : Optional[int] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowerCAmelCase : Optional[int] = 4 _lowerCAmelCase : List[Any] = 48 _lowerCAmelCase : Optional[int] = "pixelshuffle_aux" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowerCAmelCase : Optional[int] = [6, 6, 6, 6] _lowerCAmelCase : Union[str, Any] = 60 _lowerCAmelCase : str = [6, 6, 6, 6] _lowerCAmelCase : str = "pixelshuffledirect" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowerCAmelCase : str = 4 _lowerCAmelCase : Optional[Any] = "nearest+conv" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Union[str, Any] = 126 _lowerCAmelCase : Optional[Any] = 7 _lowerCAmelCase : List[str] = 2_55.0 _lowerCAmelCase : Optional[int] = "" return config def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: _lowerCAmelCase : Optional[int] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _lowerCAmelCase : Optional[Any] = name.replace("patch_embed.norm" , "embeddings.patch_embeddings.layernorm" ) if "layers" in name: _lowerCAmelCase : Optional[Any] = name.replace("layers" , "encoder.stages" ) if "residual_group.blocks" in name: _lowerCAmelCase : int = name.replace("residual_group.blocks" , "layers" ) if "attn.proj" in name: _lowerCAmelCase : Any = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _lowerCAmelCase : str = name.replace("attn" , "attention.self" ) if "norm1" in name: _lowerCAmelCase : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _lowerCAmelCase : Union[str, Any] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _lowerCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _lowerCAmelCase : Optional[Any] = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: _lowerCAmelCase : Optional[Any] = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: _lowerCAmelCase : int = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: _lowerCAmelCase : Union[str, Any] = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: _lowerCAmelCase : Tuple = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if "patch_embed.proj" in name: _lowerCAmelCase : Optional[int] = name.replace("patch_embed.proj" , "patch_embed.projection" ) if name == "norm.weight": _lowerCAmelCase : List[str] = "layernorm.weight" if name == "norm.bias": _lowerCAmelCase : Optional[int] = "layernorm.bias" if "conv_first" in name: _lowerCAmelCase : Tuple = name.replace("conv_first" , "first_convolution" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowerCAmelCase : Optional[int] = name.replace("conv_last" , "final_convolution" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowerCAmelCase : Any = name.replace("conv_before_upsample.0" , "conv_before_upsample" ) if "upsample.0" in name: _lowerCAmelCase : Optional[int] = name.replace("upsample.0" , "upsample.convolution_0" ) if "upsample.2" in name: _lowerCAmelCase : int = name.replace("upsample.2" , "upsample.convolution_1" ) _lowerCAmelCase : Tuple = "upsample." + name elif config.upsampler == "pixelshuffledirect": _lowerCAmelCase : int = name.replace("upsample.0.weight" , "upsample.conv.weight" ) _lowerCAmelCase : Optional[Any] = name.replace("upsample.0.bias" , "upsample.conv.bias" ) else: pass else: _lowerCAmelCase : int = "swin2sr." + name return name def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCAmelCase : List[str] = orig_state_dict.pop(_lowerCamelCase ) if "qkv" in key: _lowerCAmelCase : Union[str, Any] = key.split("." ) _lowerCAmelCase : Union[str, Any] = int(key_split[1] ) _lowerCAmelCase : Tuple = int(key_split[4] ) _lowerCAmelCase : Union[str, Any] = config.embed_dim if "weight" in key: _lowerCAmelCase : Union[str, Any] = val[:dim, :] _lowerCAmelCase : int = val[dim : dim * 2, :] _lowerCAmelCase : Tuple = val[-dim:, :] else: _lowerCAmelCase : str = val[:dim] _lowerCAmelCase : Tuple = val[dim : dim * 2] _lowerCAmelCase : Dict = val[-dim:] pass else: _lowerCAmelCase : Tuple = val return orig_state_dict def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = get_config(_lowerCamelCase ) _lowerCAmelCase : Any = SwinaSRForImageSuperResolution(_lowerCamelCase ) model.eval() _lowerCAmelCase : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : List[Any] = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) if len(_lowerCamelCase ) > 0: raise ValueError("Missing keys when converting: {}".format(_lowerCamelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"Unexpected key {key} in state_dict" ) # verify values _lowerCAmelCase : str = "https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true" _lowerCAmelCase : Dict = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) _lowerCAmelCase : Dict = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowerCAmelCase : List[Any] = 126 if "Jpeg" in checkpoint_url else 256 _lowerCAmelCase : Optional[Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) _lowerCAmelCase : List[str] = transforms(_lowerCamelCase ).unsqueeze(0 ) if config.num_channels == 1: _lowerCAmelCase : str = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowerCAmelCase : int = model(_lowerCamelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowerCAmelCase : Optional[Any] = torch.Size([1, 3, 512, 512] ) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowerCAmelCase : List[str] = torch.Size([1, 3, 1_024, 1_024] ) _lowerCAmelCase : Dict = torch.tensor( [[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowerCAmelCase : List[Any] = torch.Size([1, 3, 1_024, 1_024] ) _lowerCAmelCase : List[Any] = torch.tensor( [[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowerCAmelCase : str = torch.Size([1, 3, 512, 512] ) _lowerCAmelCase : Tuple = torch.tensor( [[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowerCAmelCase : Tuple = torch.Size([1, 3, 1_024, 1_024] ) _lowerCAmelCase : Optional[Any] = torch.tensor( [[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _lowerCamelCase , atol=1e-3 ) print("Looks ok!" ) _lowerCAmelCase : str = { "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": ( "swin2SR-classical-sr-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": ( "swin2SR-classical-sr-x4-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": ( "swin2SR-compressed-sr-x4-48" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": ( "swin2SR-lightweight-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": ( "swin2SR-realworld-sr-x4-64-bsrgan-psnr" ), } _lowerCAmelCase : Tuple = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: model.push_to_hub(F"caidas/{model_name}" ) processor.push_to_hub(F"caidas/{model_name}" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") _snake_case = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
1
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return x if y == 0 else greatest_common_divisor(_lowerCamelCase , x % y ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return (x * y) // greatest_common_divisor(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase = 20 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 1 for i in range(1 , n + 1 ): _lowerCAmelCase : str = lcm(_lowerCamelCase , _lowerCamelCase ) return g if __name__ == "__main__": print(f'''{solution() = }''')
658
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCAmelCase_ ( a): def __init__( self, __a, __a = None, __a = None, __a = None, __a = False, __a = False, __a = None, **__a, ): '''simple docstring''' super().__init__( __a, split=__a, features=__a, cache_dir=__a, keep_in_memory=__a, streaming=__a, num_proc=__a, **__a, ) _lowerCAmelCase : Tuple = path_or_paths if isinstance(__a, __a) else {self.split: path_or_paths} _lowerCAmelCase : Tuple = Text( cache_dir=__a, data_files=__a, features=__a, **__a, ) def snake_case__ ( self): '''simple docstring''' if self.streaming: _lowerCAmelCase : Optional[int] = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = None self.builder.download_and_prepare( download_config=__a, download_mode=__a, verification_mode=__a, base_path=__a, num_proc=self.num_proc, ) _lowerCAmelCase : Optional[Any] = self.builder.as_dataset( split=self.split, verification_mode=__a, in_memory=self.keep_in_memory) return dataset
658
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
1
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata _snake_case = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class UpperCAmelCase_ ( tr.AbstractTransform): def __init__( self, __a = " "): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = sentence_delimiter def snake_case__ ( self, __a): '''simple docstring''' return list(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int = [] for sent_idx, sentence in enumerate(__a): chars.extend(self.process_string(__a)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__a) - 1: chars.append(self.sentence_delimiter) return chars _snake_case = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _snake_case = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _snake_case = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _snake_case = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" _snake_case = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), }), codebase_urls=["https://github.com/jitsi/jiwer/"], reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ], ) def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( __a, __a, truth_transform=__a, hypothesis_transform=__a, )["wer"] _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = 0 for prediction, reference in zip(__a, __a): _lowerCAmelCase : Any = jiwer.compute_measures( __a, __a, truth_transform=__a, hypothesis_transform=__a, ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
658
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
1
_snake_case = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _snake_case = [{"type": "code", "content": INSTALL_CONTENT}] _snake_case = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
658
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
1
import numpy as np def A ( _lowerCamelCase ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( _lowerCamelCase ): '''simple docstring''' return vector * sigmoid(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' while b: _lowerCAmelCase , _lowerCAmelCase : str = b, a % b return a def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(_lowerCamelCase , a % b ) def A ( ): '''simple docstring''' print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
658
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if isinstance(_lowerCamelCase , torch.Tensor ): return image elif isinstance(_lowerCamelCase , PIL.Image.Image ): _lowerCAmelCase : str = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase : Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] _lowerCAmelCase : Dict = np.concatenate(_lowerCamelCase , axis=0 ) _lowerCAmelCase : Tuple = np.array(_lowerCamelCase ).astype(np.floataa ) / 2_55.0 _lowerCAmelCase : Optional[Any] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase : Any = 2.0 * image - 1.0 _lowerCAmelCase : str = torch.from_numpy(_lowerCamelCase ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase : Optional[Any] = torch.cat(_lowerCamelCase , dim=0 ) return image def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0.99_95 ): '''simple docstring''' if not isinstance(_lowerCamelCase , np.ndarray ): _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Optional[Any] = va.device _lowerCAmelCase : Dict = va.cpu().numpy() _lowerCAmelCase : str = va.cpu().numpy() _lowerCAmelCase : Dict = np.sum(va * va / (np.linalg.norm(_lowerCamelCase ) * np.linalg.norm(_lowerCamelCase )) ) if np.abs(_lowerCamelCase ) > DOT_THRESHOLD: _lowerCAmelCase : Dict = (1 - t) * va + t * va else: _lowerCAmelCase : str = np.arccos(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = np.sin(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = theta_a * t _lowerCAmelCase : Tuple = np.sin(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase : Optional[int] = sin_theta_t / sin_theta_a _lowerCAmelCase : Optional[int] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase : List[Any] = torch.from_numpy(_lowerCamelCase ).to(_lowerCamelCase ) return va def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F.normalize(_lowerCamelCase , dim=-1 ) _lowerCAmelCase : Tuple = F.normalize(_lowerCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for param in model.parameters(): _lowerCAmelCase : Any = value class UpperCAmelCase_ ( a): def __init__( self, __a, __a, __a, __a, __a, __a, __a, __a=None, __a=None, __a=None, ): '''simple docstring''' super().__init__() self.register_modules( vae=__a, text_encoder=__a, clip_model=__a, tokenizer=__a, unet=__a, scheduler=__a, feature_extractor=__a, coca_model=__a, coca_tokenizer=__a, coca_transform=__a, ) _lowerCAmelCase : Optional[Any] = ( feature_extractor.size if isinstance(feature_extractor.size, __a) else feature_extractor.size["shortest_edge"] ) _lowerCAmelCase : List[Any] = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) set_requires_grad(self.text_encoder, __a) set_requires_grad(self.clip_model, __a) def snake_case__ ( self, __a = "auto"): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a) def snake_case__ ( self): '''simple docstring''' self.enable_attention_slicing(__a) def snake_case__ ( self): '''simple docstring''' set_requires_grad(self.vae, __a) def snake_case__ ( self): '''simple docstring''' set_requires_grad(self.vae, __a) def snake_case__ ( self): '''simple docstring''' set_requires_grad(self.unet, __a) def snake_case__ ( self): '''simple docstring''' set_requires_grad(self.unet, __a) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = min(int(num_inference_steps * strength), __a) _lowerCAmelCase : List[str] = max(num_inference_steps - init_timestep, 0) _lowerCAmelCase : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case__ ( self, __a, __a, __a, __a, __a, __a=None): '''simple docstring''' if not isinstance(__a, torch.Tensor): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(__a)}") _lowerCAmelCase : List[str] = image.to(device=__a, dtype=__a) if isinstance(__a, __a): _lowerCAmelCase : Any = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(__a) ] _lowerCAmelCase : Optional[Any] = torch.cat(__a, dim=0) else: _lowerCAmelCase : Any = self.vae.encode(__a).latent_dist.sample(__a) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase : List[str] = 0.18_215 * init_latents _lowerCAmelCase : List[Any] = init_latents.repeat_interleave(__a, dim=0) _lowerCAmelCase : Union[str, Any] = randn_tensor(init_latents.shape, generator=__a, device=__a, dtype=__a) # get latents _lowerCAmelCase : Union[str, Any] = self.scheduler.add_noise(__a, __a, __a) _lowerCAmelCase : Optional[int] = init_latents return latents def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = self.coca_transform(__a).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase : Optional[int] = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) _lowerCAmelCase : Tuple = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split("<end_of_text>")[0].replace("<start_of_text>", "").rstrip(" .,") def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.feature_extractor.preprocess(__a) _lowerCAmelCase : Tuple = torch.from_numpy(clip_image_input["pixel_values"][0]).unsqueeze(0).to(self.device).half() _lowerCAmelCase : int = self.clip_model.get_image_features(__a) _lowerCAmelCase : str = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=__a) _lowerCAmelCase : Union[str, Any] = image_embeddings_clip.repeat_interleave(__a, dim=0) return image_embeddings_clip @torch.enable_grad() def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = latents.detach().requires_grad_() _lowerCAmelCase : Any = self.scheduler.scale_model_input(__a, __a) # predict the noise residual _lowerCAmelCase : Union[str, Any] = self.unet(__a, __a, encoder_hidden_states=__a).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _lowerCAmelCase : int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase : str = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase : str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase : Optional[int] = torch.sqrt(__a) _lowerCAmelCase : Union[str, Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, __a): _lowerCAmelCase : List[Any] = self.scheduler.sigmas[index] _lowerCAmelCase : int = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler)} not supported") # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase : Any = 1 / 0.18_215 * sample _lowerCAmelCase : Optional[Any] = self.vae.decode(__a).sample _lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0, 1) _lowerCAmelCase : str = transforms.Resize(self.feature_extractor_size)(__a) _lowerCAmelCase : Any = self.normalize(__a).to(latents.dtype) _lowerCAmelCase : Tuple = self.clip_model.get_image_features(__a) _lowerCAmelCase : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=__a) _lowerCAmelCase : Any = spherical_dist_loss(__a, __a).mean() * clip_guidance_scale _lowerCAmelCase : str = -torch.autograd.grad(__a, __a)[0] if isinstance(self.scheduler, __a): _lowerCAmelCase : Tuple = latents.detach() + grads * (sigma**2) _lowerCAmelCase : List[Any] = noise_pred_original else: _lowerCAmelCase : Optional[int] = noise_pred_original - torch.sqrt(__a) * grads return noise_pred, latents @torch.no_grad() def __call__( self, __a, __a, __a = None, __a = None, __a = 512, __a = 512, __a = 0.6, __a = 50, __a = 7.5, __a = 1, __a = 0.0, __a = 100, __a = None, __a = "pil", __a = True, __a = 0.8, __a = 0.1, __a = 0.1, ): '''simple docstring''' if isinstance(__a, __a) and len(__a) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(__a)} generators.") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if isinstance(__a, torch.Generator) and batch_size > 1: _lowerCAmelCase : Dict = [generator] + [None] * (batch_size - 1) _lowerCAmelCase : Dict = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] _lowerCAmelCase : Optional[Any] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase : Optional[int] = ", ".join(__a) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__a): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.") _lowerCAmelCase : List[str] = self.get_image_description(__a) if style_prompt is None: if len(__a): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.") _lowerCAmelCase : List[str] = self.get_image_description(__a) # get prompt text embeddings for content and style _lowerCAmelCase : Optional[Any] = self.tokenizer( __a, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=__a, return_tensors="pt", ) _lowerCAmelCase : List[Any] = self.text_encoder(content_text_input.input_ids.to(self.device))[0] _lowerCAmelCase : int = self.tokenizer( __a, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=__a, return_tensors="pt", ) _lowerCAmelCase : List[str] = self.text_encoder(style_text_input.input_ids.to(self.device))[0] _lowerCAmelCase : str = slerp(__a, __a, __a) # duplicate text embeddings for each generation per prompt _lowerCAmelCase : Union[str, Any] = text_embeddings.repeat_interleave(__a, dim=0) # set timesteps _lowerCAmelCase : Tuple = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _lowerCAmelCase : List[str] = {} if accepts_offset: _lowerCAmelCase : Optional[int] = 1 self.scheduler.set_timesteps(__a, **__a) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(__a, __a, self.device) _lowerCAmelCase : Dict = timesteps[:1].repeat(__a) # Preprocess image _lowerCAmelCase : Optional[int] = preprocess(__a, __a, __a) _lowerCAmelCase : Any = self.prepare_latents( __a, __a, __a, text_embeddings.dtype, self.device, __a) _lowerCAmelCase : List[Any] = preprocess(__a, __a, __a) _lowerCAmelCase : str = self.prepare_latents( __a, __a, __a, text_embeddings.dtype, self.device, __a) _lowerCAmelCase : Tuple = slerp(__a, __a, __a) if clip_guidance_scale > 0: _lowerCAmelCase : List[str] = self.get_clip_image_embeddings(__a, __a) _lowerCAmelCase : Optional[Any] = self.get_clip_image_embeddings(__a, __a) _lowerCAmelCase : Optional[int] = slerp( __a, __a, __a) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase : Union[str, Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase : str = content_text_input.input_ids.shape[-1] _lowerCAmelCase : Union[str, Any] = self.tokenizer([""], padding="max_length", max_length=__a, return_tensors="pt") _lowerCAmelCase : str = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase : Optional[int] = uncond_embeddings.repeat_interleave(__a, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase : Optional[int] = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase : Union[str, Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase : List[str] = torch.randn(__a, generator=__a, device="cpu", dtype=__a).to( self.device) else: _lowerCAmelCase : Optional[Any] = torch.randn(__a, generator=__a, device=self.device, dtype=__a) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") _lowerCAmelCase : Dict = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase : List[Any] = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) _lowerCAmelCase : Optional[int] = {} if accepts_eta: _lowerCAmelCase : List[Any] = eta # check if the scheduler accepts generator _lowerCAmelCase : Optional[int] = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _lowerCAmelCase : Optional[int] = generator with self.progress_bar(total=__a): for i, t in enumerate(__a): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _lowerCAmelCase : List[str] = self.scheduler.scale_model_input(__a, __a) # predict the noise residual _lowerCAmelCase : List[Any] = self.unet(__a, __a, encoder_hidden_states=__a).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2) _lowerCAmelCase : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase : str = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase : str = self.cond_fn( __a, __a, __a, __a, __a, __a, __a, ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : Union[str, Any] = self.scheduler.step(__a, __a, __a, **__a).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase : Tuple = 1 / 0.18_215 * latents _lowerCAmelCase : Optional[Any] = self.vae.decode(__a).sample _lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0, 1) _lowerCAmelCase : List[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowerCAmelCase : str = self.numpy_to_pil(__a) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__a, nsfw_content_detected=__a)
658
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'convnextv2' def __init__( self, __a=3, __a=4, __a=4, __a=None, __a=None, __a="gelu", __a=0.02, __a=1E-12, __a=0.0, __a=224, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = num_channels _lowerCAmelCase : int = patch_size _lowerCAmelCase : Dict = num_stages _lowerCAmelCase : int = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes _lowerCAmelCase : List[Any] = [3, 3, 9, 3] if depths is None else depths _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : int = drop_path_rate _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : str = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : Optional[int] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
1
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def A ( _lowerCamelCase ): '''simple docstring''' if "model" in orig_key: _lowerCAmelCase : Union[str, Any] = orig_key.replace("model." , "" ) if "norm1" in orig_key: _lowerCAmelCase : Any = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: _lowerCAmelCase : int = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: _lowerCAmelCase : Optional[int] = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: _lowerCAmelCase : Optional[int] = orig_key.split("." )[0].split("_" )[-1] _lowerCAmelCase : Dict = orig_key.replace(F"transformer_{layer_num}" , F"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: _lowerCAmelCase : Dict = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: _lowerCAmelCase : str = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: _lowerCAmelCase : Union[str, Any] = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: _lowerCAmelCase : Any = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: _lowerCAmelCase : Union[str, Any] = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: _lowerCAmelCase : List[str] = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: _lowerCAmelCase : Optional[Any] = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: _lowerCAmelCase : List[Any] = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: _lowerCAmelCase : Dict = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: _lowerCAmelCase : Any = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: _lowerCAmelCase : Any = "yoso." + orig_key return orig_key def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCAmelCase : List[Any] = orig_state_dict.pop(_lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: _lowerCAmelCase : Any = val _lowerCAmelCase : Any = orig_state_dict["cls.predictions.decoder.bias"] _lowerCAmelCase : Optional[int] = torch.arange(_lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" )["model_state_dict"] _lowerCAmelCase : Optional[int] = YosoConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : List[str] = YosoForMaskedLM(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , _lowerCamelCase ) print(model.load_state_dict(_lowerCamelCase ) ) model.eval() model.save_pretrained(_lowerCamelCase ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
658
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
1
from __future__ import annotations from random import random class UpperCAmelCase_ : def __init__( self, __a = None): '''simple docstring''' _lowerCAmelCase : Tuple = value _lowerCAmelCase : Dict = random() _lowerCAmelCase : Node | None = None _lowerCAmelCase : Node | None = None def __repr__( self): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"'{self.value}: {self.prior:.5}'" else: return pformat( {f"{self.value}: {self.prior:.5}": (self.left, self.right)}, indent=1) def __str__( self): '''simple docstring''' _lowerCAmelCase : int = str(self.value) + " " _lowerCAmelCase : Optional[Any] = str(self.left or "") _lowerCAmelCase : List[str] = str(self.right or "") return value + left + right def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCAmelCase , _lowerCAmelCase : Dict = split(root.left , _lowerCamelCase ) return left, root else: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = split(root.right , _lowerCamelCase ) return root, right def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCAmelCase : Optional[int] = merge(left.right , _lowerCamelCase ) return left else: _lowerCAmelCase : str = merge(_lowerCamelCase , right.left ) return right def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = Node(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = split(_lowerCamelCase , value - 1 ) _lowerCAmelCase , _lowerCAmelCase : List[str] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCAmelCase : int = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCAmelCase : Dict = erase(_lowerCamelCase , int(arg[1:] ) ) else: print("Unknown command" ) return root def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _lowerCAmelCase : List[Any] = input() while args != "q": _lowerCAmelCase : Dict = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
from __future__ import annotations def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = position _lowerCAmelCase : Union[str, Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _lowerCAmelCase : Optional[Any] = [] for position in positions: _lowerCAmelCase , _lowerCAmelCase : str = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_lowerCamelCase ) return permissible_positions def A ( _lowerCamelCase ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if is_complete(_lowerCamelCase ): return True for position in get_valid_pos(_lowerCamelCase , len(_lowerCamelCase ) ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = position if board[y][x] == 0: _lowerCAmelCase : Any = curr + 1 if open_knight_tour_helper(_lowerCamelCase , _lowerCamelCase , curr + 1 ): return True _lowerCAmelCase : List[str] = 0 return False def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [[0 for i in range(_lowerCamelCase )] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = 1 if open_knight_tour_helper(_lowerCamelCase , (i, j) , 1 ): return board _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : List[Any] = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.model"} _snake_case = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } _snake_case = { "google/rembert": 256, } class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, __a, __a=False, __a=True, __a=True, __a="[CLS]", __a="[SEP]", __a="[UNK]", __a="[SEP]", __a="[PAD]", __a="[CLS]", __a="[MASK]", **__a, ): '''simple docstring''' super().__init__( do_lower_case=__a, remove_space=__a, keep_accents=__a, bos_token=__a, eos_token=__a, unk_token=__a, sep_token=__a, pad_token=__a, cls_token=__a, mask_token=__a, **__a, ) _lowerCAmelCase : str = do_lower_case _lowerCAmelCase : Union[str, Any] = remove_space _lowerCAmelCase : Any = keep_accents _lowerCAmelCase : Any = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor() self.sp_model.Load(__a) @property def snake_case__ ( self): '''simple docstring''' return len(self.sp_model) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = {self.convert_ids_to_tokens(__a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = d _lowerCAmelCase : str = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def snake_case__ ( self, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(__a) return pieces def snake_case__ ( self, __a): '''simple docstring''' return self.sp_model.PieceToId(__a) def snake_case__ ( self, __a): '''simple docstring''' return self.sp_model.IdToPiece(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.sp_model.decode_pieces(__a) return out_string def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Tuple = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model.") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__a)) + [1] + ([0] * len(__a)) + [1] return [1] + ([0] * len(__a)) + [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : int = [self.sep_token_id] _lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(__a): logger.error("Vocabulary path ({}) should be a directory".format(__a)) return _lowerCAmelCase : Union[str, Any] = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__a): copyfile(self.vocab_file, __a) return (out_vocab_file,)
658
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
1
_snake_case = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _snake_case = ["a", "b", "c", "d", "e"] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = start # add current to visited visited.append(_lowerCamelCase ) _lowerCAmelCase : str = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _lowerCAmelCase : Optional[int] = topological_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # if all neighbors visited add current to sort sort.append(_lowerCamelCase ) # if all vertices haven't been visited select a new one to visit if len(_lowerCamelCase ) != len(_lowerCamelCase ): for vertice in vertices: if vertice not in visited: _lowerCAmelCase : Tuple = topological_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # return sort return sort if __name__ == "__main__": _snake_case = topological_sort("a", [], []) print(sort)
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
1
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _snake_case = trt.Logger(trt.Logger.WARNING) _snake_case = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _snake_case = logging.getLogger(__name__) _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) _snake_case = parser.parse_args() if args.tokenizer_name: _snake_case = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) _snake_case = args.per_device_eval_batch_size _snake_case = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _snake_case = True _snake_case = "temp_engine/bert-fp32.engine" if args.fpaa: _snake_case = "temp_engine/bert-fp16.engine" if args.inta: _snake_case = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") _snake_case = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _snake_case = [network.get_input(i) for i in range(network.num_inputs)] _snake_case = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _snake_case = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _snake_case = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _snake_case = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = np.asarray(inputs["input_ids"] , dtype=np.intaa ) _lowerCAmelCase : List[str] = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) _lowerCAmelCase : Dict = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _lowerCamelCase ) # start time _lowerCAmelCase : Any = time.time() # Run inference context.execute_async( bindings=[int(_lowerCamelCase ) for d_inp in d_inputs] + [int(_lowerCamelCase ), int(_lowerCamelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) cuda.memcpy_dtoh_async(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Synchronize the stream and take time stream.synchronize() # end time _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Any = end_time - start_time _lowerCAmelCase : List[Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _snake_case = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _snake_case = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _snake_case = raw_datasets["validation"].column_names _snake_case = "question" if "question" in column_names else column_names[0] _snake_case = "context" if "context" in column_names else column_names[1] _snake_case = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _snake_case = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _snake_case = min(args.max_seq_length, tokenizer.model_max_length) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=_lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _lowerCAmelCase : List[Any] = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _lowerCAmelCase : str = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _lowerCAmelCase : Optional[int] = tokenized_examples.sequence_ids(_lowerCamelCase ) _lowerCAmelCase : str = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _lowerCAmelCase : Any = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _lowerCAmelCase : int = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples _snake_case = raw_datasets["validation"] # Validation Feature Creation _snake_case = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) _snake_case = default_data_collator _snake_case = eval_dataset.remove_columns(["example_id", "offset_mapping"]) _snake_case = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="eval" ): '''simple docstring''' _lowerCAmelCase : Optional[int] = postprocess_qa_predictions( examples=_lowerCamelCase , features=_lowerCamelCase , predictions=_lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _lowerCAmelCase : Any = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: _lowerCAmelCase : Any = [{"id": k, "prediction_text": v} for k, v in predictions.items()] _lowerCAmelCase : int = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_lowerCamelCase , label_ids=_lowerCamelCase ) _snake_case = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def A ( _lowerCamelCase ): '''simple docstring''' return trt.volume(engine.get_binding_shape(_lowerCamelCase ) ) * engine.get_binding_dtype(_lowerCamelCase ).itemsize # Allocate device memory for inputs and outputs. _snake_case = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _snake_case = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _snake_case = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _snake_case = cuda.mem_alloc(h_outputa.nbytes) _snake_case = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _snake_case = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') _snake_case = 0.0 _snake_case = 0 _snake_case = timeit.default_timer() _snake_case = None for step, batch in enumerate(eval_dataloader): _snake_case, _snake_case = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _snake_case, _snake_case = outputs _snake_case = torch.tensor(start_logits) _snake_case = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _snake_case = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _snake_case = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _snake_case = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _snake_case = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _snake_case = nested_truncate(all_preds, len(eval_dataset)) _snake_case = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) logger.info("Total Number of Inference = %d", niter) _snake_case = post_processing_function(eval_examples, eval_dataset, all_preds) _snake_case = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
658
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
1
import re def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": _snake_case = "0094702343221" print(is_sri_lankan_phone_number(phone))
658
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _snake_case = logging.getLogger(__name__) class UpperCAmelCase_ ( a): def __init__( self, __a=-1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = label_idx def snake_case__ ( self, __a, __a): '''simple docstring''' if isinstance(__a, __a): _lowerCAmelCase : List[Any] = mode.value _lowerCAmelCase : Dict = os.path.join(__a, f"{mode}.txt") _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[int] = [] with open(__a, encoding="utf-8") as f: _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Dict = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}", words=__a, labels=__a)) guid_index += 1 _lowerCAmelCase : Dict = [] _lowerCAmelCase : Dict = [] else: _lowerCAmelCase : List[Any] = line.split(" ") words.append(splits[0]) if len(__a) > 1: labels.append(splits[self.label_idx].replace("\n", "")) else: # Examples could have no label for mode = "test" labels.append("O") if words: examples.append(InputExample(guid=f"{mode}-{guid_index}", words=__a, labels=__a)) return examples def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = 0 for line in test_input_reader: if line.startswith("-DOCSTART-") or line == "" or line == "\n": writer.write(__a) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _lowerCAmelCase : Dict = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n" writer.write(__a) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0]) def snake_case__ ( self, __a): '''simple docstring''' if path: with open(__a, "r") as f: _lowerCAmelCase : Optional[Any] = f.read().splitlines() if "O" not in labels: _lowerCAmelCase : Optional[int] = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCAmelCase_ ( a): def __init__( self): '''simple docstring''' super().__init__(label_idx=-2) def snake_case__ ( self, __a): '''simple docstring''' if path: with open(__a, "r") as f: _lowerCAmelCase : Any = f.read().splitlines() if "O" not in labels: _lowerCAmelCase : List[str] = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCAmelCase_ ( a): def snake_case__ ( self, __a, __a): '''simple docstring''' if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = mode.value _lowerCAmelCase : Optional[int] = os.path.join(__a, f"{mode}.txt") _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Tuple = [] with open(__a, encoding="utf-8") as f: for sentence in parse_incr(__a): _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [] for token in sentence: words.append(token["form"]) labels.append(token["upos"]) assert len(__a) == len(__a) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}", words=__a, labels=__a)) guid_index += 1 return examples def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 0 for sentence in parse_incr(__a): _lowerCAmelCase : Dict = preds_list[example_id] _lowerCAmelCase : Tuple = "" for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0)}) " out += "\n" writer.write(__a) example_id += 1 def snake_case__ ( self, __a): '''simple docstring''' if path: with open(__a, "r") as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
658
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'bridgetower_vision_model' def __init__( self, __a=768, __a=12, __a=3, __a=16, __a=288, __a=1, __a=1E-05, __a=False, __a=True, __a=False, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : int = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : Any = num_channels _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Any = image_size _lowerCAmelCase : Optional[Any] = initializer_factor _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : Dict = stop_gradient _lowerCAmelCase : List[Any] = share_layernorm _lowerCAmelCase : Tuple = remove_last_layer @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = cls.get_config_dict(__a, **__a) if config_dict.get("model_type") == "bridgetower": _lowerCAmelCase : Dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(__a, **__a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'bridgetower_text_model' def __init__( self, __a=5_0265, __a=768, __a=12, __a=12, __a=1, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=514, __a=1, __a=1E-05, __a=1, __a=0, __a=2, __a="absolute", __a=True, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Any = initializer_factor _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Any = use_cache _lowerCAmelCase : Tuple = pad_token_id _lowerCAmelCase : Any = bos_token_id _lowerCAmelCase : int = eos_token_id @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = cls.get_config_dict(__a, **__a) if config_dict.get("model_type") == "bridgetower": _lowerCAmelCase : Optional[int] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(__a, **__a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'bridgetower' def __init__( self, __a=True, __a="gelu", __a=768, __a=1, __a=1E-05, __a=False, __a="add", __a=12, __a=6, __a=False, __a=False, __a=None, __a=None, **__a, ): '''simple docstring''' _lowerCAmelCase : List[str] = kwargs.pop("text_config_dict", __a) _lowerCAmelCase : Any = kwargs.pop("vision_config_dict", __a) super().__init__(**__a) _lowerCAmelCase : Optional[Any] = share_cross_modal_transformer_layers _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Tuple = initializer_factor _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Optional[int] = share_link_tower_layers _lowerCAmelCase : Any = link_tower_type _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : str = tie_word_embeddings _lowerCAmelCase : Tuple = init_layernorm_from_vision_encoder if text_config is None: _lowerCAmelCase : str = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.") if vision_config is None: _lowerCAmelCase : int = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.") _lowerCAmelCase : Any = BridgeTowerTextConfig(**__a) _lowerCAmelCase : List[str] = BridgeTowerVisionConfig(**__a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__) _lowerCAmelCase : Tuple = self.text_config.to_dict() _lowerCAmelCase : Optional[int] = self.vision_config.to_dict() _lowerCAmelCase : int = self.__class__.model_type return output
658
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
1
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _snake_case = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _snake_case = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" _snake_case = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def A ( _lowerCamelCase ): '''simple docstring''' def remove_articles(_lowerCamelCase ): _lowerCAmelCase : Tuple = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(_lowerCamelCase , " " , _lowerCamelCase ) def white_space_fix(_lowerCamelCase ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase ): _lowerCAmelCase : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return int(normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [any(compute_exact(_lowerCamelCase , _lowerCamelCase ) for ref in refs ) for pred, refs in zip(_lowerCamelCase , _lowerCamelCase )] return (sum(_lowerCamelCase ) / len(_lowerCamelCase )) * 100 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase : Optional[Any] = Counter(_lowerCamelCase ) _lowerCAmelCase : List[Any] = Counter(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase : str = scount * numref _lowerCAmelCase : str = Counter(_lowerCamelCase ) _lowerCAmelCase : str = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase : Dict = ccount * numref # KEEP _lowerCAmelCase : Dict = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase : str = keepgramcounter_rep & rgramcounter _lowerCAmelCase : Tuple = sgramcounter_rep & rgramcounter _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase : Dict = 1 _lowerCAmelCase : str = 1 if len(_lowerCamelCase ) > 0: _lowerCAmelCase : Optional[Any] = keeptmpscorea / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase : int = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase : str = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase : Dict = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase : List[Any] = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase : List[str] = delgramcounter_rep - rgramcounter _lowerCAmelCase : Any = sgramcounter_rep - rgramcounter _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Optional[int] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase : Optional[Any] = 1 if len(_lowerCamelCase ) > 0: _lowerCAmelCase : List[str] = deltmpscorea / len(_lowerCamelCase ) # ADDITION _lowerCAmelCase : List[Any] = set(_lowerCamelCase ) - set(_lowerCamelCase ) _lowerCAmelCase : Dict = set(_lowerCamelCase ) & set(_lowerCamelCase ) _lowerCAmelCase : str = set(_lowerCamelCase ) - set(_lowerCamelCase ) _lowerCAmelCase : int = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase : Any = 1 _lowerCAmelCase : Dict = 1 if len(_lowerCamelCase ) > 0: _lowerCAmelCase : Any = addtmpscore / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : Any = addtmpscore / len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase : Optional[int] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = len(_lowerCamelCase ) _lowerCAmelCase : Tuple = ssent.split(" " ) _lowerCAmelCase : List[Any] = csent.split(" " ) _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = [] _lowerCAmelCase : str = [] _lowerCAmelCase : Dict = [] _lowerCAmelCase : Tuple = [] _lowerCAmelCase : int = [] _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[Any] = [] for rsent in rsents: _lowerCAmelCase : Dict = rsent.split(" " ) _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Dict = [] _lowerCAmelCase : Tuple = [] ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Optional[Any] = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: _lowerCAmelCase : Union[str, Any] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: _lowerCAmelCase : Optional[int] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: _lowerCAmelCase : List[str] = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: _lowerCAmelCase : Union[str, Any] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: _lowerCAmelCase : Union[str, Any] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: _lowerCAmelCase : List[Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: _lowerCAmelCase : Optional[int] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_lowerCamelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Optional[int] = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Any = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Optional[int] = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : str = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase : str = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase : int = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase : List[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A ( _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = "13a" , _lowerCamelCase = True ): '''simple docstring''' if lowercase: _lowerCAmelCase : Optional[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase : Tuple = sacrebleu.metrics.bleu._get_tokenizer(_lowerCamelCase )()(_lowerCamelCase ) else: _lowerCAmelCase : List[str] = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCamelCase ) elif tokenizer == "moses": _lowerCAmelCase : Optional[int] = sacremoses.MosesTokenizer().tokenize(_lowerCamelCase , return_str=_lowerCamelCase , escape=_lowerCamelCase ) elif tokenizer == "penn": _lowerCAmelCase : List[str] = sacremoses.MosesTokenizer().penn_tokenize(_lowerCamelCase , return_str=_lowerCamelCase ) else: _lowerCAmelCase : Optional[int] = sentence if not return_str: _lowerCAmelCase : Tuple = normalized_sent.split() return normalized_sent def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not (len(_lowerCamelCase ) == len(_lowerCamelCase ) == len(_lowerCamelCase )): raise ValueError("Sources length must match predictions and references lengths." ) _lowerCAmelCase : Union[str, Any] = 0 for src, pred, refs in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): sari_score += SARIsent(normalize(_lowerCamelCase ) , normalize(_lowerCamelCase ) , [normalize(_lowerCamelCase ) for sent in refs] ) _lowerCAmelCase : str = sari_score / len(_lowerCamelCase ) return 100 * sari_score def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="exp" , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) _lowerCAmelCase : str = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] _lowerCAmelCase : Dict = sacrebleu.corpus_bleu( _lowerCamelCase , _lowerCamelCase , smooth_method=_lowerCamelCase , smooth_value=_lowerCamelCase , force=_lowerCamelCase , lowercase=_lowerCamelCase , use_effective_order=_lowerCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), }), codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ], reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = {} result.update({"sari": compute_sari(sources=__a, predictions=__a, references=__a)}) result.update({"sacrebleu": compute_sacrebleu(predictions=__a, references=__a)}) result.update({"exact": compute_em(predictions=__a, references=__a)}) return result
658
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _snake_case = 10 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 0 _lowerCAmelCase : Union[str, Any] = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = (left + right) // 3 + 1 _lowerCAmelCase : Optional[int] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCAmelCase : List[Any] = one_third - 1 elif array[two_third] < target: _lowerCAmelCase : Any = two_third + 1 else: _lowerCAmelCase : Optional[int] = one_third + 1 _lowerCAmelCase : Union[str, Any] = two_third - 1 else: return -1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : int = (left + right) // 3 + 1 _lowerCAmelCase : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _snake_case = input("Enter numbers separated by comma:\n").strip() _snake_case = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _snake_case = int(input("Enter the number to be found in the list:\n").strip()) _snake_case = ite_ternary_search(collection, target) _snake_case = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("Not found")
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
1
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "\n".join( F"{number} * {i} = {number * i}" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
658
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
1
def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("check_bouncy() accepts only integer arguments" ) _lowerCAmelCase : Union[str, Any] = str(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = "".join(sorted(_lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def A ( _lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) _lowerCAmelCase : str = 0 _lowerCAmelCase : Any = 1 while True: if check_bouncy(_lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
658
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase_ ( a): def __init__( self, __a=0.01, __a=1000): '''simple docstring''' _lowerCAmelCase : Optional[Any] = p_stop _lowerCAmelCase : Dict = max_length def __iter__( self): '''simple docstring''' _lowerCAmelCase : str = 0 _lowerCAmelCase : List[Any] = False while not stop and count < self.max_length: yield count count += 1 _lowerCAmelCase : Tuple = random.random() < self.p_stop class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self, __a, __a, __a=False, __a=True): '''simple docstring''' _lowerCAmelCase : Dict = [ BatchSamplerShard(__a, 2, __a, split_batches=__a, even_batches=__a) for i in range(2) ] _lowerCAmelCase : Optional[Any] = [list(__a) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__a) for shard in batch_sampler_shards], [len(__a) for e in expected]) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = BatchSampler(range(24), batch_size=3, drop_last=__a) _lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__a, __a) _lowerCAmelCase : str = BatchSampler(range(24), batch_size=3, drop_last=__a) # Expected shouldn't change self.check_batch_sampler_shards(__a, __a) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCAmelCase : Union[str, Any] = BatchSampler(range(21), batch_size=3, drop_last=__a) _lowerCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__a, __a) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(21), batch_size=3, drop_last=__a) _lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCAmelCase : List[Any] = BatchSampler(range(22), batch_size=3, drop_last=__a) _lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__a, __a) _lowerCAmelCase : Tuple = BatchSampler(range(22), batch_size=3, drop_last=__a) _lowerCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCAmelCase : int = BatchSampler(range(20), batch_size=3, drop_last=__a) _lowerCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__a, __a) _lowerCAmelCase : List[Any] = BatchSampler(range(20), batch_size=3, drop_last=__a) _lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a) # Check the shards when the dataset is very small. _lowerCAmelCase : str = BatchSampler(range(2), batch_size=3, drop_last=__a) _lowerCAmelCase : str = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__a, __a) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(2), batch_size=3, drop_last=__a) _lowerCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = BatchSampler(range(24), batch_size=4, drop_last=__a) _lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a) _lowerCAmelCase : Optional[int] = BatchSampler(range(24), batch_size=4, drop_last=__a) # Expected shouldn't change self.check_batch_sampler_shards(__a, __a, split_batches=__a) # Check the shards when the dataset is not a round multiple of batch size. _lowerCAmelCase : Union[str, Any] = BatchSampler(range(22), batch_size=4, drop_last=__a) _lowerCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a) _lowerCAmelCase : List[str] = BatchSampler(range(22), batch_size=4, drop_last=__a) _lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCAmelCase : str = BatchSampler(range(21), batch_size=4, drop_last=__a) _lowerCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a) _lowerCAmelCase : int = BatchSampler(range(21), batch_size=4, drop_last=__a) _lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a) # Check the shards when the dataset is very small. _lowerCAmelCase : Optional[int] = BatchSampler(range(2), batch_size=4, drop_last=__a) _lowerCAmelCase : List[str] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__a, __a, split_batches=__a) _lowerCAmelCase : Any = BatchSampler(range(2), batch_size=4, drop_last=__a) _lowerCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(__a, __a, split_batches=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = BatchSampler(range(24), batch_size=3, drop_last=__a) _lowerCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) _lowerCAmelCase : Any = BatchSampler(range(24), batch_size=3, drop_last=__a) # Expected shouldn't change self.check_batch_sampler_shards(__a, __a, even_batches=__a) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCAmelCase : List[Any] = BatchSampler(range(21), batch_size=3, drop_last=__a) _lowerCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) _lowerCAmelCase : List[str] = BatchSampler(range(21), batch_size=3, drop_last=__a) _lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCAmelCase : Tuple = BatchSampler(range(22), batch_size=3, drop_last=__a) _lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) _lowerCAmelCase : List[str] = BatchSampler(range(22), batch_size=3, drop_last=__a) _lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCAmelCase : Union[str, Any] = BatchSampler(range(20), batch_size=3, drop_last=__a) _lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) _lowerCAmelCase : Dict = BatchSampler(range(20), batch_size=3, drop_last=__a) _lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) # Check the shards when the dataset is very small. _lowerCAmelCase : int = BatchSampler(range(2), batch_size=3, drop_last=__a) _lowerCAmelCase : List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(__a, __a, even_batches=__a) _lowerCAmelCase : Tuple = BatchSampler(range(2), batch_size=3, drop_last=__a) _lowerCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(__a, __a, even_batches=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = BatchSampler(range(24), batch_size=4, drop_last=__a) _lowerCAmelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(24), batch_size=4, drop_last=__a) # Expected shouldn't change self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) # Check the shards when the dataset is not a round multiple of batch size. _lowerCAmelCase : List[Any] = BatchSampler(range(22), batch_size=4, drop_last=__a) _lowerCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) _lowerCAmelCase : List[Any] = BatchSampler(range(22), batch_size=4, drop_last=__a) _lowerCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCAmelCase : Any = BatchSampler(range(21), batch_size=4, drop_last=__a) _lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) _lowerCAmelCase : Tuple = BatchSampler(range(21), batch_size=4, drop_last=__a) _lowerCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) # Check the shards when the dataset is very small. _lowerCAmelCase : Dict = BatchSampler(range(2), batch_size=4, drop_last=__a) _lowerCAmelCase : List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) _lowerCAmelCase : Optional[int] = BatchSampler(range(2), batch_size=4, drop_last=__a) _lowerCAmelCase : Optional[Any] = [[], []] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _lowerCAmelCase : List[Any] = [BatchSamplerShard(__a, 2, __a, even_batches=__a) for i in range(2)] self.assertEqual(len(batch_sampler_shards[0]), 3) self.assertEqual(len(batch_sampler_shards[1]), 2) self.assertListEqual(list(batch_sampler_shards[0]), [[0, 1, 2], [5, 6, 7, 8], [12, 13]]) self.assertListEqual(list(batch_sampler_shards[1]), [[3, 4], [9, 10, 11]]) def snake_case__ ( self, __a, __a, __a, __a=False, __a=2, __a=False): '''simple docstring''' random.seed(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : str = [ IterableDatasetShard( __a, batch_size=__a, drop_last=__a, num_processes=__a, process_index=__a, split_batches=__a, ) for i in range(__a) ] _lowerCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__a) iterable_dataset_lists.append(list(__a)) _lowerCAmelCase : str = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _lowerCAmelCase : Any = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__a), len(__a)) self.assertTrue(len(__a) % shard_batch_size == 0) _lowerCAmelCase : Optional[int] = [] for idx in range(0, len(__a), __a): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__a) < len(__a): reference += reference self.assertListEqual(__a, reference[: len(__a)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = 42 _lowerCAmelCase : Dict = RandomIterableDataset() self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) # Edge case with a very small dataset _lowerCAmelCase : List[str] = RandomIterableDataset(max_length=2) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = BatchSampler(range(16), batch_size=4, drop_last=__a) _lowerCAmelCase : Dict = SkipBatchSampler(__a, 2) self.assertListEqual(list(__a), [[8, 9, 10, 11], [12, 13, 14, 15]]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = SkipDataLoader(list(range(16)), batch_size=4, skip_batches=2) self.assertListEqual([t.tolist() for t in dataloader], [[8, 9, 10, 11], [12, 13, 14, 15]]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = DataLoader(list(range(16)), batch_size=4) _lowerCAmelCase : Dict = skip_first_batches(__a, num_batches=2) self.assertListEqual([t.tolist() for t in new_dataloader], [[8, 9, 10, 11], [12, 13, 14, 15]]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = DataLoaderShard(list(range(16)), batch_size=4) for idx, _ in enumerate(__a): self.assertEqual(dataloader.end_of_dataloader, idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(__a): self.assertEqual(dataloader.end_of_dataloader, idx == 3) def snake_case__ ( self): '''simple docstring''' Accelerator() _lowerCAmelCase : Optional[int] = DataLoaderDispatcher(range(16), batch_size=4) for idx, _ in enumerate(__a): self.assertEqual(dataloader.end_of_dataloader, idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(__a): self.assertEqual(dataloader.end_of_dataloader, idx == 3)
658
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCAmelCase_ : def snake_case__ ( self, __a, __a, __a): '''simple docstring''' return None class UpperCAmelCase_ : def snake_case__ ( self, __a, __a, __a, __a): '''simple docstring''' return None class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def snake_case__ ( self): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__a, "tf", 12, **__a) @require_torch @slow def snake_case__ ( self): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__a, "pt", 12, **__a) @require_torch @slow def snake_case__ ( self): '''simple docstring''' from transformers import BertModel _lowerCAmelCase : List[str] = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t") as vocab_file: vocab_file.write("\n".join(__a)) vocab_file.flush() _lowerCAmelCase : Optional[Any] = BertTokenizerFast(vocab_file.name) with TemporaryDirectory() as bert_save_dir: _lowerCAmelCase : Any = BertModel(BertConfig(vocab_size=len(__a))) model.save_pretrained(__a) self._test_export(__a, "pt", 12, __a) @require_tf @slow def snake_case__ ( self): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCAmelCase : Tuple = self._test_export(__a, "tf", 12, **__a) _lowerCAmelCase : int = quantize(Path(__a)) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__a).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model") @require_torch @slow def snake_case__ ( self): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCAmelCase : str = self._test_export(__a, "pt", 12, **__a) _lowerCAmelCase : int = quantize(__a) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__a).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model") def snake_case__ ( self, __a, __a, __a, __a=None, **__a): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: _lowerCAmelCase : Optional[Any] = Path(__a).joinpath("model.onnx") # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__a, __a, __a, __a, __a, **__a) return path except Exception as e: self.fail(__a) @require_torch @require_tokenizers @slow def snake_case__ ( self): '''simple docstring''' from transformers import BertModel _lowerCAmelCase : Dict = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random")) _lowerCAmelCase : Any = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random") self._test_infer_dynamic_axis(__a, __a, "pt") @require_tf @require_tokenizers @slow def snake_case__ ( self): '''simple docstring''' from transformers import TFBertModel _lowerCAmelCase : int = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random")) _lowerCAmelCase : Optional[Any] = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random") self._test_infer_dynamic_axis(__a, __a, "tf") def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = FeatureExtractionPipeline(__a, __a) _lowerCAmelCase : Any = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = infer_shapes(__a, __a) # Assert all variables are present self.assertEqual(len(__a), len(__a)) self.assertTrue(all(var_name in shapes for var_name in variable_names)) self.assertSequenceEqual(variable_names[:3], __a) self.assertSequenceEqual(variable_names[3:], __a) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: "batch", 1: "sequence"}) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"], {0: "batch", 1: "sequence"}) self.assertDictEqual(shapes["output_1"], {0: "batch"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = ["input_ids", "attention_mask", "token_type_ids"] _lowerCAmelCase : Optional[Any] = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = ensure_valid_input(FuncContiguousArgs(), __a, __a) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__a), 3) # Should have exactly the same input names self.assertEqual(set(__a), set(__a)) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__a, (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"])) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _lowerCAmelCase , _lowerCAmelCase : List[Any] = ensure_valid_input(FuncNonContiguousArgs(), __a, __a) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__a), 1) self.assertEqual(len(__a), 1) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens["input_ids"]) self.assertEqual(ordered_input_names[0], "input_ids") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = generate_identified_filename(Path("/home/something/my_fake_model.onnx"), "-test") self.assertEqual("/home/something/my_fake_model-test.onnx", generated.as_posix())
658
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = checkpoints.load_tax_checkpoint(_lowerCamelCase ) _lowerCAmelCase : Dict = flatten_dict(_lowerCamelCase ) return flax_params def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : str = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } _lowerCAmelCase : int = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _lowerCAmelCase : Optional[int] = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _lowerCAmelCase : Any = new_key.replace(_lowerCamelCase , _lowerCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _lowerCAmelCase : List[Any] = new_key.replace(_lowerCamelCase , _lowerCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _lowerCAmelCase : Dict = re.sub(r"layers_(\d+)" , r"layer.\1" , _lowerCamelCase ) _lowerCAmelCase : Dict = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _lowerCAmelCase : Optional[int] = re.sub(r"layers_(\d+)" , r"layer.\1" , _lowerCamelCase ) _lowerCAmelCase : Dict = flax_dict[key] _lowerCAmelCase : Optional[int] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _lowerCAmelCase : Any = torch.from_numpy(converted_dict[key].T ) else: _lowerCAmelCase : List[str] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : str = get_flax_param(_lowerCamelCase ) if not use_large: _lowerCAmelCase : Optional[Any] = PixaStructVisionConfig() _lowerCAmelCase : Optional[int] = PixaStructTextConfig() else: _lowerCAmelCase : Optional[int] = PixaStructVisionConfig( hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 ) _lowerCAmelCase : Dict = PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 ) _lowerCAmelCase : Union[str, Any] = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_lowerCamelCase ) _lowerCAmelCase : List[str] = PixaStructForConditionalGeneration(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = rename_and_convert_flax_params(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) _lowerCAmelCase : Tuple = PixaStructImageProcessor() _lowerCAmelCase : Dict = PixaStructProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) if use_large: _lowerCAmelCase : Tuple = 4_096 _lowerCAmelCase : Union[str, Any] = True # mkdir if needed os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) print("Model saved in {}".format(_lowerCamelCase ) ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _snake_case = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
658
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCAmelCase_ ( pl.LightningModule): def __init__( self, __a): '''simple docstring''' super().__init__() _lowerCAmelCase : str = model _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = nn.Linear(self.model.config.hidden_size, self.num_labels) def snake_case__ ( self): '''simple docstring''' pass def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = LongformerModel.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = LightningModel(_lowerCamelCase ) _lowerCAmelCase : List[str] = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _lowerCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(_lowerCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_lowerCamelCase ) print(F"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
658
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'gptj' lowerCamelCase__ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=5_0400, __a=2048, __a=4096, __a=28, __a=16, __a=64, __a=None, __a="gelu_new", __a=0.0, __a=0.0, __a=0.0, __a=1E-5, __a=0.02, __a=True, __a=5_0256, __a=5_0256, __a=False, **__a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = vocab_size _lowerCAmelCase : Union[str, Any] = n_positions _lowerCAmelCase : str = n_embd _lowerCAmelCase : Dict = n_layer _lowerCAmelCase : List[Any] = n_head _lowerCAmelCase : List[str] = n_inner _lowerCAmelCase : Union[str, Any] = rotary_dim _lowerCAmelCase : List[Any] = activation_function _lowerCAmelCase : Dict = resid_pdrop _lowerCAmelCase : Union[str, Any] = embd_pdrop _lowerCAmelCase : str = attn_pdrop _lowerCAmelCase : Optional[Any] = layer_norm_epsilon _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Any = bos_token_id _lowerCAmelCase : int = eos_token_id super().__init__( bos_token_id=__a, eos_token_id=__a, tie_word_embeddings=__a, **__a) class UpperCAmelCase_ ( a): def __init__( self, __a, __a = "default", __a = None, __a = False, ): '''simple docstring''' super().__init__(__a, task=__a, patching_specs=__a, use_past=__a) if not getattr(self._config, "pad_token_id", __a): # TODO: how to do that better? _lowerCAmelCase : Dict = 0 @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(__a, direction="inputs") _lowerCAmelCase : Dict = {0: "batch", 1: "past_sequence + sequence"} else: _lowerCAmelCase : Any = {0: "batch", 1: "sequence"} return common_inputs @property def snake_case__ ( self): '''simple docstring''' return self._config.n_layer @property def snake_case__ ( self): '''simple docstring''' return self._config.n_head def snake_case__ ( self, __a, __a = -1, __a = -1, __a = False, __a = None, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super(__a, self).generate_dummy_inputs( __a, batch_size=__a, seq_length=__a, is_pair=__a, framework=__a) # We need to order the input in the way they appears in the forward() _lowerCAmelCase : Tuple = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch _lowerCAmelCase , _lowerCAmelCase : Any = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase : Tuple = seqlen + 2 _lowerCAmelCase : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase : Optional[Any] = [ (torch.zeros(__a), torch.zeros(__a)) for _ in range(self.num_layers) ] _lowerCAmelCase : Dict = common_inputs["attention_mask"] if self.use_past: _lowerCAmelCase : Optional[int] = ordered_inputs["attention_mask"].dtype _lowerCAmelCase : Optional[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__a, __a, dtype=__a)], dim=1) return ordered_inputs @property def snake_case__ ( self): '''simple docstring''' return 13
658
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _snake_case = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'facebook/nllb-200-distilled-600M' lowerCamelCase__ = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) lowerCamelCase__ = 'translator' lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ['text', 'text', 'text'] lowerCamelCase__ = ['text'] def snake_case__ ( self, __a, __a, __a): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language.") if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language.") _lowerCAmelCase : str = self.lang_to_code[src_lang] _lowerCAmelCase : Optional[int] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __a, return_tensors="pt", src_lang=__a, tgt_lang=__a) def snake_case__ ( self, __a): '''simple docstring''' return self.model.generate(**__a) def snake_case__ ( self, __a): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=__a)
658
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _snake_case = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } _snake_case = {"facebook/blenderbot_small-90M": 512} def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = set() _lowerCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Optional[Any] = char _lowerCAmelCase : Dict = set(_lowerCamelCase ) return pairs class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self, __a, __a, __a="__start__", __a="__end__", __a="__unk__", __a="__null__", **__a, ): '''simple docstring''' super().__init__(unk_token=__a, bos_token=__a, eos_token=__a, pad_token=__a, **__a) with open(__a, encoding="utf-8") as vocab_handle: _lowerCAmelCase : int = json.load(__a) _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} with open(__a, encoding="utf-8") as merges_handle: _lowerCAmelCase : int = merges_handle.read().split("\n")[1:-1] _lowerCAmelCase : Union[str, Any] = [tuple(merge.split()) for merge in merges] _lowerCAmelCase : Any = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : Any = {} @property def snake_case__ ( self): '''simple docstring''' return len(self.encoder) def snake_case__ ( self): '''simple docstring''' return dict(self.encoder, **self.added_tokens_encoder) def snake_case__ ( self, __a): '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : Optional[int] = re.sub("([.,!?()])", R" \1", __a) _lowerCAmelCase : Tuple = re.sub("(')", R" \1 ", __a) _lowerCAmelCase : Tuple = re.sub(R"\s{2,}", " ", __a) if "\n" in token: _lowerCAmelCase : Any = token.replace("\n", " __newln__") _lowerCAmelCase : Dict = token.split(" ") _lowerCAmelCase : Any = [] for token in tokens: if not len(__a): continue _lowerCAmelCase : Any = token.lower() _lowerCAmelCase : List[str] = tuple(__a) _lowerCAmelCase : Union[str, Any] = tuple(list(word[:-1]) + [word[-1] + "</w>"]) _lowerCAmelCase : int = get_pairs(__a) if not pairs: words.append(__a) continue while True: _lowerCAmelCase : Tuple = min(__a, key=lambda __a: self.bpe_ranks.get(__a, float("inf"))) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase : List[Any] = bigram _lowerCAmelCase : int = [] _lowerCAmelCase : str = 0 while i < len(__a): try: _lowerCAmelCase : Optional[int] = word.index(__a, __a) new_word.extend(word[i:j]) _lowerCAmelCase : str = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(__a) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _lowerCAmelCase : Optional[Any] = tuple(__a) _lowerCAmelCase : List[Any] = new_word if len(__a) == 1: break else: _lowerCAmelCase : Optional[int] = get_pairs(__a) _lowerCAmelCase : Tuple = "@@ ".join(__a) _lowerCAmelCase : List[Any] = word[:-4] _lowerCAmelCase : int = word words.append(__a) return " ".join(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Dict = re.findall(R"\S+\n?", __a) for token in words: split_tokens.extend(list(self.bpe(__a).split(" "))) return split_tokens def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = token.lower() return self.encoder.get(__a, self.encoder.get(self.unk_token)) def snake_case__ ( self, __a): '''simple docstring''' return self.decoder.get(__a, self.unk_token) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = " ".join(__a).replace("@@ ", "").strip() return out_string def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(__a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : Optional[int] = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : List[str] = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(__a, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=__a, ensure_ascii=__a) + "\n") _lowerCAmelCase : List[Any] = 0 with open(__a, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda __a: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") _lowerCAmelCase : Tuple = token_index writer.write(" ".join(__a) + "\n") index += 1 return vocab_file, merge_file
658
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _snake_case = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
658
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
import math def A ( _lowerCamelCase ): '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCAmelCase : Union[str, Any] = range(3 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A ( _lowerCamelCase , _lowerCamelCase=1 , **_lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = factor * value _lowerCAmelCase : List[str] = value while not is_prime(_lowerCamelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowerCamelCase ) return value
658
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
1
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) // 2 # choose the middle 3 elements _lowerCAmelCase : Any = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
658
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = "pytorch_model.bin" @dataclasses.dataclass class UpperCAmelCase_ : lowerCamelCase__ = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'}) lowerCamelCase__ = dataclasses.field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class UpperCAmelCase_ : lowerCamelCase__ = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'}) lowerCamelCase__ = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'}) lowerCamelCase__ = dataclasses.field( default=a , metadata={'help': 'A csv or a json file containing the validation data.'}) lowerCamelCase__ = dataclasses.field( default=a , metadata={'help': 'The name of the task to train on.'} , ) lowerCamelCase__ = dataclasses.field( default=a , metadata={'help': 'The list of labels for the task.'}) @dataclasses.dataclass class UpperCAmelCase_ : lowerCamelCase__ = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'}) lowerCamelCase__ = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'}) lowerCamelCase__ = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) lowerCamelCase__ = dataclasses.field( default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) lowerCamelCase__ = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) lowerCamelCase__ = dataclasses.field( default=a , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) lowerCamelCase__ = dataclasses.field( default=a , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) lowerCamelCase__ = dataclasses.field( default=a , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) lowerCamelCase__ = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) lowerCamelCase__ = dataclasses.field( default=100 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) lowerCamelCase__ = dataclasses.field( default=a , metadata={'help': 'Random seed for initialization.'} , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _lowerCAmelCase : Union[str, Any] = dataset.filter(lambda _lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _lowerCAmelCase : Optional[Any] = int(eval_result * len(_lowerCamelCase ) ) print(_lowerCamelCase ) _lowerCAmelCase : str = dataset.sort("probability" , reverse=_lowerCamelCase ) _lowerCAmelCase : Tuple = dataset.select(range(_lowerCamelCase ) ) _lowerCAmelCase : Optional[Any] = dataset.remove_columns(["label", "probability"] ) _lowerCAmelCase : Union[str, Any] = dataset.rename_column("prediction" , "label" ) _lowerCAmelCase : List[str] = dataset.map(lambda _lowerCamelCase : {"label": idalabel[example["label"]]} ) _lowerCAmelCase : List[Any] = dataset.shuffle(seed=args.seed ) _lowerCAmelCase : Any = os.path.join(_lowerCamelCase , F"train_pseudo.{args.data_file_extension}" ) if args.data_file_extension == "csv": dataset.to_csv(_lowerCamelCase , index=_lowerCamelCase ) else: dataset.to_json(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _lowerCAmelCase : Optional[Any] = STModelArguments(model_name_or_path=_lowerCamelCase ) _lowerCAmelCase : Any = STDataArguments(train_file=_lowerCamelCase , infer_file=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = STTrainingArguments(output_dir=_lowerCamelCase ) _lowerCAmelCase : List[Any] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_lowerCamelCase ).items(): setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for key, value in kwargs.items(): if hasattr(_lowerCamelCase , _lowerCamelCase ): setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Sanity checks _lowerCAmelCase : Dict = {} _lowerCAmelCase : int = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _lowerCAmelCase : str = args.train_file _lowerCAmelCase : List[str] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _lowerCAmelCase : Optional[int] = args.eval_file for key in data_files: _lowerCAmelCase : List[Any] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: _lowerCAmelCase : List[str] = extension else: assert extension == args.data_file_extension, F"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), F"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) _lowerCAmelCase : Union[str, Any] = F"{args.output_dir}/self-train_iter-{{}}".format _lowerCAmelCase : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) accelerator.wait_for_everyone() _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Any = False # Show the progress bar _lowerCAmelCase : str = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _lowerCAmelCase : Union[str, Any] = data_dir_format(_lowerCamelCase ) assert os.path.exists(_lowerCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _lowerCAmelCase : int = os.path.join(_lowerCamelCase , "stage-1" ) _lowerCAmelCase : List[Any] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_lowerCamelCase , _lowerCamelCase ): arguments_dict.update({key: value} ) _lowerCAmelCase : Optional[Any] = os.path.join(_lowerCamelCase , "best-checkpoint" , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , _lowerCamelCase , _lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , _lowerCamelCase ) finetune(**_lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(_lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 1." , _lowerCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _lowerCAmelCase : Any = os.path.join(_lowerCamelCase , "best-checkpoint" ) _lowerCAmelCase : int = os.path.join(_lowerCamelCase , "stage-2" ) # Update arguments_dict _lowerCAmelCase : str = model_path _lowerCAmelCase : Optional[Any] = data_files["train"] _lowerCAmelCase : Union[str, Any] = current_output_dir _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , "best-checkpoint" , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , _lowerCamelCase , _lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , _lowerCamelCase ) finetune(**_lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(_lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 2." , _lowerCamelCase ) _lowerCAmelCase : int = iteration _lowerCAmelCase : Optional[Any] = data_dir_format(iteration + 1 ) _lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(os.path.join(_lowerCamelCase , "best-checkpoint" ) ) _lowerCAmelCase : Any = config.idalabel _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , "eval_results_best-checkpoint.json" ) _lowerCAmelCase : Any = os.path.join(_lowerCamelCase , "test_results_best-checkpoint.json" ) assert os.path.exists(_lowerCamelCase ) with open(_lowerCamelCase , "r" ) as f: _lowerCAmelCase : Dict = float(json.load(_lowerCamelCase )[args.eval_metric] ) _lowerCAmelCase : int = os.path.join(_lowerCamelCase , "infer_output_best-checkpoint.csv" ) assert os.path.exists(_lowerCamelCase ) # Loading the dataset from local csv or json files. _lowerCAmelCase : Union[str, Any] = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] _lowerCAmelCase : Dict = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) shutil.copy(_lowerCamelCase , os.path.join(_lowerCamelCase , F"eval_results_iter-{iteration}.json" ) ) if os.path.exists(_lowerCamelCase ): shutil.copy(_lowerCamelCase , os.path.join(_lowerCamelCase , F"test_results_iter-{iteration}.json" ) ) create_pseudo_labeled_data(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) accelerator.wait_for_everyone() _lowerCAmelCase : List[Any] = os.path.join(_lowerCamelCase , F"train_pseudo.{args.data_file_extension}" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _lowerCAmelCase : Optional[Any] = eval_result if best_iteration is None: _lowerCAmelCase : Tuple = new_iteration _lowerCAmelCase : Union[str, Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _lowerCAmelCase : Dict = new_iteration _lowerCAmelCase : str = new_eval_result _lowerCAmelCase : Union[str, Any] = 0 else: if new_eval_result == best_eval_result: _lowerCAmelCase : Any = new_iteration _lowerCAmelCase : Union[str, Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _lowerCAmelCase : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , _lowerCamelCase ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , _lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_lowerCamelCase , F"eval_results_iter-{iteration}.json" ) , os.path.join(_lowerCamelCase , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , _lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_lowerCamelCase , F"eval_results_iter-{args.max_selftrain_iterations - 1}.json" ) , os.path.join(_lowerCamelCase , "eval_results_best-iteration.json" ) , )
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer _snake_case = ["bert-base-uncased", "bert-base-cased"] _snake_case = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class UpperCAmelCase_ ( tf.keras.Model): def __init__( self, __a): '''simple docstring''' super().__init__() _lowerCAmelCase : Dict = tokenizer _lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(__a) _lowerCAmelCase : Any = TFAutoModel.from_config(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(__a) _lowerCAmelCase : Tuple = self.bert(**__a) return out["pooler_output"] @require_tf @require_tensorflow_text class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : Optional[int] = [ BertTokenizer.from_pretrained(__a) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _lowerCAmelCase : Any = [TFBertTokenizer.from_pretrained(__a) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__a, use_fast_bert_tokenizer=__a) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _lowerCAmelCase : Optional[Any] = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] _lowerCAmelCase : Any = list(zip(self.test_sentences, self.test_sentences[::-1])) def snake_case__ ( self): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _lowerCAmelCase : str = tokenizer(__a, return_tensors="tf", padding="longest") _lowerCAmelCase : str = tf_tokenizer(__a) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key], tf.intaa) == tf_outputs[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Optional[Any] = tf_tokenizer(self.paired_sentences) _lowerCAmelCase : Union[str, Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences], text_pair=[sentence[1] for sentence in self.paired_sentences], ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key], tf.intaa) == separated_outputs[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Optional[int] = tf.function(__a) for test_inputs in (self.test_sentences, self.paired_sentences): _lowerCAmelCase : Optional[Any] = tf.constant(__a) _lowerCAmelCase : str = compiled_tokenizer(__a) _lowerCAmelCase : str = tf_tokenizer(__a) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : str = ModelToSave(tokenizer=__a) _lowerCAmelCase : Dict = tf.convert_to_tensor(self.test_sentences) _lowerCAmelCase : str = model(__a) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCAmelCase : Union[str, Any] = Path(__a) / "saved.model" model.save(__a) _lowerCAmelCase : Dict = tf.keras.models.load_model(__a) _lowerCAmelCase : int = loaded_model(__a) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)), 1E-5)
658
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = "ylacombe/bark-small" _lowerCAmelCase : int = tempfile.mkdtemp() _lowerCAmelCase : Dict = "en_speaker_1" _lowerCAmelCase : str = "This is a test string" _lowerCAmelCase : List[Any] = "speaker_embeddings_path.json" _lowerCAmelCase : Any = "speaker_embeddings" def snake_case__ ( self, **__a): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : int = BarkProcessor(tokenizer=__a) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint, speaker_embeddings_dict_path=self.speaker_embeddings_dict_path, ) processor.save_pretrained( self.tmpdirname, speaker_embeddings_dict_path=self.speaker_embeddings_dict_path, speaker_embeddings_directory=self.speaker_embeddings_directory, ) _lowerCAmelCase : str = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Optional[int] = BarkProcessor.from_pretrained( self.tmpdirname, self.speaker_embeddings_dict_path, bos_token="(BOS)", eos_token="(EOS)", ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint, speaker_embeddings_dict_path=self.speaker_embeddings_dict_path, ) _lowerCAmelCase : Union[str, Any] = 35 _lowerCAmelCase : Dict = 2 _lowerCAmelCase : int = 8 _lowerCAmelCase : str = { "semantic_prompt": np.ones(__a), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len)), "fine_prompt": np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset _lowerCAmelCase : Dict = processor(text=self.input_string, voice_preset=__a) _lowerCAmelCase : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist(), processed_voice_preset.get(__a, np.array([])).tolist()) # test loading voice preset from npz file _lowerCAmelCase : Dict = os.path.join(self.tmpdirname, "file.npz") np.savez(__a, **__a) _lowerCAmelCase : List[str] = processor(text=self.input_string, voice_preset=__a) _lowerCAmelCase : Optional[int] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist(), processed_voice_preset.get(__a, np.array([])).tolist()) # test loading voice preset from the hub _lowerCAmelCase : int = processor(text=self.input_string, voice_preset=self.voice_preset) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : List[Any] = BarkProcessor(tokenizer=__a) _lowerCAmelCase : Dict = processor(text=self.input_string) _lowerCAmelCase : Union[str, Any] = tokenizer( self.input_string, padding="max_length", max_length=256, add_special_tokens=__a, return_attention_mask=__a, return_token_type_ids=__a, ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key].squeeze().tolist())
658
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
1
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _snake_case = parse(importlib.metadata.version("torch")) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" ) _lowerCAmelCase : List[str] = STR_OPERATION_TO_FUNC[operation] if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : str = parse(importlib.metadata.version(_lowerCamelCase ) ) return operation(_lowerCamelCase , parse(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
658
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = int(number**0.5 ) return number == sq * sq def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowerCAmelCase : int = x_den * y_den * z_den _lowerCAmelCase : int = gcd(_lowerCamelCase , _lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A ( _lowerCamelCase = 35 ): '''simple docstring''' _lowerCAmelCase : set = set() _lowerCAmelCase : int _lowerCAmelCase : Fraction = Fraction(0 ) _lowerCAmelCase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowerCAmelCase : int = x_num * y_den + x_den * y_num _lowerCAmelCase : List[str] = x_den * y_den _lowerCAmelCase : str = gcd(_lowerCamelCase , _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Union[str, Any] = add_three( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) unique_s.add(_lowerCamelCase ) # n=2 _lowerCAmelCase : List[str] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowerCAmelCase : Tuple = x_den * x_den * y_den * y_den if is_sq(_lowerCamelCase ) and is_sq(_lowerCamelCase ): _lowerCAmelCase : str = int(sqrt(_lowerCamelCase ) ) _lowerCAmelCase : Optional[Any] = int(sqrt(_lowerCamelCase ) ) _lowerCAmelCase : Any = gcd(_lowerCamelCase , _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Optional[int] = add_three( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) unique_s.add(_lowerCamelCase ) # n=-1 _lowerCAmelCase : int = x_num * y_num _lowerCAmelCase : Dict = x_den * y_num + x_num * y_den _lowerCAmelCase : Union[str, Any] = gcd(_lowerCamelCase , _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Dict = add_three( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) unique_s.add(_lowerCamelCase ) # n=2 _lowerCAmelCase : List[str] = x_num * x_num * y_num * y_num _lowerCAmelCase : List[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_lowerCamelCase ) and is_sq(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = int(sqrt(_lowerCamelCase ) ) _lowerCAmelCase : List[Any] = int(sqrt(_lowerCamelCase ) ) _lowerCAmelCase : List[str] = gcd(_lowerCamelCase , _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Optional[int] = add_three( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) unique_s.add(_lowerCamelCase ) for num, den in unique_s: total += Fraction(_lowerCamelCase , _lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
658
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = GPTSwaTokenizer lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : Dict = GPTSwaTokenizer(__a, eos_token="<unk>", bos_token="<unk>", pad_token="<unk>") tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = "This is a test" _lowerCAmelCase : List[Any] = "This is a test" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = "<s>" _lowerCAmelCase : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a), __a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<unk>") self.assertEqual(vocab_keys[1], "<s>") self.assertEqual(vocab_keys[-1], "j") self.assertEqual(len(__a), 2000) def snake_case__ ( self): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 2000) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = GPTSwaTokenizer(__a) _lowerCAmelCase : List[str] = tokenizer.tokenize("This is a test") self.assertListEqual(__a, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a), [465, 287, 265, 631, 842]) _lowerCAmelCase : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé.") # fmt: off self.assertListEqual( __a, ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."], ) # fmt: on _lowerCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(__a) self.assertListEqual( __a, [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ) _lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(__a) # fmt: off self.assertListEqual( __a, ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."]) # fmt: on def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = GPTSwaTokenizer(__a) _lowerCAmelCase : int = ["This is a test", "I was born in 92000, and this is falsé."] _lowerCAmelCase : str = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__a, __a): self.assertListEqual(tokenizer.encode_fast(__a), __a) # Test that decode_fast returns the input text for text, token_ids in zip(__a, __a): self.assertEqual(tokenizer.decode_fast(__a), __a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [ "<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off _lowerCAmelCase : str = {"input_ids": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a, model_name="AI-Sweden/gpt-sw3-126m", sequences=__a, )
658
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = os.path.join(args.tf_model_dir , "parameters.json" ) _lowerCAmelCase : Optional[Any] = json.loads(open(_lowerCamelCase ).read() ) if not params: raise ValueError( F"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith(".pt" ): _lowerCAmelCase : Dict = args.output + ".pt" _lowerCAmelCase : Any = OrderedDict() with tf.device("/CPU:0" ): _lowerCAmelCase : List[Any] = tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase : Dict = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase : Tuple = reader.get_tensor(_lowerCamelCase ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): _lowerCAmelCase : Any = int(key_name[9] ) elif key_name.startswith("pasts/out" ): _lowerCAmelCase : Union[str, Any] = 8 _lowerCAmelCase : Union[str, Any] = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Tuple = torch.tensor(_lowerCamelCase ) elif key_name.startswith("model/moe" ): _lowerCAmelCase : Optional[int] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): _lowerCAmelCase : List[str] = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player _lowerCAmelCase : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Optional[int] = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/softmlp/kernel" ): _lowerCAmelCase : int = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player _lowerCAmelCase : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : List[Any] = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): _lowerCAmelCase : List[Any] = key_name[-9:-7] for i in range(16 ): _lowerCAmelCase : Tuple = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) _lowerCAmelCase : Any = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ) elif key_name.startswith("model/mlp" ): _lowerCAmelCase : List[Any] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): _lowerCAmelCase : Optional[int] = "model.blocks.%d.feed_forward.mlp.wi.weight" % player _lowerCAmelCase : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : List[Any] = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/p1/bias" ): _lowerCAmelCase : str = "model.blocks.%d.feed_forward.mlp.wi.bias" % player _lowerCAmelCase : List[Any] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : int = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/p2/kernel" ): _lowerCAmelCase : Union[str, Any] = "model.blocks.%d.feed_forward.mlp.wo.weight" % player _lowerCAmelCase : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/p2/bias" ): _lowerCAmelCase : Union[str, Any] = "model.blocks.%d.feed_forward.mlp.wo.bias" % player _lowerCAmelCase : List[str] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Dict = torch.tensor(_lowerCamelCase ) elif key_name.startswith("model/ln" ): _lowerCAmelCase : Tuple = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _lowerCAmelCase : Dict = "model.blocks.%d.feed_forward.norm.bias" % player _lowerCAmelCase : Dict = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Union[str, Any] = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/g" ): _lowerCAmelCase : str = "model.blocks.%d.feed_forward.norm.weight" % player _lowerCAmelCase : Any = vnp.copy() # same because it is one dimensional _lowerCAmelCase : str = torch.tensor(_lowerCamelCase ) elif key_name.startswith("model/att" ): _lowerCAmelCase : Union[str, Any] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): _lowerCAmelCase : Any = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase : Tuple = state[:, 0, :, :] _lowerCAmelCase : int = state[:, 1, :, :] _lowerCAmelCase : List[str] = state[:, 2, :, :] _lowerCAmelCase : Dict = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Any = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Optional[Any] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : str = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ) _lowerCAmelCase : Any = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player _lowerCAmelCase : Optional[Any] = torch.tensor(_lowerCamelCase ) _lowerCAmelCase : Tuple = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/o/kernel" ): _lowerCAmelCase : str = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player _lowerCAmelCase : Dict = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : int = torch.tensor(_lowerCamelCase ) elif key_name.startswith("model/an" ): _lowerCAmelCase : Union[str, Any] = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _lowerCAmelCase : Optional[int] = "model.blocks.%d.self_attn.norm.bias" % player _lowerCAmelCase : Optional[Any] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Union[str, Any] = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/g" ): _lowerCAmelCase : Tuple = "model.blocks.%d.self_attn.norm.weight" % player _lowerCAmelCase : Dict = vnp.copy() # same because it is one dimensional _lowerCAmelCase : int = torch.tensor(_lowerCamelCase ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): _lowerCAmelCase : Tuple = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] _lowerCAmelCase : Union[str, Any] = "model.%s.weight" % nlayer _lowerCAmelCase : Union[str, Any] = vnp.copy() # same in embedded _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ) if key_name.startswith("model/wte" ): _lowerCAmelCase : Any = "lm_head.weight" _lowerCAmelCase : str = vnp.copy() # same in embedded _lowerCAmelCase : Optional[int] = torch.tensor(_lowerCamelCase ) elif key_name.startswith("model/wob" ): _lowerCAmelCase : Optional[int] = "final_logits_bias" _lowerCAmelCase : Dict = vnp.copy() # same in embedded _lowerCAmelCase : List[str] = state.reshape((1, -1) ) _lowerCAmelCase : Union[str, Any] = torch.tensor(_lowerCamelCase ) elif key_name == "model/dense/kernel": _lowerCAmelCase : Union[str, Any] = "model.last_project.weight" _lowerCAmelCase : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ) elif key_name == "model/dense_1/bias": _lowerCAmelCase : Optional[Any] = "model.last_project.bias" _lowerCAmelCase : Optional[int] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Dict = torch.tensor(_lowerCamelCase ) torch.save(_lowerCamelCase , args.output ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") _snake_case = parser.parse_args() convert_tf_gptsan_to_pt(args)
658
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = ['input_features', 'is_longer'] def __init__( self, __a=64, __a=4_8000, __a=480, __a=10, __a=1024, __a=0.0, __a=False, __a = 0, __a = 1_4000, __a = None, __a = "fusion", __a = "repeatpad", **__a, ): '''simple docstring''' super().__init__( feature_size=__a, sampling_rate=__a, padding_value=__a, return_attention_mask=__a, **__a, ) _lowerCAmelCase : List[str] = top_db _lowerCAmelCase : Dict = truncation _lowerCAmelCase : Dict = padding _lowerCAmelCase : List[str] = fft_window_size _lowerCAmelCase : int = (fft_window_size >> 1) + 1 _lowerCAmelCase : Any = hop_length _lowerCAmelCase : Any = max_length_s _lowerCAmelCase : int = max_length_s * sampling_rate _lowerCAmelCase : Tuple = sampling_rate _lowerCAmelCase : Dict = frequency_min _lowerCAmelCase : int = frequency_max _lowerCAmelCase : int = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=__a, min_frequency=__a, max_frequency=__a, sampling_rate=__a, norm=__a, mel_scale="htk", ) _lowerCAmelCase : Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=__a, min_frequency=__a, max_frequency=__a, sampling_rate=__a, norm="slaney", mel_scale="slaney", ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : str = spectrogram( __a, window_function(self.fft_window_size, "hann"), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=__a, log_mel="dB", ) return log_mel_spectrogram.T def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk _lowerCAmelCase : List[Any] = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk _lowerCAmelCase : List[Any] = [0] # randomly choose index for each part _lowerCAmelCase : str = np.random.choice(ranges[0]) _lowerCAmelCase : List[Any] = np.random.choice(ranges[1]) _lowerCAmelCase : Tuple = np.random.choice(ranges[2]) _lowerCAmelCase : Dict = mel[idx_front : idx_front + chunk_frames, :] _lowerCAmelCase : Tuple = mel[idx_middle : idx_middle + chunk_frames, :] _lowerCAmelCase : List[str] = mel[idx_back : idx_back + chunk_frames, :] _lowerCAmelCase : Dict = torch.tensor(mel[None, None, :]) _lowerCAmelCase : Optional[Any] = torch.nn.functional.interpolate( __a, size=[chunk_frames, 64], mode="bilinear", align_corners=__a) _lowerCAmelCase : Tuple = mel_shrink[0][0].numpy() _lowerCAmelCase : Dict = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0) return mel_fusion def snake_case__ ( self, __a, __a, __a, __a): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowerCAmelCase : Dict = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowerCAmelCase : List[str] = len(__a) - max_length _lowerCAmelCase : Union[str, Any] = np.random.randint(0, overflow + 1) _lowerCAmelCase : str = waveform[idx : idx + max_length] _lowerCAmelCase : Any = self._np_extract_fbank_features(__a, self.mel_filters_slaney)[None, :] elif truncation == "fusion": _lowerCAmelCase : List[Any] = self._np_extract_fbank_features(__a, self.mel_filters) _lowerCAmelCase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowerCAmelCase : Union[str, Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowerCAmelCase : int = np.stack([mel, mel, mel, mel], axis=0) _lowerCAmelCase : int = False else: _lowerCAmelCase : Any = self._random_mel_fusion(__a, __a, __a) _lowerCAmelCase : str = True else: raise NotImplementedError(f"data_truncating {truncation} not implemented") else: _lowerCAmelCase : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowerCAmelCase : Optional[Any] = int(max_length / len(__a)) _lowerCAmelCase : Dict = np.stack(np.tile(__a, n_repeat + 1))[:max_length] if padding == "repeatpad": _lowerCAmelCase : Any = int(max_length / len(__a)) _lowerCAmelCase : Optional[Any] = np.stack(np.tile(__a, __a)) _lowerCAmelCase : Optional[int] = np.pad(__a, (0, max_length - waveform.shape[0]), mode="constant", constant_values=0) if truncation == "fusion": _lowerCAmelCase : Union[str, Any] = self._np_extract_fbank_features(__a, self.mel_filters) _lowerCAmelCase : List[str] = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0) else: _lowerCAmelCase : List[str] = self._np_extract_fbank_features(__a, self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = truncation if truncation is not None else self.truncation _lowerCAmelCase : Tuple = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug.") _lowerCAmelCase : List[Any] = isinstance(__a, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") _lowerCAmelCase : str = is_batched_numpy or ( isinstance(__a, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: _lowerCAmelCase : Optional[Any] = [np.asarray(__a, dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(__a, np.ndarray): _lowerCAmelCase : List[Any] = np.asarray(__a, dtype=np.floataa) elif isinstance(__a, np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): _lowerCAmelCase : Any = raw_speech.astype(np.floataa) # always return batch if not is_batched: _lowerCAmelCase : List[str] = [np.asarray(__a)] # convert to mel spectrogram, truncate and pad if needed. _lowerCAmelCase : Any = [ self._get_input_mel(__a, max_length if max_length else self.nb_max_samples, __a, __a) for waveform in raw_speech ] _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : List[Any] = [] for mel, longer in padded_inputs: input_mel.append(__a) is_longer.append(__a) if truncation == "fusion" and sum(__a) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowerCAmelCase : Tuple = np.random.randint(0, len(__a)) _lowerCAmelCase : Tuple = True if isinstance(input_mel[0], __a): _lowerCAmelCase : Tuple = [np.asarray(__a, dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool _lowerCAmelCase : str = [[longer] for longer in is_longer] _lowerCAmelCase : str = {"input_features": input_mel, "is_longer": is_longer} _lowerCAmelCase : Optional[int] = BatchFeature(__a) if return_tensors is not None: _lowerCAmelCase : Optional[int] = input_features.convert_to_tensors(__a) return input_features
658
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
658
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = StableDiffusionSAGPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : int = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) _lowerCAmelCase : Any = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=__a, set_alpha_to_one=__a, ) torch.manual_seed(0) _lowerCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) _lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) _lowerCAmelCase : List[str] = CLIPTextModel(__a) _lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") _lowerCAmelCase : Optional[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case__ ( self, __a, __a=0): '''simple docstring''' if str(__a).startswith("mps"): _lowerCAmelCase : Any = torch.manual_seed(__a) else: _lowerCAmelCase : int = torch.Generator(device=__a).manual_seed(__a) _lowerCAmelCase : Tuple = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") _lowerCAmelCase : str = sag_pipe.to(__a) sag_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "." _lowerCAmelCase : Tuple = torch.manual_seed(0) _lowerCAmelCase : List[Any] = sag_pipe( [prompt], generator=__a, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np") _lowerCAmelCase : Any = output.images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[str] = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") _lowerCAmelCase : List[Any] = sag_pipe.to(__a) sag_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : List[str] = "." _lowerCAmelCase : List[str] = torch.manual_seed(0) _lowerCAmelCase : Optional[int] = sag_pipe( [prompt], generator=__a, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np") _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") _lowerCAmelCase : int = sag_pipe.to(__a) sag_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[Any] = "." _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0) _lowerCAmelCase : List[str] = sag_pipe( [prompt], width=768, height=512, generator=__a, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np", ) _lowerCAmelCase : Any = output.images assert image.shape == (1, 512, 768, 3)
658
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( a): lowerCamelCase__ = ['image_processor', 'tokenizer'] lowerCamelCase__ = 'BridgeTowerImageProcessor' lowerCamelCase__ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self, __a, __a): '''simple docstring''' super().__init__(__a, __a) def __call__( self, __a, __a = None, __a = True, __a = False, __a = None, __a = None, __a = 0, __a = None, __a = None, __a = None, __a = False, __a = False, __a = False, __a = False, __a = True, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer( text=__a, add_special_tokens=__a, padding=__a, truncation=__a, max_length=__a, stride=__a, pad_to_multiple_of=__a, return_token_type_ids=__a, return_attention_mask=__a, return_overflowing_tokens=__a, return_special_tokens_mask=__a, return_offsets_mapping=__a, return_length=__a, verbose=__a, return_tensors=__a, **__a, ) # add pixel_values + pixel_mask _lowerCAmelCase : Optional[Any] = self.image_processor( __a, return_tensors=__a, do_normalize=__a, do_center_crop=__a, **__a) encoding.update(__a) return encoding def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.batch_decode(*__a, **__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.decode(*__a, **__a) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.tokenizer.model_input_names _lowerCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
658
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
1
import math import random def A ( _lowerCamelCase , _lowerCamelCase = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value _snake_case = 0.02 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(_lowerCamelCase ): # Forward propagation _lowerCAmelCase : Optional[int] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _lowerCAmelCase : Dict = (expected / 100) - layer_a # Error delta _lowerCAmelCase : List[str] = layer_1_error * sigmoid_function(_lowerCamelCase , _lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() _snake_case = int(input("Expected value: ")) _snake_case = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
658
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
from math import sqrt def A ( _lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( _lowerCamelCase = 10_001 ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : int = 1 while count != nth and number < 3: number += 1 if is_prime(_lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(_lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
658
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ): '''simple docstring''' _lowerCAmelCase : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase_ ( a): def __init__( self, __a, __a, __a, ): '''simple docstring''' super().__init__() self.register_modules( unet=__a, scheduler=__a, movq=__a, ) _lowerCAmelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels) - 1) def snake_case__ ( self, __a, __a, __a, __a, __a, __a): '''simple docstring''' if latents is None: _lowerCAmelCase : int = randn_tensor(__a, generator=__a, device=__a, dtype=__a) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") _lowerCAmelCase : List[Any] = latents.to(__a) _lowerCAmelCase : List[Any] = latents * scheduler.init_noise_sigma return latents def snake_case__ ( self, __a=0): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") _lowerCAmelCase : List[Any] = torch.device(f"cuda:{gpu_id}") _lowerCAmelCase : str = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__a, __a) def snake_case__ ( self, __a=0): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") _lowerCAmelCase : Optional[Any] = torch.device(f"cuda:{gpu_id}") if self.device.type != "cpu": self.to("cpu", silence_dtype_warnings=__a) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : Any = cpu_offload_with_hook(__a, __a, prev_module_hook=__a) # We'll offload the last model manually. _lowerCAmelCase : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case__ ( self): '''simple docstring''' if not hasattr(self.unet, "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(__a, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(__a) def __call__( self, __a, __a, __a, __a = 512, __a = 512, __a = 100, __a = 4.0, __a = 1, __a = None, __a = None, __a = "pil", __a = True, ): '''simple docstring''' _lowerCAmelCase : List[str] = self._execution_device _lowerCAmelCase : int = guidance_scale > 1.0 if isinstance(__a, __a): _lowerCAmelCase : int = torch.cat(__a, dim=0) if isinstance(__a, __a): _lowerCAmelCase : Any = torch.cat(__a, dim=0) if isinstance(__a, __a): _lowerCAmelCase : Tuple = torch.cat(__a, dim=0) _lowerCAmelCase : Any = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _lowerCAmelCase : Dict = image_embeds.repeat_interleave(__a, dim=0) _lowerCAmelCase : int = negative_image_embeds.repeat_interleave(__a, dim=0) _lowerCAmelCase : Optional[int] = hint.repeat_interleave(__a, dim=0) _lowerCAmelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds], dim=0).to(dtype=self.unet.dtype, device=__a) _lowerCAmelCase : str = torch.cat([hint, hint], dim=0).to(dtype=self.unet.dtype, device=__a) self.scheduler.set_timesteps(__a, device=__a) _lowerCAmelCase : Optional[Any] = self.scheduler.timesteps _lowerCAmelCase : Tuple = self.movq.config.latent_channels _lowerCAmelCase , _lowerCAmelCase : Any = downscale_height_and_width(__a, __a, self.movq_scale_factor) # create initial latent _lowerCAmelCase : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width), image_embeds.dtype, __a, __a, __a, self.scheduler, ) for i, t in enumerate(self.progress_bar(__a)): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _lowerCAmelCase : Optional[int] = {"image_embeds": image_embeds, "hint": hint} _lowerCAmelCase : List[Any] = self.unet( sample=__a, timestep=__a, encoder_hidden_states=__a, added_cond_kwargs=__a, return_dict=__a, )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1], dim=1) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = noise_pred.chunk(2) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = variance_pred.chunk(2) _lowerCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : Union[str, Any] = torch.cat([noise_pred, variance_pred_text], dim=1) if not ( hasattr(self.scheduler.config, "variance_type") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Any = noise_pred.split(latents.shape[1], dim=1) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : Tuple = self.scheduler.step( __a, __a, __a, generator=__a, )[0] # post-processing _lowerCAmelCase : List[str] = self.movq.decode(__a, force_not_quantize=__a)["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: _lowerCAmelCase : Tuple = image * 0.5 + 0.5 _lowerCAmelCase : int = image.clamp(0, 1) _lowerCAmelCase : int = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": _lowerCAmelCase : Any = self.numpy_to_pil(__a) if not return_dict: return (image,) return ImagePipelineOutput(images=__a)
658
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'switch_transformers' lowerCamelCase__ = ['past_key_values'] lowerCamelCase__ = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self, __a=3_2128, __a=768, __a=64, __a=2048, __a=64, __a=12, __a=3, __a=12, __a=3, __a=12, __a=8, __a=False, __a=0.01, __a="float32", __a=False, __a=32, __a=128, __a=0.1, __a=1E-6, __a=0.001, __a=0.001, __a=1.0, __a="relu", __a=True, __a=False, __a=True, __a=0, __a=1, **__a, ): '''simple docstring''' _lowerCAmelCase : str = vocab_size _lowerCAmelCase : str = d_model _lowerCAmelCase : Optional[Any] = d_kv _lowerCAmelCase : Dict = d_ff _lowerCAmelCase : List[str] = num_sparse_encoder_layers _lowerCAmelCase : Tuple = num_layers _lowerCAmelCase : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCAmelCase : List[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _lowerCAmelCase : Any = self.num_layers // self.num_sparse_encoder_layers else: _lowerCAmelCase : Optional[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _lowerCAmelCase : Optional[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: _lowerCAmelCase : List[str] = self.num_decoder_layers # HACK: this will create 0 sparse layers _lowerCAmelCase : Any = num_heads _lowerCAmelCase : int = num_experts _lowerCAmelCase : str = expert_capacity _lowerCAmelCase : int = router_bias _lowerCAmelCase : Optional[int] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}") _lowerCAmelCase : str = router_dtype _lowerCAmelCase : Tuple = router_ignore_padding_tokens _lowerCAmelCase : Dict = relative_attention_num_buckets _lowerCAmelCase : List[Any] = relative_attention_max_distance _lowerCAmelCase : Any = dropout_rate _lowerCAmelCase : str = layer_norm_epsilon _lowerCAmelCase : List[str] = initializer_factor _lowerCAmelCase : Any = feed_forward_proj _lowerCAmelCase : str = use_cache _lowerCAmelCase : str = add_router_probs _lowerCAmelCase : List[Any] = router_z_loss_coef _lowerCAmelCase : Optional[int] = router_aux_loss_coef _lowerCAmelCase : Optional[Any] = self.feed_forward_proj.split("-") _lowerCAmelCase : Any = act_info[-1] _lowerCAmelCase : List[str] = act_info[0] == "gated" if len(__a) > 1 and act_info[0] != "gated" or len(__a) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'") # for backwards compatibility if feed_forward_proj == "gated-gelu": _lowerCAmelCase : Optional[Any] = "gelu_new" super().__init__( pad_token_id=__a, eos_token_id=__a, is_encoder_decoder=__a, **__a, )
658
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase_ ( a , a , a): @register_to_config def __init__( self, __a, __a, __a, __a, __a, __a, __a, __a, __a, __a = False, ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Embedding(__a, __a) _lowerCAmelCase : Optional[Any] = nn.Embedding(__a, __a) _lowerCAmelCase : int = False _lowerCAmelCase : List[str] = nn.Dropout(p=__a) _lowerCAmelCase : str = TaConfig( vocab_size=__a, d_model=__a, num_heads=__a, d_kv=__a, d_ff=__a, dropout_rate=__a, feed_forward_proj=__a, is_decoder=__a, is_encoder_decoder=__a, ) _lowerCAmelCase : Tuple = nn.ModuleList() for lyr_num in range(__a): _lowerCAmelCase : Union[str, Any] = TaBlock(__a) self.encoders.append(__a) _lowerCAmelCase : Any = TaLayerNorm(__a) _lowerCAmelCase : Any = nn.Dropout(p=__a) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : str = self.token_embedder(__a) _lowerCAmelCase : Tuple = encoder_input_tokens.shape[1] _lowerCAmelCase : Dict = torch.arange(__a, device=encoder_input_tokens.device) x += self.position_encoding(__a) _lowerCAmelCase : Dict = self.dropout_pre(__a) # inverted the attention mask _lowerCAmelCase : Optional[Any] = encoder_input_tokens.size() _lowerCAmelCase : Optional[Any] = self.get_extended_attention_mask(__a, __a) for lyr in self.encoders: _lowerCAmelCase : Tuple = lyr(__a, __a)[0] _lowerCAmelCase : str = self.layer_norm(__a) return self.dropout_post(__a), encoder_inputs_mask
658
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
1
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _snake_case = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , _lowerCamelCase ) return [m.group(0 ) for m in matches] def A ( ): '''simple docstring''' _lowerCAmelCase : str = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _lowerCAmelCase : Tuple = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _lowerCAmelCase : List[str] = collections.defaultdict(_lowerCamelCase ) _lowerCAmelCase : List[str] = collections.defaultdict(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = collections.defaultdict(_lowerCamelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_lowerCamelCase ): _lowerCAmelCase : List[Any] = None if _re_tf_models.match(_lowerCamelCase ) is not None: _lowerCAmelCase : Dict = tf_models _lowerCAmelCase : Optional[int] = _re_tf_models.match(_lowerCamelCase ).groups()[0] elif _re_flax_models.match(_lowerCamelCase ) is not None: _lowerCAmelCase : Union[str, Any] = flax_models _lowerCAmelCase : Union[str, Any] = _re_flax_models.match(_lowerCamelCase ).groups()[0] elif _re_pt_models.match(_lowerCamelCase ) is not None: _lowerCAmelCase : str = pt_models _lowerCAmelCase : List[str] = _re_pt_models.match(_lowerCamelCase ).groups()[0] if lookup_dict is not None: while len(_lowerCamelCase ) > 0: if attr_name in model_prefix_to_model_type: _lowerCAmelCase : Optional[Any] = True break # Try again after removing the last word in the name _lowerCAmelCase : Tuple = "".join(camel_case_split(_lowerCamelCase )[:-1] ) _lowerCAmelCase : Union[str, Any] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _lowerCAmelCase : List[Any] = list(_lowerCamelCase ) all_models.sort() _lowerCAmelCase : List[str] = {"model_type": all_models} _lowerCAmelCase : Tuple = [pt_models[t] for t in all_models] _lowerCAmelCase : Optional[int] = [tf_models[t] for t in all_models] _lowerCAmelCase : Dict = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _lowerCAmelCase : Optional[int] = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _lowerCAmelCase : Optional[int] = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _lowerCAmelCase : Dict = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _lowerCAmelCase : List[Any] = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _lowerCAmelCase : Tuple = "AutoTokenizer" _lowerCAmelCase : Union[str, Any] = [processors[t] for t in all_models] return pd.DataFrame(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _lowerCAmelCase : str = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] _lowerCAmelCase : Dict = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # The type of pipeline may not exist in this framework if not hasattr(_lowerCamelCase , _lowerCamelCase ): continue # First extract all model_names _lowerCAmelCase : int = [] for name in getattr(_lowerCamelCase , _lowerCamelCase ).values(): if isinstance(_lowerCamelCase , _lowerCamelCase ): model_names.append(_lowerCamelCase ) else: model_names.extend(list(_lowerCamelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = get_frameworks_table() _lowerCAmelCase : Union[str, Any] = Dataset.from_pandas(_lowerCamelCase ) _lowerCAmelCase : int = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=_lowerCamelCase ) _lowerCAmelCase : int = Dataset.from_json(_lowerCamelCase ) _lowerCAmelCase : Tuple = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(_lowerCamelCase ) ) } _lowerCAmelCase : Tuple = update_pipeline_and_auto_class_table(_lowerCamelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _lowerCAmelCase : Optional[Any] = sorted(table.keys() ) _lowerCAmelCase : str = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) _lowerCAmelCase : int = Dataset.from_pandas(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_lowerCamelCase , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(_lowerCamelCase , "pipeline_tags.json" ) ) if commit_sha is not None: _lowerCAmelCase : Optional[Any] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: _lowerCAmelCase : Tuple = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=_lowerCamelCase , repo_type="dataset" , token=_lowerCamelCase , commit_message=_lowerCamelCase , ) def A ( ): '''simple docstring''' _lowerCAmelCase : Any = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _lowerCAmelCase : Dict = transformers_module.pipelines.SUPPORTED_TASKS _lowerCAmelCase : List[Any] = [] for key in pipeline_tasks: if key not in in_table: _lowerCAmelCase : Any = pipeline_tasks[key]["pt"] if isinstance(_lowerCamelCase , (list, tuple) ): _lowerCAmelCase : Optional[Any] = model[0] _lowerCAmelCase : List[str] = model.__name__ if model not in in_table.values(): missing.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : str = ", ".join(_lowerCamelCase ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
658
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _snake_case = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
658
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
import itertools import string from collections.abc import Generator, Iterable def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = iter(_lowerCamelCase ) while True: _lowerCAmelCase : Dict = tuple(itertools.islice(_lowerCamelCase , _lowerCamelCase ) ) if not chunk: return yield chunk def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) _lowerCAmelCase : Dict = "" if len(_lowerCamelCase ) < 2: return dirty for i in range(len(_lowerCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_lowerCamelCase ) & 1: clean += "X" return clean def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _lowerCAmelCase : int = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_lowerCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_lowerCamelCase ) return table def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = generate_table(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = prepare_input(_lowerCamelCase ) _lowerCAmelCase : Any = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCamelCase , 2 ): _lowerCAmelCase , _lowerCAmelCase : str = divmod(table.index(_lowerCamelCase ) , 5 ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = divmod(table.index(_lowerCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = generate_table(_lowerCamelCase ) _lowerCAmelCase : Tuple = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCamelCase , 2 ): _lowerCAmelCase , _lowerCAmelCase : str = divmod(table.index(_lowerCamelCase ) , 5 ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = divmod(table.index(_lowerCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
658
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
1
from copy import deepcopy class UpperCAmelCase_ : def __init__( self, __a = None, __a = None): '''simple docstring''' if arr is None and size is not None: _lowerCAmelCase : int = size _lowerCAmelCase : Any = [0] * size elif arr is not None: self.init(__a) else: raise ValueError("Either arr or size must be specified") def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Dict = len(__a) _lowerCAmelCase : List[str] = deepcopy(__a) for i in range(1, self.size): _lowerCAmelCase : List[Any] = self.next_(__a) if j < self.size: self.tree[j] += self.tree[i] def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tree[:] for i in range(self.size - 1, 0, -1): _lowerCAmelCase : Union[str, Any] = self.next_(__a) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def snake_case__ ( __a): '''simple docstring''' return index + (index & (-index)) @staticmethod def snake_case__ ( __a): '''simple docstring''' return index - (index & (-index)) def snake_case__ ( self, __a, __a): '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _lowerCAmelCase : List[str] = self.next_(__a) def snake_case__ ( self, __a, __a): '''simple docstring''' self.add(__a, value - self.get(__a)) def snake_case__ ( self, __a): '''simple docstring''' if right == 0: return 0 _lowerCAmelCase : int = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _lowerCAmelCase : Any = self.prev(__a) return result def snake_case__ ( self, __a, __a): '''simple docstring''' return self.prefix(__a) - self.prefix(__a) def snake_case__ ( self, __a): '''simple docstring''' return self.query(__a, index + 1) def snake_case__ ( self, __a): '''simple docstring''' value -= self.tree[0] if value < 0: return -1 _lowerCAmelCase : int = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _lowerCAmelCase : Optional[Any] = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
658
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
1