code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import random def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = a[left_index] _lowerCAmelCase : Tuple = left_index + 1 for j in range(left_index + 1 , _lowerCamelCase ): if a[j] < pivot: _lowerCAmelCase , _lowerCAmelCase : List[Any] = a[i], a[j] i += 1 _lowerCAmelCase , _lowerCAmelCase : List[Any] = a[i - 1], a[left_index] return i - 1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if left < right: _lowerCAmelCase : Optional[int] = random.randint(_lowerCamelCase , right - 1 ) _lowerCAmelCase , _lowerCAmelCase : List[str] = ( a[left], a[pivot], ) # switches the pivot with the left most bound _lowerCAmelCase : Union[str, Any] = partition(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) quick_sort_random( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( _lowerCamelCase , pivot_index + 1 , _lowerCamelCase ) # recursive quicksort to the right of the pivot point def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Enter numbers separated by a comma:\n" ).strip() _lowerCAmelCase : int = [int(_lowerCamelCase ) for item in user_input.split("," )] quick_sort_random(_lowerCamelCase , 0 , len(_lowerCamelCase ) ) print(_lowerCamelCase ) if __name__ == "__main__": main()
658
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
658
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = len(set_a.intersection(_lowerCamelCase ) ) if alternative_union: _lowerCAmelCase : Dict = len(_lowerCamelCase ) + len(_lowerCamelCase ) else: _lowerCAmelCase : Optional[Any] = len(set_a.union(_lowerCamelCase ) ) return intersection / union if isinstance(_lowerCamelCase , (list, tuple) ) and isinstance(_lowerCamelCase , (list, tuple) ): _lowerCAmelCase : Optional[Any] = [element for element in set_a if element in set_b] if alternative_union: _lowerCAmelCase : Optional[Any] = len(_lowerCamelCase ) + len(_lowerCamelCase ) return len(_lowerCamelCase ) / union else: _lowerCAmelCase : List[str] = set_a + [element for element in set_b if element not in set_a] return len(_lowerCamelCase ) / len(_lowerCamelCase ) return len(_lowerCamelCase ) / len(_lowerCamelCase ) return None if __name__ == "__main__": _snake_case = {"a", "b", "c", "d", "e"} _snake_case = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
658
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False')) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env') @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ]) class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(), encoding="utf-8", check=__a, ) assert hasattr(self, "env") def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = f"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings _lowerCAmelCase : List[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=__a, instance_count=__a, instance_type=self.instance_type, debugger_hook_config=__a, hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path}, metric_definitions=self.env.metric_definitions, distribution=__a, py_version="py36", ) def snake_case__ ( self, __a): '''simple docstring''' TrainingJobAnalytics(__a).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(2,)]) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = self.create_estimator(__a) # run training estimator.fit() # result dataframe _lowerCAmelCase : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _lowerCAmelCase : str = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) _lowerCAmelCase : str = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCAmelCase : Optional[int] = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds", 99_9999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json", "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, __a)
658
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _snake_case = "." if __name__ == "__main__": _snake_case = os.path.join(REPO_PATH, "utils/documentation_tests.txt") _snake_case = [] _snake_case = [] with open(doctest_file_path) as fp: for line in fp: _snake_case = line.strip() _snake_case = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _snake_case = "\n".join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
658
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
1
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _snake_case = 25_6047 _snake_case = 25_6145 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = NllbTokenizer lowerCamelCase__ = NllbTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = {} def snake_case__ ( self): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : Tuple = NllbTokenizer(__a, keep_accents=__a) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = NllbTokenizer(__a, keep_accents=__a) _lowerCAmelCase : List[str] = tokenizer.tokenize("This is a test") self.assertListEqual(__a, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) _lowerCAmelCase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __a, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a) self.assertListEqual( __a, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) _lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual( __a, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : List[Any] = tempfile.mkdtemp() _lowerCAmelCase : Union[str, Any] = tokenizer_r.save_pretrained(__a) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(__a) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) _lowerCAmelCase : Tuple = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(__a, __a) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(__a) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(__a) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a, __a)) shutil.rmtree(__a) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : List[str] = tokenizer_r.save_pretrained(__a, legacy_format=__a) _lowerCAmelCase : int = tokenizer_p.save_pretrained(__a) # Checks it save with the same files self.assertSequenceEqual(__a, __a) # Checks everything loads correctly in the same way _lowerCAmelCase : Any = tokenizer_r.from_pretrained(__a) _lowerCAmelCase : Any = tokenizer_p.from_pretrained(__a) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a, __a)) shutil.rmtree(__a) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(__a, legacy_format=__a) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(__a) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way _lowerCAmelCase : Optional[int] = tokenizer_r.from_pretrained(__a) _lowerCAmelCase : Any = tokenizer_p.from_pretrained(__a) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a, __a)) shutil.rmtree(__a) @require_torch def snake_case__ ( self): '''simple docstring''' if not self.test_seqaseq: return _lowerCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Longer text that will definitely require truncation. _lowerCAmelCase : Any = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] _lowerCAmelCase : List[str] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: _lowerCAmelCase : Union[str, Any] = tokenizer.prepare_seqaseq_batch( src_texts=__a, tgt_texts=__a, max_length=3, max_target_length=10, return_tensors="pt", src_lang="eng_Latn", tgt_lang="ron_Latn", ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 10) # max_target_length will default to max_length if not specified _lowerCAmelCase : List[Any] = tokenizer.prepare_seqaseq_batch( __a, tgt_texts=__a, max_length=3, return_tensors="pt") self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 3) _lowerCAmelCase : List[str] = tokenizer.prepare_seqaseq_batch( src_texts=__a, max_length=3, max_target_length=10, return_tensors="pt") self.assertEqual(batch_encoder_only.input_ids.shape[1], 3) self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3) self.assertNotIn("decoder_input_ids", __a) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece.") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : Dict = [AddedToken("<special>", lstrip=__a)] _lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( __a, additional_special_tokens=__a, **__a) _lowerCAmelCase : Optional[int] = tokenizer_r.encode("Hey this is a <special> token") _lowerCAmelCase : List[Any] = tokenizer_r.encode("<special>", add_special_tokens=__a)[0] self.assertTrue(special_token_id in r_output) if self.test_slow_tokenizer: _lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( __a, additional_special_tokens=__a, **__a, ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained( __a, additional_special_tokens=__a, **__a) _lowerCAmelCase : Tuple = tokenizer_p.encode("Hey this is a <special> token") _lowerCAmelCase : Union[str, Any] = tokenizer_cr.encode("Hey this is a <special> token") self.assertEqual(__a, __a) self.assertEqual(__a, __a) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in cr_output) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = 'facebook/nllb-200-distilled-600M' lowerCamelCase__ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCamelCase__ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCamelCase__ = [ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def snake_case__ ( cls): '''simple docstring''' _lowerCAmelCase : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name, src_lang="eng_Latn", tgt_lang="ron_Latn") _lowerCAmelCase : Union[str, Any] = 1 return cls def snake_case__ ( self): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"], 25_6001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"], 25_6002) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"], 25_6057) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens, __a) def snake_case__ ( self): '''simple docstring''' self.assertIn(__a, self.tokenizer.all_special_ids) # fmt: off _lowerCAmelCase : str = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on _lowerCAmelCase : int = self.tokenizer.decode(__a, skip_special_tokens=__a) _lowerCAmelCase : Optional[Any] = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=__a) self.assertEqual(__a, __a) self.assertNotIn(self.tokenizer.eos_token, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0], __a) _lowerCAmelCase : str = 10 _lowerCAmelCase : Dict = self.tokenizer(__a, max_length=__a, truncation=__a).input_ids[0] self.assertEqual(ids[-1], 2) self.assertEqual(ids[0], __a) self.assertEqual(len(__a), __a) def snake_case__ ( self): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [25_6203, 3]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = tempfile.mkdtemp() _lowerCAmelCase : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a) _lowerCAmelCase : List[str] = NllbTokenizer.from_pretrained(__a) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, __a) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=__a, truncation=__a, max_length=len(self.expected_src_tokens), return_tensors="pt", ) _lowerCAmelCase : int = shift_tokens_right( batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.lang_code_to_id["ron_Latn"]) self.assertIsInstance(__a, __a) self.assertEqual((2, 15), batch.input_ids.shape) self.assertEqual((2, 15), batch.attention_mask.shape) _lowerCAmelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, __a) self.assertEqual(__a, batch.decoder_input_ids[0, 0]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.tokenizer(self.src_text, padding=__a, truncation=__a, max_length=3, return_tensors="pt") _lowerCAmelCase : Any = self.tokenizer( text_target=self.tgt_text, padding=__a, truncation=__a, max_length=10, return_tensors="pt") _lowerCAmelCase : Tuple = targets["input_ids"] _lowerCAmelCase : Any = shift_tokens_right( __a, self.tokenizer.pad_token_id, decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang], ) self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.decoder_input_ids.shape[1], 10) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.tokenizer._build_translation_inputs( "A test", return_tensors="pt", src_lang="eng_Latn", tgt_lang="fra_Latn") self.assertEqual( nested_simplify(__a), { # A, test, EOS, en_XX "input_ids": [[25_6047, 70, 7356, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_6057, }, ) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = True _lowerCAmelCase : List[str] = self.tokenizer( "UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn") self.assertEqual( inputs.input_ids, [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047]) _lowerCAmelCase : int = False _lowerCAmelCase : Tuple = self.tokenizer( "UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn") self.assertEqual( inputs.input_ids, [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2])
658
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = ['pixel_values'] def __init__( self, __a = True, __a = None, __a = PILImageResampling.BILINEAR, __a = True, __a = None, __a = True, __a = 1 / 255, __a = True, __a = None, __a = None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = size if size is not None else {"shortest_edge": 256} _lowerCAmelCase : List[str] = get_size_dict(__a, default_to_square=__a) _lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase : Optional[int] = get_size_dict(__a, param_name="crop_size") _lowerCAmelCase : str = do_resize _lowerCAmelCase : List[str] = size _lowerCAmelCase : Optional[Any] = resample _lowerCAmelCase : Optional[int] = do_center_crop _lowerCAmelCase : str = crop_size _lowerCAmelCase : Dict = do_rescale _lowerCAmelCase : Union[str, Any] = rescale_factor _lowerCAmelCase : Optional[Any] = do_normalize _lowerCAmelCase : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self, __a, __a, __a = PILImageResampling.BICUBIC, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Tuple = get_size_dict(__a, default_to_square=__a) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _lowerCAmelCase : List[str] = get_resize_output_image_size(__a, size=size["shortest_edge"], default_to_square=__a) return resize(__a, size=__a, resample=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Any = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(__a, size=(size["height"], size["width"]), data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a = None, **__a): '''simple docstring''' return rescale(__a, scale=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a, __a = None, **__a, ): '''simple docstring''' return normalize(__a, mean=__a, std=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ): '''simple docstring''' _lowerCAmelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Optional[int] = size if size is not None else self.size _lowerCAmelCase : Optional[Any] = get_size_dict(__a, default_to_square=__a) _lowerCAmelCase : Tuple = resample if resample is not None else self.resample _lowerCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : List[Any] = get_size_dict(__a, param_name="crop_size") _lowerCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : str = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Optional[int] = make_list_of_images(__a) if not valid_images(__a): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. _lowerCAmelCase : Tuple = [to_numpy_array(__a) for image in images] if do_resize: _lowerCAmelCase : Optional[int] = [self.resize(image=__a, size=__a, resample=__a) for image in images] if do_center_crop: _lowerCAmelCase : List[str] = [self.center_crop(image=__a, size=__a) for image in images] if do_rescale: _lowerCAmelCase : str = [self.rescale(image=__a, scale=__a) for image in images] if do_normalize: _lowerCAmelCase : int = [self.normalize(image=__a, mean=__a, std=__a) for image in images] _lowerCAmelCase : int = [to_channel_dimension_format(__a, __a) for image in images] _lowerCAmelCase : Any = {"pixel_values": images} return BatchFeature(data=__a, tensor_type=__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a) != len(__a): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(__a): _lowerCAmelCase : int = target_sizes.numpy() _lowerCAmelCase : Any = [] for idx in range(len(__a)): _lowerCAmelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=__a) _lowerCAmelCase : List[str] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(__a) else: _lowerCAmelCase : Union[str, Any] = logits.argmax(dim=1) _lowerCAmelCase : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
658
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def A ( _lowerCamelCase ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCAmelCase : List[str] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'sigmoid' lowerCamelCase__ = 'softmax' lowerCamelCase__ = 'none' @add_end_docstrings( a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class UpperCAmelCase_ ( a): lowerCamelCase__ = False lowerCamelCase__ = ClassificationFunction.NONE def __init__( self, **__a): '''simple docstring''' super().__init__(**__a) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING) def snake_case__ ( self, __a=None, __a=None, __a="", **__a): '''simple docstring''' _lowerCAmelCase : Any = tokenizer_kwargs _lowerCAmelCase : List[str] = {} if hasattr(self.model.config, "return_all_scores") and return_all_scores is None: _lowerCAmelCase : Union[str, Any] = self.model.config.return_all_scores if isinstance(__a, __a) or top_k is None: _lowerCAmelCase : int = top_k _lowerCAmelCase : Optional[Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.", __a, ) if return_all_scores: _lowerCAmelCase : Union[str, Any] = None else: _lowerCAmelCase : Optional[int] = 1 if isinstance(__a, __a): _lowerCAmelCase : str = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCAmelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : Dict = super().__call__(*__a, **__a) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCAmelCase : int = "top_k" not in kwargs if isinstance(args[0], __a) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def snake_case__ ( self, __a, **__a): '''simple docstring''' _lowerCAmelCase : Tuple = self.framework if isinstance(__a, __a): return self.tokenizer(**__a, return_tensors=__a, **__a) elif isinstance(__a, __a) and len(__a) == 1 and isinstance(inputs[0], __a) and len(inputs[0]) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0], text_pair=inputs[0][1], return_tensors=__a, **__a) elif isinstance(__a, __a): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.") return self.tokenizer(__a, return_tensors=__a, **__a) def snake_case__ ( self, __a): '''simple docstring''' return self.model(**__a) def snake_case__ ( self, __a, __a=None, __a=1, __a=True): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCAmelCase : str = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCAmelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config, "function_to_apply") and function_to_apply is None: _lowerCAmelCase : Optional[Any] = self.model.config.function_to_apply else: _lowerCAmelCase : Any = ClassificationFunction.NONE _lowerCAmelCase : List[Any] = model_outputs["logits"][0] _lowerCAmelCase : List[str] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCAmelCase : List[str] = sigmoid(__a) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCAmelCase : Dict = softmax(__a) elif function_to_apply == ClassificationFunction.NONE: _lowerCAmelCase : List[Any] = outputs else: raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}") if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCAmelCase : List[str] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__a) ] if not _legacy: dict_scores.sort(key=lambda __a: x["score"], reverse=__a) if top_k is not None: _lowerCAmelCase : Optional[Any] = dict_scores[:top_k] return dict_scores
658
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def A ( *_lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase=True , _lowerCamelCase=2 ): '''simple docstring''' from .. import __version__ _lowerCAmelCase : str = take_from _lowerCAmelCase : int = () if not isinstance(args[0] , _lowerCamelCase ): _lowerCAmelCase : List[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_lowerCamelCase ).base_version ) >= version.parse(_lowerCamelCase ): raise ValueError( F"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" F" version {__version__} is >= {version_name}" ) _lowerCAmelCase : Optional[int] = None if isinstance(_lowerCamelCase , _lowerCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_lowerCamelCase ),) _lowerCAmelCase : Optional[Any] = F"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(_lowerCamelCase , _lowerCamelCase ): values += (getattr(_lowerCamelCase , _lowerCamelCase ),) _lowerCAmelCase : Tuple = F"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: _lowerCAmelCase : Union[str, Any] = F"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: _lowerCAmelCase : str = warning + " " if standard_warn else "" warnings.warn(warning + message , _lowerCamelCase , stacklevel=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0: _lowerCAmelCase : List[Any] = inspect.getouterframes(inspect.currentframe() )[1] _lowerCAmelCase : Dict = call_frame.filename _lowerCAmelCase : str = call_frame.lineno _lowerCAmelCase : Union[str, Any] = call_frame.function _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(_lowerCamelCase ) == 0: return elif len(_lowerCamelCase ) == 1: return values[0] return values
658
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = [] for part_id in partition_order: _lowerCAmelCase : List[Any] = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(_lowerCamelCase ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase : List[Any] = spark.range(100 ).repartition(1 ) _lowerCAmelCase : Optional[Any] = Spark(_lowerCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase : Dict = spark.range(10 ).repartition(2 ) _lowerCAmelCase : Union[str, Any] = [1, 0] _lowerCAmelCase : Any = _generate_iterable_examples(_lowerCamelCase , _lowerCamelCase ) # Reverse the partitions. _lowerCAmelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , _lowerCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _lowerCAmelCase , _lowerCAmelCase : Dict = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A ( ): '''simple docstring''' _lowerCAmelCase : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase : List[Any] = spark.range(10 ).repartition(1 ) _lowerCAmelCase : Dict = SparkExamplesIterable(_lowerCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase : Tuple = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: _lowerCAmelCase : Dict = lambda _lowerCamelCase : x.reverse() _lowerCAmelCase : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , [2, 1, 0] ) _lowerCAmelCase : List[str] = SparkExamplesIterable(_lowerCamelCase ).shuffle_data_sources(_lowerCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): _lowerCAmelCase , _lowerCAmelCase : int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase : int = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _lowerCAmelCase : Optional[int] = SparkExamplesIterable(_lowerCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCAmelCase : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _lowerCAmelCase : str = SparkExamplesIterable(_lowerCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCAmelCase : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase : Optional[int] = spark.range(100 ).repartition(1 ) _lowerCAmelCase : Optional[Any] = Spark(_lowerCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
658
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
1
from __future__ import annotations _snake_case = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _snake_case = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Tuple = len(_lowerCamelCase ) for i in range(_lowerCamelCase ): _lowerCAmelCase : float = -1 for j in range(i + 1 , _lowerCamelCase ): if arr[i] < arr[j]: _lowerCAmelCase : Union[str, Any] = arr[j] break result.append(_lowerCamelCase ) return result def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = [] for i, outer in enumerate(_lowerCamelCase ): _lowerCAmelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _lowerCAmelCase : str = inner break result.append(_lowerCamelCase ) return result def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = len(_lowerCamelCase ) _lowerCAmelCase : list[float] = [] _lowerCAmelCase : list[float] = [-1] * arr_size for index in reversed(range(_lowerCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _lowerCAmelCase : List[str] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _snake_case = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
658
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = emb.weight.shape _lowerCAmelCase : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) _lowerCAmelCase : Tuple = emb.weight.data return lin_layer def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): _lowerCAmelCase : Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: _lowerCAmelCase : int = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" ) else: _lowerCAmelCase : List[str] = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: _lowerCAmelCase : str = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: _lowerCAmelCase : List[str] = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: _lowerCAmelCase : List[Any] = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: _lowerCAmelCase : Optional[int] = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: _lowerCAmelCase : Dict = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: _lowerCAmelCase : Optional[Any] = key.replace("final_layer_norm" , "ff_layer_norm" ) _lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ): '''simple docstring''' _lowerCAmelCase : int = [] _lowerCAmelCase : Any = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): _lowerCAmelCase : str = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(_lowerCamelCase ): _lowerCAmelCase : int = torch.load(_lowerCamelCase )["model"] remove_ignore_keys_(_lowerCamelCase ) _lowerCAmelCase : List[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = os.path.join( _lowerCamelCase , weights_name.replace(".bin" , F"-{len(_lowerCamelCase )+1:05d}-of-???.bin" ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block _lowerCAmelCase : List[str] = os.path.join(_lowerCamelCase , weights_name.replace(".bin" , F"-{len(_lowerCamelCase )+1:05d}-of-???.bin" ) ) _lowerCAmelCase : Optional[Any] = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_lowerCamelCase ) _lowerCAmelCase : Dict = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: _lowerCAmelCase : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index _lowerCAmelCase : List[Any] = {} for idx, shard in enumerate(_lowerCamelCase ): _lowerCAmelCase : str = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin" ) _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: _lowerCAmelCase : Optional[int] = shard_file # Add the metadata _lowerCAmelCase : List[Any] = {"total_size": total_size} _lowerCAmelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , "w" , encoding="utf-8" ) as f: _lowerCAmelCase : Tuple = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + "\n" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) _snake_case = parser.parse_args() _snake_case, _snake_case = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _snake_case = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _snake_case = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
658
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } _snake_case = { "google/rembert": 256, } _snake_case = "▁" class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = RemBertTokenizer def __init__( self, __a=None, __a=None, __a=True, __a=True, __a=False, __a="[CLS]", __a="[SEP]", __a="<unk>", __a="[SEP]", __a="<pad>", __a="[CLS]", __a="[MASK]", **__a, ): '''simple docstring''' _lowerCAmelCase : str = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else mask_token super().__init__( __a, tokenizer_file=__a, do_lower_case=__a, remove_space=__a, keep_accents=__a, bos_token=__a, eos_token=__a, unk_token=__a, sep_token=__a, pad_token=__a, cls_token=__a, mask_token=__a, **__a, ) _lowerCAmelCase : Optional[int] = do_lower_case _lowerCAmelCase : str = remove_space _lowerCAmelCase : Dict = keep_accents _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Any = False if not self.vocab_file else True def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Any = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model.") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__a)) + [1] + ([0] * len(__a)) + [1] return [1] + ([0] * len(__a)) + [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(__a): logger.error("Vocabulary path ({}) should be a directory".format(__a)) return _lowerCAmelCase : Union[str, Any] = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__a): copyfile(self.vocab_file, __a) return (out_vocab_file,)
658
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False')) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env') @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ]) class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(), encoding="utf-8", check=__a, ) assert hasattr(self, "env") def snake_case__ ( self, __a=1): '''simple docstring''' return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=f"{self.env.base_job_name}-single", instance_count=__a, instance_type=self.instance_type, debugger_hook_config=__a, hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path}, metric_definitions=self.env.metric_definitions, py_version="py36", ) def snake_case__ ( self, __a): '''simple docstring''' TrainingJobAnalytics(__a).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.create_estimator() # run training estimator.fit() # result dataframe _lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) _lowerCAmelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds", 99_9999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json", "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, __a)
658
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=7, __a=3, __a=18, __a=30, __a=400, __a=True, __a=32, __a=True, ): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = min_resolution _lowerCAmelCase : int = max_resolution _lowerCAmelCase : int = do_resize _lowerCAmelCase : Any = size_divisor _lowerCAmelCase : int = do_rescale def snake_case__ ( self): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = GLPNImageProcessor if is_vision_available() else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = GLPNImageProcessingTester(self) @property def snake_case__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a, "do_resize")) self.assertTrue(hasattr(__a, "size_divisor")) self.assertTrue(hasattr(__a, "resample")) self.assertTrue(hasattr(__a, "do_rescale")) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a, Image.Image) # Test not batched input (GLPNImageProcessor doesn't support batching) _lowerCAmelCase : Any = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=__a, numpify=__a) for image in image_inputs: self.assertIsInstance(__a, np.ndarray) # Test not batched input (GLPNImageProcessor doesn't support batching) _lowerCAmelCase : Any = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=__a, torchify=__a) for image in image_inputs: self.assertIsInstance(__a, torch.Tensor) # Test not batched input (GLPNImageProcessor doesn't support batching) _lowerCAmelCase : Any = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0)
658
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "Hello, World!" _snake_case = "en_XX" def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = Path("data_bin" ) _lowerCAmelCase : List[str] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowerCamelCase ).parent ) , checkpoint_file=Path(_lowerCamelCase ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(_lowerCamelCase ) , bpe="sentencepiece" , sentencepiece_model=str(Path(_lowerCamelCase ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(_lowerCamelCase ) _lowerCAmelCase : List[Any] = xmod.model.encoder.sentence_encoder _lowerCAmelCase : Optional[int] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: _lowerCAmelCase : Any = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , _lowerCamelCase ) _lowerCAmelCase : Any = XmodForSequenceClassification(_lowerCamelCase ) if classification_head else XmodForMaskedLM(_lowerCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase : int = xmod_sent_encoder.embed_tokens.weight _lowerCAmelCase : Dict = xmod_sent_encoder.embed_positions.weight _lowerCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. _lowerCAmelCase : Optional[Any] = xmod_sent_encoder.layernorm_embedding.weight _lowerCAmelCase : Optional[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase : int = model.roberta.encoder.layer[i] _lowerCAmelCase : int = xmod_sent_encoder.layers[i] # self attention _lowerCAmelCase : Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) _lowerCAmelCase : Optional[Any] = xmod_layer.self_attn.q_proj.weight _lowerCAmelCase : Union[str, Any] = xmod_layer.self_attn.q_proj.bias _lowerCAmelCase : Any = xmod_layer.self_attn.k_proj.weight _lowerCAmelCase : Tuple = xmod_layer.self_attn.k_proj.bias _lowerCAmelCase : str = xmod_layer.self_attn.v_proj.weight _lowerCAmelCase : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase : str = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) _lowerCAmelCase : Optional[int] = xmod_layer.self_attn.out_proj.weight _lowerCAmelCase : Union[str, Any] = xmod_layer.self_attn.out_proj.bias _lowerCAmelCase : Any = xmod_layer.self_attn_layer_norm.weight _lowerCAmelCase : Optional[int] = xmod_layer.self_attn_layer_norm.bias # intermediate _lowerCAmelCase : List[str] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) _lowerCAmelCase : Any = xmod_layer.fca.weight _lowerCAmelCase : List[str] = xmod_layer.fca.bias # output _lowerCAmelCase : int = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) _lowerCAmelCase : List[str] = xmod_layer.fca.weight _lowerCAmelCase : Dict = xmod_layer.fca.bias _lowerCAmelCase : Optional[Any] = xmod_layer.final_layer_norm.weight _lowerCAmelCase : Dict = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: _lowerCAmelCase : Any = xmod_layer.adapter_layer_norm.weight _lowerCAmelCase : List[Any] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): _lowerCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] _lowerCAmelCase : List[Any] = xmod_layer.adapter_modules[lang_code] _lowerCAmelCase : Dict = from_adapter.fca.weight _lowerCAmelCase : Dict = from_adapter.fca.bias _lowerCAmelCase : List[Any] = from_adapter.fca.weight _lowerCAmelCase : Optional[int] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: _lowerCAmelCase : int = xmod_sent_encoder.layer_norm.weight _lowerCAmelCase : str = xmod_sent_encoder.layer_norm.bias if classification_head: _lowerCAmelCase : Optional[Any] = xmod.model.classification_heads["mnli"].dense.weight _lowerCAmelCase : List[str] = xmod.model.classification_heads["mnli"].dense.bias _lowerCAmelCase : int = xmod.model.classification_heads["mnli"].out_proj.weight _lowerCAmelCase : Any = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head _lowerCAmelCase : Union[str, Any] = xmod.model.encoder.lm_head.dense.weight _lowerCAmelCase : List[str] = xmod.model.encoder.lm_head.dense.bias _lowerCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase : Optional[int] = xmod.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase : List[str] = xmod.model.encoder.lm_head.weight _lowerCAmelCase : Tuple = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase : List[Any] = xmod.encode(_lowerCamelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowerCamelCase ) _lowerCAmelCase : List[Any] = model(_lowerCamelCase )[0] if classification_head: _lowerCAmelCase : Dict = xmod.model.classification_heads["mnli"](xmod.extract_features(_lowerCamelCase ) ) else: _lowerCAmelCase : Any = xmod.model(_lowerCamelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase : int = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 _lowerCAmelCase : List[Any] = torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(_lowerCamelCase ).mkdir(parents=_lowerCamelCase , exist_ok=_lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) _snake_case = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
1
from collections import defaultdict def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = first_str.lower().strip() _lowerCAmelCase : Union[str, Any] = second_str.lower().strip() # Remove whitespace _lowerCAmelCase : List[str] = first_str.replace(" " , "" ) _lowerCAmelCase : int = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(_lowerCamelCase ) != len(_lowerCamelCase ): return False # Default values for count should be 0 _lowerCAmelCase : defaultdict[str, int] = defaultdict(_lowerCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowerCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _snake_case = input("Enter the first string ").strip() _snake_case = input("Enter the second string ").strip() _snake_case = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
658
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
1
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = AlbertTokenizer lowerCamelCase__ = AlbertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : str = AlbertTokenizer(__a) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "this is a test" _lowerCAmelCase : List[str] = "this is a test" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "<pad>" _lowerCAmelCase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a), __a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<pad>") self.assertEqual(vocab_keys[1], "<unk>") self.assertEqual(vocab_keys[-1], "▁eloquent") self.assertEqual(len(__a), 3_0000) def snake_case__ ( self): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def snake_case__ ( self): '''simple docstring''' if not self.test_rust_tokenizer: return _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Tuple = self.get_rust_tokenizer() _lowerCAmelCase : Optional[int] = "I was born in 92000, and this is falsé." _lowerCAmelCase : List[str] = tokenizer.tokenize(__a) _lowerCAmelCase : Dict = rust_tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : List[str] = tokenizer.encode(__a, add_special_tokens=__a) _lowerCAmelCase : Any = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Tuple = self.get_rust_tokenizer() _lowerCAmelCase : Tuple = tokenizer.encode(__a) _lowerCAmelCase : List[str] = rust_tokenizer.encode(__a) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = AlbertTokenizer(__a, keep_accents=__a) _lowerCAmelCase : List[Any] = tokenizer.tokenize("This is a test") self.assertListEqual(__a, ["▁this", "▁is", "▁a", "▁test"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a), [48, 25, 21, 1289]) _lowerCAmelCase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __a, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."]) _lowerCAmelCase : Any = tokenizer.convert_tokens_to_ids(__a) self.assertListEqual(__a, [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]) _lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual( __a, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."], ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = AlbertTokenizer(__a) _lowerCAmelCase : Any = tokenizer.encode("sequence builders") _lowerCAmelCase : Optional[Any] = tokenizer.encode("multi-sequence build") _lowerCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__a) _lowerCAmelCase : str = tokenizer.build_inputs_with_special_tokens(__a, __a) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a, model_name="albert-base-v2", revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e", )
658
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
1
from datetime import datetime import requests def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" _lowerCAmelCase : Any = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(_lowerCamelCase ).content if __name__ == "__main__": _snake_case = input("Enter Video/IGTV url: ").strip() _snake_case = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
658
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
1
from __future__ import annotations from typing import TypedDict class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(_lowerCamelCase ) )] def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _lowerCAmelCase : int = all_rotations(_lowerCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowerCAmelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_lowerCamelCase ), } return response def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _lowerCAmelCase : Tuple = int(_lowerCamelCase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(_lowerCamelCase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _lowerCAmelCase : Optional[int] = [""] * len(_lowerCamelCase ) for _ in range(len(_lowerCamelCase ) ): for i in range(len(_lowerCamelCase ) ): _lowerCAmelCase : List[str] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": _snake_case = "Provide a string that I will generate its BWT transform: " _snake_case = input(entry_msg).strip() _snake_case = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result["bwt_string"]}\'''' ) _snake_case = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f'''Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ''' f'''we get original string \'{original_string}\'''' )
658
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _snake_case = TypeVar("T") class UpperCAmelCase_ ( Generic[T]): def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = data _lowerCAmelCase : Node[T] | None = None def __str__( self): '''simple docstring''' return f"{self.data}" class UpperCAmelCase_ ( Generic[T]): def __init__( self): '''simple docstring''' _lowerCAmelCase : Node[T] | None = None def __iter__( self): '''simple docstring''' _lowerCAmelCase : str = self.top while node: yield node.data _lowerCAmelCase : List[str] = node.next def __str__( self): '''simple docstring''' return "->".join([str(__a) for item in self]) def __len__( self): '''simple docstring''' return len(tuple(iter(self))) def snake_case__ ( self): '''simple docstring''' return self.top is None def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = Node(__a) if not self.is_empty(): _lowerCAmelCase : int = self.top _lowerCAmelCase : List[str] = node def snake_case__ ( self): '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack") assert isinstance(self.top, __a) _lowerCAmelCase : List[Any] = self.top _lowerCAmelCase : Union[str, Any] = self.top.next return pop_node.data def snake_case__ ( self): '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack") assert self.top is not None return self.top.data def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
658
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
import csv import tweepy # Twitter API credentials _snake_case = "" _snake_case = "" _snake_case = "" _snake_case = "" def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = tweepy.OAuthHandler(_lowerCamelCase , _lowerCamelCase ) auth.set_access_token(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Tuple = tweepy.API(_lowerCamelCase ) # initialize a list to hold all the tweepy Tweets _lowerCAmelCase : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _lowerCAmelCase : List[Any] = api.user_timeline(screen_name=_lowerCamelCase , count=200 ) # save most recent tweets alltweets.extend(_lowerCamelCase ) # save the id of the oldest tweet less one _lowerCAmelCase : Dict = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_lowerCamelCase ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates _lowerCAmelCase : List[str] = api.user_timeline( screen_name=_lowerCamelCase , count=200 , max_id=_lowerCamelCase ) # save most recent tweets alltweets.extend(_lowerCamelCase ) # update the id of the oldest tweet less one _lowerCAmelCase : List[str] = alltweets[-1].id - 1 print(F"...{len(_lowerCamelCase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv _lowerCAmelCase : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , "w" ) as f: _lowerCAmelCase : Union[str, Any] = csv.writer(_lowerCamelCase ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(_lowerCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
658
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, **__a): '''simple docstring''' requires_backends(self, ["bs4"]) super().__init__(**__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Dict = [] _lowerCAmelCase : int = [] _lowerCAmelCase : Optional[Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _lowerCAmelCase : Union[str, Any] = parent.find_all(child.name, recursive=__a) xpath_tags.append(child.name) xpath_subscripts.append( 0 if 1 == len(__a) else next(i for i, s in enumerate(__a, 1) if s is child)) _lowerCAmelCase : Union[str, Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(__a, "html.parser") _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[str] = [] _lowerCAmelCase : List[Any] = [] for element in html_code.descendants: if type(__a) == bsa.element.NavigableString: if type(element.parent) != bsa.element.Tag: continue _lowerCAmelCase : Dict = html.unescape(__a).strip() if not text_in_this_tag: continue all_doc_strings.append(__a) _lowerCAmelCase , _lowerCAmelCase : List[str] = self.xpath_soup(__a) stringaxtag_seq.append(__a) stringaxsubs_seq.append(__a) if len(__a) != len(__a): raise ValueError("Number of doc strings and xtags does not correspond") if len(__a) != len(__a): raise ValueError("Number of doc strings and xsubs does not correspond") return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : int = "" for tagname, subs in zip(__a, __a): xpath += f"/{tagname}" if subs != 0: xpath += f"[{subs}]" return xpath def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = False # Check that strings has a valid type if isinstance(__a, __a): _lowerCAmelCase : Dict = True elif isinstance(__a, (list, tuple)): if len(__a) == 0 or isinstance(html_strings[0], __a): _lowerCAmelCase : str = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " f"but is of type {type(__a)}.") _lowerCAmelCase : Optional[Any] = bool(isinstance(__a, (list, tuple)) and (isinstance(html_strings[0], __a))) if not is_batched: _lowerCAmelCase : Tuple = [html_strings] # Get nodes + xpaths _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Union[str, Any] = [] for html_string in html_strings: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.get_three_from_single(__a) nodes.append(__a) _lowerCAmelCase : int = [] for node, tag_list, sub_list in zip(__a, __a, __a): _lowerCAmelCase : Optional[Any] = self.construct_xpath(__a, __a) xpath_strings.append(__a) xpaths.append(__a) # return as Dict _lowerCAmelCase : int = {"nodes": nodes, "xpaths": xpaths} _lowerCAmelCase : Optional[Any] = BatchFeature(data=__a, tensor_type=__a) return encoded_inputs
658
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = inspect.getfile(accelerate.test_utils) lowerCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_cli.py']) lowerCamelCase__ = ['accelerate', 'launch'] lowerCamelCase__ = Path.home() / '.cache/huggingface/accelerate' lowerCamelCase__ = 'default_config.yaml' lowerCamelCase__ = config_folder / config_file lowerCamelCase__ = config_folder / '_default_config.yaml' lowerCamelCase__ = Path('tests/test_configs') @classmethod def snake_case__ ( cls): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def snake_case__ ( cls): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path], env=os.environ.copy()) def snake_case__ ( self): '''simple docstring''' for config in sorted(self.test_config_path.glob("**/*.yaml")): with self.subTest(config_file=__a): execute_subprocess_async( self.base_cmd + ["--config_file", str(__a), self.test_file_path], env=os.environ.copy()) def snake_case__ ( self): '''simple docstring''' execute_subprocess_async(["accelerate", "test"], env=os.environ.copy()) class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = 'test-tpu' lowerCamelCase__ = 'us-central1-a' lowerCamelCase__ = 'ls' lowerCamelCase__ = ['accelerate', 'tpu-config'] lowerCamelCase__ = 'cd /usr/share' lowerCamelCase__ = 'tests/test_samples/test_command_file.sh' lowerCamelCase__ = 'Running gcloud compute tpus tpu-vm ssh' def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"], return_stdout=__a) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all", __a, )
658
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( a): lowerCamelCase__ = (CMStochasticIterativeScheduler,) lowerCamelCase__ = 10 def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : Any = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a) return config def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = 10 _lowerCAmelCase : List[str] = self.get_scheduler_config() _lowerCAmelCase : Any = self.scheduler_classes[0](**__a) scheduler.set_timesteps(__a) _lowerCAmelCase : Tuple = scheduler.timesteps[0] _lowerCAmelCase : Tuple = scheduler.timesteps[1] _lowerCAmelCase : Tuple = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : Optional[int] = scheduler.step(__a, __a, __a).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(__a, __a, __a).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) def snake_case__ ( self): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a) def snake_case__ ( self): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[Any] = scheduler_class(**__a) _lowerCAmelCase : List[str] = 1 scheduler.set_timesteps(__a) _lowerCAmelCase : Dict = scheduler.timesteps _lowerCAmelCase : List[str] = torch.manual_seed(0) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a): # 1. scale model input _lowerCAmelCase : Any = scheduler.scale_model_input(__a, __a) # 2. predict noise residual _lowerCAmelCase : Optional[Any] = model(__a, __a) # 3. predict previous sample x_t-1 _lowerCAmelCase : Optional[int] = scheduler.step(__a, __a, __a, generator=__a).prev_sample _lowerCAmelCase : Any = pred_prev_sample _lowerCAmelCase : Dict = torch.sum(torch.abs(__a)) _lowerCAmelCase : List[str] = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 192.7_614) < 1E-2 assert abs(result_mean.item() - 0.2_510) < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config() _lowerCAmelCase : List[Any] = scheduler_class(**__a) _lowerCAmelCase : List[str] = [106, 0] scheduler.set_timesteps(timesteps=__a) _lowerCAmelCase : str = scheduler.timesteps _lowerCAmelCase : Tuple = torch.manual_seed(0) _lowerCAmelCase : Optional[Any] = self.dummy_model() _lowerCAmelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _lowerCAmelCase : Any = scheduler.scale_model_input(__a, __a) # 2. predict noise residual _lowerCAmelCase : Union[str, Any] = model(__a, __a) # 3. predict previous sample x_t-1 _lowerCAmelCase : List[Any] = scheduler.step(__a, __a, __a, generator=__a).prev_sample _lowerCAmelCase : int = pred_prev_sample _lowerCAmelCase : List[str] = torch.sum(torch.abs(__a)) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 347.6_357) < 1E-2 assert abs(result_mean.item() - 0.4_527) < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**__a) _lowerCAmelCase : Tuple = [39, 30, 12, 15, 0] with self.assertRaises(__a, msg="`timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**__a) _lowerCAmelCase : Any = [39, 30, 12, 1, 0] _lowerCAmelCase : Dict = len(__a) with self.assertRaises(__a, msg="Can only pass one of `num_inference_steps` or `timesteps`."): scheduler.set_timesteps(num_inference_steps=__a, timesteps=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : List[Any] = self.get_scheduler_config() _lowerCAmelCase : Optional[Any] = scheduler_class(**__a) _lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __a, msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}", ): scheduler.set_timesteps(timesteps=__a)
658
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _snake_case = logging.getLogger(__name__) class UpperCAmelCase_ ( _lowerCamelCase): def __init__( self, __a=-1): '''simple docstring''' _lowerCAmelCase : Optional[int] = label_idx def snake_case__ ( self, __a, __a): '''simple docstring''' if isinstance(A__, A__): _lowerCAmelCase : Optional[Any] = mode.value _lowerCAmelCase : List[Any] = os.path.join(A__, f"{mode}.txt") _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Optional[Any] = [] with open(A__, encoding="utf-8") as f: _lowerCAmelCase : str = [] _lowerCAmelCase : Optional[int] = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}", words=A__, labels=A__)) guid_index += 1 _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[int] = [] else: _lowerCAmelCase : List[str] = line.split(" ") words.append(splits[0]) if len(A__) > 1: labels.append(splits[self.label_idx].replace("\n", "")) else: # Examples could have no label for mode = "test" labels.append("O") if words: examples.append(InputExample(guid=f"{mode}-{guid_index}", words=A__, labels=A__)) return examples def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = 0 for line in test_input_reader: if line.startswith("-DOCSTART-") or line == "" or line == "\n": writer.write(A__) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _lowerCAmelCase : Tuple = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n" writer.write(A__) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0]) def snake_case__ ( self, __a): '''simple docstring''' if path: with open(A__, "r") as f: _lowerCAmelCase : Any = f.read().splitlines() if "O" not in labels: _lowerCAmelCase : Any = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCAmelCase_ ( _lowerCamelCase): def __init__( self): '''simple docstring''' super().__init__(label_idx=-2) def snake_case__ ( self, __a): '''simple docstring''' if path: with open(A__, "r") as f: _lowerCAmelCase : str = f.read().splitlines() if "O" not in labels: _lowerCAmelCase : Union[str, Any] = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCAmelCase_ ( _lowerCamelCase): def snake_case__ ( self, __a, __a): '''simple docstring''' if isinstance(A__, A__): _lowerCAmelCase : Optional[int] = mode.value _lowerCAmelCase : List[str] = os.path.join(A__, f"{mode}.txt") _lowerCAmelCase : List[Any] = 1 _lowerCAmelCase : Optional[int] = [] with open(A__, encoding="utf-8") as f: for sentence in parse_incr(A__): _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Dict = [] for token in sentence: words.append(token["form"]) labels.append(token["upos"]) assert len(A__) == len(A__) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}", words=A__, labels=A__)) guid_index += 1 return examples def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = 0 for sentence in parse_incr(A__): _lowerCAmelCase : str = preds_list[example_id] _lowerCAmelCase : Union[str, Any] = "" for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0)}) " out += "\n" writer.write(A__) example_id += 1 def snake_case__ ( self, __a): '''simple docstring''' if path: with open(A__, "r") as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
700
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
0
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : Optional[Any] = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : str = string.ascii_uppercase.find(__A ) _lowerCAmelCase : Any = num - key if num < 0: _lowerCAmelCase : int = num + len(string.ascii_uppercase ) _lowerCAmelCase : Tuple = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Any = input("Encrypted message: " ) _lowerCAmelCase : Tuple = message.upper() decrypt(__A ) if __name__ == "__main__": import doctest doctest.testmod() main()
701
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "AAPL" ): '''simple docstring''' _lowerCAmelCase : Dict = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" _lowerCAmelCase : str = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , "html.parser" ) _lowerCAmelCase : str = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
702
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
0
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _snake_case = "scheduler_config.json" class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE): lowerCamelCase__ = 1 lowerCamelCase__ = 2 lowerCamelCase__ = 3 lowerCamelCase__ = 4 lowerCamelCase__ = 5 @dataclass class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE): lowerCamelCase__ = 42 class UpperCAmelCase_ : lowerCamelCase__ = SCHEDULER_CONFIG_NAME lowerCamelCase__ = ["dtype"] lowerCamelCase__ = [] lowerCamelCase__ = True @classmethod def snake_case__ ( cls, __a = None, __a = None, __a=False, **__a, ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = cls.load_config( pretrained_model_name_or_path=A_, subfolder=A_, return_unused_kwargs=A_, **A_, ) _lowerCAmelCase , _lowerCAmelCase : Dict = cls.from_config(A_, return_unused_kwargs=A_, **A_) if hasattr(A_, "create_state") and getattr(A_, "has_state", A_): _lowerCAmelCase : int = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def snake_case__ ( self, __a, __a = False, **__a): '''simple docstring''' self.save_config(save_directory=A_, push_to_hub=A_, **A_) @property def snake_case__ ( self): '''simple docstring''' return self._get_compatibles() @classmethod def snake_case__ ( cls): '''simple docstring''' _lowerCAmelCase : int = list(set([cls.__name__] + cls._compatibles)) _lowerCAmelCase : Optional[Any] = importlib.import_module(__name__.split(".")[0]) _lowerCAmelCase : int = [ getattr(A_, A_) for c in compatible_classes_str if hasattr(A_, A_) ] return compatible_classes def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert len(_lowerCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_lowerCamelCase ) - x.ndim) ) , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase=0.9_99 , _lowerCamelCase=jnp.floataa ): '''simple docstring''' def alpha_bar(_lowerCamelCase ): return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 _lowerCAmelCase : Optional[Any] = [] for i in range(_lowerCamelCase ): _lowerCAmelCase : List[Any] = i / num_diffusion_timesteps _lowerCAmelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_lowerCamelCase ) / alpha_bar(_lowerCamelCase ) , _lowerCamelCase ) ) return jnp.array(_lowerCamelCase , dtype=_lowerCamelCase ) @flax.struct.dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 @classmethod def snake_case__ ( cls, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = scheduler.config if config.trained_betas is not None: _lowerCAmelCase : Union[str, Any] = jnp.asarray(config.trained_betas, dtype=scheduler.dtype) elif config.beta_schedule == "linear": _lowerCAmelCase : List[Any] = jnp.linspace(config.beta_start, config.beta_end, config.num_train_timesteps, dtype=scheduler.dtype) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase : List[Any] = ( jnp.linspace( config.beta_start**0.5, config.beta_end**0.5, config.num_train_timesteps, dtype=scheduler.dtype) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase : List[str] = betas_for_alpha_bar(config.num_train_timesteps, dtype=scheduler.dtype) else: raise NotImplementedError( f"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}") _lowerCAmelCase : Union[str, Any] = 1.0 - betas _lowerCAmelCase : Dict = jnp.cumprod(A_, axis=0) return cls( alphas=A_, betas=A_, alphas_cumprod=A_, ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = state.alphas_cumprod _lowerCAmelCase : Any = alphas_cumprod[timesteps] ** 0.5 _lowerCAmelCase : List[Any] = sqrt_alpha_prod.flatten() _lowerCAmelCase : Optional[Any] = broadcast_to_shape_from_left(_lowerCamelCase , original_samples.shape ) _lowerCAmelCase : Dict = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCAmelCase : str = sqrt_one_minus_alpha_prod.flatten() _lowerCAmelCase : Optional[Any] = broadcast_to_shape_from_left(_lowerCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = get_sqrt_alpha_prod(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = get_sqrt_alpha_prod(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[Any] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
703
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(_lowercase , collections.abc.Iterable ): return x return (x, x) @require_flax class UpperCAmelCase_ : def snake_case__ ( self, __a, __a): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = np.abs((a - b)).max() self.assertLessEqual(UpperCamelCase_, UpperCamelCase_, f"Difference between torch and flax is {diff} (>= {tol}).") def snake_case__ ( self, __a, __a, __a, __a, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase_, UpperCamelCase_) _lowerCAmelCase : Optional[int] = FlaxVisionTextDualEncoderModel(UpperCamelCase_) _lowerCAmelCase : int = model(input_ids=UpperCamelCase_, pixel_values=UpperCamelCase_, attention_mask=UpperCamelCase_) self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], config.projection_dim)) def snake_case__ ( self, __a, __a, __a, __a, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_vision_text_model(UpperCamelCase_, UpperCamelCase_) _lowerCAmelCase : List[Any] = {'vision_model': vision_model, 'text_model': text_model} _lowerCAmelCase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase_) _lowerCAmelCase : Tuple = model(input_ids=UpperCamelCase_, pixel_values=UpperCamelCase_, attention_mask=UpperCamelCase_) self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], model.config.projection_dim)) def snake_case__ ( self, __a, __a, __a, __a, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_vision_text_model(UpperCamelCase_, UpperCamelCase_) _lowerCAmelCase : List[Any] = {'vision_model': vision_model, 'text_model': text_model} _lowerCAmelCase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase_) _lowerCAmelCase : Any = model(input_ids=UpperCamelCase_, pixel_values=UpperCamelCase_, attention_mask=UpperCamelCase_) _lowerCAmelCase : List[Any] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_) _lowerCAmelCase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase_) _lowerCAmelCase : Union[str, Any] = model(input_ids=UpperCamelCase_, pixel_values=UpperCamelCase_, attention_mask=UpperCamelCase_) _lowerCAmelCase : Union[str, Any] = after_output[0] _lowerCAmelCase : List[str] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCamelCase_, 1E-3) def snake_case__ ( self, __a, __a, __a, __a, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : Dict = self.get_vision_text_model(UpperCamelCase_, UpperCamelCase_) _lowerCAmelCase : Optional[int] = {'vision_model': vision_model, 'text_model': text_model} _lowerCAmelCase : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase_) _lowerCAmelCase : Tuple = model( input_ids=UpperCamelCase_, pixel_values=UpperCamelCase_, attention_mask=UpperCamelCase_, output_attentions=UpperCamelCase_) _lowerCAmelCase : Any = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase_), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : str = to_atuple(vision_model.config.image_size) _lowerCAmelCase : Dict = to_atuple(vision_model.config.patch_size) _lowerCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowerCAmelCase : int = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase_), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' pt_model.to(UpperCamelCase_) pt_model.eval() # prepare inputs _lowerCAmelCase : List[str] = inputs_dict _lowerCAmelCase : Any = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): _lowerCAmelCase : Tuple = pt_model(**UpperCamelCase_).to_tuple() _lowerCAmelCase : str = fx_model(**UpperCamelCase_).to_tuple() self.assertEqual(len(UpperCamelCase_), len(UpperCamelCase_), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(UpperCamelCase_, pt_output.numpy(), 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCamelCase_) _lowerCAmelCase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase_, from_pt=UpperCamelCase_) _lowerCAmelCase : Union[str, Any] = fx_model_loaded(**UpperCamelCase_).to_tuple() self.assertEqual(len(UpperCamelCase_), len(UpperCamelCase_), "Output lengths differ between Flax and PyTorch") for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(UpperCamelCase_, pt_output.numpy(), 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCamelCase_) _lowerCAmelCase : Optional[int] = VisionTextDualEncoderModel.from_pretrained(UpperCamelCase_, from_flax=UpperCamelCase_) pt_model_loaded.to(UpperCamelCase_) pt_model_loaded.eval() with torch.no_grad(): _lowerCAmelCase : List[str] = pt_model_loaded(**UpperCamelCase_).to_tuple() self.assertEqual(len(UpperCamelCase_), len(UpperCamelCase_), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(UpperCamelCase_, pt_output_loaded.numpy(), 4E-2) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase_, UpperCamelCase_) _lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderModel(UpperCamelCase_) _lowerCAmelCase : Optional[int] = FlaxVisionTextDualEncoderModel(UpperCamelCase_) _lowerCAmelCase : str = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), UpperCamelCase_) _lowerCAmelCase : List[Any] = fx_state self.check_pt_flax_equivalence(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase_, UpperCamelCase_) _lowerCAmelCase : List[str] = VisionTextDualEncoderModel(UpperCamelCase_) _lowerCAmelCase : Union[str, Any] = FlaxVisionTextDualEncoderModel(UpperCamelCase_) _lowerCAmelCase : Tuple = load_flax_weights_in_pytorch_model(UpperCamelCase_, fx_model.params) self.check_pt_flax_equivalence(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCamelCase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCamelCase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**UpperCamelCase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCamelCase_) @is_pt_flax_cross_test def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase : List[Any] = config_inputs_dict.pop("vision_config") _lowerCAmelCase : List[str] = config_inputs_dict.pop("text_config") _lowerCAmelCase : List[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) self.check_equivalence_flax_to_pt(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_pretrained_model_and_inputs() _lowerCAmelCase : int = model_a(**UpperCamelCase_) _lowerCAmelCase : int = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCamelCase_) _lowerCAmelCase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase_) _lowerCAmelCase : int = model_a(**UpperCamelCase_) _lowerCAmelCase : Any = after_outputs[0] _lowerCAmelCase : List[str] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCamelCase_, 1E-5) @require_flax class UpperCAmelCase_ ( a , unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit", "hf-internal-testing/tiny-bert", vision_from_pt=UpperCamelCase_, text_from_pt=UpperCamelCase_, ) _lowerCAmelCase : Union[str, Any] = 13 _lowerCAmelCase : int = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowerCAmelCase : Union[str, Any] = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowerCAmelCase : Tuple = random_attention_mask([batch_size, 4]) _lowerCAmelCase : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = FlaxViTModel(UpperCamelCase_) _lowerCAmelCase : Optional[Any] = FlaxBertModel(UpperCamelCase_) return vision_model, text_model def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = FlaxViTModelTester(self) _lowerCAmelCase : Optional[int] = FlaxBertModelTester(self) _lowerCAmelCase : List[Any] = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase : Any = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase : Optional[Any] = vision_config_and_inputs _lowerCAmelCase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class UpperCAmelCase_ ( a , unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip", "hf-internal-testing/tiny-bert", vision_from_pt=UpperCamelCase_, text_from_pt=UpperCamelCase_, ) _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : List[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowerCAmelCase : Union[str, Any] = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowerCAmelCase : Union[str, Any] = random_attention_mask([batch_size, 4]) _lowerCAmelCase : Union[str, Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = FlaxCLIPVisionModel(UpperCamelCase_) _lowerCAmelCase : str = FlaxBertModel(UpperCamelCase_) return vision_model, text_model def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = FlaxCLIPVisionModelTester(self) _lowerCAmelCase : Optional[Any] = FlaxBertModelTester(self) _lowerCAmelCase : Any = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase : str = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase : Tuple = vision_config_and_inputs _lowerCAmelCase : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian", logit_scale_init_value=1.0) _lowerCAmelCase : int = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian") _lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") _lowerCAmelCase : Union[str, Any] = processor( text=["una foto di un gatto", "una foto di un cane"], images=UpperCamelCase_, padding=UpperCamelCase_, return_tensors="np") _lowerCAmelCase : Dict = model(**UpperCamelCase_) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowerCAmelCase : Union[str, Any] = np.array([[1.2_284_727, 0.3_104_122]]) self.assertTrue(np.allclose(outputs.logits_per_image, UpperCamelCase_, atol=1E-3))
704
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class UpperCAmelCase_ ( lowercase__): lowerCamelCase__ = 'sew-d' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a=2, __a=512, __a=256, __a=True, __a=True, __a=("p2c", "c2p"), __a="layer_norm", __a="gelu_python", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.1, __a=0.02, __a=1E-7, __a=1E-5, __a="group", __a="gelu", __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), __a=False, __a=128, __a=16, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a="mean", __a=False, __a=False, __a=256, __a=0, __a=1, __a=2, **__a, ): '''simple docstring''' super().__init__(**__lowerCamelCase, pad_token_id=__lowerCamelCase, bos_token_id=__lowerCamelCase, eos_token_id=__lowerCamelCase) _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : Union[str, Any] = feat_extract_norm _lowerCAmelCase : List[str] = feat_extract_activation _lowerCAmelCase : Any = list(__lowerCamelCase) _lowerCAmelCase : Union[str, Any] = list(__lowerCamelCase) _lowerCAmelCase : int = list(__lowerCamelCase) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCAmelCase : int = num_conv_pos_embedding_groups _lowerCAmelCase : Union[str, Any] = len(self.conv_dim) _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Optional[int] = squeeze_factor _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : List[str] = position_buckets _lowerCAmelCase : List[str] = share_att_key _lowerCAmelCase : int = relative_attention _lowerCAmelCase : Dict = norm_rel_ebd _lowerCAmelCase : Optional[int] = list(__lowerCamelCase) _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : Any = hidden_dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : Any = activation_dropout _lowerCAmelCase : List[str] = feat_proj_dropout _lowerCAmelCase : int = final_dropout _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : List[Any] = feature_layer_norm_eps _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : List[str] = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : List[str] = apply_spec_augment _lowerCAmelCase : Optional[int] = mask_time_prob _lowerCAmelCase : Optional[Any] = mask_time_length _lowerCAmelCase : Union[str, Any] = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : Optional[Any] = mask_feature_length _lowerCAmelCase : Any = mask_feature_min_masks # ctc loss _lowerCAmelCase : Dict = ctc_loss_reduction _lowerCAmelCase : List[Any] = ctc_zero_infinity # sequence classification _lowerCAmelCase : Optional[Any] = use_weighted_layer_sum _lowerCAmelCase : Union[str, Any] = classifier_proj_size @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
705
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
0
'''simple docstring''' class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Any = 0 _lowerCAmelCase : int = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : Tuple = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(UpperCAmelCase_) self.add_vertex(UpperCAmelCase_) if head == tail: return _lowerCAmelCase : Tuple = weight _lowerCAmelCase : Optional[int] = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_edges() for edge in edges: _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for i in range(len(UpperCAmelCase_)): _lowerCAmelCase : Any = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(UpperCAmelCase_) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Optional[int] = edges[i][2] + 1 for edge in edges: _lowerCAmelCase : List[Any] = edge _lowerCAmelCase : Dict = weight _lowerCAmelCase : List[Any] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : List[Any] = '' for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : Union[str, Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Tuple = Graph() if vertices is None: _lowerCAmelCase : Tuple = [] if edges is None: _lowerCAmelCase : List[str] = [] for vertex in vertices: g.add_vertex(UpperCAmelCase_) for edge in edges: g.add_edge(*UpperCAmelCase_) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : int = {} _lowerCAmelCase : List[str] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(UpperCAmelCase_) _lowerCAmelCase : List[Any] = item _lowerCAmelCase : Dict = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(UpperCAmelCase_) if item != self.parent[item]: _lowerCAmelCase : List[str] = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.find(UpperCAmelCase_) _lowerCAmelCase : Tuple = self.find(UpperCAmelCase_) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Union[str, Any] = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : Dict = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = graph.num_vertices _lowerCAmelCase : Tuple = Graph.UnionFind() _lowerCAmelCase : Optional[int] = [] while num_components > 1: _lowerCAmelCase : Tuple = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : int = graph.get_edges() for edge in edges: _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase : Optional[Any] = edge _lowerCAmelCase : Union[str, Any] = union_find.find(UpperCAmelCase_) _lowerCAmelCase : List[Any] = union_find.find(UpperCAmelCase_) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Optional[Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase : Union[str, Any] = cheap_edge[vertex] if union_find.find(UpperCAmelCase_) != union_find.find(UpperCAmelCase_): union_find.union(UpperCAmelCase_, UpperCAmelCase_) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : int = num_components - 1 _lowerCAmelCase : Dict = Graph.build(edges=UpperCAmelCase_) return mst
706
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
0
from math import factorial, pi def A ( _lowerCamelCase , _lowerCamelCase = 30 ): '''simple docstring''' if not isinstance(_lowerCamelCase , (int, float) ): raise ValueError("maclaurin_sin() requires either an int or float for theta" ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy" ) _lowerCAmelCase : Dict = float(_lowerCamelCase ) _lowerCAmelCase : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase = 30 ): '''simple docstring''' if not isinstance(_lowerCamelCase , (int, float) ): raise ValueError("maclaurin_cos() requires either an int or float for theta" ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy" ) _lowerCAmelCase : int = float(_lowerCamelCase ) _lowerCAmelCase : int = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
707
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
708
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self, __a, __a="<s>", __a="</s>", __a="</s>", __a="<s>", __a="<unk>", __a="<pad>", __a="<mask>", __a=["<s>NOTUSED", "</s>NOTUSED"], __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : List[str] = AddedToken(_lowerCAmelCase, lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase) if isinstance(_lowerCAmelCase, _lowerCAmelCase) else mask_token _lowerCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase, eos_token=_lowerCAmelCase, unk_token=_lowerCAmelCase, sep_token=_lowerCAmelCase, cls_token=_lowerCAmelCase, pad_token=_lowerCAmelCase, mask_token=_lowerCAmelCase, additional_special_tokens=_lowerCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **_lowerCAmelCase, ) _lowerCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(_lowerCAmelCase)) _lowerCAmelCase : Optional[Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _lowerCAmelCase : int = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} _lowerCAmelCase : Tuple = len(self.fairseq_tokens_to_ids) _lowerCAmelCase : Optional[Any] = len(self.sp_model) + len(self.fairseq_tokens_to_ids) _lowerCAmelCase : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case__ ( self, __a, __a = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Any = [self.cls_token_id] _lowerCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase, token_ids_a=_lowerCAmelCase, already_has_special_tokens=_lowerCAmelCase) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase)) + [1] return [1] + ([0] * len(_lowerCAmelCase)) + [1, 1] + ([0] * len(_lowerCAmelCase)) + [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : int = [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def snake_case__ ( self): '''simple docstring''' return len(self.fairseq_tokens_to_ids) + len(self.sp_model) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = {self.convert_ids_to_tokens(_lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def snake_case__ ( self, __a): '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase, out_type=_lowerCAmelCase) def snake_case__ ( self, __a): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_lowerCAmelCase) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase) def snake_case__ ( self, __a): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = "" _lowerCAmelCase : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase) + token _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : Tuple = [] else: current_sub_tokens.append(_lowerCAmelCase) _lowerCAmelCase : List[str] = False out_string += self.sp_model.decode(_lowerCAmelCase) return out_string.strip() def __getstate__( self): '''simple docstring''' _lowerCAmelCase : Dict = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): _lowerCAmelCase : List[Any] = {} _lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(_lowerCAmelCase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : Optional[int] = os.path.join( _lowerCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, _lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCAmelCase, "wb") as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase) return (out_vocab_file,)
709
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
0
import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _snake_case = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def A ( _lowerCamelCase ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _lowerCAmelCase : List[Any] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(lowerCamelCase__ , id=lowerCamelCase__ )
710
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _snake_case = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def A ( _lowerCamelCase ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return max(metric_fn(_lowerCAmelCase , _lowerCAmelCase ) for gt in ground_truths ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] _lowerCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": _lowerCAmelCase : Optional[Any] = pd.read_csv(_lowerCAmelCase , sep="\t" , header=_lowerCAmelCase ) for answer_list in data[1]: _lowerCAmelCase : Union[str, Any] = ast.literal_eval(_lowerCAmelCase ) answers.append(_lowerCAmelCase ) else: _lowerCAmelCase : str = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] _lowerCAmelCase : List[Any] = [[reference] for reference in references] _lowerCAmelCase : Union[str, Any] = 0 for prediction, ground_truths in zip(_lowerCAmelCase , _lowerCAmelCase ): total += 1 em += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) fa += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase : Dict = 100.0 * em / total _lowerCAmelCase : Dict = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = args.k _lowerCAmelCase : Optional[Any] = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] _lowerCAmelCase : Union[str, Any] = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] _lowerCAmelCase : Optional[Any] = 0 for hypo, reference in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase : Union[str, Any] = set(hypo.split("\t" )[:k] ) _lowerCAmelCase : List[Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCAmelCase : List[Any] = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def strip_title(_lowerCamelCase ): if title.startswith("\"" ): _lowerCAmelCase : Dict = title[1:] if title.endswith("\"" ): _lowerCAmelCase : List[str] = title[:-1] return title _lowerCAmelCase : str = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors="pt" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , )["input_ids"].to(args.device ) _lowerCAmelCase : Any = rag_model.rag.question_encoder(_lowerCAmelCase ) _lowerCAmelCase : str = question_enc_outputs[0] _lowerCAmelCase : List[str] = rag_model.retriever( _lowerCAmelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) _lowerCAmelCase : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCAmelCase : str = [] for docs in all_docs: _lowerCAmelCase : Union[str, Any] = [strip_title(_lowerCAmelCase ) for title in docs["title"]] provenance_strings.append("\t".join(_lowerCAmelCase ) ) return provenance_strings def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors="pt" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase ) _lowerCAmelCase : Optional[int] = inputs_dict.input_ids.to(args.device ) _lowerCAmelCase : Any = inputs_dict.attention_mask.to(args.device ) _lowerCAmelCase : Dict = rag_model.generate( # rag_model overwrites generate _lowerCAmelCase , attention_mask=_lowerCAmelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowerCAmelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) if args.print_predictions: for q, a in zip(_lowerCAmelCase , _lowerCAmelCase ): logger.info("Q: {} - A: {}".format(_lowerCAmelCase , _lowerCAmelCase ) ) return answers def A ( ): '''simple docstring''' _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=_lowerCAmelCase , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=_lowerCAmelCase , choices=["exact", "compressed", "legacy"] , type=_lowerCAmelCase , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=_lowerCAmelCase , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=_lowerCAmelCase , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=_lowerCAmelCase , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=_lowerCAmelCase , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=_lowerCAmelCase , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=_lowerCAmelCase , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=_lowerCAmelCase , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=_lowerCAmelCase , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=_lowerCAmelCase , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() _lowerCAmelCase : Tuple = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = {} if args.model_type is None: _lowerCAmelCase : List[Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): _lowerCAmelCase : Any = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration _lowerCAmelCase : Dict = args.n_docs if args.index_name is not None: _lowerCAmelCase : List[Any] = args.index_name if args.index_path is not None: _lowerCAmelCase : Union[str, Any] = args.index_path else: _lowerCAmelCase : Optional[Any] = BartForConditionalGeneration _lowerCAmelCase : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , _lowerCAmelCase ) _lowerCAmelCase : str = get_scores if args.eval_mode == "e2e" else get_precision_at_k _lowerCAmelCase : str = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(_lowerCAmelCase ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): _lowerCAmelCase : List[Any] = RagRetriever.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = model_class.from_pretrained(_lowerCAmelCase , retriever=_lowerCAmelCase , **_lowerCAmelCase ) model.retriever.init_retrieval() else: _lowerCAmelCase : str = model_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: _lowerCAmelCase : Optional[Any] = [] for line in tqdm(_lowerCAmelCase ): questions.append(line.strip() ) if len(_lowerCAmelCase ) == args.eval_batch_size: _lowerCAmelCase : Optional[Any] = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write("\n".join(_lowerCAmelCase ) + "\n" ) preds_file.flush() _lowerCAmelCase : str = [] if len(_lowerCAmelCase ) > 0: _lowerCAmelCase : Optional[int] = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write("\n".join(_lowerCAmelCase ) ) preds_file.flush() score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _snake_case = get_args() main(args)
711
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase): lowerCamelCase__ = CodeGenTokenizer lowerCamelCase__ = CodeGenTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = {"""add_prefix_space""": True} lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Any = dict(zip(_a, range(len(_a)))) _lowerCAmelCase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(_a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(_a)) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return CodeGenTokenizer.from_pretrained(self.tmpdirname, **_a) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname, **_a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = """lower newer""" _lowerCAmelCase : Optional[int] = """lower newer""" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = CodeGenTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) _lowerCAmelCase : Tuple = """lower newer""" _lowerCAmelCase : List[Any] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(_a, add_prefix_space=_a) self.assertListEqual(_a, _a) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : Optional[int] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a), _a) def snake_case__ ( self): '''simple docstring''' if not self.test_rust_tokenizer: return _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : str = self.get_rust_tokenizer(add_prefix_space=_a) _lowerCAmelCase : str = """lower newer""" # Testing tokenization _lowerCAmelCase : Optional[int] = tokenizer.tokenize(_a, add_prefix_space=_a) _lowerCAmelCase : int = rust_tokenizer.tokenize(_a) self.assertListEqual(_a, _a) # Testing conversion to ids without special tokens _lowerCAmelCase : int = tokenizer.encode(_a, add_special_tokens=_a, add_prefix_space=_a) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.encode(_a, add_special_tokens=_a) self.assertListEqual(_a, _a) # Testing conversion to ids with special tokens _lowerCAmelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=_a) _lowerCAmelCase : List[str] = tokenizer.encode(_a, add_prefix_space=_a) _lowerCAmelCase : str = rust_tokenizer.encode(_a) self.assertListEqual(_a, _a) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_a), _a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' pass def snake_case__ ( self, __a=15): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(_a, **_a) # Simple input _lowerCAmelCase : int = """This is a simple input""" _lowerCAmelCase : Optional[Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[Any] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : int = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_a, tokenizer_r.encode, _a, max_length=_a, padding="max_length") # Simple input self.assertRaises(_a, tokenizer_r.encode_plus, _a, max_length=_a, padding="max_length") # Simple input self.assertRaises( _a, tokenizer_r.batch_encode_plus, _a, max_length=_a, padding="max_length", ) # Pair input self.assertRaises(_a, tokenizer_r.encode, _a, max_length=_a, padding="max_length") # Pair input self.assertRaises(_a, tokenizer_r.encode_plus, _a, max_length=_a, padding="max_length") # Pair input self.assertRaises( _a, tokenizer_r.batch_encode_plus, _a, max_length=_a, padding="max_length", ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>") # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[Any] = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : List[str] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : List[str] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : List[Any] = tokenizer.pad_token_id _lowerCAmelCase : List[Any] = tokenizer(_a, padding="max_length", max_length=30, return_tensors="np") _lowerCAmelCase : List[Any] = tokenizer(_a, padding=_a, truncate=_a, return_tensors="np") _lowerCAmelCase : List[str] = tokenizer(*_a, padding="max_length", max_length=60, return_tensors="np") _lowerCAmelCase : Tuple = tokenizer(_a, padding=_a, truncate=_a, return_tensors="np") # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1], 30) self.assertTrue(pad_token_id in out_s["input_ids"]) self.assertTrue(0 in out_s["attention_mask"]) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1], 33) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0]) self.assertFalse(0 in out_sa["attention_mask"][0]) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1]) self.assertTrue(0 in out_sa["attention_mask"][1]) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1], 60) self.assertTrue(pad_token_id in out_p["input_ids"]) self.assertTrue(0 in out_p["attention_mask"]) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1], 52) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0]) self.assertFalse(0 in out_pa["attention_mask"][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1]) self.assertTrue(0 in out_pa["attention_mask"][1]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = """$$$""" _lowerCAmelCase : Dict = CodeGenTokenizer.from_pretrained(self.tmpdirname, bos_token=_a, add_bos_token=_a) _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[Any] = tokenizer.bos_token_id _lowerCAmelCase : List[Any] = tokenizer(_a) _lowerCAmelCase : Tuple = tokenizer(_a) self.assertEqual(out_s.input_ids[0], _a) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids)) _lowerCAmelCase : Union[str, Any] = tokenizer.decode(out_s.input_ids) _lowerCAmelCase : Dict = tokenizer.batch_decode(out_sa.input_ids) self.assertEqual(decode_s.split()[0], _a) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono") _lowerCAmelCase : Tuple = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : Tuple = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : List[Any] = tokenizer.encode(_a) _lowerCAmelCase : Dict = ["""^#""", re.escape("<|endoftext|>"), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(_a, truncate_before_pattern=_a) self.assertEqual(_a, _a) def snake_case__ ( self): '''simple docstring''' pass
712
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
0
from sklearn.metrics import matthews_corrcoef import datasets _snake_case = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" _snake_case = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" _snake_case = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), }), reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ], ) def snake_case__ ( self, __a, __a, __a=None): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__a, __a, sample_weight=__a)), }
713
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
0
from manim import * class UpperCAmelCase_ ( a): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = Rectangle(height=0.5, width=0.5) _lowerCAmelCase : Dict = Rectangle(height=0.46, width=0.46).set_stroke(width=0) _lowerCAmelCase : Optional[Any] = [mem.copy() for i in range(6)] _lowerCAmelCase : Any = [mem.copy() for i in range(6)] _lowerCAmelCase : Any = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase, buff=0) _lowerCAmelCase : List[str] = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase, buff=0) _lowerCAmelCase : Dict = VGroup(_UpperCAmelCase, _UpperCAmelCase).arrange(_UpperCAmelCase, buff=0) _lowerCAmelCase : Tuple = Text("CPU", font_size=24) _lowerCAmelCase : str = Group(_UpperCAmelCase, _UpperCAmelCase).arrange(_UpperCAmelCase, buff=0.5, aligned_edge=_UpperCAmelCase) cpu.move_to([-2.5, -0.5, 0]) self.add(_UpperCAmelCase) _lowerCAmelCase : int = [mem.copy() for i in range(4)] _lowerCAmelCase : Tuple = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase, buff=0) _lowerCAmelCase : int = Text("GPU", font_size=24) _lowerCAmelCase : Tuple = Group(_UpperCAmelCase, _UpperCAmelCase).arrange(_UpperCAmelCase, buff=0.5, aligned_edge=_UpperCAmelCase) gpu.move_to([-1, -1, 0]) self.add(_UpperCAmelCase) _lowerCAmelCase : List[str] = [mem.copy() for i in range(6)] _lowerCAmelCase : Union[str, Any] = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase, buff=0) _lowerCAmelCase : Tuple = Text("Model", font_size=24) _lowerCAmelCase : Tuple = Group(_UpperCAmelCase, _UpperCAmelCase).arrange(_UpperCAmelCase, buff=0.5, aligned_edge=_UpperCAmelCase) model.move_to([3, -1.0, 0]) self.add(_UpperCAmelCase) _lowerCAmelCase : Tuple = [] for i, rect in enumerate(_UpperCAmelCase): rect.set_stroke(_UpperCAmelCase) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 / 4, width=0.46 / 3).set_stroke(width=0.0).set_fill(_UpperCAmelCase, opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT), buff=0.02, direction=_UpperCAmelCase) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0], direction=_UpperCAmelCase, buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1], direction=_UpperCAmelCase, buff=0.0) self.add(_UpperCAmelCase) cpu_targs.append(_UpperCAmelCase) _lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6)] _lowerCAmelCase : str = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase, buff=0) _lowerCAmelCase : Dict = Text("Loaded Checkpoint", font_size=24) _lowerCAmelCase : Optional[int] = Group(_UpperCAmelCase, _UpperCAmelCase).arrange(_UpperCAmelCase, aligned_edge=_UpperCAmelCase, buff=0.4) checkpoint.move_to([3, 0.5, 0]) _lowerCAmelCase : Tuple = Square(side_length=2.2) key.move_to([-5, 2, 0]) _lowerCAmelCase : Any = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model", font_size=18, ) key_text.move_to([-5, 2.4, 0]) self.add(_UpperCAmelCase, _UpperCAmelCase) _lowerCAmelCase : Tuple = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint", font_size=18, ) blue_text.next_to(_UpperCAmelCase, DOWN * 2.4, aligned_edge=key_text.get_left()) _lowerCAmelCase : Any = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.", font_size=24, ) step_a.move_to([2, 2, 0]) self.play(Write(_UpperCAmelCase), Write(_UpperCAmelCase)) self.play(Write(_UpperCAmelCase, run_time=1), Create(_UpperCAmelCase, run_time=1)) _lowerCAmelCase : Any = [] _lowerCAmelCase : Union[str, Any] = [] for i, rect in enumerate(_UpperCAmelCase): _lowerCAmelCase : int = fill.copy().set_fill(_UpperCAmelCase, opacity=0.7) target.move_to(_UpperCAmelCase) first_animations.append(GrowFromCenter(_UpperCAmelCase, run_time=1)) _lowerCAmelCase : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(_UpperCAmelCase, run_time=1.5)) self.play(*_UpperCAmelCase) self.play(*_UpperCAmelCase) self.wait()
714
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( __lowerCAmelCase): lowerCamelCase__ = 'decision_transformer' lowerCamelCase__ = ['past_key_values'] lowerCamelCase__ = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=17, __a=4, __a=128, __a=4096, __a=True, __a=1, __a=1024, __a=3, __a=1, __a=None, __a="relu", __a=0.1, __a=0.1, __a=0.1, __a=1E-5, __a=0.02, __a=True, __a=True, __a=5_0256, __a=5_0256, __a=False, __a=False, **__a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = state_dim _lowerCAmelCase : str = act_dim _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Any = max_ep_len _lowerCAmelCase : Union[str, Any] = action_tanh _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Dict = n_positions _lowerCAmelCase : Dict = n_layer _lowerCAmelCase : str = n_head _lowerCAmelCase : Union[str, Any] = n_inner _lowerCAmelCase : Any = activation_function _lowerCAmelCase : int = resid_pdrop _lowerCAmelCase : int = embd_pdrop _lowerCAmelCase : Dict = attn_pdrop _lowerCAmelCase : List[str] = layer_norm_epsilon _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Tuple = scale_attn_weights _lowerCAmelCase : str = use_cache _lowerCAmelCase : str = scale_attn_by_inverse_layer_idx _lowerCAmelCase : int = reorder_and_upcast_attn _lowerCAmelCase : Optional[int] = bos_token_id _lowerCAmelCase : Dict = eos_token_id super().__init__(bos_token_id=_UpperCamelCase, eos_token_id=_UpperCamelCase, **_UpperCamelCase)
715
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
0
import os def A ( ): '''simple docstring''' with open(os.path.dirname(_lowerCamelCase ) + "/p022_names.txt" ) as file: _lowerCAmelCase : List[str] = str(file.readlines()[0] ) _lowerCAmelCase : Optional[Any] = names.replace("\"" , "" ).split("," ) names.sort() _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Union[str, Any] = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score _lowerCAmelCase : Dict = 0 return total_score if __name__ == "__main__": print(solution())
716
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCAmelCase_ : @property def snake_case__ ( self): '''simple docstring''' return self.get_dummy_input() @property def snake_case__ ( self): '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.") def snake_case__ ( self, __a=True, __a=False, __a=False, __a=False, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 4 _lowerCAmelCase : List[str] = 32 _lowerCAmelCase : Any = (32, 32) _lowerCAmelCase : str = torch.manual_seed(0) _lowerCAmelCase : int = torch.device(__lowerCamelCase) _lowerCAmelCase : List[str] = (batch_size, num_channels) + sizes _lowerCAmelCase : Dict = randn_tensor(__lowerCamelCase, generator=__lowerCamelCase, device=__lowerCamelCase) _lowerCAmelCase : int = {"hidden_states": hidden_states} if include_temb: _lowerCAmelCase : Any = 128 _lowerCAmelCase : List[str] = randn_tensor((batch_size, temb_channels), generator=__lowerCamelCase, device=__lowerCamelCase) if include_res_hidden_states_tuple: _lowerCAmelCase : str = torch.manual_seed(1) _lowerCAmelCase : Tuple = (randn_tensor(__lowerCamelCase, generator=__lowerCamelCase, device=__lowerCamelCase),) if include_encoder_hidden_states: _lowerCAmelCase : Dict = floats_tensor((batch_size, 32, 32)).to(__lowerCamelCase) if include_skip_sample: _lowerCAmelCase : Optional[int] = randn_tensor(((batch_size, 3) + sizes), generator=__lowerCamelCase, device=__lowerCamelCase) return dummy_input def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": _lowerCAmelCase : Dict = 32 if self.block_type == "mid": init_dict.pop("out_channels") _lowerCAmelCase : str = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase : List[Any] = self.block_class(**__lowerCamelCase) unet_block.to(__lowerCamelCase) unet_block.eval() with torch.no_grad(): _lowerCAmelCase : int = unet_block(**__lowerCamelCase) if isinstance(__lowerCamelCase, __lowerCamelCase): _lowerCAmelCase : Union[str, Any] = output[0] self.assertEqual(output.shape, self.output_shape) _lowerCAmelCase : Any = output[0, -1, -3:, -3:] _lowerCAmelCase : Union[str, Any] = torch.tensor(__lowerCamelCase).to(__lowerCamelCase) assert torch_all_close(output_slice.flatten(), __lowerCamelCase, atol=5E-3) @unittest.skipIf(torch_device == "mps", "Training is not supported in mps") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase : str = self.block_class(**__lowerCamelCase) model.to(__lowerCamelCase) model.train() _lowerCAmelCase : Optional[int] = model(**__lowerCamelCase) if isinstance(__lowerCamelCase, __lowerCamelCase): _lowerCAmelCase : Optional[Any] = output[0] _lowerCAmelCase : List[str] = torch.device(__lowerCamelCase) _lowerCAmelCase : List[str] = randn_tensor(output.shape, device=__lowerCamelCase) _lowerCAmelCase : Dict = torch.nn.functional.mse_loss(__lowerCamelCase, __lowerCamelCase) loss.backward()
717
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _snake_case = ['''gpt2'''] _snake_case = '''gpt2''' if is_tf_available(): class UpperCAmelCase_ ( tf.Module): def __init__( self, __a): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = tokenizer _lowerCAmelCase : Any = AutoConfig.from_pretrained(__UpperCamelCase) _lowerCAmelCase : int = TFGPTaLMHeadModel.from_config(__UpperCamelCase) @tf.function(input_signature=(tf.TensorSpec((None,), tf.string, name="text"),)) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer(__UpperCamelCase) _lowerCAmelCase : Tuple = tokenized["input_ids"].to_tensor() _lowerCAmelCase : Tuple = tf.cast(input_ids_dense > 0, tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _lowerCAmelCase : int = self.model(input_ids=__UpperCamelCase, attention_mask=__UpperCamelCase)["logits"] return outputs @require_tf @require_keras_nlp class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : int = [GPTaTokenizer.from_pretrained(__UpperCamelCase) for checkpoint in (TOKENIZER_CHECKPOINTS)] _lowerCAmelCase : Union[str, Any] = [TFGPTaTokenizer.from_pretrained(__UpperCamelCase) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) _lowerCAmelCase : Any = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] _lowerCAmelCase : Any = list(zip(self.test_sentences, self.test_sentences[::-1])) def snake_case__ ( self): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers): for test_inputs in self.test_sentences: _lowerCAmelCase : str = tokenizer([test_inputs], return_tensors="tf") _lowerCAmelCase : Optional[int] = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _lowerCAmelCase : Any = python_outputs[key].numpy() _lowerCAmelCase : Union[str, Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(__UpperCamelCase, tf.intaa) == tf_outputs_values)) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Any = tf.function(__UpperCamelCase) for test_inputs in self.test_sentences: _lowerCAmelCase : List[str] = tf.constant(__UpperCamelCase) _lowerCAmelCase : Dict = compiled_tokenizer(__UpperCamelCase) _lowerCAmelCase : Optional[Any] = tf_tokenizer(__UpperCamelCase) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : str = ModelToSave(tokenizer=__UpperCamelCase) _lowerCAmelCase : int = tf.convert_to_tensor([self.test_sentences[0]]) _lowerCAmelCase : Union[str, Any] = model.serving(__UpperCamelCase) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCAmelCase : Optional[Any] = Path(__UpperCamelCase) / "saved.model" tf.saved_model.save(__UpperCamelCase, __UpperCamelCase, signatures={"serving_default": model.serving}) _lowerCAmelCase : int = tf.saved_model.load(__UpperCamelCase) _lowerCAmelCase : List[Any] = loaded_model.signatures["serving_default"](__UpperCamelCase)["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Dict = tf.convert_to_tensor([self.test_sentences[0]]) _lowerCAmelCase : Any = tf_tokenizer(__UpperCamelCase) # Build model with some sample inputs _lowerCAmelCase : Any = tf_tokenizer.get_config() _lowerCAmelCase : Tuple = TFGPTaTokenizer.from_config(__UpperCamelCase) _lowerCAmelCase : List[Any] = model_from_config(__UpperCamelCase) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _lowerCAmelCase : str = 12_3123 for max_length in [3, 5, 1024]: _lowerCAmelCase : List[str] = tf.convert_to_tensor([self.test_sentences[0]]) _lowerCAmelCase : Optional[int] = tf_tokenizer(__UpperCamelCase, max_length=__UpperCamelCase) _lowerCAmelCase : Any = out["input_ids"].numpy().shape[1] assert out_length == max_length
719
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ = BartphoTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : str = ["▁This", "▁is", "▁a", "▁t", "est"] _lowerCAmelCase : Dict = dict(zip(snake_case_, range(len(snake_case_)))) _lowerCAmelCase : Tuple = {"unk_token": "<unk>"} _lowerCAmelCase : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") _lowerCAmelCase : Dict = BartphoTokenizer(snake_case_, self.monolingual_vocab_file, **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname, **snake_case_) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "This is a là test" _lowerCAmelCase : Optional[int] = "This is a<unk><unk> test" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = BartphoTokenizer(snake_case_, self.monolingual_vocab_file, **self.special_tokens_map) _lowerCAmelCase : Optional[int] = "This is a là test" _lowerCAmelCase : Optional[Any] = "▁This ▁is ▁a ▁l à ▁t est".split() _lowerCAmelCase : Dict = tokenizer.tokenize(snake_case_) self.assertListEqual(snake_case_, snake_case_) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : Optional[int] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_), snake_case_)
720
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
0
from typing import List from .keymap import KEYMAP, get_character def A ( _lowerCamelCase ): '''simple docstring''' def decorator(_lowerCamelCase ): _lowerCAmelCase : Dict = getattr(__UpperCamelCase , "handle_key" , [] ) handle += [key] setattr(__UpperCamelCase , "handle_key" , __UpperCamelCase ) return func return decorator def A ( *_lowerCamelCase ): '''simple docstring''' def decorator(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = getattr(__UpperCamelCase , "handle_key" , [] ) handle += keys setattr(__UpperCamelCase , "handle_key" , __UpperCamelCase ) return func return decorator class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__): def __new__( cls, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = super().__new__(cls, _lowercase, _lowercase, _lowercase) if not hasattr(_lowercase, "key_handler"): setattr(_lowercase, "key_handler", {}) setattr(_lowercase, "handle_input", KeyHandler.handle_input) for value in attrs.values(): _lowerCAmelCase : List[str] = getattr(_lowercase, "handle_key", []) for key in handled_keys: _lowerCAmelCase : List[str] = value return new_cls @staticmethod def snake_case__ ( cls): '''simple docstring''' _lowerCAmelCase : Optional[int] = get_character() if char != KEYMAP["undefined"]: _lowerCAmelCase : int = ord(_lowercase) _lowerCAmelCase : Tuple = cls.key_handler.get(_lowercase) if handler: _lowerCAmelCase : Union[str, Any] = char return handler(cls) else: return None def A ( cls ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
721
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = tempfile.mkdtemp() _lowerCAmelCase : Optional[int] = BlipImageProcessor() _lowerCAmelCase : Union[str, Any] = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model") _lowerCAmelCase : str = BlipaProcessor(A_, A_) processor.save_pretrained(self.tmpdirname) def snake_case__ ( self, **__a): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **A_).tokenizer def snake_case__ ( self, **__a): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **A_).image_processor def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : str = [Image.fromarray(np.moveaxis(A_, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = BlipaProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Optional[Any] = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : str = self.get_image_processor(do_normalize=A_, padding_value=1.0) _lowerCAmelCase : List[str] = BlipaProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=A_, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, A_) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, A_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = BlipaProcessor(tokenizer=A_, image_processor=A_) _lowerCAmelCase : Any = self.prepare_image_inputs() _lowerCAmelCase : List[Any] = image_processor(A_, return_tensors="np") _lowerCAmelCase : Any = processor(images=A_, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.get_image_processor() _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : int = BlipaProcessor(tokenizer=A_, image_processor=A_) _lowerCAmelCase : Any = "lower newer" _lowerCAmelCase : int = processor(text=A_) _lowerCAmelCase : Optional[int] = tokenizer(A_, return_token_type_ids=A_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_image_processor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : int = BlipaProcessor(tokenizer=A_, image_processor=A_) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Union[str, Any] = processor(text=A_, images=A_) self.assertListEqual(list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask"]) # test if it raises when no input is passed with pytest.raises(A_): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = BlipaProcessor(tokenizer=A_, image_processor=A_) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : Optional[int] = processor.batch_decode(A_) _lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(A_) self.assertListEqual(A_, A_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : List[Any] = BlipaProcessor(tokenizer=A_, image_processor=A_) _lowerCAmelCase : Tuple = "lower newer" _lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCAmelCase : str = processor(text=A_, images=A_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask"])
700
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
0
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
701
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import os def A ( ): '''simple docstring''' with open(os.path.dirname(_lowerCamelCase ) + "/grid.txt" ) as f: _lowerCAmelCase : str = [] # noqa: E741 for _ in range(20 ): l.append([int(_lowerCamelCase ) for x in f.readline().split()] ) _lowerCAmelCase : str = 0 # right for i in range(20 ): for j in range(17 ): _lowerCAmelCase : Dict = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _lowerCAmelCase : List[str] = temp # down for i in range(17 ): for j in range(20 ): _lowerCAmelCase : List[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _lowerCAmelCase : Optional[Any] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): _lowerCAmelCase : Dict = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _lowerCAmelCase : Optional[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): _lowerCAmelCase : Union[str, Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _lowerCAmelCase : Any = temp return maximum if __name__ == "__main__": print(solution())
702
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
0
from __future__ import annotations def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if len(snake_case_ ) == 0: return False _lowerCAmelCase : Dict = len(snake_case_ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case_ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case_ ) if __name__ == "__main__": _snake_case = input("Enter numbers separated by comma:\n").strip() _snake_case = [int(item.strip()) for item in user_input.split(",")] _snake_case = int(input("Enter the number to be found in the list:\n").strip()) _snake_case = """""" if binary_search(sequence, target) else """not """ print(f'''{target} was {not_str}found in {sequence}''')
703
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
0
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = len(_lowerCamelCase ) # We need to create solution object to save path. _lowerCAmelCase : Optional[int] = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Tuple = run_maze(_lowerCamelCase , 0 , 0 , _lowerCamelCase ) if solved: print("\n".join(str(_lowerCamelCase ) for row in solutions ) ) else: print("No solution exists!" ) return solved def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = len(_lowerCamelCase ) # Final check point. if i == j == (size - 1): _lowerCAmelCase : Union[str, Any] = 1 return True _lowerCAmelCase : Any = (not i < 0) and (not j < 0) # Check lower bounds _lowerCAmelCase : Dict = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _lowerCAmelCase : Tuple = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _lowerCAmelCase : Optional[Any] = 1 # check for directions if ( run_maze(_lowerCamelCase , i + 1 , _lowerCamelCase , _lowerCamelCase ) or run_maze(_lowerCamelCase , _lowerCamelCase , j + 1 , _lowerCamelCase ) or run_maze(_lowerCamelCase , i - 1 , _lowerCamelCase , _lowerCamelCase ) or run_maze(_lowerCamelCase , _lowerCamelCase , j - 1 , _lowerCamelCase ) ): return True _lowerCAmelCase : Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
704
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
0
'''simple docstring''' def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = 0 while b > 0: if b & 1: _lowerCAmelCase : Tuple = ((res % c) + (a % c)) % c a += a b >>= 1 return res
705
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Any = XLNetConfig.from_json_file(__snake_case ) _lowerCAmelCase : Optional[Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Tuple = finetuning_task _lowerCAmelCase : str = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Tuple = XLNetForSequenceClassification(__snake_case ) elif "squad" in finetuning_task: _lowerCAmelCase : int = finetuning_task _lowerCAmelCase : Union[str, Any] = XLNetForQuestionAnswering(__snake_case ) else: _lowerCAmelCase : Dict = XLNetLMHeadModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__snake_case , __snake_case , __snake_case ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(__snake_case , __snake_case ) _lowerCAmelCase : Any = os.path.join(__snake_case , __snake_case ) print(F"Save PyTorch model to {os.path.abspath(__snake_case )}" ) torch.save(model.state_dict() , __snake_case ) print(F"Save configuration file to {os.path.abspath(__snake_case )}" ) with open(__snake_case , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
707
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
0
import argparse import os import re _snake_case = "src/transformers" # Pattern that looks at the indentation in a line. _snake_case = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. _snake_case = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _snake_case = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. _snake_case = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _snake_case = re.compile(R"\[([^\]]+)\]") def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = _re_indent.search(UpperCAmelCase__ ) return "" if search is None else search.groups()[0] def A ( _lowerCamelCase , _lowerCamelCase="" , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(UpperCAmelCase__ ): index += 1 _lowerCAmelCase : str = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Optional[Any] = [lines[index]] index += 1 while index < len(UpperCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(UpperCAmelCase__ ) ) if index < len(UpperCAmelCase__ ) - 1: _lowerCAmelCase : str = [lines[index + 1]] index += 1 else: _lowerCAmelCase : int = [] else: blocks.append("\n".join(UpperCAmelCase__ ) ) _lowerCAmelCase : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCAmelCase__ ) > 0: blocks.append("\n".join(UpperCAmelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCAmelCase__ ): blocks.append("\n".join(lines[index:] ) ) return blocks def A ( _lowerCamelCase ): '''simple docstring''' def _inner(_lowerCamelCase ): return key(UpperCAmelCase__ ).lower().replace("_" , "" ) return _inner def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' def noop(_lowerCamelCase ): return x if key is None: _lowerCAmelCase : int = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(UpperCAmelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(UpperCAmelCase__ )[0].isupper() and not key(UpperCAmelCase__ ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : str = [obj for obj in objects if not key(UpperCAmelCase__ )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(UpperCAmelCase__ ) return sorted(UpperCAmelCase__ , key=UpperCAmelCase__ ) + sorted(UpperCAmelCase__ , key=UpperCAmelCase__ ) + sorted(UpperCAmelCase__ , key=UpperCAmelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' def _replace(_lowerCamelCase ): _lowerCAmelCase : str = match.groups()[0] if "," not in imports: return F"[{imports}]" _lowerCAmelCase : Optional[int] = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(UpperCAmelCase__ )] ) + "]" _lowerCAmelCase : Union[str, Any] = import_statement.split("\n" ) if len(UpperCAmelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[int] = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(UpperCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(UpperCAmelCase__ , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : int = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCAmelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Optional[Any] = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([F"\"{k}\"" for k in sort_objects(UpperCAmelCase__ )] ) return "\n".join(UpperCAmelCase__ ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : List[Any] = _re_bracket_content.sub(_replace , UpperCAmelCase__ ) return import_statement def A ( _lowerCamelCase , _lowerCamelCase=True ): '''simple docstring''' with open(UpperCAmelCase__ , encoding="utf-8" ) as f: _lowerCAmelCase : str = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Union[str, Any] = split_code_in_indented_blocks( UpperCAmelCase__ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCAmelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : Union[str, Any] = block.split("\n" ) # Get to the start of the imports. _lowerCAmelCase : Union[str, Any] = 0 while line_idx < len(UpperCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : int = len(UpperCAmelCase__ ) else: line_idx += 1 if line_idx >= len(UpperCAmelCase__ ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Dict = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Optional[int] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[str] = split_code_in_indented_blocks(UpperCAmelCase__ , indent_level=UpperCAmelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : str = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : str = [(pattern.search(UpperCAmelCase__ ).groups()[0] if pattern.search(UpperCAmelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[Any] = [(i, key) for i, key in enumerate(UpperCAmelCase__ ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(UpperCAmelCase__ , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : Any = 0 _lowerCAmelCase : str = [] for i in range(len(UpperCAmelCase__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(UpperCAmelCase__ ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : List[Any] = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCAmelCase__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(UpperCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write("\n".join(UpperCAmelCase__ ) ) def A ( _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(UpperCAmelCase__ ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(UpperCAmelCase__ , "__init__.py" ) , check_only=UpperCAmelCase__ ) if result: _lowerCAmelCase : Dict = [os.path.join(UpperCAmelCase__ , "__init__.py" )] if len(UpperCAmelCase__ ) > 0: raise ValueError(F"Would overwrite {len(UpperCAmelCase__ )} files, run `make style`." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") _snake_case = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
708
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
0
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _snake_case = getLogger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 8 , _lowerCamelCase = 1_024 , _lowerCamelCase="val" , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase="summarization" , _lowerCamelCase=None , _lowerCamelCase=1 , _lowerCamelCase = None , _lowerCamelCase="" , **_lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = str(_lowercase ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=_lowercase ) _lowerCAmelCase : str = Path(_lowercase ) _lowerCAmelCase : int = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(_lowercase ) _lowerCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(_lowercase ).cuda() if fpaa: _lowerCAmelCase : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(_lowercase , _lowercase ) # update config with task specific params _lowerCAmelCase : Optional[int] = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _lowerCAmelCase : Union[str, Any] = num_return_sequences _lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(_lowercase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: _lowerCAmelCase : Union[str, Any] = tokenizer.model_max_length if prefix is None: _lowerCAmelCase : Optional[Any] = prefix or getattr(model.config , "prefix" , "" ) or "" _lowerCAmelCase : List[str] = SeqaSeqDataset( _lowercase , _lowercase , _lowercase , max_target_length=1_024 , type_path=_lowercase , n_obs=_lowercase , prefix=_lowercase , **_lowercase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _lowerCAmelCase : Dict = ds.make_sortish_sampler(_lowercase , distributed=_lowercase , add_extra_examples=_lowercase , shuffle=_lowercase ) _lowerCAmelCase : Optional[int] = DataLoader(_lowercase , sampler=_lowercase , batch_size=_lowercase , collate_fn=ds.collate_fn ) _lowerCAmelCase : List[Any] = [] for batch in tqdm(_lowercase ): _lowerCAmelCase : List[str] = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=_lowercase , num_beams=_lowercase , **_lowercase , ) _lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) _lowerCAmelCase : Tuple = batch["ids"] if num_return_sequences > 1: _lowerCAmelCase : Union[str, Any] = chunks(_lowercase , _lowercase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_lowercase ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(_lowercase , _lowercase ) return results, sampler.num_replicas def A ( ): '''simple docstring''' _lowerCAmelCase : List[str] = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=_lowercase , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=_lowercase , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=_lowercase , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=_lowercase , default=_lowercase ) parser.add_argument( "--type_path" , type=_lowercase , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=_lowercase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=_lowercase , default=8 , required=_lowercase , help="batch size" ) parser.add_argument( "--local_rank" , type=_lowercase , default=-1 , required=_lowercase , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=_lowercase , default=_lowercase , required=_lowercase , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=_lowercase , default=1 , required=_lowercase , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=_lowercase , default=600 , required=_lowercase , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=_lowercase , default=_lowercase , required=_lowercase ) parser.add_argument("--tgt_lang" , type=_lowercase , default=_lowercase , required=_lowercase ) parser.add_argument( "--prefix" , type=_lowercase , required=_lowercase , default=_lowercase , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) _lowerCAmelCase : str = time.time() _lowerCAmelCase : Any = parser.parse_known_args() _lowerCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(_lowercase ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) _lowerCAmelCase : str = Path(args.save_dir + "_tmp" ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) # this handles locking. _lowerCAmelCase : List[Any] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _lowerCAmelCase : str = {} if args.src_lang is not None: _lowerCAmelCase : List[Any] = args.src_lang if args.tgt_lang is not None: _lowerCAmelCase : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_lowercase ) _lowerCAmelCase : Any = eval_data_dir( args.data_dir , _lowercase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_lowercase , **_lowercase , ) if args.local_rank <= 0: _lowerCAmelCase : List[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=_lowercase ) _lowerCAmelCase : Union[str, Any] = gather_results_from_each_node(_lowercase , _lowercase , args.sync_timeout ) _lowerCAmelCase : str = combine_partial_results(_lowercase ) if args.num_return_sequences > 1: _lowerCAmelCase : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(_lowercase , _lowercase ) return _lowerCAmelCase : Tuple = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(_lowercase ) as f: _lowerCAmelCase : str = [x.rstrip() for x in f.readlines()][: len(_lowercase )] # Calculate metrics, save metrics, and save _generations.txt _lowerCAmelCase : Any = "translation" in args.task _lowerCAmelCase : Tuple = calculate_bleu if calc_bleu else calculate_rouge _lowerCAmelCase : Tuple = "bleu" if calc_bleu else "rouge" _lowerCAmelCase : Dict = score_fn(_lowercase , _lowercase ) _lowerCAmelCase : Dict = len(_lowercase ) _lowerCAmelCase : Optional[int] = time.time() - start_time _lowerCAmelCase : Tuple = round(runtime / metrics["n_obs"] , 4 ) _lowerCAmelCase : Optional[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics _lowerCAmelCase : Any = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(_lowercase , _lowercase , indent=_lowercase ) print(_lowercase ) write_txt_file(_lowercase , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(_lowercase , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(_lowercase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = [] for partial_result in partial_results: records.extend(_lowercase ) _lowerCAmelCase : str = sorted(_lowercase , key=lambda _lowerCamelCase : x["id"] ) _lowerCAmelCase : List[Any] = [x["pred"] for x in records] return preds def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = time.time() logger.info("waiting for all nodes to finish" ) _lowerCAmelCase : str = None while (time.time() - start_wait) < timeout: _lowerCAmelCase : int = list(save_dir.glob("rank_*.json" ) ) if len(_lowercase ) < num_replicas: continue try: # make sure all json files are fully saved _lowerCAmelCase : Tuple = lmap(_lowercase , _lowercase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
709
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class UpperCAmelCase_ ( UpperCAmelCase__): lowerCamelCase__ = 'falcon' lowerCamelCase__ = ['past_key_values'] def __init__( self, __a=6_5024, __a=4544, __a=32, __a=71, __a=1E-5, __a=0.02, __a=True, __a=0.0, __a=0.0, __a=None, __a=False, __a=False, __a=True, __a=True, __a=False, __a=11, __a=11, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase : Dict = kwargs.pop("n_embed", __lowerCAmelCase) _lowerCAmelCase : Any = hidden_size if n_embed is None else n_embed _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : List[Any] = layer_norm_epsilon _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : Dict = use_cache _lowerCAmelCase : int = hidden_dropout _lowerCAmelCase : Any = attention_dropout _lowerCAmelCase : Dict = bos_token_id _lowerCAmelCase : Union[str, Any] = eos_token_id _lowerCAmelCase : Dict = num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCAmelCase : Tuple = alibi _lowerCAmelCase : Dict = new_decoder_architecture _lowerCAmelCase : List[str] = multi_query # Ignored when new_decoder_architecture is True _lowerCAmelCase : int = parallel_attn _lowerCAmelCase : Optional[int] = bias super().__init__(bos_token_id=__lowerCAmelCase, eos_token_id=__lowerCAmelCase, **__lowerCAmelCase) @property def snake_case__ ( self): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def snake_case__ ( self): '''simple docstring''' return not self.alibi
710
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
0
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = int(_snake_case ) if n_element < 1: _lowerCAmelCase : str = ValueError("a should be a positive number" ) raise my_error _lowerCAmelCase : str = [1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = (0, 0, 0) _lowerCAmelCase : Dict = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _snake_case = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") _snake_case = hamming(int(n)) print("-----------------------------------------------------") print(f'''The list with nth numbers is: {hamming_numbers}''') print("-----------------------------------------------------")
711
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
0
def A ( _lowerCamelCase ): # noqa: E741 '''simple docstring''' _lowerCAmelCase : str = len(_lowercase ) _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Any = [0] * n _lowerCAmelCase : Dict = [False] * n _lowerCAmelCase : Optional[Any] = [False] * n def dfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if parent == root: out_edge_count += 1 _lowerCAmelCase : int = True _lowerCAmelCase : Optional[Any] = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase : Optional[int] = dfs(_lowercase , _lowercase , _lowercase , _lowercase ) _lowerCAmelCase : Dict = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase : str = True # AP found via cycle if at == low[to]: _lowerCAmelCase : int = True else: _lowerCAmelCase : List[str] = min(low[at] , _lowercase ) return out_edge_count for i in range(_lowercase ): if not visited[i]: _lowerCAmelCase : str = 0 _lowerCAmelCase : Dict = dfs(_lowercase , _lowercase , -1 , _lowercase ) _lowerCAmelCase : str = out_edge_count > 1 for x in range(len(_lowercase ) ): if is_art[x] is True: print(_lowercase ) # Adjacency list of graph _snake_case = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
712
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
0
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=False, __a=True, __a=99, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : List[str] = seq_length _lowerCAmelCase : str = is_training _lowerCAmelCase : Tuple = use_input_mask _lowerCAmelCase : List[str] = use_token_type_ids _lowerCAmelCase : Optional[int] = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[Any] = num_labels _lowerCAmelCase : str = num_choices _lowerCAmelCase : Optional[Any] = scope def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : List[str] = None if self.use_input_mask: _lowerCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : str = None if self.use_token_type_ids: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Dict = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_SCREAMING_SNAKE_CASE, initializer_range=self.initializer_range, ) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = BioGptModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() _lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = BioGptForCausalLM(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() _lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, token_type_ids=_SCREAMING_SNAKE_CASE, labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, *__a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = BioGptModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() # create attention mask _lowerCAmelCase : int = torch.ones(input_ids.shape, dtype=torch.long, device=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : int = self.seq_length // 2 _lowerCAmelCase : int = 0 # first forward pass _lowerCAmelCase , _lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE).to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase : Dict = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids _lowerCAmelCase : Optional[Any] = ids_tensor((1,), _SCREAMING_SNAKE_CASE).item() + 1 _lowerCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) _lowerCAmelCase : Optional[int] = random_other_next_tokens # append to next input_ids and attn_mask _lowerCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens], dim=-1) _lowerCAmelCase : Tuple = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=_SCREAMING_SNAKE_CASE)], dim=1, ) # get two different outputs _lowerCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE)["last_hidden_state"] _lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE, past_key_values=_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE)["last_hidden_state"] # select random slice _lowerCAmelCase : Tuple = ids_tensor((1,), output_from_past.shape[-1]).item() _lowerCAmelCase : int = output_from_no_past[:, -1, random_slice_idx].detach() _lowerCAmelCase : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, atol=1E-3)) def snake_case__ ( self, __a, __a, __a, __a, __a, *__a): '''simple docstring''' _lowerCAmelCase : str = BioGptModel(config=_SCREAMING_SNAKE_CASE).to(_SCREAMING_SNAKE_CASE).eval() _lowerCAmelCase : Union[str, Any] = torch.ones(input_ids.shape, dtype=torch.long, device=_SCREAMING_SNAKE_CASE) # first forward pass _lowerCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, use_cache=_SCREAMING_SNAKE_CASE) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase : List[Any] = ids_tensor((self.batch_size, 3), config.vocab_size) _lowerCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and _lowerCAmelCase : Tuple = torch.cat([input_ids, next_tokens], dim=-1) _lowerCAmelCase : str = torch.cat([attention_mask, next_attn_mask], dim=-1) _lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE)["last_hidden_state"] _lowerCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, past_key_values=_SCREAMING_SNAKE_CASE)[ "last_hidden_state" ] # select random slice _lowerCAmelCase : List[str] = ids_tensor((1,), output_from_past.shape[-1]).item() _lowerCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, atol=1E-3)) def snake_case__ ( self, __a, __a, __a, __a, __a, *__a, __a=False): '''simple docstring''' _lowerCAmelCase : Optional[Any] = BioGptForCausalLM(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) if gradient_checkpointing: model.gradient_checkpointing_enable() _lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE, labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def snake_case__ ( self, __a, *__a): '''simple docstring''' _lowerCAmelCase : Any = BioGptModel(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) def snake_case__ ( self, __a, __a, __a, __a, __a, *__a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : Optional[int] = BioGptForTokenClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() _lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, token_type_ids=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , a , unittest.TestCase): lowerCamelCase__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCamelCase__ = (BioGptForCausalLM,) if is_torch_available() else () lowerCamelCase__ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = BioGptModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=_SCREAMING_SNAKE_CASE, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : Tuple = type self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_SCREAMING_SNAKE_CASE, gradient_checkpointing=_SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_SCREAMING_SNAKE_CASE) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = BioGptForCausalLM.from_pretrained("microsoft/biogpt") model.to(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : str = BioGptTokenizer.from_pretrained("microsoft/biogpt") _lowerCAmelCase : str = "left" # Define PAD Token = EOS Token = 50256 _lowerCAmelCase : Tuple = tokenizer.eos_token _lowerCAmelCase : Optional[int] = model.config.eos_token_id # use different length sentences to test batching _lowerCAmelCase : Optional[int] = [ "Hello, my dog is a little", "Today, I", ] _lowerCAmelCase : int = tokenizer(_SCREAMING_SNAKE_CASE, return_tensors="pt", padding=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Optional[int] = inputs["input_ids"].to(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : int = model.generate( input_ids=_SCREAMING_SNAKE_CASE, attention_mask=inputs["attention_mask"].to(_SCREAMING_SNAKE_CASE), ) _lowerCAmelCase : List[str] = tokenizer(sentences[0], return_tensors="pt").input_ids.to(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : str = model.generate(input_ids=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[str] = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() _lowerCAmelCase : Optional[Any] = tokenizer(sentences[1], return_tensors="pt").input_ids.to(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Dict = model.generate(input_ids=_SCREAMING_SNAKE_CASE, max_length=model.config.max_length - num_paddings) _lowerCAmelCase : int = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE, skip_special_tokens=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0], skip_special_tokens=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Tuple = tokenizer.decode(output_padded[0], skip_special_tokens=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Tuple = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE, [non_padded_sentence, padded_sentence]) @slow def snake_case__ ( self): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = BioGptModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = 3 _lowerCAmelCase : List[str] = input_dict["input_ids"] _lowerCAmelCase : int = input_ids.ne(1).to(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Any = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) _lowerCAmelCase : Dict = BioGptForSequenceClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() _lowerCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, labels=_SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Tuple = "multi_label_classification" _lowerCAmelCase : List[Any] = input_dict["input_ids"] _lowerCAmelCase : str = input_ids.ne(1).to(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size).to(torch.float) _lowerCAmelCase : Dict = BioGptForSequenceClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() _lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, labels=_SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = BioGptForCausalLM.from_pretrained("microsoft/biogpt") _lowerCAmelCase : Tuple = torch.tensor([[2, 4805, 9, 656, 21]]) _lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE)[0] _lowerCAmelCase : Optional[Any] = 4_2384 _lowerCAmelCase : Optional[Any] = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape, _SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[str] = torch.tensor( [[[-9.5_236, -9.8_918, 10.4557], [-11.0469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]]) self.assertTrue(torch.allclose(output[:, :3, :3], _SCREAMING_SNAKE_CASE, atol=1E-4)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = BioGptTokenizer.from_pretrained("microsoft/biogpt") _lowerCAmelCase : Tuple = BioGptForCausalLM.from_pretrained("microsoft/biogpt") model.to(_SCREAMING_SNAKE_CASE) torch.manual_seed(0) _lowerCAmelCase : Any = tokenizer("COVID-19 is", return_tensors="pt").to(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[Any] = model.generate( **_SCREAMING_SNAKE_CASE, min_length=100, max_length=1024, num_beams=5, early_stopping=_SCREAMING_SNAKE_CASE, ) _lowerCAmelCase : int = tokenizer.decode(output_ids[0], skip_special_tokens=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Any = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE)
713
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _snake_case = 16 _snake_case = 32 def A ( _lowerCamelCase , _lowerCamelCase = 16 , _lowerCamelCase = "bert-base-cased" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Any = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : Tuple = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCAmelCase : List[str] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=_lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Dict = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCamelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCamelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCAmelCase : Dict = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) _lowerCAmelCase : Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' model.eval() _lowerCAmelCase : str = 0 for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : int = model(**_lowerCamelCase ) _lowerCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowerCAmelCase : int = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowerCamelCase ) - 1: _lowerCAmelCase : Optional[int] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCAmelCase : str = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) _lowerCAmelCase : str = metric.compute() return eval_metric["accuracy"] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : Optional[int] = config["""lr"""] _lowerCAmelCase : Tuple = int(config["num_epochs"] ) _lowerCAmelCase : Any = int(config["seed"] ) _lowerCAmelCase : Tuple = int(config["batch_size"] ) _lowerCAmelCase : int = args.model_name_or_path set_seed(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = get_dataloaders(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowerCamelCase , return_dict=_lowerCamelCase ) # Instantiate optimizer _lowerCAmelCase : Dict = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowerCAmelCase : Tuple = optimizer_cls(params=model.parameters() , lr=_lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: _lowerCAmelCase : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : str = (len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowerCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=0 , num_training_steps=_lowerCamelCase , ) else: _lowerCAmelCase : Any = DummyScheduler(_lowerCamelCase , total_num_steps=_lowerCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase : str = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # We need to keep track of how many total steps we have iterated over _lowerCAmelCase : str = 0 # We also need to keep track of the stating epoch so files are named properly _lowerCAmelCase : int = 0 _lowerCAmelCase : int = evaluate.load("glue" , "mrpc" ) _lowerCAmelCase : List[Any] = num_epochs if args.partial_train_epoch is not None: _lowerCAmelCase : int = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowerCAmelCase : int = args.resume_from_checkpoint.split("epoch_" )[1] _lowerCAmelCase : Optional[int] = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowerCAmelCase : int = int(_lowerCamelCase ) + 1 _lowerCAmelCase : Dict = evaluation_loop(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) accelerator.print("resumed checkpoint performance:" , _lowerCamelCase ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F"state_{starting_epoch-1}.json" ) , "r" ) as f: _lowerCAmelCase : List[Any] = json.load(_lowerCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowerCAmelCase : Dict = {} for epoch in range(_lowerCamelCase , _lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = model(**_lowerCamelCase ) _lowerCAmelCase : str = outputs.loss _lowerCAmelCase : List[str] = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowerCAmelCase : int = F"epoch_{epoch}" _lowerCAmelCase : Optional[int] = os.path.join(args.output_dir , _lowerCamelCase ) accelerator.save_state(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = evaluation_loop(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = accuracy _lowerCAmelCase : str = lr_scheduler.get_lr()[0] _lowerCAmelCase : List[str] = optimizer.param_groups[0]["""lr"""] _lowerCAmelCase : Union[str, Any] = epoch _lowerCAmelCase : str = overall_step accelerator.print(F"epoch {epoch}:" , _lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"state_{epoch}.json" ) , "w" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=_lowerCamelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_lowerCamelCase , ) parser.add_argument( "--output_dir" , type=_lowerCamelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=_lowerCamelCase , default=_lowerCamelCase , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=_lowerCamelCase , default=_lowerCamelCase , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=_lowerCamelCase , default=2 , help="Number of train epochs." , ) _lowerCAmelCase : List[str] = parser.parse_args() _lowerCAmelCase : List[str] = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
714
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") _snake_case = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) _snake_case = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) _snake_case = BeautifulSoup(res.text, "html.parser") _snake_case = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'''https://google.com{link.get("href")}''')
715
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} _snake_case = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } _snake_case = { """google/rembert""": 256, } _snake_case = """▁""" class UpperCAmelCase_ ( __snake_case): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = RemBertTokenizer def __init__( self, __a=None, __a=None, __a=True, __a=True, __a=False, __a="[CLS]", __a="[SEP]", __a="<unk>", __a="[SEP]", __a="<pad>", __a="[CLS]", __a="[MASK]", **__a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = AddedToken(A_, lstrip=A_, rstrip=A_) if isinstance(A_, A_) else mask_token super().__init__( A_, tokenizer_file=A_, do_lower_case=A_, remove_space=A_, keep_accents=A_, bos_token=A_, eos_token=A_, unk_token=A_, sep_token=A_, pad_token=A_, cls_token=A_, mask_token=A_, **A_, ) _lowerCAmelCase : str = do_lower_case _lowerCAmelCase : List[str] = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[Any] = vocab_file _lowerCAmelCase : List[Any] = False if not self.vocab_file else True def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Any = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model.") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A_)) + [1] + ([0] * len(A_)) + [1] return [1] + ([0] * len(A_)) + [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Optional[int] = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(A_): logger.error("Vocabulary path ({}) should be a directory".format(A_)) return _lowerCAmelCase : Dict = os.path.join( A_, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(A_): copyfile(self.vocab_file, A_) return (out_vocab_file,)
716
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
0
import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class UpperCAmelCase_ ( UpperCamelCase__ , UpperCamelCase__): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a=2000, __a=0.1, __a=20, __a=1E-3): '''simple docstring''' _lowerCAmelCase : List[str] = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[int] = None def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Tuple = torch.linspace(1, self.config.sampling_eps, __a, device=__a) def snake_case__ ( self, __a, __a, __a, __a=None): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowerCAmelCase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowerCAmelCase : Any = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff)) _lowerCAmelCase : str = std.flatten() while len(std.shape) < len(score.shape): _lowerCAmelCase : Any = std.unsqueeze(-1) _lowerCAmelCase : Optional[int] = -score / std # compute _lowerCAmelCase : Optional[Any] = -1.0 / len(self.timesteps) _lowerCAmelCase : Union[str, Any] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowerCAmelCase : Any = beta_t.flatten() while len(beta_t.shape) < len(x.shape): _lowerCAmelCase : Any = beta_t.unsqueeze(-1) _lowerCAmelCase : Optional[Any] = -0.5 * beta_t * x _lowerCAmelCase : Optional[int] = torch.sqrt(__a) _lowerCAmelCase : Dict = drift - diffusion**2 * score _lowerCAmelCase : List[Any] = x + drift * dt # add noise _lowerCAmelCase : Tuple = randn_tensor(x.shape, layout=x.layout, generator=__a, device=x.device, dtype=x.dtype) _lowerCAmelCase : Dict = x_mean + diffusion * math.sqrt(-dt) * noise return x, x_mean def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
717
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _snake_case = logging.getLogger(__name__) def A ( _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=16 , _lowerCamelCase = 10 , _lowerCamelCase = 2 ): '''simple docstring''' def get_dataset(_lowerCamelCase ): _lowerCAmelCase : Tuple = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__lowerCAmelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _lowerCAmelCase : Dict = get_dataset(__lowerCAmelCase ) _lowerCAmelCase : Optional[int] = get_dataset(__lowerCAmelCase ) _lowerCAmelCase : Any = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) _lowerCAmelCase : str = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for epoch in range(__lowerCAmelCase ): # Train quickly model.train() for batch in dataloader: _lowerCAmelCase : Optional[int] = batch _lowerCAmelCase : Optional[int] = model(__lowerCAmelCase ) _lowerCAmelCase : Optional[int] = torch.nn.functional.mse_loss(__lowerCAmelCase , __lowerCAmelCase ) accelerator.backward(__lowerCAmelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCAmelCase_ ( nn.Module): def __init__( self): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = nn.Parameter(torch.randn(1)) _lowerCAmelCase : Tuple = nn.Parameter(torch.randn(1)) def snake_case__ ( self, __a): '''simple docstring''' return x * self.a + self.b class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) _lowerCAmelCase : List[Any] = DummyModel() _lowerCAmelCase : List[str] = torch.optim.Adam(params=model.parameters(), lr=1E-3) _lowerCAmelCase : Union[str, Any] = dummy_dataloaders() _lowerCAmelCase : Tuple = ProjectConfiguration(total_limit=1, project_dir=lowerCamelCase__, automatic_checkpoint_naming=lowerCamelCase__) # Train baseline _lowerCAmelCase : List[str] = Accelerator(project_config=lowerCamelCase__) _lowerCAmelCase : Optional[Any] = accelerator.prepare( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir)), 1) def snake_case__ ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) _lowerCAmelCase : List[Any] = DummyModel() _lowerCAmelCase : Dict = torch.optim.Adam(params=model.parameters(), lr=1E-3) _lowerCAmelCase : Union[str, Any] = dummy_dataloaders() # Train baseline _lowerCAmelCase : List[str] = Accelerator() _lowerCAmelCase : Optional[Any] = accelerator.prepare( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) # Save initial _lowerCAmelCase : Any = os.path.join(lowerCamelCase__, "initial") accelerator.save_state(lowerCamelCase__) (_lowerCAmelCase) : Union[str, Any] = model.a.item(), model.b.item() _lowerCAmelCase : str = optimizer.state_dict() _lowerCAmelCase : Tuple = train(3, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) (_lowerCAmelCase) : Optional[int] = model.a.item(), model.b.item() _lowerCAmelCase : List[str] = optimizer.state_dict() # Train partially set_seed(42) _lowerCAmelCase : Optional[Any] = DummyModel() _lowerCAmelCase : int = torch.optim.Adam(params=model.parameters(), lr=1E-3) _lowerCAmelCase : List[Any] = dummy_dataloaders() _lowerCAmelCase : Union[str, Any] = Accelerator() _lowerCAmelCase : Optional[Any] = accelerator.prepare( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) accelerator.load_state(lowerCamelCase__) (_lowerCAmelCase) : Tuple = model.a.item(), model.b.item() _lowerCAmelCase : Union[str, Any] = optimizer.state_dict() self.assertEqual(lowerCamelCase__, lowerCamelCase__) self.assertEqual(lowerCamelCase__, lowerCamelCase__) self.assertEqual(lowerCamelCase__, lowerCamelCase__) _lowerCAmelCase : Optional[Any] = train(2, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) # Save everything _lowerCAmelCase : Optional[Any] = os.path.join(lowerCamelCase__, "checkpoint") accelerator.save_state(lowerCamelCase__) # Load everything back in and make sure all states work accelerator.load_state(lowerCamelCase__) test_rands += train(1, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) (_lowerCAmelCase) : Union[str, Any] = model.a.item(), model.b.item() _lowerCAmelCase : Dict = optimizer.state_dict() self.assertEqual(lowerCamelCase__, lowerCamelCase__) self.assertEqual(lowerCamelCase__, lowerCamelCase__) self.assertEqual(lowerCamelCase__, lowerCamelCase__) self.assertEqual(lowerCamelCase__, lowerCamelCase__) def snake_case__ ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) _lowerCAmelCase : Optional[Any] = DummyModel() _lowerCAmelCase : int = torch.optim.Adam(params=model.parameters(), lr=1E-3) _lowerCAmelCase : Any = dummy_dataloaders() _lowerCAmelCase : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__) # Train baseline _lowerCAmelCase : str = Accelerator(project_dir=lowerCamelCase__, project_config=lowerCamelCase__) _lowerCAmelCase : Optional[Any] = accelerator.prepare( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) # Save initial accelerator.save_state() (_lowerCAmelCase) : Optional[Any] = model.a.item(), model.b.item() _lowerCAmelCase : Union[str, Any] = optimizer.state_dict() _lowerCAmelCase : Optional[Any] = train(3, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) (_lowerCAmelCase) : Dict = model.a.item(), model.b.item() _lowerCAmelCase : Optional[Any] = optimizer.state_dict() # Train partially set_seed(42) _lowerCAmelCase : Optional[Any] = DummyModel() _lowerCAmelCase : str = torch.optim.Adam(params=model.parameters(), lr=1E-3) _lowerCAmelCase : Dict = dummy_dataloaders() _lowerCAmelCase : Optional[Any] = ProjectConfiguration(iteration=1, automatic_checkpoint_naming=lowerCamelCase__) _lowerCAmelCase : Optional[Any] = Accelerator(project_dir=lowerCamelCase__, project_config=lowerCamelCase__) _lowerCAmelCase : Union[str, Any] = accelerator.prepare( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) accelerator.load_state(os.path.join(lowerCamelCase__, "checkpoints", "checkpoint_0")) (_lowerCAmelCase) : int = model.a.item(), model.b.item() _lowerCAmelCase : int = optimizer.state_dict() self.assertEqual(lowerCamelCase__, lowerCamelCase__) self.assertEqual(lowerCamelCase__, lowerCamelCase__) self.assertEqual(lowerCamelCase__, lowerCamelCase__) _lowerCAmelCase : str = train(2, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__, "checkpoints", "checkpoint_1")) test_rands += train(1, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) (_lowerCAmelCase) : Dict = model.a.item(), model.b.item() _lowerCAmelCase : Dict = optimizer.state_dict() self.assertEqual(lowerCamelCase__, lowerCamelCase__) self.assertEqual(lowerCamelCase__, lowerCamelCase__) self.assertEqual(lowerCamelCase__, lowerCamelCase__) self.assertEqual(lowerCamelCase__, lowerCamelCase__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = torch.tensor([1, 2, 3]) _lowerCAmelCase : Any = torch.tensor([2, 3, 4]) _lowerCAmelCase : Optional[int] = DummyModel() _lowerCAmelCase : List[Any] = torch.optim.Adam(net.parameters()) _lowerCAmelCase : Union[str, Any] = Accelerator() with self.assertRaises(lowerCamelCase__) as ve: accelerator.register_for_checkpointing(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) _lowerCAmelCase : Tuple = str(ve.exception) self.assertTrue("Item at index 0" in message) self.assertTrue("Item at index 1" in message) self.assertFalse("Item at index 2" in message) self.assertFalse("Item at index 3" in message) def snake_case__ ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) _lowerCAmelCase : Optional[int] = DummyModel() _lowerCAmelCase : int = torch.optim.Adam(params=model.parameters(), lr=1E-3) _lowerCAmelCase : int = torch.optim.lr_scheduler.StepLR(lowerCamelCase__, step_size=1, gamma=0.99) _lowerCAmelCase : Any = dummy_dataloaders() _lowerCAmelCase : Any = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__) # Train baseline _lowerCAmelCase : Optional[Any] = Accelerator(project_dir=lowerCamelCase__, project_config=lowerCamelCase__) _lowerCAmelCase : int = accelerator.prepare( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) # Save initial accelerator.save_state() _lowerCAmelCase : Union[str, Any] = scheduler.state_dict() train(3, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) self.assertNotEqual(lowerCamelCase__, scheduler.state_dict()) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__, "checkpoints", "checkpoint_0")) self.assertEqual(lowerCamelCase__, scheduler.state_dict()) def snake_case__ ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) _lowerCAmelCase : Dict = DummyModel() _lowerCAmelCase : int = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__, total_limit=2) # Train baseline _lowerCAmelCase : Optional[int] = Accelerator(project_dir=lowerCamelCase__, project_config=lowerCamelCase__) _lowerCAmelCase : Union[str, Any] = accelerator.prepare(lowerCamelCase__) # Save 3 states: for _ in range(11): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCamelCase__, "checkpoints", "checkpoint_0"))) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__, "checkpoints", "checkpoint_9"))) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__, "checkpoints", "checkpoint_10"))) @require_cuda def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__)] execute_subprocess_async(lowerCamelCase__, env=os.environ.copy()) if __name__ == "__main__": _snake_case = "/tmp/accelerate/state_checkpointing" _snake_case = DummyModel() _snake_case = torch.optim.Adam(params=model.parameters(), lr=1e-3) _snake_case = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) _snake_case, _snake_case = dummy_dataloaders() _snake_case = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _snake_case = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _snake_case, _snake_case = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _snake_case = group["params"][0].device break assert param_device.type == accelerator.device.type _snake_case = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: _snake_case = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: _snake_case = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _snake_case = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class UpperCAmelCase_ ( __a): lowerCamelCase__ = "albert" def __init__( self, __a=3_0000, __a=128, __a=4096, __a=12, __a=1, __a=64, __a=1_6384, __a=1, __a="gelu_new", __a=0, __a=0, __a=512, __a=2, __a=0.02, __a=1E-12, __a=0.1, __a="absolute", __a=0, __a=2, __a=3, **__a, ): '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_, bos_token_id=lowerCAmelCase_, eos_token_id=lowerCAmelCase_, **lowerCAmelCase_) _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Dict = embedding_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_hidden_groups _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Optional[int] = inner_group_num _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : int = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : int = classifier_dropout_prob _lowerCAmelCase : Dict = position_embedding_type class UpperCAmelCase_ ( __a): @property def snake_case__ ( self): '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCAmelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
719
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCAmelCase_ : def __init__( self, __a = "cpu", __a = "openai/clip-vit-large-patch14"): '''simple docstring''' _lowerCAmelCase : List[str] = device _lowerCAmelCase : Tuple = CLIPTokenizerFast.from_pretrained(__a) _lowerCAmelCase : Dict = [0.48_145_466, 0.4_578_275, 0.40_821_073] _lowerCAmelCase : Dict = [0.26_862_954, 0.26_130_258, 0.27_577_711] _lowerCAmelCase : Tuple = torchvision.transforms.Normalize(self.image_mean, self.image_std) _lowerCAmelCase : List[Any] = torchvision.transforms.Resize(224) _lowerCAmelCase : Dict = torchvision.transforms.CenterCrop(224) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.resize(__a) _lowerCAmelCase : str = self.center_crop(__a) _lowerCAmelCase : int = self.normalize(__a) return images def __call__( self, __a=None, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(text=__a, **__a) _lowerCAmelCase : Optional[int] = self.preprocess_img(__a) _lowerCAmelCase : str = {key: value.to(self.device) for (key, value) in encoding.items()} return encoding class UpperCAmelCase_ ( nn.Module): def __init__( self, __a=10, __a=0.01, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=False, __a=True, __a="image", __a=True, __a=False, __a=False, __a=False, ): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = device if device else get_device() if vqgan: _lowerCAmelCase : List[Any] = vqgan else: _lowerCAmelCase : Union[str, Any] = load_vqgan(self.device, conf_path=__a, ckpt_path=__a) self.vqgan.eval() if clip: _lowerCAmelCase : str = clip else: _lowerCAmelCase : Tuple = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") self.clip.to(self.device) _lowerCAmelCase : Any = ProcessorGradientFlow(device=self.device) _lowerCAmelCase : List[Any] = iterations _lowerCAmelCase : str = lr _lowerCAmelCase : Optional[int] = log _lowerCAmelCase : List[Any] = make_grid _lowerCAmelCase : Optional[int] = return_val _lowerCAmelCase : Optional[int] = quantize _lowerCAmelCase : List[Any] = self.vqgan.decoder.z_shape def snake_case__ ( self, __a=None, __a=None, __a=5, __a=True): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] if output_path is None: _lowerCAmelCase : Optional[int] = """./animation.gif""" if input_path is None: _lowerCAmelCase : List[str] = self.save_path _lowerCAmelCase : str = sorted(glob(input_path + "/*")) if not len(__a): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)") if len(__a) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)") _lowerCAmelCase : List[Any] = total_duration / len(__a) _lowerCAmelCase : int = [frame_duration] * len(__a) if extend_frames: _lowerCAmelCase : Tuple = 1.5 _lowerCAmelCase : str = 3 for file_name in paths: if file_name.endswith(".png"): images.append(imageio.imread(__a)) imageio.mimsave(__a, __a, duration=__a) print(f"gif saved to {output_path}") def snake_case__ ( self, __a=None, __a=None): '''simple docstring''' if not (path or img): raise ValueError("Input either path or tensor") if img is not None: raise NotImplementedError _lowerCAmelCase : Tuple = preprocess(Image.open(__a), target_image_size=256).to(self.device) _lowerCAmelCase : Dict = preprocess_vqgan(__a) _lowerCAmelCase : List[str] = self.vqgan.encode(__a) return z def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.latent.detach().requires_grad_() _lowerCAmelCase : int = base_latent + transform_vector if self.quantize: _lowerCAmelCase : Union[str, Any] = self.vqgan.quantize(__a) else: _lowerCAmelCase : Optional[Any] = trans_latent return self.vqgan.decode(__a) def snake_case__ ( self, __a, __a, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.clip_preprocessor(text=__a, images=__a, return_tensors="pt", padding=__a) _lowerCAmelCase : Optional[int] = self.clip(**__a) _lowerCAmelCase : Optional[int] = clip_outputs.logits_per_image if weights is not None: _lowerCAmelCase : List[str] = similarity_logits * weights return similarity_logits.sum() def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self._get_clip_similarity(pos_prompts["prompts"], __a, weights=(1 / pos_prompts["weights"])) if neg_prompts: _lowerCAmelCase : Optional[Any] = self._get_clip_similarity(neg_prompts["prompts"], __a, weights=neg_prompts["weights"]) else: _lowerCAmelCase : int = torch.tensor([1], device=self.device) _lowerCAmelCase : Dict = -torch.log(__a) + torch.log(__a) return loss def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = torch.randn_like(self.latent, requires_grad=__a, device=self.device) _lowerCAmelCase : int = torch.optim.Adam([vector], lr=self.lr) for i in range(self.iterations): optim.zero_grad() _lowerCAmelCase : Optional[Any] = self._add_vector(__a) _lowerCAmelCase : Optional[Any] = loop_post_process(__a) _lowerCAmelCase : Dict = self._get_CLIP_loss(__a, __a, __a) print("CLIP loss", __a) if self.log: wandb.log({"CLIP Loss": clip_loss}) clip_loss.backward(retain_graph=__a) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0]) else: yield vector def snake_case__ ( self, __a, __a, __a): '''simple docstring''' wandb.init(reinit=__a, project="face-editor") wandb.config.update({"Positive Prompts": positive_prompts}) wandb.config.update({"Negative Prompts": negative_prompts}) wandb.config.update({"lr": self.lr, "iterations": self.iterations}) if image_path: _lowerCAmelCase : Dict = Image.open(__a) _lowerCAmelCase : Optional[Any] = image.resize((256, 256)) wandb.log("Original Image", wandb.Image(__a)) def snake_case__ ( self, __a): '''simple docstring''' if not prompts: return [] _lowerCAmelCase : Dict = [] _lowerCAmelCase : str = [] if isinstance(__a, __a): _lowerCAmelCase : int = [prompt.strip() for prompt in prompts.split("|")] for prompt in prompts: if isinstance(__a, (tuple, list)): _lowerCAmelCase : str = prompt[0] _lowerCAmelCase : Optional[Any] = float(prompt[1]) elif ":" in prompt: _lowerCAmelCase : str = prompt.split(":") _lowerCAmelCase : int = float(__a) else: _lowerCAmelCase : Union[str, Any] = prompt _lowerCAmelCase : Optional[int] = 1.0 processed_prompts.append(__a) weights.append(__a) return { "prompts": processed_prompts, "weights": torch.tensor(__a, device=self.device), } def snake_case__ ( self, __a, __a=None, __a=None, __a=True, __a=False, __a=True, __a=True, __a=None, ): '''simple docstring''' if image_path: _lowerCAmelCase : str = self._get_latent(__a) else: _lowerCAmelCase : List[str] = torch.randn(self.latent_dim, device=self.device) if self.log: self._init_logging(__a, __a, __a) assert pos_prompts, "You must provide at least one positive prompt." _lowerCAmelCase : int = self.process_prompts(__a) _lowerCAmelCase : int = self.process_prompts(__a) if save_final and save_path is None: _lowerCAmelCase : str = os.path.join("./outputs/", "_".join(pos_prompts["prompts"])) if not os.path.exists(__a): os.makedirs(__a) else: _lowerCAmelCase : Dict = save_path + """_""" + get_timestamp() os.makedirs(__a) _lowerCAmelCase : Tuple = save_path _lowerCAmelCase : str = self.vqgan.decode(self.latent)[0] if show_intermediate: print("Original Image") show_pil(custom_to_pil(__a)) _lowerCAmelCase : Optional[int] = loop_post_process(__a) for iter, transformed_img in enumerate(self._optimize_CLIP(__a, __a, __a)): if show_intermediate: show_pil(__a) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png")) if self.log: wandb.log({"Image": wandb.Image(__a)}) if show_final: show_pil(__a) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png"))
720
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } _snake_case = {"mobilebert-uncased": 512} _snake_case = {} class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = MobileBertTokenizer def __init__( self, __a=None, __a=None, __a=True, __a="[UNK]", __a="[SEP]", __a="[PAD]", __a="[CLS]", __a="[MASK]", __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( UpperCAmelCase__, tokenizer_file=UpperCAmelCase__, do_lower_case=UpperCAmelCase__, unk_token=UpperCAmelCase__, sep_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, cls_token=UpperCAmelCase__, mask_token=UpperCAmelCase__, tokenize_chinese_chars=UpperCAmelCase__, strip_accents=UpperCAmelCase__, **UpperCAmelCase__, ) _lowerCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", UpperCAmelCase__) != do_lower_case or normalizer_state.get("strip_accents", UpperCAmelCase__) != strip_accents or normalizer_state.get("handle_chinese_chars", UpperCAmelCase__) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(UpperCAmelCase__, normalizer_state.pop("type")) _lowerCAmelCase : Tuple = do_lower_case _lowerCAmelCase : List[Any] = strip_accents _lowerCAmelCase : str = tokenize_chinese_chars _lowerCAmelCase : int = normalizer_class(**UpperCAmelCase__) _lowerCAmelCase : Any = do_lower_case def snake_case__ ( self, __a, __a=None): '''simple docstring''' _lowerCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : int = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Any = self._tokenizer.model.save(UpperCAmelCase__, name=UpperCAmelCase__) return tuple(UpperCAmelCase__)
721
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } _snake_case = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = {} with open(_lowerCamelCase , "r" ) as file: for line_number, line in enumerate(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = line.strip() if line: _lowerCAmelCase : List[str] = line.split() _lowerCAmelCase : Optional[Any] = line_number _lowerCAmelCase : List[str] = words[0] _lowerCAmelCase : int = value return result def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for attribute in key.split("." ): _lowerCAmelCase : Dict = getattr(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = PARAM_MAPPING[full_name.split("." )[-1]] _lowerCAmelCase : Union[str, Any] = "param" if weight_type is not None and weight_type != "param": _lowerCAmelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase : List[str] = hf_pointer for attribute in hf_param_name.split("." ): _lowerCAmelCase : List[str] = getattr(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Any = shape_pointer.shape # let's reduce dimension _lowerCAmelCase : str = value[0] else: _lowerCAmelCase : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Optional[Any] = value elif weight_type == "weight_g": _lowerCAmelCase : str = value elif weight_type == "weight_v": _lowerCAmelCase : Dict = value elif weight_type == "bias": _lowerCAmelCase : Tuple = value elif weight_type == "param": for attribute in hf_param_name.split("." ): _lowerCAmelCase : Any = getattr(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = value else: _lowerCAmelCase : Optional[int] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): _lowerCAmelCase : List[str] = PARAM_MAPPING[full_name.split("." )[-1]] _lowerCAmelCase : Dict = "param" if weight_type is not None and weight_type != "param": _lowerCAmelCase : Any = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase : str = ".".join([key, hf_param_name] ) else: _lowerCAmelCase : List[str] = key _lowerCAmelCase : Optional[int] = value if "lm_head" in full_key else value[0] _snake_case = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Any = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase : Any = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCAmelCase : int = True if "*" in mapped_key: _lowerCAmelCase : Union[str, Any] = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCAmelCase : Dict = mapped_key.replace("*" , _lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase : List[str] = "weight_g" elif "weight_v" in name: _lowerCAmelCase : int = "weight_v" elif "bias" in name: _lowerCAmelCase : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : Dict = "weight" else: _lowerCAmelCase : Optional[Any] = None if hf_dict is not None: rename_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return is_used return is_used def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Union[str, Any] = fairseq_model.state_dict() _lowerCAmelCase : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : int = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCAmelCase : Union[str, Any] = True else: _lowerCAmelCase : List[Any] = load_wavaveca_layer(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = full_name.split("conv_layers." )[-1] _lowerCAmelCase : Dict = name.split("." ) _lowerCAmelCase : str = int(items[0] ) _lowerCAmelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Dict = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _lowerCAmelCase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : List[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=False ): '''simple docstring''' if config_path is not None: _lowerCAmelCase : str = WavaVecaConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : Tuple = WavaVecaConfig() if is_seq_class: _lowerCAmelCase : List[str] = read_txt_into_dict(_lowerCamelCase ) _lowerCAmelCase : str = idalabel _lowerCAmelCase : Union[str, Any] = WavaVecaForSequenceClassification(_lowerCamelCase ) _lowerCAmelCase : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) feature_extractor.save_pretrained(_lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase : int = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase : Dict = target_dict.pad_index _lowerCAmelCase : List[str] = target_dict.bos_index _lowerCAmelCase : Optional[Any] = target_dict.eos_index _lowerCAmelCase : str = len(target_dict.symbols ) _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Tuple = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCAmelCase : int = True if config.feat_extract_norm == "layer" else False _lowerCAmelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCAmelCase : Optional[Any] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = WavaVecaForCTC(_lowerCamelCase ) else: _lowerCAmelCase : int = WavaVecaForPreTraining(_lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCAmelCase : Tuple = argparse.Namespace(task="audio_pretraining" ) _lowerCAmelCase : str = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) _snake_case = parser.parse_args() _snake_case = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
700
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
0
import unittest from knapsack import greedy_knapsack as kp class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = [10, 20, 30, 40, 50, 60] _lowerCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _lowerCAmelCase : List[str] = 100 self.assertEqual(kp.calc_profit(__a, __a, __a), 210) def snake_case__ ( self): '''simple docstring''' self.assertRaisesRegex(__a, "max_weight must greater than zero.") def snake_case__ ( self): '''simple docstring''' self.assertRaisesRegex(__a, "Weight can not be negative.") def snake_case__ ( self): '''simple docstring''' self.assertRaisesRegex(__a, "Profit can not be negative.") def snake_case__ ( self): '''simple docstring''' self.assertRaisesRegex(__a, "max_weight must greater than zero.") def snake_case__ ( self): '''simple docstring''' self.assertRaisesRegex( __a, "The length of profit and weight must be same.") if __name__ == "__main__": unittest.main()
701
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "ylacombe/bark-small" _lowerCAmelCase : List[str] = tempfile.mkdtemp() _lowerCAmelCase : Optional[int] = "en_speaker_1" _lowerCAmelCase : List[str] = "This is a test string" _lowerCAmelCase : int = "speaker_embeddings_path.json" _lowerCAmelCase : Union[str, Any] = "speaker_embeddings" def snake_case__ ( self, **__a): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint, **__UpperCamelCase) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_tokenizer() _lowerCAmelCase : int = BarkProcessor(tokenizer=__UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint, speaker_embeddings_dict_path=self.speaker_embeddings_dict_path, ) processor.save_pretrained( self.tmpdirname, speaker_embeddings_dict_path=self.speaker_embeddings_dict_path, speaker_embeddings_directory=self.speaker_embeddings_directory, ) _lowerCAmelCase : str = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname, self.speaker_embeddings_dict_path, bos_token="(BOS)", eos_token="(EOS)", ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint, speaker_embeddings_dict_path=self.speaker_embeddings_dict_path, ) _lowerCAmelCase : int = 35 _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : Optional[Any] = 8 _lowerCAmelCase : Optional[int] = { "semantic_prompt": np.ones(__UpperCamelCase), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len)), "fine_prompt": np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset _lowerCAmelCase : str = processor(text=self.input_string, voice_preset=__UpperCamelCase) _lowerCAmelCase : Dict = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist(), processed_voice_preset.get(__UpperCamelCase, np.array([])).tolist()) # test loading voice preset from npz file _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname, "file.npz") np.savez(__UpperCamelCase, **__UpperCamelCase) _lowerCAmelCase : List[Any] = processor(text=self.input_string, voice_preset=__UpperCamelCase) _lowerCAmelCase : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist(), processed_voice_preset.get(__UpperCamelCase, np.array([])).tolist()) # test loading voice preset from the hub _lowerCAmelCase : Optional[int] = processor(text=self.input_string, voice_preset=self.voice_preset) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : List[Any] = BarkProcessor(tokenizer=__UpperCamelCase) _lowerCAmelCase : Tuple = processor(text=self.input_string) _lowerCAmelCase : Tuple = tokenizer( self.input_string, padding="max_length", max_length=256, add_special_tokens=__UpperCamelCase, return_attention_mask=__UpperCamelCase, return_token_type_ids=__UpperCamelCase, ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key].squeeze().tolist())
702
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
0
import os from pathlib import Path def A ( ): '''simple docstring''' from torch.utils.cpp_extension import load _lowerCAmelCase : Tuple = Path(lowerCAmelCase_ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _lowerCAmelCase : Optional[Any] = [ root / filename for filename in [ '''vision.cpp''', os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , lowerCAmelCase_ , with_cuda=lowerCAmelCase_ , extra_include_paths=[str(lowerCAmelCase_ )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
703
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
0
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _UpperCAmelCase , unittest.TestCase): lowerCamelCase__ = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def snake_case__ ( self, __a=0): '''simple docstring''' _lowerCAmelCase : List[str] = np.random.RandomState(lowercase__) _lowerCAmelCase : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=lowercase__) _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs() _lowerCAmelCase : Dict = pipe(**lowercase__).images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Union[str, Any] = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : Union[str, Any] = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowercase__) pipe.set_progress_bar_config(disable=lowercase__) _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**lowercase__).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Tuple = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase__) _lowerCAmelCase : int = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**lowercase__).images _lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Dict = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase__) _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs() _lowerCAmelCase : Optional[Any] = pipe(**lowercase__).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Tuple = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase__) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCAmelCase : Optional[Any] = pipe(**lowercase__).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : str = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase__) _lowerCAmelCase : int = self.get_dummy_inputs() _lowerCAmelCase : Optional[int] = pipe(**lowercase__).images _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Tuple = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=lowercase__) _lowerCAmelCase : Tuple = self.get_dummy_inputs() _lowerCAmelCase : List[Any] = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase : Optional[Any] = pipe(**lowercase__) _lowerCAmelCase : Optional[Any] = output.images[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = self.get_dummy_inputs() _lowerCAmelCase : Optional[int] = 3 * [inputs.pop("prompt")] _lowerCAmelCase : str = pipe.tokenizer( lowercase__, padding="max_length", max_length=pipe.tokenizer.model_max_length, truncation=lowercase__, return_tensors="np", ) _lowerCAmelCase : Any = text_inputs["""input_ids"""] _lowerCAmelCase : Dict = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0] _lowerCAmelCase : Optional[int] = prompt_embeds # forward _lowerCAmelCase : Optional[int] = pipe(**lowercase__) _lowerCAmelCase : int = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=lowercase__) _lowerCAmelCase : Tuple = self.get_dummy_inputs() _lowerCAmelCase : List[Any] = 3 * ["""this is a negative prompt"""] _lowerCAmelCase : Any = negative_prompt _lowerCAmelCase : Dict = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase : Optional[int] = pipe(**lowercase__) _lowerCAmelCase : List[Any] = output.images[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = self.get_dummy_inputs() _lowerCAmelCase : List[Any] = 3 * [inputs.pop("prompt")] _lowerCAmelCase : List[Any] = [] for p in [prompt, negative_prompt]: _lowerCAmelCase : str = pipe.tokenizer( lowercase__, padding="max_length", max_length=pipe.tokenizer.model_max_length, truncation=lowercase__, return_tensors="np", ) _lowerCAmelCase : Any = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0]) _lowerCAmelCase : str = embeds # forward _lowerCAmelCase : str = pipe(**lowercase__) _lowerCAmelCase : int = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = ort.SessionOptions() _lowerCAmelCase : Any = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=lowercase__, feature_extractor=lowercase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=lowercase__) _lowerCAmelCase : Any = """A painting of a squirrel eating a burger""" np.random.seed(0) _lowerCAmelCase : Dict = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=10, output_type="np") _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx") _lowerCAmelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", scheduler=lowercase__, safety_checker=lowercase__, feature_extractor=lowercase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=lowercase__) _lowerCAmelCase : List[Any] = """open neural network exchange""" _lowerCAmelCase : str = np.random.RandomState(0) _lowerCAmelCase : Dict = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=lowercase__, output_type="np") _lowerCAmelCase : int = output.images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : str = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx") _lowerCAmelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", scheduler=lowercase__, safety_checker=lowercase__, feature_extractor=lowercase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=lowercase__) _lowerCAmelCase : Dict = """open neural network exchange""" _lowerCAmelCase : Any = np.random.RandomState(0) _lowerCAmelCase : str = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=lowercase__, output_type="np") _lowerCAmelCase : Union[str, Any] = output.images _lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Optional[int] = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = 0 def test_callback_fn(__a, __a, __a) -> None: _lowerCAmelCase : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _lowerCAmelCase : str = latents[0, -3:, -3:, -1] _lowerCAmelCase : str = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _lowerCAmelCase : Union[str, Any] = latents[0, -3:, -3:, -1] _lowerCAmelCase : Optional[Any] = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3 _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Any = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", safety_checker=lowercase__, feature_extractor=lowercase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowercase__) _lowerCAmelCase : Optional[int] = """Andromeda galaxy in a bottle""" _lowerCAmelCase : Union[str, Any] = np.random.RandomState(0) pipe( prompt=lowercase__, num_inference_steps=5, guidance_scale=7.5, generator=lowercase__, callback=lowercase__, callback_steps=1, ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", safety_checker=lowercase__, feature_extractor=lowercase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) assert isinstance(lowercase__, lowercase__) assert pipe.safety_checker is None _lowerCAmelCase : int = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase__) _lowerCAmelCase : int = OnnxStableDiffusionPipeline.from_pretrained(lowercase__) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowerCAmelCase : Optional[Any] = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None
704
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _snake_case = "pt" elif is_tf_available(): _snake_case = "tf" else: _snake_case = "jax" class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase): lowerCamelCase__ = ByTaTokenizer lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : Optional[Any] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def snake_case__ ( self): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small") def snake_case__ ( self, **__a): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **__snake_case) def snake_case__ ( self, __a, __a=False, __a=20, __a=5): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(len(__snake_case)): try: _lowerCAmelCase : List[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=__snake_case) except UnicodeDecodeError: pass toks.append((i, tok)) _lowerCAmelCase : Optional[int] = list(filter(lambda __a: re.match(R"^[ a-zA-Z]+$", t[1]), __snake_case)) _lowerCAmelCase : List[str] = list(filter(lambda __a: [t[0]] == tokenizer.encode(t[1], add_special_tokens=__snake_case), __snake_case)) if max_length is not None and len(__snake_case) > max_length: _lowerCAmelCase : List[Any] = toks[:max_length] if min_length is not None and len(__snake_case) < min_length and len(__snake_case) > 0: while len(__snake_case) < min_length: _lowerCAmelCase : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] _lowerCAmelCase : List[str] = [t[0] for t in toks] # Ensure consistency _lowerCAmelCase : Any = tokenizer.decode(__snake_case, clean_up_tokenization_spaces=__snake_case) if " " not in output_txt and len(__snake_case) > 1: _lowerCAmelCase : List[str] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=__snake_case) + ''' ''' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=__snake_case) ) if with_prefix_space: _lowerCAmelCase : List[str] = ''' ''' + output_txt _lowerCAmelCase : Optional[int] = tokenizer.encode(__snake_case, add_special_tokens=__snake_case) return output_txt, output_ids def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.ta_base_tokenizer _lowerCAmelCase : List[str] = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"]) _lowerCAmelCase : Optional[int] = tokenizer(["hi", "I went to the gym", ""]) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.ta_base_tokenizer _lowerCAmelCase : Union[str, Any] = '''Unicode €.''' _lowerCAmelCase : Optional[Any] = tokenizer(__snake_case) _lowerCAmelCase : Union[str, Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], __snake_case) # decoding _lowerCAmelCase : Union[str, Any] = tokenizer.decode(__snake_case) self.assertEqual(__snake_case, "Unicode €.</s>") _lowerCAmelCase : str = tokenizer("e è é ê ë") _lowerCAmelCase : Dict = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], __snake_case) # decoding _lowerCAmelCase : Optional[Any] = tokenizer.decode(__snake_case) self.assertEqual(__snake_case, "e è é ê ë</s>") # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë")), "e è é ê ë</s>") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.ta_base_tokenizer _lowerCAmelCase : Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off _lowerCAmelCase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowerCAmelCase : Any = tokenizer(__snake_case, padding=__snake_case, return_tensors=__snake_case) self.assertIsInstance(__snake_case, __snake_case) if FRAMEWORK != "jax": _lowerCAmelCase : str = list(batch.input_ids.numpy()[0]) else: _lowerCAmelCase : Optional[int] = list(batch.input_ids.tolist()[0]) self.assertListEqual(__snake_case, __snake_case) self.assertEqual((2, 37), batch.input_ids.shape) self.assertEqual((2, 37), batch.attention_mask.shape) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.ta_base_tokenizer _lowerCAmelCase : Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _lowerCAmelCase : Tuple = tokenizer(__snake_case, padding=__snake_case, return_tensors=__snake_case) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", __snake_case) self.assertIn("attention_mask", __snake_case) self.assertNotIn("decoder_input_ids", __snake_case) self.assertNotIn("decoder_attention_mask", __snake_case) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.ta_base_tokenizer _lowerCAmelCase : int = [ '''Summary of the text.''', '''Another summary.''', ] _lowerCAmelCase : List[str] = tokenizer( text_target=__snake_case, max_length=32, padding="max_length", truncation=__snake_case, return_tensors=__snake_case) self.assertEqual(32, targets["input_ids"].shape[1]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.ta_base_tokenizer _lowerCAmelCase : int = ['''A long paragraph for summarization. </s>'''] _lowerCAmelCase : Tuple = ['''Summary of the text. </s>'''] # fmt: off _lowerCAmelCase : Dict = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowerCAmelCase : Tuple = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowerCAmelCase : Optional[int] = tokenizer(__snake_case, text_target=__snake_case) self.assertEqual(__snake_case, batch["input_ids"][0]) self.assertEqual(__snake_case, batch["labels"][0]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length, 42) # Now let's start the test _lowerCAmelCase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase : List[Any] = tempfile.mkdtemp() _lowerCAmelCase : Optional[Any] = ''' He is very happy, UNwant\u00E9d,running''' _lowerCAmelCase : int = tokenizer.encode(__snake_case, add_special_tokens=__snake_case) tokenizer.save_pretrained(__snake_case) _lowerCAmelCase : int = tokenizer.__class__.from_pretrained(__snake_case) _lowerCAmelCase : Optional[Any] = after_tokenizer.encode(__snake_case, add_special_tokens=__snake_case) self.assertListEqual(__snake_case, __snake_case) shutil.rmtree(__snake_case) _lowerCAmelCase : Any = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase : int = tempfile.mkdtemp() _lowerCAmelCase : Union[str, Any] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(["bim", "bambam"]) _lowerCAmelCase : List[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token") tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) _lowerCAmelCase : int = tokenizer.encode(__snake_case, add_special_tokens=__snake_case) tokenizer.save_pretrained(__snake_case) _lowerCAmelCase : int = tokenizer.__class__.from_pretrained(__snake_case) _lowerCAmelCase : Any = after_tokenizer.encode(__snake_case, add_special_tokens=__snake_case) self.assertListEqual(__snake_case, __snake_case) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length, 42) _lowerCAmelCase : Optional[int] = tokenizer.__class__.from_pretrained(__snake_case, model_max_length=43) self.assertEqual(tokenizer.model_max_length, 43) shutil.rmtree(__snake_case) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case) with open(os.path.join(__snake_case, "special_tokens_map.json"), encoding="utf-8") as json_file: _lowerCAmelCase : List[Any] = json.load(__snake_case) with open(os.path.join(__snake_case, "tokenizer_config.json"), encoding="utf-8") as json_file: _lowerCAmelCase : Any = json.load(__snake_case) _lowerCAmelCase : Optional[int] = [f"<extra_id_{i}>" for i in range(125)] _lowerCAmelCase : Optional[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] _lowerCAmelCase : Union[str, Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__snake_case, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: json.dump(__snake_case, __snake_case) with open(os.path.join(__snake_case, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: json.dump(__snake_case, __snake_case) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowerCAmelCase : List[Any] = tokenizer_class.from_pretrained( __snake_case, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"])), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowerCAmelCase : Any = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=__snake_case)] _lowerCAmelCase : Optional[int] = tokenizer_class.from_pretrained( __snake_case, additional_special_tokens=__snake_case, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"])), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case) _lowerCAmelCase : Tuple = tokenizer_class.from_pretrained(__snake_case) self.assertTrue(tokenizer.decode([255]) == "") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_tokenizers(fast=__snake_case, do_lower_case=__snake_case) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): _lowerCAmelCase : str = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] _lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_string(__snake_case) self.assertIsInstance(__snake_case, __snake_case) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): _lowerCAmelCase : Union[str, Any] = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens( __snake_case, skip_special_tokens=__snake_case) for attr in attributes_list: setattr(__snake_case, attr + "_id", __snake_case) self.assertEqual(getattr(__snake_case, __snake_case), __snake_case) self.assertEqual(getattr(__snake_case, attr + "_id"), __snake_case) setattr(__snake_case, attr + "_id", __snake_case) self.assertEqual(getattr(__snake_case, __snake_case), __snake_case) self.assertEqual(getattr(__snake_case, attr + "_id"), __snake_case) setattr(__snake_case, "additional_special_tokens_ids", []) self.assertListEqual(getattr(__snake_case, "additional_special_tokens"), []) self.assertListEqual(getattr(__snake_case, "additional_special_tokens_ids"), []) setattr(__snake_case, "additional_special_tokens_ids", [token_id_to_test_setters]) self.assertListEqual(getattr(__snake_case, "additional_special_tokens"), [token_to_test_setters]) self.assertListEqual(getattr(__snake_case, "additional_special_tokens_ids"), [token_id_to_test_setters])
705
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
0
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _snake_case = """<<<<<<< This should probably be modified because it mentions: """ _snake_case = """======= >>>>>>> """ _snake_case = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] _snake_case = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def A ( _lowerCamelCase ): '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase_ ( a): @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = parser.add_parser( "convert", help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.", ) train_parser.add_argument( "--tfds_path", type=__a, required=__a, help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.", ) train_parser.add_argument( "--datasets_directory", type=__a, required=__a, help="Path to the HuggingFace Datasets folder.") train_parser.set_defaults(func=__a) def __init__( self, __a, __a, *__a): '''simple docstring''' _lowerCAmelCase : List[str] = get_logger("datasets-cli/converting") _lowerCAmelCase : Union[str, Any] = tfds_path _lowerCAmelCase : Any = datasets_directory def snake_case__ ( self): '''simple docstring''' if os.path.isdir(self._tfds_path): _lowerCAmelCase : str = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): _lowerCAmelCase : str = os.path.dirname(self._tfds_path) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path.") _lowerCAmelCase : str = os.path.abspath(self._datasets_directory) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}") _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Any = {} if os.path.isdir(self._tfds_path): _lowerCAmelCase : Tuple = os.listdir(__a) else: _lowerCAmelCase : Optional[Any] = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(f"Looking at file {f_name}") _lowerCAmelCase : Tuple = os.path.join(__a, __a) _lowerCAmelCase : Dict = os.path.join(__a, __a) if not os.path.isfile(__a) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file") continue with open(__a, encoding="utf-8") as f: _lowerCAmelCase : Dict = f.readlines() _lowerCAmelCase : Dict = [] _lowerCAmelCase : Tuple = False _lowerCAmelCase : str = False _lowerCAmelCase : Optional[int] = [] for line in lines: _lowerCAmelCase : Tuple = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _lowerCAmelCase : Union[str, Any] = "import datasets\n" elif "import tensorflow" in out_line: # order is important here _lowerCAmelCase : Optional[Any] = "" continue elif "from absl import logging" in out_line: _lowerCAmelCase : Any = "from datasets import logging\n" elif "getLogger" in out_line: _lowerCAmelCase : Tuple = out_line.replace("getLogger", "get_logger") elif any(expression in out_line for expression in TO_HIGHLIGHT): _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Optional[Any] = list(filter(lambda __a: e in out_line, __a)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__a) + "\n") out_lines.append(__a) out_lines.append(__a) continue else: for pattern, replacement in TO_CONVERT: _lowerCAmelCase : str = re.sub(__a, __a, __a) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _lowerCAmelCase : Any = re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)", __a) tfds_imports.extend(imp.strip() for imp in match.group(1).split(",")) _lowerCAmelCase : int = "from . import " + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}") if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _lowerCAmelCase : Tuple = True out_lines.append(__a) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _lowerCAmelCase : Union[str, Any] = f_name.replace(".py", "") _lowerCAmelCase : Any = os.path.join(__a, __a) _lowerCAmelCase : Optional[int] = os.path.join(__a, __a) os.makedirs(__a, exist_ok=__a) self._logger.info(f"Adding directory {output_dir}") imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(__a) if needs_manual_update: with_manual_update.append(__a) with open(__a, "w", encoding="utf-8") as f: f.writelines(__a) self._logger.info(f"Converted in {output_file}") for utils_file in utils_files: try: _lowerCAmelCase : Tuple = os.path.basename(__a) _lowerCAmelCase : List[str] = imports_to_builder_map[f_name.replace(".py", "")] self._logger.info(f"Moving {dest_folder} to {utils_file}") shutil.copy(__a, __a) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually.") if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.")
706
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
0
from __future__ import annotations def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( lowercase_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
707
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase : Dict = tau * frequency / samplerate _lowerCAmelCase : str = sin(__UpperCamelCase ) _lowerCAmelCase : List[Any] = cos(__UpperCamelCase ) _lowerCAmelCase : int = _sin / (2 * q_factor) _lowerCAmelCase : Optional[int] = (1 - _cos) / 2 _lowerCAmelCase : Union[str, Any] = 1 - _cos _lowerCAmelCase : str = 1 + alpha _lowerCAmelCase : List[Any] = -2 * _cos _lowerCAmelCase : Tuple = 1 - alpha _lowerCAmelCase : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase : str = tau * frequency / samplerate _lowerCAmelCase : Union[str, Any] = sin(__UpperCamelCase ) _lowerCAmelCase : Tuple = cos(__UpperCamelCase ) _lowerCAmelCase : List[Any] = _sin / (2 * q_factor) _lowerCAmelCase : Any = (1 + _cos) / 2 _lowerCAmelCase : List[str] = -1 - _cos _lowerCAmelCase : Tuple = 1 + alpha _lowerCAmelCase : str = -2 * _cos _lowerCAmelCase : Any = 1 - alpha _lowerCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase : Dict = tau * frequency / samplerate _lowerCAmelCase : Dict = sin(__UpperCamelCase ) _lowerCAmelCase : Optional[int] = cos(__UpperCamelCase ) _lowerCAmelCase : Optional[int] = _sin / (2 * q_factor) _lowerCAmelCase : Dict = _sin / 2 _lowerCAmelCase : int = 0 _lowerCAmelCase : Tuple = -ba _lowerCAmelCase : Optional[int] = 1 + alpha _lowerCAmelCase : List[str] = -2 * _cos _lowerCAmelCase : Tuple = 1 - alpha _lowerCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase : Any = tau * frequency / samplerate _lowerCAmelCase : List[Any] = sin(__UpperCamelCase ) _lowerCAmelCase : Union[str, Any] = cos(__UpperCamelCase ) _lowerCAmelCase : Optional[int] = _sin / (2 * q_factor) _lowerCAmelCase : Tuple = 1 - alpha _lowerCAmelCase : Union[str, Any] = -2 * _cos _lowerCAmelCase : Union[str, Any] = 1 + alpha _lowerCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) , ): '''simple docstring''' _lowerCAmelCase : int = tau * frequency / samplerate _lowerCAmelCase : Optional[Any] = sin(__UpperCamelCase ) _lowerCAmelCase : Tuple = cos(__UpperCamelCase ) _lowerCAmelCase : Optional[Any] = _sin / (2 * q_factor) _lowerCAmelCase : Tuple = 10 ** (gain_db / 40) _lowerCAmelCase : Union[str, Any] = 1 + alpha * big_a _lowerCAmelCase : List[str] = -2 * _cos _lowerCAmelCase : str = 1 - alpha * big_a _lowerCAmelCase : List[str] = 1 + alpha / big_a _lowerCAmelCase : str = -2 * _cos _lowerCAmelCase : Optional[int] = 1 - alpha / big_a _lowerCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) , ): '''simple docstring''' _lowerCAmelCase : List[Any] = tau * frequency / samplerate _lowerCAmelCase : Any = sin(__UpperCamelCase ) _lowerCAmelCase : Tuple = cos(__UpperCamelCase ) _lowerCAmelCase : int = _sin / (2 * q_factor) _lowerCAmelCase : str = 10 ** (gain_db / 40) _lowerCAmelCase : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase : str = (big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase : Any = (big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase : Dict = 2 * sqrt(__UpperCamelCase ) * alpha _lowerCAmelCase : Optional[int] = big_a * (pmc + aaa) _lowerCAmelCase : int = 2 * big_a * mpc _lowerCAmelCase : List[Any] = big_a * (pmc - aaa) _lowerCAmelCase : str = ppmc + aaa _lowerCAmelCase : Tuple = -2 * pmpc _lowerCAmelCase : Any = ppmc - aaa _lowerCAmelCase : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) , ): '''simple docstring''' _lowerCAmelCase : Any = tau * frequency / samplerate _lowerCAmelCase : List[str] = sin(__UpperCamelCase ) _lowerCAmelCase : Optional[int] = cos(__UpperCamelCase ) _lowerCAmelCase : Tuple = _sin / (2 * q_factor) _lowerCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) _lowerCAmelCase : int = (big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase : str = (big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase : Optional[int] = (big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase : List[Any] = (big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase : str = 2 * sqrt(__UpperCamelCase ) * alpha _lowerCAmelCase : Tuple = big_a * (ppmc + aaa) _lowerCAmelCase : List[Any] = -2 * big_a * pmpc _lowerCAmelCase : Optional[Any] = big_a * (ppmc - aaa) _lowerCAmelCase : int = pmc + aaa _lowerCAmelCase : Any = 2 * mpc _lowerCAmelCase : Dict = pmc - aaa _lowerCAmelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
708
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase_ ( _lowerCAmelCase , unittest.TestCase): lowerCamelCase__ = ShapEPipeline lowerCamelCase__ = ['prompt'] lowerCamelCase__ = ['prompt'] lowerCamelCase__ = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowerCamelCase__ = False @property def snake_case__ ( self): '''simple docstring''' return 32 @property def snake_case__ ( self): '''simple docstring''' return 32 @property def snake_case__ ( self): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case__ ( self): '''simple docstring''' return 8 @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(_lowerCAmelCase) @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Optional[int] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } _lowerCAmelCase : List[str] = PriorTransformer(**_lowerCAmelCase) return model @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Tuple = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**_lowerCAmelCase) return model def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Union[str, Any] = self.dummy_renderer _lowerCAmelCase : str = HeunDiscreteScheduler( beta_schedule="exp", num_train_timesteps=1024, prediction_type="sample", use_karras_sigmas=_lowerCAmelCase, clip_sample=_lowerCAmelCase, clip_sample_range=1.0, ) _lowerCAmelCase : Dict = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def snake_case__ ( self, __a, __a=0): '''simple docstring''' if str(_lowerCAmelCase).startswith("mps"): _lowerCAmelCase : str = torch.manual_seed(_lowerCAmelCase) else: _lowerCAmelCase : List[Any] = torch.Generator(device=_lowerCAmelCase).manual_seed(_lowerCAmelCase) _lowerCAmelCase : str = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = "cpu" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**_lowerCAmelCase) _lowerCAmelCase : List[Any] = pipe.to(_lowerCAmelCase) pipe.set_progress_bar_config(disable=_lowerCAmelCase) _lowerCAmelCase : Dict = pipe(**self.get_dummy_inputs(_lowerCAmelCase)) _lowerCAmelCase : Optional[int] = output.images[0] _lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Optional[Any] = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch_device == "cpu" _lowerCAmelCase : Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=_lowerCAmelCase, relax_max_difference=_lowerCAmelCase, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**_lowerCAmelCase) _lowerCAmelCase : Union[str, Any] = pipe.to(_lowerCAmelCase) pipe.set_progress_bar_config(disable=_lowerCAmelCase) _lowerCAmelCase : Tuple = 1 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Dict = self.get_dummy_inputs(_lowerCAmelCase) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : Dict = batch_size * [inputs[key]] _lowerCAmelCase : Dict = pipe(**_lowerCAmelCase, num_images_per_prompt=_lowerCAmelCase)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") _lowerCAmelCase : int = ShapEPipeline.from_pretrained("openai/shap-e") _lowerCAmelCase : int = pipe.to(_lowerCAmelCase) pipe.set_progress_bar_config(disable=_lowerCAmelCase) _lowerCAmelCase : Optional[Any] = torch.Generator(device=_lowerCAmelCase).manual_seed(0) _lowerCAmelCase : Optional[int] = pipe( "a shark", generator=_lowerCAmelCase, guidance_scale=15.0, num_inference_steps=64, frame_size=64, output_type="np", ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowerCAmelCase, _lowerCAmelCase)
709
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _snake_case = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.') @require_torch @require_tf @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = True, ): '''simple docstring''' _lowerCAmelCase : str = [file for file in os.listdir(_a) if os.path.isfile(os.path.join(_a, _a))] if identifier is not None: _lowerCAmelCase : Tuple = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_a, _a): for n_ in n_identifier: _lowerCAmelCase : Optional[Any] = [file for file in files if n_ not in file] else: _lowerCAmelCase : List[Any] = [file for file in files if n_identifier not in file] _lowerCAmelCase : Optional[Any] = ignore_files or [] ignore_files.append("__init__.py") _lowerCAmelCase : Union[str, Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing", _a) if only_modules: _lowerCAmelCase : str = file.split(".")[0] try: _lowerCAmelCase : Union[str, Any] = getattr(_a, _a) _lowerCAmelCase : Dict = doctest.DocTestSuite(_a) _lowerCAmelCase : Tuple = unittest.TextTestRunner().run(_a) self.assertIs(len(result.failures), 0) except AttributeError: logger.info(f"{module_identifier} is not a module.") else: _lowerCAmelCase : Any = doctest.testfile(str(".." / directory / file), optionflags=doctest.ELLIPSIS) self.assertIs(result.failed, 0) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = Path("src/transformers") _lowerCAmelCase : Union[str, Any] = """modeling""" _lowerCAmelCase : Optional[Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_a, identifier=_a, ignore_files=_a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = Path("src/transformers") _lowerCAmelCase : List[str] = """tokenization""" self.analyze_directory(_a, identifier=_a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = Path("src/transformers") _lowerCAmelCase : Dict = """configuration""" self.analyze_directory(_a, identifier=_a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = Path("src/transformers") _lowerCAmelCase : Union[str, Any] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_a, n_identifier=_a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Path("docs/source") _lowerCAmelCase : int = ["""favicon.ico"""] self.analyze_directory(_a, ignore_files=_a, only_modules=_a)
710
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
0
def A ( ): '''simple docstring''' return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] _snake_case = generate_large_matrix() _snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A ( _lowerCamelCase ): '''simple docstring''' assert all(row == sorted(__UpperCamelCase , reverse=__UpperCamelCase ) for row in grid ) assert all(list(__UpperCamelCase ) == sorted(__UpperCamelCase , reverse=__UpperCamelCase ) for col in zip(*__UpperCamelCase ) ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : int = len(__UpperCamelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowerCAmelCase : Union[str, Any] = (left + right) // 2 _lowerCAmelCase : Optional[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowerCAmelCase : Optional[int] = mid + 1 else: _lowerCAmelCase : Any = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Dict = len(grid[0] ) for i in range(len(__UpperCamelCase ) ): _lowerCAmelCase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCamelCase ) * len(grid[0] )) - total def A ( _lowerCamelCase ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 0 for row in grid: for i, number in enumerate(__UpperCamelCase ): if number < 0: total += len(__UpperCamelCase ) - i break return total def A ( ): '''simple docstring''' from timeit import timeit print("Running benchmarks" ) _lowerCAmelCase : Any = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowerCAmelCase : Union[str, Any] = timeit(F"{func}(grid=grid)" , setup=__UpperCamelCase , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
711
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
0
from __future__ import annotations def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if b == 0: return (1, 0) ((_lowerCAmelCase) , (_lowerCAmelCase)) : Optional[int] = extended_euclid(lowerCamelCase_ , a % b ) _lowerCAmelCase : Union[str, Any] = a // b return (y, x - k * y) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' ((_lowerCAmelCase) , (_lowerCAmelCase)) : Optional[Any] = extended_euclid(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase : str = na * na _lowerCAmelCase : List[str] = ra * x * na + ra * y * na return (n % m + m) % m def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' ((_lowerCAmelCase) , (_lowerCAmelCase)) : Any = extended_euclid(lowerCamelCase_ , lowerCamelCase_ ) if b < 0: _lowerCAmelCase : Any = (b % n + n) % n return b def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = invert_modulo(lowerCamelCase_ , lowerCamelCase_ ), invert_modulo(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase : List[Any] = na * na _lowerCAmelCase : Any = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
712
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _snake_case = { "camembert-base": 512, } _snake_case = "▁" class UpperCAmelCase_ ( _A): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] lowerCamelCase__ = CamembertTokenizer def __init__( self, __a=None, __a=None, __a="<s>", __a="</s>", __a="</s>", __a="<s>", __a="<unk>", __a="<pad>", __a="<mask>", __a=["<s>NOTUSED", "</s>NOTUSED"], **__a, ): '''simple docstring''' _lowerCAmelCase : List[str] = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else mask_token super().__init__( __a, tokenizer_file=__a, bos_token=__a, eos_token=__a, sep_token=__a, cls_token=__a, unk_token=__a, pad_token=__a, mask_token=__a, additional_special_tokens=__a, **__a, ) _lowerCAmelCase : int = vocab_file _lowerCAmelCase : Dict = False if not self.vocab_file else True def snake_case__ ( self, __a, __a = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Optional[int] = [self.cls_token_id] _lowerCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : Dict = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__a): copyfile(self.vocab_file, __a) return (out_vocab_file,)
713
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
0
import math def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(a__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
714
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
0
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase_ ( UpperCamelCase__): def __init__( self, __a, __a, __a=1024, __a=1024, __a=3.6): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = tokenizer _lowerCAmelCase : Optional[int] = tokenizer.bos_token_id _lowerCAmelCase : int = dataset _lowerCAmelCase : int = seq_length _lowerCAmelCase : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = iter(self.dataset) _lowerCAmelCase : str = True while more_examples: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A)["content"]) buffer_len += len(buffer[-1]) except StopIteration: _lowerCAmelCase : int = False break _lowerCAmelCase : str = tokenizer(__A, truncation=__A)["input_ids"] _lowerCAmelCase : Optional[Any] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id]) for i in range(0, len(__A), self.seq_length): _lowerCAmelCase : Any = all_token_ids[i : i + self.seq_length] if len(__A) == self.seq_length: yield torch.tensor(__A) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {"streaming": True} _lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name , split="train" , **UpperCamelCase__ ) _lowerCAmelCase : str = ConstantLengthDataset(UpperCamelCase__ , UpperCamelCase__ , seq_length=args.seq_length ) _lowerCAmelCase : Optional[int] = DataLoader(UpperCamelCase__ , batch_size=args.batch_size ) return eval_dataloader def A ( _lowerCamelCase ): '''simple docstring''' model.eval() _lowerCAmelCase : Dict = [] for step, batch in enumerate(UpperCamelCase__ ): with torch.no_grad(): _lowerCAmelCase : int = model(UpperCamelCase__ , labels=UpperCamelCase__ ) _lowerCAmelCase : int = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(UpperCamelCase__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCAmelCase : Dict = torch.mean(torch.cat(UpperCamelCase__ ) ) try: _lowerCAmelCase : Tuple = torch.exp(UpperCamelCase__ ) except OverflowError: _lowerCAmelCase : List[Any] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator _snake_case = Accelerator() # Parse configuration _snake_case = HfArgumentParser(EvaluationArguments) _snake_case = parser.parse_args() set_seed(args.seed) # Logging _snake_case = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer _snake_case = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _snake_case = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _snake_case = create_dataloader(args) # Prepare everything with our `accelerator`. _snake_case, _snake_case = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") _snake_case, _snake_case = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
715
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _snake_case = logging.get_logger(__name__) @add_end_docstrings( __UpperCAmelCase , r'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class UpperCAmelCase_ ( __UpperCAmelCase): def snake_case__ ( self, __a): '''simple docstring''' if self.framework == "tf": _lowerCAmelCase : Union[str, Any] = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": _lowerCAmelCase : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=__SCREAMING_SNAKE_CASE) else: raise ValueError("Unsupported framework") return masked_index def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = self.get_masked_index(__SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[str] = np.prod(masked_index.shape) if numel < 1: raise PipelineException( "fill-mask", self.model.base_model_prefix, f"No mask_token ({self.tokenizer.mask_token}) found on the input", ) def snake_case__ ( self, __a): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE) def snake_case__ ( self, __a, __a=None, **__a): '''simple docstring''' if return_tensors is None: _lowerCAmelCase : Optional[int] = self.framework _lowerCAmelCase : Optional[int] = self.tokenizer(__SCREAMING_SNAKE_CASE, return_tensors=__SCREAMING_SNAKE_CASE) self.ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE) return model_inputs def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = self.model(**__SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[Any] = model_inputs["input_ids"] return model_outputs def snake_case__ ( self, __a, __a=5, __a=None): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: _lowerCAmelCase : Union[str, Any] = target_ids.shape[0] _lowerCAmelCase : Union[str, Any] = model_outputs["input_ids"][0] _lowerCAmelCase : Optional[Any] = model_outputs["logits"] if self.framework == "tf": _lowerCAmelCase : Optional[Any] = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] _lowerCAmelCase : Tuple = outputs.numpy() _lowerCAmelCase : Dict = outputs[0, masked_index, :] _lowerCAmelCase : List[Any] = stable_softmax(__SCREAMING_SNAKE_CASE, axis=-1) if target_ids is not None: _lowerCAmelCase : int = tf.gather_nd(tf.squeeze(__SCREAMING_SNAKE_CASE, 0), target_ids.reshape(-1, 1)) _lowerCAmelCase : Any = tf.expand_dims(__SCREAMING_SNAKE_CASE, 0) _lowerCAmelCase : str = tf.math.top_k(__SCREAMING_SNAKE_CASE, k=__SCREAMING_SNAKE_CASE) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = topk.values.numpy(), topk.indices.numpy() else: _lowerCAmelCase : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=__SCREAMING_SNAKE_CASE).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample _lowerCAmelCase : str = outputs[0, masked_index, :] _lowerCAmelCase : Optional[Any] = logits.softmax(dim=-1) if target_ids is not None: _lowerCAmelCase : Tuple = probs[..., target_ids] _lowerCAmelCase , _lowerCAmelCase : Dict = probs.topk(__SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[str] = [] _lowerCAmelCase : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist())): _lowerCAmelCase : Dict = [] for v, p in zip(_values, _predictions): # Copy is important since we're going to modify this array in place _lowerCAmelCase : Union[str, Any] = input_ids.numpy().copy() if target_ids is not None: _lowerCAmelCase : Optional[int] = target_ids[p].tolist() _lowerCAmelCase : int = p # Filter padding out: _lowerCAmelCase : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _lowerCAmelCase : int = self.tokenizer.decode(__SCREAMING_SNAKE_CASE, skip_special_tokens=__SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[Any] = {"score": v, "token": p, "token_str": self.tokenizer.decode([p]), "sequence": sequence} row.append(__SCREAMING_SNAKE_CASE) result.append(__SCREAMING_SNAKE_CASE) if single_mask: return result[0] return result def snake_case__ ( self, __a, __a=None): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE): _lowerCAmelCase : str = [targets] try: _lowerCAmelCase : Tuple = self.tokenizer.get_vocab() except Exception: _lowerCAmelCase : Tuple = {} _lowerCAmelCase : Union[str, Any] = [] for target in targets: _lowerCAmelCase : str = vocab.get(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) if id_ is None: _lowerCAmelCase : List[str] = self.tokenizer( __SCREAMING_SNAKE_CASE, add_special_tokens=__SCREAMING_SNAKE_CASE, return_attention_mask=__SCREAMING_SNAKE_CASE, return_token_type_ids=__SCREAMING_SNAKE_CASE, max_length=1, truncation=__SCREAMING_SNAKE_CASE, )["input_ids"] if len(__SCREAMING_SNAKE_CASE) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " "We cannot replace it with anything meaningful, ignoring it") continue _lowerCAmelCase : List[str] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.") target_ids.append(id_) _lowerCAmelCase : Tuple = list(set(__SCREAMING_SNAKE_CASE)) if len(__SCREAMING_SNAKE_CASE) == 0: raise ValueError("At least one target must be provided when passed.") _lowerCAmelCase : int = np.array(__SCREAMING_SNAKE_CASE) return target_ids def snake_case__ ( self, __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Tuple = {} if targets is not None: _lowerCAmelCase : int = self.get_target_ids(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) _lowerCAmelCase : str = target_ids if top_k is not None: _lowerCAmelCase : List[Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask", self.model.base_model_prefix, "The tokenizer does not define a `mask_token`.") return {}, {}, postprocess_params def __call__( self, __a, *__a, **__a): '''simple docstring''' _lowerCAmelCase : Optional[int] = super().__call__(__SCREAMING_SNAKE_CASE, **__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) and len(__SCREAMING_SNAKE_CASE) == 1: return outputs[0] return outputs
716
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
0
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _snake_case = { "Salesforce/codegen-350M-mono": 2048, } class UpperCAmelCase_ ( UpperCamelCase_): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] lowerCamelCase__ = CodeGenTokenizer def __init__( self, __a=None, __a=None, __a=None, __a="<|endoftext|>", __a="<|endoftext|>", __a="<|endoftext|>", __a=False, **__a, ): '''simple docstring''' super().__init__( __a, __a, tokenizer_file=__a, unk_token=__a, bos_token=__a, eos_token=__a, add_prefix_space=__a, **__a, ) if kwargs.pop("add_bos_token", __a): _lowerCAmelCase : List[Any] = kwargs.pop("name_or_path", "") raise ValueError( "Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly.") _lowerCAmelCase : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", __a) != add_prefix_space: _lowerCAmelCase : Dict = getattr(__a, pre_tok_state.pop("type")) _lowerCAmelCase : Dict = add_prefix_space _lowerCAmelCase : Any = pre_tok_class(**__a) _lowerCAmelCase : Any = add_prefix_space def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : List[str] = kwargs.get("is_split_into_words", __a) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__a, **__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : Tuple = kwargs.get("is_split_into_words", __a) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__a, **__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : int = self._tokenizer.model.save(__a, name=__a) return tuple(__a) def snake_case__ ( self, __a, __a = False, __a = None, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = super().decode( token_ids=__a, skip_special_tokens=__a, clean_up_tokenization_spaces=__a, **__a, ) if truncate_before_pattern is not None and len(__a) > 0: _lowerCAmelCase : Tuple = self.truncate(__a, __a) return decoded_text def snake_case__ ( self, __a, __a): '''simple docstring''' def find_re(__a, __a, __a): _lowerCAmelCase : List[Any] = pattern.search(__a, __a) return m.start() if m else -1 _lowerCAmelCase : Union[str, Any] = [re.compile(__a, re.MULTILINE) for pattern in truncate_before_pattern] _lowerCAmelCase : List[str] = list(re.finditer("^print", __a, re.MULTILINE)) if len(__a) > 1: _lowerCAmelCase : Tuple = completion[: prints[1].start()] _lowerCAmelCase : Dict = list(re.finditer("^def", __a, re.MULTILINE)) if len(__a) > 1: _lowerCAmelCase : Union[str, Any] = completion[: defs[1].start()] _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Optional[int] = [ pos for pos in [find_re(__a, __a, __a) for terminal in terminals] if pos != -1 ] if len(__a) > 0: return completion[: min(__a)] else: return completion
717
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import os def A ( _lowerCamelCase = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(_lowercase ) , _lowercase ) ) as input_file: _lowerCAmelCase : int = [ [int(_lowercase ) for element in line.split("," )] for line in input_file.readlines() ] _lowerCAmelCase : Tuple = len(_lowercase ) _lowerCAmelCase : Any = len(matrix[0] ) _lowerCAmelCase : str = [[-1 for _ in range(_lowercase )] for _ in range(_lowercase )] for i in range(_lowercase ): _lowerCAmelCase : Any = matrix[i][0] for j in range(1 , _lowercase ): for i in range(_lowercase ): _lowerCAmelCase : str = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _lowercase ): _lowerCAmelCase : Union[str, Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowerCAmelCase : Union[str, Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( __snake_case): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead.", _lowercase, ) super().__init__(*_lowercase, **_lowercase)
719
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
0
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if height >= 1: move_tower(height - 1 , lowercase_ , lowercase_ , lowercase_ ) move_disk(lowercase_ , lowercase_ ) move_tower(height - 1 , lowercase_ , lowercase_ , lowercase_ ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' print("moving disk from" , lowercase_ , "to" , lowercase_ ) def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(input("Height of hanoi: " ).strip() ) move_tower(lowercase_ , "A" , "B" , "C" ) if __name__ == "__main__": main()
720
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 16_000 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = int(round(sample_rate * max_length ) ) if len(lowerCAmelCase__ ) <= sample_length: return wav _lowerCAmelCase : Optional[int] = randint(0 , len(lowerCAmelCase__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Name of a dataset from the datasets package'}) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'A file containing the training audio paths and labels.'}) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'A file containing the validation audio paths and labels.'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) lowerCamelCase__ = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) lowerCamelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Name or path of preprocessor config.'}) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def snake_case__ ( self): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", _a, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`.") def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase : Tuple = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _lowerCAmelCase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. _lowerCAmelCase : Any = DatasetDict() _lowerCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. " "Make sure to set `--label_column_name` to the correct text column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _lowerCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _lowerCAmelCase : Any = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _lowerCAmelCase : List[Any] = feature_extractor.model_input_names[0] def train_transforms(_lowerCamelCase ): _lowerCAmelCase : int = [] for audio in batch[data_args.audio_column_name]: _lowerCAmelCase : Dict = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCAmelCase__ ) _lowerCAmelCase : List[str] = feature_extractor(lowerCAmelCase__ , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : Any = {model_input_name: inputs.get(lowerCAmelCase__ )} _lowerCAmelCase : Any = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_lowerCamelCase ): _lowerCAmelCase : Tuple = [audio["array"] for audio in batch[data_args.audio_column_name]] _lowerCAmelCase : int = feature_extractor(lowerCAmelCase__ , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : Dict = {model_input_name: inputs.get(lowerCAmelCase__ )} _lowerCAmelCase : int = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _lowerCAmelCase : str = raw_datasets["train"].features[data_args.label_column_name].names _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = {}, {} for i, label in enumerate(lowerCAmelCase__ ): _lowerCAmelCase : Tuple = str(lowerCAmelCase__ ) _lowerCAmelCase : List[str] = label # Load the accuracy metric from the datasets package _lowerCAmelCase : Dict = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase ): _lowerCAmelCase : List[str] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowerCAmelCase__ , references=eval_pred.label_ids ) _lowerCAmelCase : str = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase__ ) , labelaid=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Dict = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _lowerCAmelCase : Any = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCAmelCase__ , output_all_columns=lowerCAmelCase__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowerCAmelCase : int = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCAmelCase__ , output_all_columns=lowerCAmelCase__ ) # Initialize our trainer _lowerCAmelCase : Optional[Any] = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , ) # Training if training_args.do_train: _lowerCAmelCase : str = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase : int = last_checkpoint _lowerCAmelCase : int = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCAmelCase : Tuple = trainer.evaluate() trainer.log_metrics("eval" , lowerCAmelCase__ ) trainer.save_metrics("eval" , lowerCAmelCase__ ) # Write model card and (optionally) push to hub _lowerCAmelCase : Dict = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) if __name__ == "__main__": main()
721
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
0
from collections import defaultdict def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = first_str.lower().strip() _lowerCAmelCase : Tuple = second_str.lower().strip() # Remove whitespace _lowerCAmelCase : Optional[int] = first_str.replace(" " , "" ) _lowerCAmelCase : Optional[int] = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(_lowerCamelCase ) != len(_lowerCamelCase ): return False # Default values for count should be 0 _lowerCAmelCase : int = defaultdict(_lowerCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowerCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _snake_case = input("Enter the first string ").strip() _snake_case = input("Enter the second string ").strip() _snake_case = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
700
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( snake_case_): lowerCamelCase__ = """Speech2TextFeatureExtractor""" lowerCamelCase__ = """Speech2TextTokenizer""" def __init__( self, __a, __a): '''simple docstring''' super().__init__(__a, __a) _lowerCAmelCase : List[str] = self.feature_extractor _lowerCAmelCase : int = False def __call__( self, *__a, **__a): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__a, **__a) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") _lowerCAmelCase : List[Any] = kwargs.pop("raw_speech") else: _lowerCAmelCase : List[str] = kwargs.pop("audio", __a) _lowerCAmelCase : Optional[Any] = kwargs.pop("sampling_rate", __a) _lowerCAmelCase : str = kwargs.pop("text", __a) if len(__a) > 0: _lowerCAmelCase : str = args[0] _lowerCAmelCase : Any = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: _lowerCAmelCase : Any = self.feature_extractor(__a, *__a, sampling_rate=__a, **__a) if text is not None: _lowerCAmelCase : Union[str, Any] = self.tokenizer(__a, **__a) if text is None: return inputs elif audio is None: return encodings else: _lowerCAmelCase : Any = encodings["input_ids"] return inputs def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.batch_decode(*__a, **__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.decode(*__a, **__a) @contextmanager def snake_case__ ( self): '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") _lowerCAmelCase : Tuple = True _lowerCAmelCase : Dict = self.tokenizer yield _lowerCAmelCase : Dict = self.feature_extractor _lowerCAmelCase : Union[str, Any] = False
701
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase_ ( _UpperCAmelCase): lowerCamelCase__ = 0 lowerCamelCase__ = False lowerCamelCase__ = 3.0 class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(), {}) self.assertDictEqual(MockClass(a=2).to_kwargs(), {"a": 2}) self.assertDictEqual(MockClass(a=2, b=lowercase__).to_kwargs(), {"a": 2, "b": True}) self.assertDictEqual(MockClass(a=2, c=2.25).to_kwargs(), {"a": 2, "c": 2.25}) @require_cuda def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = GradScalerKwargs(init_scale=1024, growth_factor=2) AcceleratorState._reset_state() _lowerCAmelCase : List[Any] = Accelerator(mixed_precision="fp16", kwargs_handlers=[scaler_handler]) print(accelerator.use_fpaa) _lowerCAmelCase : List[str] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale, 1_024.0) self.assertEqual(scaler._growth_factor, 2.0) # Check the other values are at the default self.assertEqual(scaler._backoff_factor, 0.5) self.assertEqual(scaler._growth_interval, 2000) self.assertEqual(scaler._enabled, lowercase__) @require_multi_gpu def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__)] execute_subprocess_async(lowercase__, env=os.environ.copy()) if __name__ == "__main__": _snake_case = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) _snake_case = torch.nn.Linear(100, 200) _snake_case = accelerator.prepare(model) # Check the values changed in kwargs _snake_case = "" _snake_case = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
702
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self, __a, __a=12, __a=7, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a=0.1, __a=0.1, __a=512, __a=0.02, __a=0, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : List[str] = seq_length _lowerCAmelCase : str = is_training _lowerCAmelCase : List[str] = use_input_mask _lowerCAmelCase : Optional[int] = use_labels _lowerCAmelCase : Union[str, Any] = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[Any] = projection_dim _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Optional[Any] = dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[Any] = scope _lowerCAmelCase : List[Any] = bos_token_id def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: _lowerCAmelCase : Any = input_mask.numpy() _lowerCAmelCase : Optional[Any] = input_mask.shape _lowerCAmelCase : Union[str, Any] = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(__a): _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : str = self.get_config() return config, input_ids, tf.convert_to_tensor(__a) def snake_case__ ( self): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = TFBlipTextModel(config=__a) _lowerCAmelCase : Union[str, Any] = model(__a, attention_mask=__a, training=__a) _lowerCAmelCase : str = model(__a, training=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() _lowerCAmelCase : int = config_and_inputs _lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = (TFBlipTextModel,) if is_tf_available() else () lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = BlipTextModelTester(self) _lowerCAmelCase : Tuple = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFBlipTextModel.from_pretrained(__a) self.assertIsNotNone(__a) def snake_case__ ( self, __a=True): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=__a)
703
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( _lowerCamelCase , _lowerCamelCase=() , _lowerCamelCase=None , _lowerCamelCase="no" , _lowerCamelCase="29500" ): '''simple docstring''' _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): _lowerCAmelCase : Dict = True elif "IPython" in sys.modules: _lowerCAmelCase : Dict = 'google.colab' in str(sys.modules["IPython"].get_ipython() ) try: _lowerCAmelCase : Tuple = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" , __lowercase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: _lowerCAmelCase : List[Any] = 8 _lowerCAmelCase : Optional[int] = PrepareForLaunch(__lowercase , distributed_type="TPU" ) print(F"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__lowercase , args=__lowercase , nprocs=__lowercase , start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__lowercase ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__lowercase , master_addr="127.0.01" , master_port=__lowercase , mixed_precision=__lowercase ): _lowerCAmelCase : Tuple = PrepareForLaunch(__lowercase , distributed_type="MULTI_GPU" ) print(F"Launching training on {num_processes} GPUs." ) try: start_processes(__lowercase , args=__lowercase , nprocs=__lowercase , start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _lowerCAmelCase : Optional[Any] = '1' print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__lowercase ) def A ( _lowerCamelCase , _lowerCamelCase=() , _lowerCamelCase=2 ): '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__lowercase , master_addr="127.0.01" , master_port="29500" , accelerate_mixed_precision="no" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="yes" , ): _lowerCAmelCase : Any = PrepareForLaunch(__lowercase , debug=__lowercase ) start_processes(__lowercase , args=__lowercase , nprocs=__lowercase , start_method="fork" )
704
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
0
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCAmelCase_ ( __lowercase): def __init__( self, __a, __a = None, __a = None, __a = None, __a = False, __a = False, __a = None, __a = None, **__a, ): '''simple docstring''' super().__init__( _A, split=_A, features=_A, cache_dir=_A, keep_in_memory=_A, streaming=_A, num_proc=_A, **_A, ) _lowerCAmelCase : Any = field _lowerCAmelCase : Tuple = path_or_paths if isinstance(_A, _A) else {self.split: path_or_paths} _lowerCAmelCase : Dict = Json( cache_dir=_A, data_files=_A, features=_A, field=_A, **_A, ) def snake_case__ ( self): '''simple docstring''' if self.streaming: _lowerCAmelCase : str = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Any = None _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = None self.builder.download_and_prepare( download_config=_A, download_mode=_A, verification_mode=_A, base_path=_A, num_proc=self.num_proc, ) _lowerCAmelCase : List[Any] = self.builder.as_dataset( split=self.split, verification_mode=_A, in_memory=self.keep_in_memory) return dataset class UpperCAmelCase_ : def __init__( self, __a, __a, __a = None, __a = None, **__a, ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0.") _lowerCAmelCase : Dict = dataset _lowerCAmelCase : Union[str, Any] = path_or_buf _lowerCAmelCase : Union[str, Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCAmelCase : List[str] = num_proc _lowerCAmelCase : int = "utf-8" _lowerCAmelCase : Optional[int] = to_json_kwargs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.to_json_kwargs.pop("path_or_buf", _A) _lowerCAmelCase : Optional[int] = self.to_json_kwargs.pop("orient", "records") _lowerCAmelCase : Tuple = self.to_json_kwargs.pop("lines", True if orient == "records" else False) _lowerCAmelCase : Tuple = self.to_json_kwargs.pop("index", False if orient in ["split", "table"] else True) _lowerCAmelCase : List[Any] = self.to_json_kwargs.pop("compression", _A) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"`datasets` currently does not support {compression} compression") if isinstance(self.path_or_buf, (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf, "wb", compression=_A) as buffer: _lowerCAmelCase : List[Any] = self._write(file_obj=_A, orient=_A, lines=_A, index=_A, **self.to_json_kwargs) else: if compression: raise NotImplementedError( f"The compression parameter is not supported when writing to a buffer, but compression={compression}" " was passed. Please provide a local path instead.") _lowerCAmelCase : Optional[int] = self._write( file_obj=self.path_or_buf, orient=_A, lines=_A, index=_A, **self.to_json_kwargs) return written def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = args _lowerCAmelCase : Dict = query_table( table=self.dataset.data, key=slice(_A, offset + self.batch_size), indices=self.dataset._indices, ) _lowerCAmelCase : Optional[Any] = batch.to_pandas().to_json( path_or_buf=_A, orient=_A, lines=_A, index=_A, **_A) if not json_str.endswith("\n"): json_str += "\n" return json_str.encode(self.encoding) def snake_case__ ( self, __a, __a, __a, __a, **__a, ): '''simple docstring''' _lowerCAmelCase : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0, len(self.dataset), self.batch_size), unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating json from Arrow format", ): _lowerCAmelCase : int = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(_A) else: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json, [(offset, orient, lines, index, to_json_kwargs) for offset in range(0, _A, _A)], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating json from Arrow format", ): written += file_obj.write(_A) return written
705
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
0