code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = {"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
658
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
1
from __future__ import annotations _snake_case = "#" class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : dict = {} def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self._trie for char in text: if char not in trie: _lowerCAmelCase : List[Any] = {} _lowerCAmelCase : str = trie[char] _lowerCAmelCase : str = True def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self._trie for char in prefix: if char in trie: _lowerCAmelCase : List[Any] = trie[char] else: return [] return self._elements(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Dict = [] for c, v in d.items(): _lowerCAmelCase : List[Any] = [" "] if c == END else [(c + s) for s in self._elements(__a)] result.extend(__a) return tuple(__a) _snake_case = Trie() _snake_case = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = trie.find_word(_lowerCamelCase ) return tuple(string + word for word in suffixes ) def A ( ): '''simple docstring''' print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _lowerCAmelCase : str = "segformer.encoder." + key if key.startswith("backbone" ): _lowerCAmelCase : Tuple = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCAmelCase : List[Any] = key[key.find("patch_embed" ) + len("patch_embed" )] _lowerCAmelCase : Optional[int] = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(_lowerCamelCase )-1}" ) if "norm" in key: _lowerCAmelCase : Dict = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCAmelCase : Tuple = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _lowerCAmelCase : str = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(_lowerCamelCase )-1}" ) if "layer_norm1" in key: _lowerCAmelCase : List[str] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _lowerCAmelCase : Dict = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _lowerCAmelCase : Any = key[key.find("block" ) + len("block" )] _lowerCAmelCase : Dict = key.replace(F"block{idx}" , F"block.{int(_lowerCamelCase )-1}" ) if "attn.q" in key: _lowerCAmelCase : Union[str, Any] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _lowerCAmelCase : Any = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _lowerCAmelCase : Optional[int] = key.replace("attn" , "attention.self" ) if "fc1" in key: _lowerCAmelCase : List[str] = key.replace("fc1" , "dense1" ) if "fc2" in key: _lowerCAmelCase : Any = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _lowerCAmelCase : Optional[Any] = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _lowerCAmelCase : List[Any] = key.replace("linear_fuse.conv" , "linear_fuse" ) _lowerCAmelCase : Union[str, Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCAmelCase : List[str] = key[key.find("linear_c" ) + len("linear_c" )] _lowerCAmelCase : Optional[Any] = key.replace(F"linear_c{idx}" , F"linear_c.{int(_lowerCamelCase )-1}" ) if key.startswith("head" ): _lowerCAmelCase : Union[str, Any] = key.replace("head" , "classifier" ) _lowerCAmelCase : int = value return new_state_dict def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCAmelCase : Dict = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) _lowerCAmelCase : Union[str, Any] = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict _lowerCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _lowerCAmelCase : Tuple = kv_bias[: config.hidden_sizes[i]] _lowerCAmelCase : Tuple = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCAmelCase : Tuple = kv_bias[ config.hidden_sizes[i] : ] def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = SegformerConfig() _lowerCAmelCase : Optional[Any] = False # set attributes based on model_name _lowerCAmelCase : Tuple = "huggingface/label-files" if "segformer" in model_name: _lowerCAmelCase : Dict = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _lowerCAmelCase : Tuple = 150 _lowerCAmelCase : int = "ade20k-id2label.json" _lowerCAmelCase : Optional[int] = (1, 150, 128, 128) elif "city" in model_name: _lowerCAmelCase : Union[str, Any] = 19 _lowerCAmelCase : Any = "cityscapes-id2label.json" _lowerCAmelCase : List[str] = (1, 19, 128, 128) else: raise ValueError(F"Model {model_name} not supported" ) elif "mit" in model_name: _lowerCAmelCase : str = True _lowerCAmelCase : List[Any] = model_name[4:6] _lowerCAmelCase : Optional[Any] = 1_000 _lowerCAmelCase : int = "imagenet-1k-id2label.json" _lowerCAmelCase : List[str] = (1, 1_000) else: raise ValueError(F"Model {model_name} not supported" ) # set config attributes _lowerCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : str = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCAmelCase : str = [64, 128, 320, 512] _lowerCAmelCase : Optional[Any] = 256 elif size == "b2": _lowerCAmelCase : str = [64, 128, 320, 512] _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : Optional[Any] = [3, 4, 6, 3] elif size == "b3": _lowerCAmelCase : Tuple = [64, 128, 320, 512] _lowerCAmelCase : List[Any] = 768 _lowerCAmelCase : Optional[Any] = [3, 4, 18, 3] elif size == "b4": _lowerCAmelCase : List[str] = [64, 128, 320, 512] _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : Tuple = [3, 8, 27, 3] elif size == "b5": _lowerCAmelCase : int = [64, 128, 320, 512] _lowerCAmelCase : Dict = 768 _lowerCAmelCase : Optional[Any] = [3, 6, 40, 3] else: raise ValueError(F"Size {size} not supported" ) # load image processor (only resize + normalize) _lowerCAmelCase : Any = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) # prepare image _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : Tuple = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict if encoder_only: _lowerCAmelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) else: _lowerCAmelCase : List[Any] = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _lowerCAmelCase : Any = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCAmelCase : Any = False _lowerCAmelCase : List[str] = SegformerForImageClassification(_lowerCamelCase ) else: _lowerCAmelCase : Tuple = SegformerForSemanticSegmentation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass _lowerCAmelCase : List[str] = model(_lowerCamelCase ) _lowerCAmelCase : str = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCAmelCase : List[str] = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCAmelCase : Union[str, Any] = torch.tensor( [ [[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCAmelCase : Dict = torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCAmelCase : Union[str, Any] = torch.tensor( [ [[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCAmelCase : Optional[Any] = torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCAmelCase : List[Any] = torch.tensor( [ [[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCAmelCase : Any = torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCAmelCase : Union[str, Any] = torch.tensor( [ [[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]], [[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCAmelCase : Any = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCAmelCase : Optional[int] = torch.tensor( [ [[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCAmelCase : Dict = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCAmelCase : Tuple = torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCAmelCase : List[str] = torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCAmelCase : Optional[Any] = torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCAmelCase : str = torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]], ] ) else: _lowerCAmelCase : Optional[Any] = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _snake_case = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
658
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
1
def A ( _lowerCamelCase ): '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(_lowerCamelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
658
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
1
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _snake_case = "base_with_context" def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) _lowerCAmelCase : Any = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase : Optional[Any] = weights[F"layers_{lyr_num}"] _lowerCAmelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : Dict = ly_weight["attention"] _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) _lowerCAmelCase : str = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase : List[str] = weights[F"layers_{lyr_num}"] _lowerCAmelCase : List[Any] = ly_weight["attention"] _lowerCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCAmelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) _lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowerCAmelCase : List[Any] = weights[F"layers_{lyr_num}"] _lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) _lowerCAmelCase : int = ly_weight["self_attention"] _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : int = ly_weight["MultiHeadDotProductAttention_0"] _lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCAmelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowerCAmelCase : Optional[int] = jnp.tree_util.tree_map(onp.array , _lowerCamelCase ) _lowerCAmelCase : int = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] _lowerCAmelCase : Any = os.path.join(args.checkpoint_path , ".." , "config.gin" ) _lowerCAmelCase : Dict = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase ) _lowerCAmelCase : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) _lowerCAmelCase : List[str] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) _lowerCAmelCase : str = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) _lowerCAmelCase : Dict = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowerCAmelCase : List[str] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , _lowerCamelCase ) _lowerCAmelCase : int = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , _lowerCamelCase ) _lowerCAmelCase : List[str] = load_decoder(ta_checkpoint["target"]["decoder"] , _lowerCamelCase ) _lowerCAmelCase : List[str] = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) _lowerCAmelCase : int = SpectrogramDiffusionPipeline( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help="Path to the original jax model checkpoint.", ) _snake_case = parser.parse_args() main(args)
658
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'swin2sr' lowerCamelCase__ = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self, __a=64, __a=1, __a=3, __a=180, __a=[6, 6, 6, 6, 6, 6], __a=[6, 6, 6, 6, 6, 6], __a=8, __a=2.0, __a=True, __a=0.0, __a=0.0, __a=0.1, __a="gelu", __a=False, __a=0.02, __a=1E-5, __a=2, __a=1.0, __a="1conv", __a="pixelshuffle", **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : Dict = embed_dim _lowerCAmelCase : Dict = depths _lowerCAmelCase : Optional[int] = len(__a) _lowerCAmelCase : Tuple = num_heads _lowerCAmelCase : int = window_size _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Tuple = qkv_bias _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Optional[Any] = use_absolute_embeddings _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Dict = upscale _lowerCAmelCase : Optional[int] = img_range _lowerCAmelCase : str = resi_connection _lowerCAmelCase : Optional[int] = upsampler
658
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=2, __a=24, __a=16, __a=True, __a=True, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=10, __a=0.02, __a=None, __a=2, __a=2, ): '''simple docstring''' _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : int = max_length _lowerCAmelCase : str = num_mel_bins _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : List[str] = use_labels _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = type_sequence_label_size _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = scope _lowerCAmelCase : Any = frequency_stride _lowerCAmelCase : Optional[Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase : str = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _lowerCAmelCase : Optional[Any] = (self.max_length - self.patch_size) // self.time_stride + 1 _lowerCAmelCase : List[str] = frequency_out_dimension * time_out_dimension _lowerCAmelCase : Any = num_patches + 2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Any = self.get_config() return config, input_values, labels def snake_case__ ( self): '''simple docstring''' return ASTConfig( patch_size=self.patch_size, max_length=self.max_length, num_mel_bins=self.num_mel_bins, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__a, initializer_range=self.initializer_range, frequency_stride=self.frequency_stride, time_stride=self.time_stride, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = ASTModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : List[Any] = config_and_inputs _lowerCAmelCase : Union[str, Any] = {"input_values": input_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = ASTModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(__a) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) _lowerCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a, nn.Linear)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(__a) _lowerCAmelCase : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : int = ["input_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = ASTModel.from_pretrained(__a) self.assertIsNotNone(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = torchaudio.load(_lowerCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593") if is_torchaudio_available() else None ) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.default_feature_extractor _lowerCAmelCase : Optional[Any] = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593").to(__a) _lowerCAmelCase : Any = self.default_feature_extractor _lowerCAmelCase , _lowerCAmelCase : Dict = prepare_audio() _lowerCAmelCase : str = audio.squeeze().numpy() _lowerCAmelCase : str = feature_extractor(__a, sampling_rate=__a, return_tensors="pt").to(__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**__a) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 527)) self.assertEqual(outputs.logits.shape, __a) _lowerCAmelCase : List[Any] = torch.tensor([-0.8_760, -7.0_042, -8.6_602]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3], __a, atol=1E-4))
658
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
1
from __future__ import annotations from collections.abc import Callable def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 100 , ): '''simple docstring''' _lowerCAmelCase : Tuple = x_start _lowerCAmelCase : str = fnc(_lowerCamelCase ) _lowerCAmelCase : int = 0.0 for _ in range(_lowerCamelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area _lowerCAmelCase : Optional[int] = (x_end - x_start) / steps + xa _lowerCAmelCase : Tuple = fnc(_lowerCamelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _lowerCAmelCase : Dict = xa _lowerCAmelCase : Any = fxa return area if __name__ == "__main__": def A ( _lowerCamelCase ): '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") _snake_case = 10 while i <= 10_0000: print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
1
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=99, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=50, __a=0.02, __a=True, __a=None, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : int = seq_length _lowerCAmelCase : Dict = is_training _lowerCAmelCase : Tuple = use_input_mask _lowerCAmelCase : str = vocab_size _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : int = use_labels _lowerCAmelCase : Union[str, Any] = scope def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Dict = None if self.use_input_mask: _lowerCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Tuple = self.get_config() return config, input_ids, input_mask, token_labels def snake_case__ ( self): '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, is_decoder=__a, initializer_range=self.initializer_range, ) def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[int] = self.prepare_config_and_inputs() _lowerCAmelCase : int = True _lowerCAmelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case__ ( self, __a, __a, __a, __a, **__a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = BertGenerationEncoder(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[int] = model(__a, attention_mask=__a) _lowerCAmelCase : str = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = True _lowerCAmelCase : Dict = BertGenerationEncoder(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model( __a, attention_mask=__a, encoder_hidden_states=__a, encoder_attention_mask=__a, ) _lowerCAmelCase : List[str] = model( __a, attention_mask=__a, encoder_hidden_states=__a, ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Dict = BertGenerationDecoder(config=__a).to(__a).eval() # first forward pass _lowerCAmelCase : List[str] = model( __a, attention_mask=__a, encoder_hidden_states=__a, encoder_attention_mask=__a, use_cache=__a, ) _lowerCAmelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase : str = ids_tensor((self.batch_size, 3), config.vocab_size) _lowerCAmelCase : Tuple = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and _lowerCAmelCase : List[Any] = torch.cat([input_ids, next_tokens], dim=-1) _lowerCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask], dim=-1) _lowerCAmelCase : Optional[int] = model( __a, attention_mask=__a, encoder_hidden_states=__a, encoder_attention_mask=__a, output_hidden_states=__a, )["hidden_states"][0] _lowerCAmelCase : Optional[int] = model( __a, attention_mask=__a, encoder_hidden_states=__a, encoder_attention_mask=__a, past_key_values=__a, output_hidden_states=__a, )["hidden_states"][0] # select random slice _lowerCAmelCase : int = ids_tensor((1,), output_from_past.shape[-1]).item() _lowerCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a, __a, atol=1E-3)) def snake_case__ ( self, __a, __a, __a, __a, *__a, ): '''simple docstring''' _lowerCAmelCase : Dict = BertGenerationDecoder(__a) model.to(__a) model.eval() _lowerCAmelCase : Any = model(__a, attention_mask=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = self.prepare_config_and_inputs() _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , a , unittest.TestCase): lowerCamelCase__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowerCamelCase__ = (BertGenerationDecoder,) if is_torch_available() else () lowerCamelCase__ = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = BertGenerationEncoderTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : Optional[int] = "bert" self.model_tester.create_and_check_model(__a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__a) def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCAmelCase : str = None self.model_tester.create_and_check_model_as_decoder( __a, __a, __a, __a, __a, __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(__a) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") _lowerCAmelCase : Union[str, Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]]) with torch.no_grad(): _lowerCAmelCase : Any = model(__a)[0] _lowerCAmelCase : Any = torch.Size([1, 8, 1024]) self.assertEqual(output.shape, __a) _lowerCAmelCase : Dict = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3], __a, atol=1E-4)) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") _lowerCAmelCase : List[str] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]]) with torch.no_grad(): _lowerCAmelCase : List[str] = model(__a)[0] _lowerCAmelCase : str = torch.Size([1, 8, 5_0358]) self.assertEqual(output.shape, __a) _lowerCAmelCase : Optional[Any] = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]]) self.assertTrue(torch.allclose(output[:, :3, :3], __a, atol=1E-4))
658
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
1
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [True] * limit _lowerCAmelCase : List[Any] = False _lowerCAmelCase : List[Any] = False _lowerCAmelCase : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): _lowerCAmelCase : str = i * 2 while index < limit: _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : int = index + i _lowerCAmelCase : Tuple = [2] for i in range(3 , _lowerCamelCase , 2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : int = prime_sieve(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): for j in range(i + length , len(_lowerCamelCase ) ): _lowerCAmelCase : Union[str, Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _lowerCAmelCase : Any = j - i _lowerCAmelCase : Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
658
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
1
from sklearn.metrics import mean_squared_error import datasets _snake_case = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _snake_case = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _snake_case = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types()), reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ], ) def snake_case__ ( self): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float")), "references": datasets.Sequence(datasets.Value("float")), } else: return { "predictions": datasets.Value("float"), "references": datasets.Value("float"), } def snake_case__ ( self, __a, __a, __a=None, __a="uniform_average", __a=True): '''simple docstring''' _lowerCAmelCase : List[str] = mean_squared_error( __a, __a, sample_weight=__a, multioutput=__a, squared=__a) return {"mse": mse}
658
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
1
from __future__ import annotations def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : list[list[int]] = [] _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Dict = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) _snake_case = [3, 34, 4, 12, 5, 2] _snake_case = 9 _snake_case = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
658
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
from random import randint from tempfile import TemporaryFile import numpy as np def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = 0 if start < end: _lowerCAmelCase : int = randint(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[Any] = a[end] _lowerCAmelCase : List[str] = a[pivot] _lowerCAmelCase : Dict = temp _lowerCAmelCase , _lowerCAmelCase : str = _in_place_partition(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) count += _in_place_quick_sort(_lowerCamelCase , _lowerCamelCase , p - 1 ) count += _in_place_quick_sort(_lowerCamelCase , p + 1 , _lowerCamelCase ) return count def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = 0 _lowerCAmelCase : int = randint(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : int = a[end] _lowerCAmelCase : Optional[int] = a[pivot] _lowerCAmelCase : int = temp _lowerCAmelCase : Optional[int] = start - 1 for index in range(_lowerCamelCase , _lowerCamelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _lowerCAmelCase : str = new_pivot_index + 1 _lowerCAmelCase : Optional[int] = a[new_pivot_index] _lowerCAmelCase : Optional[int] = a[index] _lowerCAmelCase : Union[str, Any] = temp _lowerCAmelCase : List[Any] = a[new_pivot_index + 1] _lowerCAmelCase : Union[str, Any] = a[end] _lowerCAmelCase : Any = temp return new_pivot_index + 1, count _snake_case = TemporaryFile() _snake_case = 100 # 1000 elements are to be sorted _snake_case, _snake_case = 0, 1 # mean and standard deviation _snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _snake_case = np.load(outfile) _snake_case = len(M) - 1 _snake_case = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
658
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
1
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' return [ord(_lowerCamelCase ) - 96 for elem in plain] def A ( _lowerCamelCase ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = encode(input("-> " ).strip().lower() ) print("Encoded: " , _lowerCamelCase ) print("Decoded:" , decode(_lowerCamelCase ) ) if __name__ == "__main__": main()
658
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt"} _snake_case = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } _snake_case = { "YituTech/conv-bert-base": 512, "YituTech/conv-bert-medium-small": 512, "YituTech/conv-bert-small": 512, } _snake_case = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ConvBertTokenizer def __init__( self, __a=None, __a=None, __a=True, __a="[UNK]", __a="[SEP]", __a="[PAD]", __a="[CLS]", __a="[MASK]", __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( __a, tokenizer_file=__a, do_lower_case=__a, unk_token=__a, sep_token=__a, pad_token=__a, cls_token=__a, mask_token=__a, tokenize_chinese_chars=__a, strip_accents=__a, **__a, ) _lowerCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", __a) != do_lower_case or normalizer_state.get("strip_accents", __a) != strip_accents or normalizer_state.get("handle_chinese_chars", __a) != tokenize_chinese_chars ): _lowerCAmelCase : Union[str, Any] = getattr(__a, normalizer_state.pop("type")) _lowerCAmelCase : List[Any] = do_lower_case _lowerCAmelCase : Tuple = strip_accents _lowerCAmelCase : Tuple = tokenize_chinese_chars _lowerCAmelCase : List[str] = normalizer_class(**__a) _lowerCAmelCase : str = do_lower_case def snake_case__ ( self, __a, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : List[Any] = [self.sep_token_id] _lowerCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = self._tokenizer.model.save(__a, name=__a) return tuple(__a)
658
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
1
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
1
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F"{torch_layer} layer.weight does not match" _lowerCAmelCase : Optional[Any] = nn.Parameter(_lowerCamelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"{torch_layer} layer.bias does not match" _lowerCAmelCase : Dict = nn.Parameter(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = np.asarray(weights[0] ) _lowerCAmelCase : List[Any] = np.asarray(weights[1] ) _lowerCAmelCase : Optional[int] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowerCamelCase ).view(-1 , _lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.asarray(weights[0] ) _lowerCAmelCase : Any = np.asarray(weights[1] ) _lowerCAmelCase : List[str] = np.asarray(weights[2] ) _lowerCAmelCase : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCamelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowerCamelCase ).view(-1 , _lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = weights[0][0][0] _lowerCAmelCase : str = np.asarray(layer_norm_a[0] ) _lowerCAmelCase : Tuple = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_lowerCamelCase ) , torch.tensor(_lowerCamelCase ) , ) # lsh weights + output _lowerCAmelCase : str = weights[0][1] if len(_lowerCamelCase ) < 4: set_layer_weights_in_torch_lsh(_lowerCamelCase , torch_block.attention , _lowerCamelCase ) else: set_layer_weights_in_torch_local(_lowerCamelCase , torch_block.attention , _lowerCamelCase ) # intermediate weighs _lowerCAmelCase : List[str] = weights[2][0][1][2] # Chunked Feed Forward if len(_lowerCamelCase ) == 4: _lowerCAmelCase : Union[str, Any] = intermediate_weights[2] # layernorm 2 _lowerCAmelCase : Union[str, Any] = np.asarray(intermediate_weights[0][0] ) _lowerCAmelCase : int = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_lowerCamelCase ) , torch.tensor(_lowerCamelCase ) , ) # intermediate dense _lowerCAmelCase : List[Any] = np.asarray(intermediate_weights[1][0] ) _lowerCAmelCase : Optional[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowerCamelCase ) , ) # intermediate out _lowerCAmelCase : str = np.asarray(intermediate_weights[4][0] ) _lowerCAmelCase : Optional[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowerCamelCase ) , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch_model.reformer # word embeds _lowerCAmelCase : str = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_lowerCamelCase ) , ) if isinstance(weights[3] , _lowerCamelCase ): _lowerCAmelCase : Dict = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _lowerCAmelCase : Tuple = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"{position_embeddings[emb_idx]} emb does not match" _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.tensor(_lowerCamelCase ) ) _lowerCAmelCase : int = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _lowerCamelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _lowerCAmelCase : Dict = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # output layer norm _lowerCAmelCase : List[Any] = np.asarray(weights[7][0] ) _lowerCAmelCase : List[str] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_lowerCamelCase ) , torch.tensor(_lowerCamelCase ) , ) # output embeddings _lowerCAmelCase : str = np.asarray(weights[9][0] ) _lowerCAmelCase : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowerCamelCase ) , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ReformerConfig.from_json_file(_lowerCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) _lowerCAmelCase : str = ReformerModelWithLMHead(_lowerCamelCase ) with open(_lowerCamelCase , "rb" ) as f: _lowerCAmelCase : Any = pickle.load(_lowerCamelCase )["weights"] set_model_weights_in_torch(_lowerCamelCase , _lowerCamelCase , config.hidden_size ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
658
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
1
def A ( ): '''simple docstring''' return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] _snake_case = generate_large_matrix() _snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A ( _lowerCamelCase ): '''simple docstring''' assert all(row == sorted(_lowerCamelCase , reverse=_lowerCamelCase ) for row in grid ) assert all(list(_lowerCamelCase ) == sorted(_lowerCamelCase , reverse=_lowerCamelCase ) for col in zip(*_lowerCamelCase ) ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Any = len(_lowerCamelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowerCAmelCase : str = (left + right) // 2 _lowerCAmelCase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowerCAmelCase : Tuple = mid + 1 else: _lowerCAmelCase : int = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : str = len(grid[0] ) for i in range(len(_lowerCamelCase ) ): _lowerCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(_lowerCamelCase ) * len(grid[0] )) - total def A ( _lowerCamelCase ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 0 for row in grid: for i, number in enumerate(_lowerCamelCase ): if number < 0: total += len(_lowerCamelCase ) - i break return total def A ( ): '''simple docstring''' from timeit import timeit print("Running benchmarks" ) _lowerCAmelCase : List[Any] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowerCAmelCase : Dict = timeit(F"{func}(grid=grid)" , setup=_lowerCamelCase , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
658
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase : List[Any] = min(_lowerCamelCase ), max(_lowerCamelCase ) _lowerCAmelCase : List[str] = int(max_value - min_value ) + 1 _lowerCAmelCase : list[list] = [[] for _ in range(_lowerCamelCase )] for i in my_list: buckets[int(i - min_value )].append(_lowerCamelCase ) return [v for bucket in buckets for v in sorted(_lowerCamelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
658
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
1
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=64, __a=2, __a=3, __a=True, __a=True, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=10, __a=0.02, __a=[1, 16, 4, 4], __a=None, ): '''simple docstring''' _lowerCAmelCase : Any = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : Tuple = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : List[str] = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = type_sequence_label_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Optional[int] = scope _lowerCAmelCase : Union[str, Any] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _lowerCAmelCase : List[str] = (self.image_size // 32) ** 2 _lowerCAmelCase : Union[str, Any] = num_patches + 1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : List[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 16, 32], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__a, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__a, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = ViTHybridModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.type_sequence_label_size _lowerCAmelCase : Tuple = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : List[str] = model(__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ViTHybridModelTester(self) _lowerCAmelCase : int = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(__a) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) _lowerCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a, nn.Linear)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(__a) _lowerCAmelCase : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Union[str, Any] = _config_zero_init(__a) for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _lowerCAmelCase : List[Any] = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def snake_case__ ( self): '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Tuple = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _lowerCAmelCase : str = self.default_image_processor _lowerCAmelCase : str = prepare_img() _lowerCAmelCase : Dict = image_processor(images=__a, return_tensors="pt").to(__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**__a) # verify the logits _lowerCAmelCase : int = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, __a) _lowerCAmelCase : Any = torch.tensor([-1.9_090, -0.4_993, -0.2_389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3], __a, atol=1E-4)) @slow @require_accelerate def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384") _lowerCAmelCase : Optional[Any] = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384", device_map="auto") _lowerCAmelCase : List[str] = prepare_img() _lowerCAmelCase : int = image_processor(images=__a, return_tensors="pt") _lowerCAmelCase : str = model(**__a) _lowerCAmelCase : Dict = outputs.logits # model predicts one of the 1000 ImageNet classes _lowerCAmelCase : str = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx], "tabby, tabby cat")
658
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["LayoutLMv3FeatureExtractor"] _snake_case = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class UpperCAmelCase_ ( unittest.TestCase): @parameterized.expand([(None,), ("foo.json",)]) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = GenerationConfig( do_sample=__a, temperature=0.7, length_penalty=1.0, bad_words_ids=[[1, 2, 3], [4, 5]], ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a, config_name=__a) _lowerCAmelCase : Any = GenerationConfig.from_pretrained(__a, config_name=__a) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample, __a) self.assertEqual(loaded_config.temperature, 0.7) self.assertEqual(loaded_config.length_penalty, 1.0) self.assertEqual(loaded_config.bad_words_ids, [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k, 50) self.assertEqual(loaded_config.max_length, 20) self.assertEqual(loaded_config.max_time, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained("gpt2") _lowerCAmelCase : int = GenerationConfig.from_model_config(__a) _lowerCAmelCase : int = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__a, __a) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id, default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id, model_config.eos_token_id) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = GenerationConfig() _lowerCAmelCase : int = { "max_new_tokens": 1024, "foo": "bar", } _lowerCAmelCase : Dict = copy.deepcopy(__a) _lowerCAmelCase : List[Any] = generation_config.update(**__a) # update_kwargs was not modified (no side effects) self.assertEqual(__a, __a) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens, 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__a, {"foo": "bar"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = GenerationConfig() _lowerCAmelCase : Tuple = "bar" with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(__a) _lowerCAmelCase : Tuple = GenerationConfig.from_pretrained(__a) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo, "bar") _lowerCAmelCase : List[str] = GenerationConfig.from_model_config(__a) assert not hasattr(__a, "foo") # no new kwargs should be initialized if from config def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature, 1.0) self.assertEqual(default_config.do_sample, __a) self.assertEqual(default_config.num_beams, 1) _lowerCAmelCase : Any = GenerationConfig( do_sample=__a, temperature=0.7, length_penalty=1.0, bad_words_ids=[[1, 2, 3], [4, 5]], ) self.assertEqual(config.temperature, 0.7) self.assertEqual(config.do_sample, __a) self.assertEqual(config.num_beams, 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a) _lowerCAmelCase : Union[str, Any] = GenerationConfig.from_pretrained(__a, temperature=1.0) self.assertEqual(loaded_config.temperature, 1.0) self.assertEqual(loaded_config.do_sample, __a) self.assertEqual(loaded_config.num_beams, 1) # default value @is_staging_test class UpperCAmelCase_ ( unittest.TestCase): @classmethod def snake_case__ ( cls): '''simple docstring''' _lowerCAmelCase : Dict = TOKEN HfFolder.save_token(__a) @classmethod def snake_case__ ( cls): '''simple docstring''' try: delete_repo(token=cls._token, repo_id="test-generation-config") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-generation-config-org") except HTTPError: pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = GenerationConfig( do_sample=__a, temperature=0.7, length_penalty=1.0, ) config.push_to_hub("test-generation-config", use_auth_token=self._token) _lowerCAmelCase : str = GenerationConfig.from_pretrained(f"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a, getattr(__a, __a)) # Reset repo delete_repo(token=self._token, repo_id="test-generation-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a, repo_id="test-generation-config", push_to_hub=__a, use_auth_token=self._token) _lowerCAmelCase : Tuple = GenerationConfig.from_pretrained(f"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a, getattr(__a, __a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = GenerationConfig( do_sample=__a, temperature=0.7, length_penalty=1.0, ) config.push_to_hub("valid_org/test-generation-config-org", use_auth_token=self._token) _lowerCAmelCase : List[Any] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a, getattr(__a, __a)) # Reset repo delete_repo(token=self._token, repo_id="valid_org/test-generation-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a, repo_id="valid_org/test-generation-config-org", push_to_hub=__a, use_auth_token=self._token) _lowerCAmelCase : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a, getattr(__a, __a))
658
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
658
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
1
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, "models/bert/")) _lowerCAmelCase : Tuple = self.transformer_dir shutil.copy( os.path.join(__a, "src/transformers/models/bert/modeling_bert.py"), os.path.join(self.transformer_dir, "models/bert/modeling_bert.py"), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = "src/transformers" shutil.rmtree(self.transformer_dir) def snake_case__ ( self, __a, __a, __a, __a=None): '''simple docstring''' _lowerCAmelCase : int = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: _lowerCAmelCase : int = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result _lowerCAmelCase : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119) _lowerCAmelCase : List[str] = black.format_str(__a, mode=__a) _lowerCAmelCase : Optional[Any] = os.path.join(self.transformer_dir, "new_code.py") with open(__a, "w", newline="\n") as f: f.write(__a) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__a)) == 0) else: check_copies.is_copy_consistent(f.name, overwrite=__a) with open(__a, "r") as f: self.assertTrue(f.read(), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead") self.assertEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead", "BertLMPredictionHead", REFERENCE_CODE + "\n", ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead", "BertLMPredictionHead", __a, ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel", "TestModelLMPredictionHead", re.sub("Bert", "TestModel", __a), ) # Copy consistency with a really long name _lowerCAmelCase : int = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}", f"{long_class_name}LMPredictionHead", re.sub("Bert", __a, __a), ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel", "TestModelLMPredictionHead", __a, overwrite_result=re.sub("Bert", "TestModel", __a), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = check_copies.LOCALIZED_READMES["README_zh-hans.md"] _lowerCAmelCase : List[str] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) _lowerCAmelCase : Any = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _lowerCAmelCase : Tuple = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = check_copies.convert_to_localized_md( __a, __a, localized_readme["format_model_list"]) self.assertFalse(__a) self.assertEqual(__a, __a) _lowerCAmelCase , _lowerCAmelCase : str = check_copies.convert_to_localized_md( __a, __a, localized_readme["format_model_list"]) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__a) _lowerCAmelCase : int = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) _lowerCAmelCase : Optional[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _lowerCAmelCase : Dict = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _lowerCAmelCase , _lowerCAmelCase : Tuple = check_copies.convert_to_localized_md( __a, __a, localized_readme["format_model_list"]) # Check if the model link is synchronized. self.assertEqual(__a, __a)
658
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
1
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function" ) _lowerCAmelCase : Optional[Any] = hex_num[0] == "-" if is_negative: _lowerCAmelCase : List[str] = hex_num[1:] try: _lowerCAmelCase : Tuple = int(_lowerCamelCase , 16 ) except ValueError: raise ValueError("Invalid value was passed to the function" ) _lowerCAmelCase : List[Any] = "" while int_num > 0: _lowerCAmelCase : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
658
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _snake_case = False class UpperCAmelCase_ ( unittest.TestCase): pass @nightly @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion") # remove text_unet pipe.remove_unused_weights() pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : str = "A painting of a squirrel eating a burger " _lowerCAmelCase : Optional[Any] = torch.manual_seed(0) _lowerCAmelCase : Any = pipe( prompt=__a, generator=__a, guidance_scale=7.5, num_inference_steps=2, output_type="numpy").images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__a) _lowerCAmelCase : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained(__a) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : List[str] = generator.manual_seed(0) _lowerCAmelCase : Any = pipe( prompt=__a, generator=__a, guidance_scale=7.5, num_inference_steps=2, output_type="numpy").images assert np.abs(image - new_image).sum() < 1E-5, "Models don't have the same forward pass" def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion", torch_dtype=torch.floataa) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[Any] = "A painting of a squirrel eating a burger " _lowerCAmelCase : List[Any] = torch.manual_seed(0) _lowerCAmelCase : Union[str, Any] = pipe( prompt=__a, generator=__a, guidance_scale=7.5, num_inference_steps=50, output_type="numpy").images _lowerCAmelCase : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Optional[Any] = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
658
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( a): def __init__( self, __a, __a, __a, __a = None, ): '''simple docstring''' super().__init__() self.register_modules(transformer=__a, vae=__a, scheduler=__a) # create a imagenet -> id dictionary for easier use _lowerCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(","): _lowerCAmelCase : Optional[int] = int(__a) _lowerCAmelCase : Union[str, Any] = dict(sorted(self.labels.items())) def snake_case__ ( self, __a): '''simple docstring''' if not isinstance(__a, __a): _lowerCAmelCase : int = list(__a) for l in label: if l not in self.labels: raise ValueError( f"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self, __a, __a = 4.0, __a = None, __a = 50, __a = "pil", __a = True, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = len(__a) _lowerCAmelCase : Optional[int] = self.transformer.config.sample_size _lowerCAmelCase : int = self.transformer.config.in_channels _lowerCAmelCase : List[str] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size), generator=__a, device=self.device, dtype=self.transformer.dtype, ) _lowerCAmelCase : Union[str, Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents _lowerCAmelCase : List[str] = torch.tensor(__a, device=self.device).reshape(-1) _lowerCAmelCase : Optional[int] = torch.tensor([1000] * batch_size, device=self.device) _lowerCAmelCase : List[str] = torch.cat([class_labels, class_null], 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__a) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: _lowerCAmelCase : Any = latent_model_input[: len(__a) // 2] _lowerCAmelCase : Optional[Any] = torch.cat([half, half], dim=0) _lowerCAmelCase : Tuple = self.scheduler.scale_model_input(__a, __a) _lowerCAmelCase : str = t if not torch.is_tensor(__a): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _lowerCAmelCase : List[Any] = latent_model_input.device.type == "mps" if isinstance(__a, __a): _lowerCAmelCase : str = torch.floataa if is_mps else torch.floataa else: _lowerCAmelCase : List[Any] = torch.intaa if is_mps else torch.intaa _lowerCAmelCase : Tuple = torch.tensor([timesteps], dtype=__a, device=latent_model_input.device) elif len(timesteps.shape) == 0: _lowerCAmelCase : Dict = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Tuple = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output _lowerCAmelCase : Union[str, Any] = self.transformer( __a, timestep=__a, class_labels=__a).sample # perform guidance if guidance_scale > 1: _lowerCAmelCase , _lowerCAmelCase : Any = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = torch.split(__a, len(__a) // 2, dim=0) _lowerCAmelCase : Any = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _lowerCAmelCase : Optional[Any] = torch.cat([half_eps, half_eps], dim=0) _lowerCAmelCase : Optional[int] = torch.cat([eps, rest], dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = torch.split(__a, __a, dim=1) else: _lowerCAmelCase : Optional[int] = noise_pred # compute previous image: x_t -> x_t-1 _lowerCAmelCase : Dict = self.scheduler.step(__a, __a, __a).prev_sample if guidance_scale > 1: _lowerCAmelCase , _lowerCAmelCase : Dict = latent_model_input.chunk(2, dim=0) else: _lowerCAmelCase : Dict = latent_model_input _lowerCAmelCase : Optional[int] = 1 / self.vae.config.scaling_factor * latents _lowerCAmelCase : Any = self.vae.decode(__a).sample _lowerCAmelCase : List[Any] = (samples / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase : Optional[Any] = samples.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": _lowerCAmelCase : Optional[int] = self.numpy_to_pil(__a) if not return_dict: return (samples,) return ImagePipelineOutput(images=__a)
658
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } _snake_case = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } _snake_case = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = SqueezeBertTokenizer def __init__( self, __a=None, __a=None, __a=True, __a="[UNK]", __a="[SEP]", __a="[PAD]", __a="[CLS]", __a="[MASK]", __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( __a, tokenizer_file=__a, do_lower_case=__a, unk_token=__a, sep_token=__a, pad_token=__a, cls_token=__a, mask_token=__a, tokenize_chinese_chars=__a, strip_accents=__a, **__a, ) _lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", __a) != do_lower_case or normalizer_state.get("strip_accents", __a) != strip_accents or normalizer_state.get("handle_chinese_chars", __a) != tokenize_chinese_chars ): _lowerCAmelCase : Tuple = getattr(__a, normalizer_state.pop("type")) _lowerCAmelCase : str = do_lower_case _lowerCAmelCase : List[str] = strip_accents _lowerCAmelCase : Tuple = tokenize_chinese_chars _lowerCAmelCase : str = normalizer_class(**__a) _lowerCAmelCase : Tuple = do_lower_case def snake_case__ ( self, __a, __a=None): '''simple docstring''' _lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : int = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Any = self._tokenizer.model.save(__a, name=__a) return tuple(__a)
658
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
1
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _enforce_args(_lowerCamelCase , _lowerCamelCase ) if n == 0: return 0 _lowerCAmelCase : Optional[Any] = float("-inf" ) for i in range(1 , n + 1 ): _lowerCAmelCase : int = max( _lowerCamelCase , prices[i - 1] + naive_cut_rod_recursive(n - i , _lowerCamelCase ) ) return max_revue def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _enforce_args(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCAmelCase : Optional[int] = float("-inf" ) for i in range(1 , n + 1 ): _lowerCAmelCase : List[Any] = max( _lowerCamelCase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[Any] = max_revenue return max_rev[n] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _enforce_args(_lowerCamelCase , _lowerCamelCase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCAmelCase : Tuple = [float("-inf" ) for _ in range(n + 1 )] _lowerCAmelCase : str = 0 for i in range(1 , n + 1 ): _lowerCAmelCase : Optional[int] = max_rev[i] for j in range(1 , i + 1 ): _lowerCAmelCase : Union[str, Any] = max(_lowerCamelCase , prices[j - 1] + max_rev[i - j] ) _lowerCAmelCase : Tuple = max_revenue_i return max_rev[n] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if n < 0: _lowerCAmelCase : int = F"n must be greater than or equal to 0. Got n = {n}" raise ValueError(_lowerCamelCase ) if n > len(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = ( "Each integral piece of rod must have a corresponding price. " F"Got n = {n} but length of prices = {len(_lowerCamelCase )}" ) raise ValueError(_lowerCamelCase ) def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = [6, 10, 12, 15, 20, 23] _lowerCAmelCase : Any = len(_lowerCamelCase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCAmelCase : int = 36 _lowerCAmelCase : Any = top_down_cut_rod(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[Any] = bottom_up_cut_rod(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = naive_cut_rod_recursive(_lowerCamelCase , _lowerCamelCase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _snake_case = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def A ( _lowerCamelCase ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return max(metric_fn(_lowerCamelCase , _lowerCamelCase ) for gt in ground_truths ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [line.strip() for line in open(_lowerCamelCase , "r" ).readlines()] _lowerCAmelCase : Optional[Any] = [] if args.gold_data_mode == "qa": _lowerCAmelCase : str = pd.read_csv(_lowerCamelCase , sep="\t" , header=_lowerCamelCase ) for answer_list in data[1]: _lowerCAmelCase : List[Any] = ast.literal_eval(_lowerCamelCase ) answers.append(_lowerCamelCase ) else: _lowerCAmelCase : Optional[int] = [line.strip() for line in open(_lowerCamelCase , "r" ).readlines()] _lowerCAmelCase : List[Any] = [[reference] for reference in references] _lowerCAmelCase : List[str] = 0 for prediction, ground_truths in zip(_lowerCamelCase , _lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) fa += metric_max_over_ground_truths(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = 1_00.0 * em / total _lowerCAmelCase : Any = 1_00.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = args.k _lowerCAmelCase : Union[str, Any] = [line.strip() for line in open(_lowerCamelCase , "r" ).readlines()] _lowerCAmelCase : Optional[int] = [line.strip() for line in open(_lowerCamelCase , "r" ).readlines()] _lowerCAmelCase : List[str] = 0 for hypo, reference in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Dict = set(hypo.split("\t" )[:k] ) _lowerCAmelCase : str = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCAmelCase : str = 1_00.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def strip_title(_lowerCamelCase ): if title.startswith("\"" ): _lowerCAmelCase : Any = title[1:] if title.endswith("\"" ): _lowerCAmelCase : Any = title[:-1] return title _lowerCAmelCase : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCamelCase , return_tensors="pt" , padding=_lowerCamelCase , truncation=_lowerCamelCase , )["input_ids"].to(args.device ) _lowerCAmelCase : int = rag_model.rag.question_encoder(_lowerCamelCase ) _lowerCAmelCase : List[Any] = question_enc_outputs[0] _lowerCAmelCase : Any = rag_model.retriever( _lowerCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) _lowerCAmelCase : int = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCAmelCase : Tuple = [] for docs in all_docs: _lowerCAmelCase : str = [strip_title(_lowerCamelCase ) for title in docs["title"]] provenance_strings.append("\t".join(_lowerCamelCase ) ) return provenance_strings def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCamelCase , return_tensors="pt" , padding=_lowerCamelCase , truncation=_lowerCamelCase ) _lowerCAmelCase : Any = inputs_dict.input_ids.to(args.device ) _lowerCAmelCase : Optional[int] = inputs_dict.attention_mask.to(args.device ) _lowerCAmelCase : Tuple = rag_model.generate( # rag_model overwrites generate _lowerCamelCase , attention_mask=_lowerCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowerCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCAmelCase : Dict = rag_model.retriever.generator_tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) if args.print_predictions: for q, a in zip(_lowerCamelCase , _lowerCamelCase ): logger.info("Q: {} - A: {}".format(_lowerCamelCase , _lowerCamelCase ) ) return answers def A ( ): '''simple docstring''' _lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=_lowerCamelCase , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=_lowerCamelCase , choices=["exact", "compressed", "legacy"] , type=_lowerCamelCase , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=_lowerCamelCase , type=_lowerCamelCase , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=_lowerCamelCase , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=_lowerCamelCase , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=_lowerCamelCase , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=_lowerCamelCase , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=_lowerCamelCase , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=_lowerCamelCase , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=_lowerCamelCase , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=_lowerCamelCase , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=_lowerCamelCase , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() _lowerCAmelCase : int = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = {} if args.model_type is None: _lowerCAmelCase : Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): _lowerCAmelCase : Tuple = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration _lowerCAmelCase : Any = args.n_docs if args.index_name is not None: _lowerCAmelCase : Optional[Any] = args.index_name if args.index_path is not None: _lowerCAmelCase : List[Any] = args.index_path else: _lowerCAmelCase : List[Any] = BartForConditionalGeneration _lowerCAmelCase : Union[str, Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , _lowerCamelCase ) _lowerCAmelCase : str = get_scores if args.eval_mode == "e2e" else get_precision_at_k _lowerCAmelCase : int = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(_lowerCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(_lowerCamelCase ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): _lowerCAmelCase : Optional[Any] = RagRetriever.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = model_class.from_pretrained(_lowerCamelCase , retriever=_lowerCamelCase , **_lowerCamelCase ) model.retriever.init_retrieval() else: _lowerCAmelCase : str = model_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: _lowerCAmelCase : Optional[Any] = [] for line in tqdm(_lowerCamelCase ): questions.append(line.strip() ) if len(_lowerCamelCase ) == args.eval_batch_size: _lowerCAmelCase : Any = evaluate_batch_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) preds_file.write("\n".join(_lowerCamelCase ) + "\n" ) preds_file.flush() _lowerCAmelCase : Dict = [] if len(_lowerCamelCase ) > 0: _lowerCAmelCase : Optional[int] = evaluate_batch_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) preds_file.write("\n".join(_lowerCamelCase ) ) preds_file.flush() score_fn(_lowerCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _snake_case = get_args() main(args)
658
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
1
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: _lowerCAmelCase : List[str] = _modexpt(_lowerCamelCase , exponent // 2 , _lowerCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_lowerCamelCase , exponent - 1 , _lowerCamelCase )) % modulo_value def A ( _lowerCamelCase = 1_777 , _lowerCamelCase = 1_855 , _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = base for _ in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[str] = _modexpt(_lowerCamelCase , _lowerCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
658
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
1
from math import ceil def A ( _lowerCamelCase = 1_001 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): _lowerCAmelCase : Dict = 2 * i + 1 _lowerCAmelCase : Optional[int] = 2 * i _lowerCAmelCase : List[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _snake_case = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
658
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
1
import argparse from collections import defaultdict import yaml _snake_case = "docs/source/en/_toctree.yml" def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = defaultdict(_lowerCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 _lowerCAmelCase : List[str] = [key for key, value in counts.items() if value > 1] _lowerCAmelCase : Union[str, Any] = [] for duplicate_key in duplicates: _lowerCAmelCase : List[str] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(_lowerCamelCase ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : s["title"].lower() ) def A ( _lowerCamelCase=False ): '''simple docstring''' with open(_lowerCamelCase , encoding="utf-8" ) as f: _lowerCAmelCase : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase : Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase : Dict = content[api_idx]["sections"] # Then to the model doc _lowerCAmelCase : Optional[int] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _lowerCAmelCase : Optional[Any] = api_doc[model_idx]["sections"] _lowerCAmelCase : Optional[int] = [(idx, section) for idx, section in enumerate(_lowerCamelCase ) if "sections" in section] _lowerCAmelCase : Optional[Any] = False for idx, modality_doc in modalities_docs: _lowerCAmelCase : Tuple = modality_doc["sections"] _lowerCAmelCase : Optional[Any] = clean_model_doc_toc(_lowerCamelCase ) if old_modality_doc != new_modality_doc: _lowerCAmelCase : int = True if overwrite: _lowerCAmelCase : Any = new_modality_doc if diff: if overwrite: _lowerCAmelCase : Union[str, Any] = model_doc _lowerCAmelCase : List[str] = api_doc with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(_lowerCamelCase , allow_unicode=_lowerCamelCase ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _snake_case = parser.parse_args() check_model_doc(args.fix_and_overwrite)
658
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _snake_case = logging.get_logger(__name__) _snake_case = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'bloom' lowerCamelCase__ = ['past_key_values'] lowerCamelCase__ = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self, __a=25_0880, __a=64, __a=2, __a=8, __a=1E-5, __a=0.02, __a=True, __a=1, __a=2, __a=False, __a=0.0, __a=0.0, __a=1, __a=False, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase : Tuple = kwargs.pop("n_embed", __a) _lowerCAmelCase : List[str] = hidden_size if n_embed is None else n_embed _lowerCAmelCase : Any = n_layer _lowerCAmelCase : Dict = n_head _lowerCAmelCase : List[str] = layer_norm_epsilon _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Optional[int] = use_cache _lowerCAmelCase : Tuple = pretraining_tp _lowerCAmelCase : Optional[Any] = apply_residual_connection_post_layernorm _lowerCAmelCase : Optional[int] = hidden_dropout _lowerCAmelCase : str = attention_dropout _lowerCAmelCase : Optional[int] = bos_token_id _lowerCAmelCase : str = eos_token_id _lowerCAmelCase : int = slow_but_exact super().__init__(bos_token_id=__a, eos_token_id=__a, **__a) class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.12') def __init__( self, __a, __a = "default", __a = None, __a = False, ): '''simple docstring''' super().__init__(__a, task=__a, patching_specs=__a, use_past=__a) if not getattr(self._config, "pad_token_id", __a): # TODO: how to do that better? _lowerCAmelCase : str = 0 @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__a, direction="inputs", inverted_values_shape=__a) _lowerCAmelCase : Optional[int] = {0: "batch", 1: "past_sequence + sequence"} else: _lowerCAmelCase : List[str] = {0: "batch", 1: "sequence"} return common_inputs @property def snake_case__ ( self): '''simple docstring''' return self._config.n_layer @property def snake_case__ ( self): '''simple docstring''' return self._config.n_head @property def snake_case__ ( self): '''simple docstring''' return 1E-3 def snake_case__ ( self, __a, __a = -1, __a = -1, __a = False, __a = None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = super(__a, self).generate_dummy_inputs( __a, batch_size=__a, seq_length=__a, is_pair=__a, framework=__a) # We need to order the input in the way they appears in the forward() _lowerCAmelCase : List[Any] = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch _lowerCAmelCase , _lowerCAmelCase : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase : Union[str, Any] = seqlen + 2 _lowerCAmelCase : Any = self._config.hidden_size // self.num_attention_heads _lowerCAmelCase : Tuple = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _lowerCAmelCase : str = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _lowerCAmelCase : Optional[Any] = [ (torch.zeros(__a), torch.zeros(__a)) for _ in range(self.num_layers) ] _lowerCAmelCase : Dict = common_inputs["attention_mask"] if self.use_past: _lowerCAmelCase : List[str] = ordered_inputs["attention_mask"].dtype _lowerCAmelCase : Optional[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__a, __a, dtype=__a)], dim=1) return ordered_inputs @property def snake_case__ ( self): '''simple docstring''' return 13
658
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return params[F"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="attention" ): '''simple docstring''' _lowerCAmelCase : Dict = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) _lowerCAmelCase : Tuple = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _lowerCAmelCase : Optional[int] = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) _lowerCAmelCase : Union[str, Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _lowerCAmelCase : Optional[Any] = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) _lowerCAmelCase : int = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _lowerCAmelCase : Tuple = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) _lowerCAmelCase : List[str] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' if split_mlp_wi: _lowerCAmelCase : List[str] = params[F"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] _lowerCAmelCase : int = params[F"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] _lowerCAmelCase : Dict = (wi_a, wi_a) else: _lowerCAmelCase : List[Any] = params[F"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] _lowerCAmelCase : Optional[Any] = params[F"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return params[F"{prefix}/{prefix}/{layer_name}/scale"][:, i] def A ( _lowerCamelCase , *, _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ): '''simple docstring''' _lowerCAmelCase : List[str] = traverse_util.flatten_dict(variables["target"] ) _lowerCAmelCase : List[str] = {"/".join(_lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _lowerCAmelCase : int = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , _lowerCamelCase ) _lowerCAmelCase : List[str] = collections.OrderedDict() # Shared embeddings. _lowerCAmelCase : Dict = old["token_embedder/embedding"] # Encoder. for i in range(_lowerCamelCase ): # Block i, layer 0 (Self Attention). _lowerCAmelCase : int = tax_layer_norm_lookup(_lowerCamelCase , _lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = tax_attention_lookup(_lowerCamelCase , _lowerCamelCase , "encoder" , "attention" ) _lowerCAmelCase : Union[str, Any] = layer_norm _lowerCAmelCase : Optional[Any] = k.T _lowerCAmelCase : Tuple = o.T _lowerCAmelCase : Tuple = q.T _lowerCAmelCase : int = v.T # Block i, layer 1 (MLP). _lowerCAmelCase : Any = tax_layer_norm_lookup(_lowerCamelCase , _lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = tax_mlp_lookup(_lowerCamelCase , _lowerCamelCase , "encoder" , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = layer_norm if split_mlp_wi: _lowerCAmelCase : Dict = wi[0].T _lowerCAmelCase : str = wi[1].T else: _lowerCAmelCase : Optional[int] = wi.T _lowerCAmelCase : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _lowerCAmelCase : Any = tax_relpos_bias_lookup( _lowerCamelCase , _lowerCamelCase , "encoder" ).T _lowerCAmelCase : Optional[int] = old["encoder/encoder_norm/scale"] if not scalable_attention: _lowerCAmelCase : Any = tax_relpos_bias_lookup( _lowerCamelCase , 0 , "encoder" ).T _lowerCAmelCase : int = tax_relpos_bias_lookup( _lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(_lowerCamelCase ): # Block i, layer 0 (Self Attention). _lowerCAmelCase : Dict = tax_layer_norm_lookup(_lowerCamelCase , _lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = tax_attention_lookup(_lowerCamelCase , _lowerCamelCase , "decoder" , "self_attention" ) _lowerCAmelCase : List[str] = layer_norm _lowerCAmelCase : List[str] = k.T _lowerCAmelCase : Tuple = o.T _lowerCAmelCase : Optional[Any] = q.T _lowerCAmelCase : Any = v.T # Block i, layer 1 (Cross Attention). _lowerCAmelCase : List[str] = tax_layer_norm_lookup(_lowerCamelCase , _lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = tax_attention_lookup(_lowerCamelCase , _lowerCamelCase , "decoder" , "encoder_decoder_attention" ) _lowerCAmelCase : Any = layer_norm _lowerCAmelCase : List[str] = k.T _lowerCAmelCase : Dict = o.T _lowerCAmelCase : Dict = q.T _lowerCAmelCase : str = v.T # Block i, layer 2 (MLP). _lowerCAmelCase : Optional[int] = tax_layer_norm_lookup(_lowerCamelCase , _lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = tax_mlp_lookup(_lowerCamelCase , _lowerCamelCase , "decoder" , _lowerCamelCase ) _lowerCAmelCase : str = layer_norm if split_mlp_wi: _lowerCAmelCase : List[Any] = wi[0].T _lowerCAmelCase : int = wi[1].T else: _lowerCAmelCase : Any = wi.T _lowerCAmelCase : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _lowerCAmelCase : int = tax_relpos_bias_lookup(_lowerCamelCase , _lowerCamelCase , "decoder" ).T _lowerCAmelCase : Optional[Any] = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _lowerCAmelCase : List[str] = old["decoder/logits_dense/kernel"].T return new def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase : str = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase : Optional[Any] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) _lowerCAmelCase : Tuple = state_dict["shared.weight"] return state_dict def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = checkpoints.load_tax_checkpoint(_lowerCamelCase ) _lowerCAmelCase : int = convert_tax_to_pytorch( _lowerCamelCase , num_layers=config.num_layers , is_encoder_only=_lowerCamelCase , scalable_attention=_lowerCamelCase ) _lowerCAmelCase : Any = make_state_dict(_lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = False , ): '''simple docstring''' _lowerCAmelCase : List[Any] = MTaConfig.from_json_file(_lowerCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _lowerCAmelCase : List[Any] = UMTaEncoderModel(_lowerCamelCase ) else: _lowerCAmelCase : Dict = UMTaForConditionalGeneration(_lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_lowerCamelCase ) print("Done" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) _snake_case = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
658
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
1
from random import shuffle import tensorflow as tf from numpy import array def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Dict = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : List[str] = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : str = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : Any = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : Dict = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Dict = tf.placeholder("float64" , [dim] ) _lowerCAmelCase : Union[str, Any] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : str = tf.placeholder("int32" ) _lowerCAmelCase : int = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Tuple = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Optional[int] = tf.placeholder("float" , [dim] ) _lowerCAmelCase : Tuple = tf.placeholder("float" , [dim] ) _lowerCAmelCase : str = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase , _lowerCamelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Optional[int] = tf.placeholder("float" , [noofclusters] ) _lowerCAmelCase : List[str] = tf.argmin(_lowerCamelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Dict = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Union[str, Any] = [ sess.run(_lowerCamelCase , feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : str = sess.run( _lowerCamelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : Optional[int] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[Any] = sess.run( _lowerCamelCase , feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : str = sess.run(_lowerCamelCase ) _lowerCAmelCase : int = sess.run(_lowerCamelCase ) return centroids, assignments
658
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = UnCLIPImageVariationPipeline lowerCamelCase__ = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowerCamelCase__ = IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowerCamelCase__ = False @property def snake_case__ ( self): '''simple docstring''' return 32 @property def snake_case__ ( self): '''simple docstring''' return 32 @property def snake_case__ ( self): '''simple docstring''' return self.time_input_dim @property def snake_case__ ( self): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case__ ( self): '''simple docstring''' return 100 @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(__a) @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) return CLIPVisionModelWithProjection(__a) @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Union[str, Any] = { "clip_embeddings_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "cross_attention_dim": self.cross_attention_dim, } _lowerCAmelCase : Union[str, Any] = UnCLIPTextProjModel(**__a) return model @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Optional[int] = { "sample_size": 32, # RGB in channels "in_channels": 3, # Out channels is double in channels because predicts mean and variance "out_channels": 6, "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": "identity", } _lowerCAmelCase : Tuple = UNetaDConditionModel(**__a) return model @property def snake_case__ ( self): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : str = UNetaDModel(**self.dummy_super_res_kwargs) return model @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(1) _lowerCAmelCase : Union[str, Any] = UNetaDModel(**self.dummy_super_res_kwargs) return model def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.dummy_decoder _lowerCAmelCase : int = self.dummy_text_proj _lowerCAmelCase : Tuple = self.dummy_text_encoder _lowerCAmelCase : str = self.dummy_tokenizer _lowerCAmelCase : Optional[Any] = self.dummy_super_res_first _lowerCAmelCase : List[Any] = self.dummy_super_res_last _lowerCAmelCase : Tuple = UnCLIPScheduler( variance_type="learned_range", prediction_type="epsilon", num_train_timesteps=1000, ) _lowerCAmelCase : Any = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="epsilon", num_train_timesteps=1000, ) _lowerCAmelCase : Dict = CLIPImageProcessor(crop_size=32, size=32) _lowerCAmelCase : str = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def snake_case__ ( self, __a, __a=0, __a=True): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, 3, 32, 32), rng=random.Random(__a)).to(__a) if str(__a).startswith("mps"): _lowerCAmelCase : List[Any] = torch.manual_seed(__a) else: _lowerCAmelCase : Dict = torch.Generator(device=__a).manual_seed(__a) if pil_image: _lowerCAmelCase : Any = input_image * 0.5 + 0.5 _lowerCAmelCase : int = input_image.clamp(0, 1) _lowerCAmelCase : Optional[Any] = input_image.cpu().permute(0, 2, 3, 1).float().numpy() _lowerCAmelCase : Dict = DiffusionPipeline.numpy_to_pil(__a)[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : int = self.pipeline_class(**__a) _lowerCAmelCase : int = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : List[str] = pipe(**__a) _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : str = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : Optional[int] = pipe( **__a, return_dict=__a, )[0] _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : str = np.array( [ 0.9_997, 0.0_002, 0.9_997, 0.9_997, 0.9_969, 0.0_023, 0.9_997, 0.9_969, 0.9_970, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : int = self.pipeline_class(**__a) _lowerCAmelCase : Tuple = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : Optional[int] = pipe(**__a) _lowerCAmelCase : Any = output.images _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : Optional[Any] = pipe( **__a, return_dict=__a, )[0] _lowerCAmelCase : str = image[0, -3:, -3:, -1] _lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Any = np.array([0.9_997, 0.0_003, 0.9_997, 0.9_997, 0.9_970, 0.0_024, 0.9_997, 0.9_971, 0.9_971]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "cpu" _lowerCAmelCase : List[str] = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**__a) _lowerCAmelCase : List[str] = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : int = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : List[str] = [ pipeline_inputs["image"], pipeline_inputs["image"], ] _lowerCAmelCase : Union[str, Any] = pipe(**__a) _lowerCAmelCase : Optional[Any] = output.images _lowerCAmelCase : Any = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : Tuple = [ tuple_pipeline_inputs["image"], tuple_pipeline_inputs["image"], ] _lowerCAmelCase : Dict = pipe( **__a, return_dict=__a, )[0] _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) _lowerCAmelCase : Dict = np.array( [ 0.9_997, 0.9_989, 0.0_008, 0.0_021, 0.9_960, 0.0_018, 0.0_014, 0.0_002, 0.9_933, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = torch.device("cpu") class UpperCAmelCase_ : lowerCamelCase__ = 1 _lowerCAmelCase : Optional[int] = self.get_dummy_components() _lowerCAmelCase : Union[str, Any] = self.pipeline_class(**__a) _lowerCAmelCase : Dict = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = torch.Generator(device=__a).manual_seed(0) _lowerCAmelCase : List[str] = pipe.decoder.dtype _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : List[Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) _lowerCAmelCase : List[Any] = pipe.prepare_latents( __a, dtype=__a, device=__a, generator=__a, latents=__a, scheduler=DummyScheduler()) _lowerCAmelCase : Union[str, Any] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) _lowerCAmelCase : int = pipe.prepare_latents( __a, dtype=__a, device=__a, generator=__a, latents=__a, scheduler=DummyScheduler()) _lowerCAmelCase : str = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : Dict = pipe( **__a, decoder_latents=__a, super_res_latents=__a).images _lowerCAmelCase : int = self.get_dummy_inputs(__a, pil_image=__a) # Don't pass image, instead pass embedding _lowerCAmelCase : Union[str, Any] = pipeline_inputs.pop("image") _lowerCAmelCase : Dict = pipe.image_encoder(__a).image_embeds _lowerCAmelCase : str = pipe( **__a, decoder_latents=__a, super_res_latents=__a, image_embeddings=__a, ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a).max() < 1E-4 @skip_mps def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = torch_device == "cpu" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor _lowerCAmelCase : Optional[int] = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=__a, expected_max_diff=__a) @skip_mps def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch_device == "cpu" _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : List[str] = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] self._test_inference_batch_single_identical( test_max_difference=__a, relax_max_difference=__a, additional_params_copy_to_batched_inputs=__a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes _lowerCAmelCase : Optional[int] = [2, 3] self._test_inference_batch_consistent( batch_sizes=__a, additional_params_copy_to_batched_inputs=__a, ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__a) @skip_mps def snake_case__ ( self): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def snake_case__ ( self): '''simple docstring''' return super().test_save_load_local() @skip_mps def snake_case__ ( self): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy") _lowerCAmelCase : Any = UnCLIPImageVariationPipeline.from_pretrained( "kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.floataa) _lowerCAmelCase : Dict = pipeline.to(__a) pipeline.set_progress_bar_config(disable=__a) _lowerCAmelCase : Dict = torch.Generator(device="cpu").manual_seed(0) _lowerCAmelCase : Tuple = pipeline( __a, generator=__a, output_type="np", ) _lowerCAmelCase : Any = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__a, __a, 15)
658
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
1
def A ( _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) <= 1: return [tuple(_lowerCamelCase )] _lowerCAmelCase : Optional[Any] = [] def generate(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[str] = [0] * n res.append(tuple(_lowerCamelCase ) ) _lowerCAmelCase : Any = 0 while i < n: if c[i] < i: if i % 2 == 0: _lowerCAmelCase , _lowerCAmelCase : List[str] = arr[i], arr[0] else: _lowerCAmelCase , _lowerCAmelCase : List[Any] = arr[i], arr[c[i]] res.append(tuple(_lowerCamelCase ) ) c[i] += 1 _lowerCAmelCase : Dict = 0 else: _lowerCAmelCase : Optional[int] = 0 i += 1 generate(len(_lowerCamelCase ) , _lowerCamelCase ) return res if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(heaps(arr))
658
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
1
import unittest from transformers import DonutProcessor _snake_case = "naver-clova-ix/donut-base" class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = DonutProcessor.from_pretrained(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } _lowerCAmelCase : Optional[Any] = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) _lowerCAmelCase : Dict = self.processor.tokenajson(__a) self.assertDictEqual(__a, __a)
658
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
1
from __future__ import annotations def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if b == 0: return (1, 0) ((_lowerCAmelCase) , (_lowerCAmelCase)) : Any = extended_euclid(_lowerCamelCase , a % b ) _lowerCAmelCase : List[str] = a // b return (y, x - k * y) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' ((_lowerCAmelCase) , (_lowerCAmelCase)) : Tuple = extended_euclid(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[Any] = na * na _lowerCAmelCase : int = ra * x * na + ra * y * na return (n % m + m) % m def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' ((_lowerCAmelCase) , (_lowerCAmelCase)) : List[Any] = extended_euclid(_lowerCamelCase , _lowerCamelCase ) if b < 0: _lowerCAmelCase : Dict = (b % n + n) % n return b def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = invert_modulo(_lowerCamelCase , _lowerCamelCase ), invert_modulo(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = na * na _lowerCAmelCase : Dict = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
658
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = 0 _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _lowerCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_lowerCamelCase ): return None _lowerCAmelCase : Tuple = sorted_collection[point] if current_item == item: return point else: if point < left: _lowerCAmelCase : Tuple = left _lowerCAmelCase : Tuple = point elif point > right: _lowerCAmelCase : Optional[Any] = right _lowerCAmelCase : Optional[int] = point else: if item < current_item: _lowerCAmelCase : Optional[Any] = point - 1 else: _lowerCAmelCase : List[Any] = point + 1 return None def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _lowerCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_lowerCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif point > right: return interpolation_search_by_recursion(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , point - 1 ) else: return interpolation_search_by_recursion( _lowerCamelCase , _lowerCamelCase , point + 1 , _lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' if collection != sorted(_lowerCamelCase ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys _snake_case = 0 if debug == 1: _snake_case = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _snake_case = 67 _snake_case = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print("Not found")
658
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' if name is None: _lowerCAmelCase : List[Any] = None else: _lowerCAmelCase : List[Any] = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" _lowerCAmelCase : Optional[Any] = fmt.format(_lowerCamelCase ) # Print and recurse (if needed). if isinstance(_lowerCamelCase , _lowerCamelCase ): if msg is not None: print(_lowerCamelCase ) for k in val.keys(): recursive_print(_lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(_lowerCamelCase , torch.Tensor ): print(_lowerCamelCase , ":" , val.size() ) else: print(_lowerCamelCase , ":" , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _lowerCAmelCase : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] _lowerCAmelCase : List[Any] = param.view(*_lowerCamelCase ) _lowerCAmelCase : Tuple = param.transpose(0 , 2 ) _lowerCAmelCase : Optional[int] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _lowerCAmelCase : Any = (num_heads, num_splits, hidden_size) + input_shape[1:] _lowerCAmelCase : Any = param.view(*_lowerCamelCase ) _lowerCAmelCase : Any = param.transpose(0 , 1 ).contiguous() _lowerCAmelCase : Dict = param.view(*_lowerCamelCase ) return param def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = {} # old versions did not store training args _lowerCAmelCase : str = input_state_dict.get("args" , _lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _lowerCAmelCase : int = ds_args.padded_vocab_size _lowerCAmelCase : int = ds_args.max_position_embeddings _lowerCAmelCase : Optional[int] = ds_args.hidden_size _lowerCAmelCase : Dict = ds_args.num_layers _lowerCAmelCase : Dict = ds_args.num_attention_heads _lowerCAmelCase : Union[str, Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _lowerCAmelCase : Any = config.n_head # The hidden_size per head. _lowerCAmelCase : Dict = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _lowerCAmelCase : Union[str, Any] = input_state_dict["checkpoint_version"] else: _lowerCAmelCase : List[str] = 0.0 # The model. _lowerCAmelCase : Dict = input_state_dict["model"] # The language model. _lowerCAmelCase : Optional[Any] = model["language_model"] # The embeddings. _lowerCAmelCase : Tuple = lm["embedding"] # The word embeddings. _lowerCAmelCase : Any = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. _lowerCAmelCase : Any = word_embeddings[: config.vocab_size, :] _lowerCAmelCase : Optional[int] = word_embeddings # The position embeddings. _lowerCAmelCase : Optional[int] = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _lowerCAmelCase : Optional[int] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. _lowerCAmelCase : List[str] = pos_embeddings # The transformer. _lowerCAmelCase : Optional[int] = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. _lowerCAmelCase : Optional[int] = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. _lowerCAmelCase : Dict = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. _lowerCAmelCase : str = layer_re.match(_lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. _lowerCAmelCase : Any = int(m.group(1 ) ) # The name of the operation. _lowerCAmelCase : Union[str, Any] = m.group(2 ) # Is it a weight or a bias? _lowerCAmelCase : Tuple = m.group(3 ) # The name of the layer. _lowerCAmelCase : Tuple = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): _lowerCAmelCase : List[Any] = "ln_1" if op_name.startswith("input" ) else "ln_2" _lowerCAmelCase : Any = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _lowerCAmelCase : int = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Tuple = causal_mask # Insert a "dummy" tensor for masked_bias. _lowerCAmelCase : Union[str, Any] = torch.tensor(-1e4 , dtype=torch.floataa ) _lowerCAmelCase : Dict = masked_bias _lowerCAmelCase : List[str] = fix_query_key_value_ordering(_lowerCamelCase , _lowerCamelCase , 3 , _lowerCamelCase , _lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _lowerCAmelCase : int = out_val.transpose(0 , 1 ).contiguous() # Store. _lowerCAmelCase : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _lowerCAmelCase : str = fix_query_key_value_ordering(_lowerCamelCase , _lowerCamelCase , 3 , _lowerCamelCase , _lowerCamelCase ) # Store. No change of shape. _lowerCAmelCase : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": _lowerCAmelCase : Any = megatron_to_transformers[op_name] _lowerCAmelCase : Optional[int] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": _lowerCAmelCase : Tuple = megatron_to_transformers[op_name] _lowerCAmelCase : Any = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _lowerCAmelCase : str = transformer["final_layernorm.weight"] _lowerCAmelCase : List[Any] = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. _lowerCAmelCase : Any = word_embeddings # It should be done! return output_state_dict def A ( ): '''simple docstring''' _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=_lowerCamelCase , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=_lowerCamelCase , help="An optional config json file describing the pre-trained model." , ) _lowerCAmelCase : Dict = parser.parse_args() # Extract the basename. _lowerCAmelCase : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: _lowerCAmelCase : Union[str, Any] = torch.load(_lowerCamelCase , map_location="cpu" ) else: _lowerCAmelCase : Dict = torch.load(args.path_to_checkpoint , map_location="cpu" ) _lowerCAmelCase : Dict = input_state_dict.get("args" , _lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _lowerCAmelCase : Tuple = "gelu_fast" elif ds_args.openai_gelu: _lowerCAmelCase : Tuple = "gelu_new" else: _lowerCAmelCase : str = "gelu" else: # in the very early days this used to be "gelu_new" _lowerCAmelCase : List[Any] = "gelu_new" # Spell out all parameters in case the defaults change. _lowerCAmelCase : Tuple = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=_lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=_lowerCamelCase , summary_activation=_lowerCamelCase , summary_proj_to_labels=_lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=_lowerCamelCase , use_cache=_lowerCamelCase , bos_token_id=50_256 , eos_token_id=50_256 , ) else: _lowerCAmelCase : Tuple = GPTaConfig.from_json_file(args.config_file ) _lowerCAmelCase : str = ["GPT2LMHeadModel"] # Convert. print("Converting" ) _lowerCAmelCase : Any = convert_megatron_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_lowerCamelCase , _lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _lowerCAmelCase : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _lowerCAmelCase : Optional[Any] = "gpt2" elif tokenizer_type == "PretrainedFromHF": _lowerCAmelCase : str = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: _lowerCAmelCase : Union[str, Any] = "gpt2" _lowerCAmelCase : Any = AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[Any] = type(_lowerCamelCase ).__name__ _lowerCAmelCase : Any = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(_lowerCamelCase ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_lowerCamelCase ) # Store the state_dict to file. _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , "pytorch_model.bin" ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_lowerCamelCase , _lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
658
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( a): lowerCamelCase__ = 'ClapFeatureExtractor' lowerCamelCase__ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self, __a, __a): '''simple docstring''' super().__init__(__a, __a) def __call__( self, __a=None, __a=None, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : int = kwargs.pop("sampling_rate", __a) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none.") if text is not None: _lowerCAmelCase : List[str] = self.tokenizer(__a, return_tensors=__a, **__a) if audios is not None: _lowerCAmelCase : Dict = self.feature_extractor( __a, sampling_rate=__a, return_tensors=__a, **__a) if text is not None and audios is not None: _lowerCAmelCase : int = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a), tensor_type=__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.batch_decode(*__a, **__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.decode(*__a, **__a) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer.model_input_names _lowerCAmelCase : str = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10**-10 ): '''simple docstring''' _lowerCAmelCase : Any = a while True: _lowerCAmelCase : Dict = Decimal(_lowerCamelCase ) - ( Decimal(eval(_lowerCamelCase ) ) / Decimal(eval(str(diff(_lowerCamelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCamelCase ) ) < precision: # noqa: S307 return float(_lowerCamelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
658
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
1
import heapq def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_lowerCamelCase , [-1 * len(_lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices _lowerCAmelCase : Tuple = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _lowerCAmelCase : List[str] = heapq.heappop(_lowerCamelCase )[1][0] chosen_vertices.add(_lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _lowerCAmelCase : Union[str, Any] = elem[1][1].index(_lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _snake_case = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
658
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
1
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : def __init__( self, __a, __a=2, __a=3, __a=4, __a=2, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=36, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=6, __a=6, __a=3, __a=4, __a=None, __a=1000, ): '''simple docstring''' _lowerCAmelCase : int = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : int = image_size _lowerCAmelCase : Tuple = patch_size _lowerCAmelCase : Any = is_training _lowerCAmelCase : str = use_input_mask _lowerCAmelCase : int = use_token_type_ids _lowerCAmelCase : Any = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : Optional[int] = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : List[str] = type_sequence_label_size _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Dict = coordinate_size _lowerCAmelCase : Any = shape_size _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : int = num_choices _lowerCAmelCase : Any = scope _lowerCAmelCase : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCAmelCase : int = text_seq_length _lowerCAmelCase : str = (image_size // patch_size) ** 2 + 1 _lowerCAmelCase : Optional[Any] = self.text_seq_length + self.image_seq_length def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox) _lowerCAmelCase : Dict = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : str = bbox[i, j, 3] _lowerCAmelCase : Tuple = bbox[i, j, 1] _lowerCAmelCase : Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : List[Any] = bbox[i, j, 2] _lowerCAmelCase : Any = bbox[i, j, 0] _lowerCAmelCase : Tuple = tmp_coordinate _lowerCAmelCase : Dict = tf.constant(__a) _lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : int = None if self.use_input_mask: _lowerCAmelCase : str = random_attention_mask([self.batch_size, self.text_seq_length]) _lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size) _lowerCAmelCase : Any = None _lowerCAmelCase : List[Any] = None if self.use_labels: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels) _lowerCAmelCase : Optional[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = TFLayoutLMvaModel(config=__a) # text + image _lowerCAmelCase : Tuple = model(__a, pixel_values=__a, training=__a) _lowerCAmelCase : Optional[Any] = model( __a, bbox=__a, pixel_values=__a, attention_mask=__a, token_type_ids=__a, training=__a, ) _lowerCAmelCase : List[str] = model(__a, bbox=__a, pixel_values=__a, training=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # text only _lowerCAmelCase : int = model(__a, training=__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size)) # image only _lowerCAmelCase : Any = model({"pixel_values": pixel_values}, training=__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : List[Any] = TFLayoutLMvaForSequenceClassification(config=__a) _lowerCAmelCase : List[str] = model( __a, bbox=__a, pixel_values=__a, attention_mask=__a, token_type_ids=__a, labels=__a, training=__a, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : str = TFLayoutLMvaForTokenClassification(config=__a) _lowerCAmelCase : Any = model( __a, bbox=__a, pixel_values=__a, attention_mask=__a, token_type_ids=__a, labels=__a, training=__a, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = 2 _lowerCAmelCase : List[str] = TFLayoutLMvaForQuestionAnswering(config=__a) _lowerCAmelCase : Any = model( __a, bbox=__a, pixel_values=__a, attention_mask=__a, token_type_ids=__a, start_positions=__a, end_positions=__a, training=__a, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Tuple = config_and_inputs _lowerCAmelCase : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__ = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' return True def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : int = copy.deepcopy(__a) if model_class in get_values(__a): _lowerCAmelCase : int = { k: tf.tile(tf.expand_dims(__a, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) if isinstance(__a, tf.Tensor) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Dict = tf.ones(self.model_tester.batch_size, dtype=tf.intaa) elif model_class in get_values(__a): _lowerCAmelCase : List[Any] = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) _lowerCAmelCase : Any = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) elif model_class in get_values(__a): _lowerCAmelCase : Union[str, Any] = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) elif model_class in get_values(__a): _lowerCAmelCase : Optional[int] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.intaa) return inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = TFLayoutLMvaModelTester(self) _lowerCAmelCase : Any = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(__a) if getattr(__a, "hf_compute_loss", __a): # The number of elements in the loss should be the same as the number of elements in the label _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) _lowerCAmelCase : Union[str, Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=__a)[0] ] _lowerCAmelCase : Any = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _lowerCAmelCase : str = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) _lowerCAmelCase : List[str] = prepared_for_class.pop("input_ids") _lowerCAmelCase : Tuple = model(__a, **__a)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss when we mask some positions _lowerCAmelCase : Dict = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) _lowerCAmelCase : Union[str, Any] = prepared_for_class.pop("input_ids") if "labels" in prepared_for_class: _lowerCAmelCase : Union[str, Any] = prepared_for_class["labels"].numpy() if len(labels.shape) > 1 and labels.shape[1] != 1: _lowerCAmelCase : int = -100 _lowerCAmelCase : Optional[int] = tf.convert_to_tensor(__a) _lowerCAmelCase : int = model(__a, **__a)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) self.assertTrue(not np.any(np.isnan(loss.numpy()))) # Test that model correctly compute the loss with a dict _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) _lowerCAmelCase : int = model(__a)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss with a tuple _lowerCAmelCase : Tuple = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) # Get keys that were added with the _prepare_for_class function _lowerCAmelCase : Any = prepared_for_class.keys() - inputs_dict.keys() _lowerCAmelCase : List[str] = inspect.signature(model.call).parameters _lowerCAmelCase : List[Any] = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple _lowerCAmelCase : str = {0: "input_ids"} for label_key in label_keys: _lowerCAmelCase : int = signature_names.index(__a) _lowerCAmelCase : str = label_key _lowerCAmelCase : Tuple = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple _lowerCAmelCase : Optional[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: _lowerCAmelCase : Tuple = prepared_for_class[value] _lowerCAmelCase : Any = tuple(__a) # Send to model _lowerCAmelCase : Tuple = model(tuple_input[:-1])[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a, __a, __a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : Union[str, Any] = type self.model_tester.create_and_check_model(__a, __a, __a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __a, __a, __a, __a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __a, __a, __a, __a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __a, __a, __a, __a, __a, __a, __a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[str] = TFLayoutLMvaModel.from_pretrained(__a) self.assertIsNotNone(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=__a) if is_vision_available() else None @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base") _lowerCAmelCase : str = self.default_image_processor _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=__a, return_tensors="tf").pixel_values _lowerCAmelCase : Tuple = tf.constant([[1, 2]]) _lowerCAmelCase : Dict = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]]), axis=0) # forward pass _lowerCAmelCase : int = model(input_ids=__a, bbox=__a, pixel_values=__a, training=__a) # verify the logits _lowerCAmelCase : List[Any] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape, __a) _lowerCAmelCase : int = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]]) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], __a, atol=1E-4))
658
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase_ ( a , a): @register_to_config def __init__( self, *, __a = 4, __a = 768, __a, __a, ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.zeros(__a)) # parameters for additional clip time embeddings _lowerCAmelCase : Dict = nn.Linear(__a, __a) _lowerCAmelCase : int = nn.Linear(__a, __a) # parameters for encoder hidden states _lowerCAmelCase : List[Any] = clip_extra_context_tokens _lowerCAmelCase : int = nn.Linear( __a, self.clip_extra_context_tokens * cross_attention_dim) _lowerCAmelCase : List[str] = nn.Linear(__a, __a) _lowerCAmelCase : Dict = nn.LayerNorm(__a) def snake_case__ ( self, *, __a, __a, __a, __a): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _lowerCAmelCase : List[Any] = image_embeddings.shape[0] _lowerCAmelCase : Optional[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0) _lowerCAmelCase : Optional[int] = classifier_free_guidance_embeddings.expand( __a, -1) _lowerCAmelCase : List[str] = torch.cat([classifier_free_guidance_embeddings, image_embeddings], dim=0) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _lowerCAmelCase : Dict = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _lowerCAmelCase : List[str] = self.embedding_proj(__a) _lowerCAmelCase : List[str] = self.clip_image_embeddings_project_to_time_embeddings(__a) _lowerCAmelCase : List[Any] = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _lowerCAmelCase : Any = self.clip_extra_context_tokens_proj(__a) _lowerCAmelCase : List[Any] = clip_extra_context_tokens.reshape(__a, -1, self.clip_extra_context_tokens) _lowerCAmelCase : Optional[int] = clip_extra_context_tokens.permute(0, 2, 1) _lowerCAmelCase : str = self.encoder_hidden_states_proj(__a) _lowerCAmelCase : Any = self.text_encoder_hidden_states_norm(__a) _lowerCAmelCase : Optional[int] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states], dim=1) return text_encoder_hidden_states, additive_clip_time_embeddings
658
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = args.pruning_method _lowerCAmelCase : Dict = args.threshold _lowerCAmelCase : Any = args.model_name_or_path.rstrip("/" ) _lowerCAmelCase : str = args.target_model_path print(F"Load fine-pruned model from {model_name_or_path}" ) _lowerCAmelCase : Any = torch.load(os.path.join(_lowerCamelCase , "pytorch_model.bin" ) ) _lowerCAmelCase : Tuple = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowerCAmelCase : Optional[Any] = tensor print(F"Copied layer {name}" ) elif "classifier" in name or "qa_output" in name: _lowerCAmelCase : Dict = tensor print(F"Copied layer {name}" ) elif "bias" in name: _lowerCAmelCase : Any = tensor print(F"Copied layer {name}" ) else: if pruning_method == "magnitude": _lowerCAmelCase : str = MagnitudeBinarizer.apply(inputs=_lowerCamelCase , threshold=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowerCAmelCase : Optional[Any] = name[:-6] _lowerCAmelCase : List[Any] = model[F"{prefix_}mask_scores"] _lowerCAmelCase : int = TopKBinarizer.apply(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowerCAmelCase : int = name[:-6] _lowerCAmelCase : Optional[Any] = model[F"{prefix_}mask_scores"] _lowerCAmelCase : str = ThresholdBinarizer.apply(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Tuple = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowerCAmelCase : int = name[:-6] _lowerCAmelCase : Optional[int] = model[F"{prefix_}mask_scores"] _lowerCAmelCase , _lowerCAmelCase : List[Any] = -0.1, 1.1 _lowerCAmelCase : Union[str, Any] = torch.sigmoid(_lowerCamelCase ) _lowerCAmelCase : Tuple = s * (r - l) + l _lowerCAmelCase : Any = s_bar.clamp(min=0.0 , max=1.0 ) _lowerCAmelCase : Any = tensor * mask print(F"Pruned layer {name}" ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: _lowerCAmelCase : Optional[Any] = os.path.join( os.path.dirname(_lowerCamelCase ) , F"bertarized_{os.path.basename(_lowerCamelCase )}" ) if not os.path.isdir(_lowerCamelCase ): shutil.copytree(_lowerCamelCase , _lowerCamelCase ) print(F"\nCreated folder {target_model_path}" ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) _snake_case = parser.parse_args() main(args)
658
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'visual_bert' def __init__( self, __a=3_0522, __a=768, __a=512, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=False, __a=True, __a=1, __a=0, __a=2, **__a, ): '''simple docstring''' super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Dict = visual_embedding_dim _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Dict = bypass_transformer _lowerCAmelCase : Optional[Any] = special_visual_initialize
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
1
from typing import List import numpy as np def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = {key: len(_lowerCamelCase ) for key, value in gen_kwargs.items() if isinstance(_lowerCamelCase , _lowerCamelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F"\t- key {key} has length {length}" for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) _lowerCAmelCase : Dict = max(lists_lengths.values() , default=0 ) return max(1 , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = [] for group_idx in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCAmelCase : Optional[int] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCAmelCase : Optional[int] = range(_lowerCamelCase , start + num_shards_to_add ) shards_indices_per_group.append(_lowerCamelCase ) return shards_indices_per_group def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = _number_of_shards_in_gen_kwargs(_lowerCamelCase ) if num_shards == 1: return [dict(_lowerCamelCase )] else: _lowerCAmelCase : Tuple = _distribute_shards(num_shards=_lowerCamelCase , max_num_jobs=_lowerCamelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(_lowerCamelCase , _lowerCamelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(_lowerCamelCase ) ) ] def A ( _lowerCamelCase ): '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , _lowerCamelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = {len(_lowerCamelCase ) for value in gen_kwargs.values() if isinstance(_lowerCamelCase , _lowerCamelCase )} _lowerCAmelCase : List[Any] = {} for size in list_sizes: _lowerCAmelCase : int = list(range(_lowerCamelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCAmelCase : List[str] = dict(_lowerCamelCase ) for key, value in shuffled_kwargs.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Dict = [value[i] for i in indices_per_size[len(_lowerCamelCase )]] return shuffled_kwargs
658
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
1
from __future__ import annotations from math import pi def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
658
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( a): lowerCamelCase__ = (IPNDMScheduler,) lowerCamelCase__ = (('num_inference_steps', 50),) def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : Optional[int] = {"num_train_timesteps": 1000} config.update(**__a) return config def snake_case__ ( self, __a=0, **__a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs) _lowerCAmelCase : str = kwargs.pop("num_inference_steps", __a) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Optional[int] = 0.1 * sample _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config(**__a) _lowerCAmelCase : List[str] = scheduler_class(**__a) scheduler.set_timesteps(__a) # copy over dummy past residuals _lowerCAmelCase : Any = dummy_past_residuals[:] if time_step is None: _lowerCAmelCase : int = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a) _lowerCAmelCase : int = scheduler_class.from_pretrained(__a) new_scheduler.set_timesteps(__a) # copy over dummy past residuals _lowerCAmelCase : List[Any] = dummy_past_residuals[:] _lowerCAmelCase : Any = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : Dict = new_scheduler.step(__a, __a, __a, **__a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" _lowerCAmelCase : List[Any] = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : int = new_scheduler.step(__a, __a, __a, **__a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self, __a=0, **__a): '''simple docstring''' _lowerCAmelCase : str = dict(self.forward_default_kwargs) _lowerCAmelCase : str = kwargs.pop("num_inference_steps", __a) _lowerCAmelCase : Tuple = self.dummy_sample _lowerCAmelCase : str = 0.1 * sample _lowerCAmelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**__a) scheduler.set_timesteps(__a) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : Optional[int] = dummy_past_residuals[:] if time_step is None: _lowerCAmelCase : int = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a) _lowerCAmelCase : List[Any] = scheduler_class.from_pretrained(__a) # copy over dummy past residuals new_scheduler.set_timesteps(__a) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[:] _lowerCAmelCase : Dict = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : int = new_scheduler.step(__a, __a, __a, **__a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" _lowerCAmelCase : Optional[Any] = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : Tuple = new_scheduler.step(__a, __a, __a, **__a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Any = self.get_scheduler_config(**__a) _lowerCAmelCase : Dict = scheduler_class(**__a) _lowerCAmelCase : Dict = 10 _lowerCAmelCase : Optional[int] = self.dummy_model() _lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(__a) for i, t in enumerate(scheduler.timesteps): _lowerCAmelCase : List[str] = model(__a, __a) _lowerCAmelCase : List[Any] = scheduler.step(__a, __a, __a).prev_sample for i, t in enumerate(scheduler.timesteps): _lowerCAmelCase : Union[str, Any] = model(__a, __a) _lowerCAmelCase : Union[str, Any] = scheduler.step(__a, __a, __a).prev_sample return sample def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs) _lowerCAmelCase : str = kwargs.pop("num_inference_steps", __a) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Dict = scheduler_class(**__a) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(__a, "set_timesteps"): scheduler.set_timesteps(__a) elif num_inference_steps is not None and not hasattr(__a, "set_timesteps"): _lowerCAmelCase : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCAmelCase : Optional[int] = dummy_past_residuals[:] _lowerCAmelCase : str = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : Union[str, Any] = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : Union[str, Any] = scheduler.step(__a, __a, __a, **__a).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) _lowerCAmelCase : Union[str, Any] = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : Optional[Any] = scheduler.step(__a, __a, __a, **__a).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) def snake_case__ ( self): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__a, time_step=__a) def snake_case__ ( self): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]): self.check_over_forward(num_inference_steps=__a, time_step=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.full_loop() _lowerCAmelCase : Any = torch.mean(torch.abs(__a)) assert abs(result_mean.item() - 254_0529) < 10
658
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
1
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _snake_case = 5_0000 _snake_case = 5000 _snake_case, _snake_case = os.path.split(__file__) _snake_case = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for i in range(_lowerCamelCase ): _lowerCAmelCase : Dict = dataset[i] @get_duration def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): _lowerCAmelCase : str = dataset[i : i + batch_size] @get_duration def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with dataset.formatted_as(type=_lowerCamelCase ): for i in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = dataset[i] @get_duration def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with dataset.formatted_as(type=_lowerCamelCase ): for i in range(0 , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[str] = dataset[i : i + batch_size] def A ( ): '''simple docstring''' _lowerCAmelCase : int = {"num examples": SPEED_TEST_N_EXAMPLES} _lowerCAmelCase : Optional[Any] = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] _lowerCAmelCase : Optional[Any] = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) _lowerCAmelCase : Dict = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) _lowerCAmelCase : str = generate_example_dataset( os.path.join(_lowerCamelCase , "dataset.arrow" ) , _lowerCamelCase , num_examples=_lowerCamelCase , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(_lowerCamelCase ) ) _lowerCAmelCase : List[str] = func(_lowerCamelCase , **_lowerCamelCase ) print("shuffling dataset" ) _lowerCAmelCase : Tuple = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(_lowerCamelCase ) ) _lowerCAmelCase : Union[str, Any] = func( _lowerCamelCase , **_lowerCamelCase ) with open(_lowerCamelCase , "wb" ) as f: f.write(json.dumps(_lowerCamelCase ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
658
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _lowerCAmelCase : str = 128 elif "12-12" in model_name: _lowerCAmelCase : str = 12 _lowerCAmelCase : int = 12 elif "14-14" in model_name: _lowerCAmelCase : str = 14 _lowerCAmelCase : Optional[Any] = 14 elif "16-16" in model_name: _lowerCAmelCase : Dict = 16 _lowerCAmelCase : int = 16 else: raise ValueError("Model not supported" ) _lowerCAmelCase : Dict = "huggingface/label-files" if "speech-commands" in model_name: _lowerCAmelCase : str = 35 _lowerCAmelCase : str = "speech-commands-v2-id2label.json" else: _lowerCAmelCase : Dict = 527 _lowerCAmelCase : List[Any] = "audioset-id2label.json" _lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : Tuple = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Union[str, Any] = idalabel _lowerCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def A ( _lowerCamelCase ): '''simple docstring''' if "module.v" in name: _lowerCAmelCase : Dict = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: _lowerCAmelCase : Optional[Any] = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: _lowerCAmelCase : Any = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: _lowerCAmelCase : Dict = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: _lowerCAmelCase : int = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: _lowerCAmelCase : str = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: _lowerCAmelCase : Optional[int] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _lowerCAmelCase : Dict = name.replace("attn" , "attention.self" ) if "norm1" in name: _lowerCAmelCase : List[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _lowerCAmelCase : int = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _lowerCAmelCase : Optional[Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _lowerCAmelCase : List[str] = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _lowerCAmelCase : Tuple = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: _lowerCAmelCase : Optional[Any] = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: _lowerCAmelCase : Optional[int] = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCAmelCase : Tuple = orig_state_dict.pop(_lowerCamelCase ) if "qkv" in key: _lowerCAmelCase : Optional[Any] = key.split("." ) _lowerCAmelCase : List[Any] = int(key_split[3] ) _lowerCAmelCase : Any = config.hidden_size if "weight" in key: _lowerCAmelCase : Any = val[:dim, :] _lowerCAmelCase : Tuple = val[dim : dim * 2, :] _lowerCAmelCase : Tuple = val[-dim:, :] else: _lowerCAmelCase : Optional[Any] = val[:dim] _lowerCAmelCase : Dict = val[dim : dim * 2] _lowerCAmelCase : str = val[-dim:] else: _lowerCAmelCase : int = val return orig_state_dict def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = get_audio_spectrogram_transformer_config(_lowerCamelCase ) _lowerCAmelCase : List[str] = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict _lowerCAmelCase : Optional[Any] = model_name_to_url[model_name] _lowerCAmelCase : Optional[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" ) # remove some keys remove_keys(_lowerCamelCase ) # rename some keys _lowerCAmelCase : Tuple = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) # load 🤗 model _lowerCAmelCase : str = ASTForAudioClassification(_lowerCamelCase ) model.eval() model.load_state_dict(_lowerCamelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _lowerCAmelCase : Any = -4.2_67_73_93 if "speech-commands" not in model_name else -6.84_59_78 _lowerCAmelCase : str = 4.5_68_99_74 if "speech-commands" not in model_name else 5.5_65_45_26 _lowerCAmelCase : List[Any] = 1_024 if "speech-commands" not in model_name else 128 _lowerCAmelCase : int = ASTFeatureExtractor(mean=_lowerCamelCase , std=_lowerCamelCase , max_length=_lowerCamelCase ) if "speech-commands" in model_name: _lowerCAmelCase : List[str] = load_dataset("speech_commands" , "v0.02" , split="validation" ) _lowerCAmelCase : Any = dataset[0]["audio"]["array"] else: _lowerCAmelCase : Dict = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = torchaudio.load(_lowerCamelCase ) _lowerCAmelCase : List[str] = waveform.squeeze().numpy() _lowerCAmelCase : Union[str, Any] = feature_extractor(_lowerCamelCase , sampling_rate=16_000 , return_tensors="pt" ) # forward pass _lowerCAmelCase : Any = model(**_lowerCamelCase ) _lowerCAmelCase : List[Any] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _lowerCAmelCase : Tuple = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _lowerCAmelCase : Union[str, Any] = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _lowerCAmelCase : Any = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _lowerCAmelCase : str = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _lowerCAmelCase : List[str] = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _lowerCAmelCase : Tuple = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _lowerCAmelCase : int = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": _lowerCAmelCase : int = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(F"MIT/{model_name}" ) feature_extractor.push_to_hub(F"MIT/{model_name}" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
658
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
from __future__ import annotations import typing from collections import Counter def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(_lowerCamelCase , max_perimeter + 1 ): _lowerCAmelCase : Union[str, Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_lowerCamelCase ): _lowerCAmelCase : List[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def A ( _lowerCamelCase = 1_000 ): '''simple docstring''' _lowerCAmelCase : Tuple = pythagorean_triple(_lowerCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
658
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
1
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Optional[Any] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def A ( _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) <= 1: return arr, 0 _lowerCAmelCase : List[str] = len(_lowerCamelCase ) // 2 _lowerCAmelCase : int = arr[0:mid] _lowerCAmelCase : Dict = arr[mid:] _lowerCAmelCase , _lowerCAmelCase : Dict = count_inversions_recursive(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : str = count_inversions_recursive(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowerCAmelCase : List[Any] = count_inversions_bf(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : List[str] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowerCAmelCase : Any = count_inversions_bf(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , _lowerCamelCase ) # an empty list should also have zero inversions _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Tuple = count_inversions_bf(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , _lowerCamelCase ) if __name__ == "__main__": main()
658
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
1
from __future__ import annotations def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : List[str] = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("" ) print(len(_lowerCamelCase ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
658
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
1
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
1
from collections import deque from math import floor from random import random from time import time class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a, __a, __a=1): '''simple docstring''' if self.graph.get(__a): if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: _lowerCAmelCase : Optional[int] = [[w, v]] if not self.graph.get(__a): _lowerCAmelCase : Any = [] def snake_case__ ( self): '''simple docstring''' return list(self.graph) def snake_case__ ( self, __a, __a): '''simple docstring''' if self.graph.get(__a): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__a) def snake_case__ ( self, __a=-2, __a=-1): '''simple docstring''' if s == d: return [] _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[str] = [] if s == -2: _lowerCAmelCase : Tuple = list(self.graph)[0] stack.append(__a) visited.append(__a) _lowerCAmelCase : str = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: _lowerCAmelCase : str = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(__a) return visited else: stack.append(node[1]) visited.append(node[1]) _lowerCAmelCase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__a) != 0: _lowerCAmelCase : Optional[int] = stack[len(__a) - 1] else: _lowerCAmelCase : Optional[Any] = ss # check if se have reached the starting point if len(__a) == 0: return visited def snake_case__ ( self, __a=-1): '''simple docstring''' if c == -1: _lowerCAmelCase : Any = floor(random() * 1_0000) + 10 for i in range(__a): # every vertex has max 100 edges for _ in range(floor(random() * 102) + 1): _lowerCAmelCase : Tuple = floor(random() * c) + 1 if n != i: self.add_pair(__a, __a, 1) def snake_case__ ( self, __a=-2): '''simple docstring''' _lowerCAmelCase : Any = deque() _lowerCAmelCase : int = [] if s == -2: _lowerCAmelCase : Optional[Any] = list(self.graph)[0] d.append(__a) visited.append(__a) while d: _lowerCAmelCase : List[Any] = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def snake_case__ ( self, __a): '''simple docstring''' return len(self.graph[u]) def snake_case__ ( self, __a=-2): '''simple docstring''' _lowerCAmelCase : Dict = [] _lowerCAmelCase : Dict = [] if s == -2: _lowerCAmelCase : Tuple = list(self.graph)[0] stack.append(__a) visited.append(__a) _lowerCAmelCase : List[str] = s _lowerCAmelCase : str = [] while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: _lowerCAmelCase : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) _lowerCAmelCase : List[Any] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop()) if len(__a) != 0: _lowerCAmelCase : str = stack[len(__a) - 1] else: _lowerCAmelCase : Optional[int] = ss # check if se have reached the starting point if len(__a) == 0: return sorted_nodes def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = list(self.graph)[0] stack.append(__a) visited.append(__a) _lowerCAmelCase : Union[str, Any] = -2 _lowerCAmelCase : str = [] _lowerCAmelCase : List[str] = s _lowerCAmelCase : int = False _lowerCAmelCase : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: _lowerCAmelCase : int = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): _lowerCAmelCase : Tuple = len(__a) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) _lowerCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCAmelCase : List[str] = True if len(__a) != 0: _lowerCAmelCase : Tuple = stack[len(__a) - 1] else: _lowerCAmelCase : Optional[int] = False indirect_parents.append(__a) _lowerCAmelCase : str = s _lowerCAmelCase : str = ss # check if se have reached the starting point if len(__a) == 0: return list(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : int = [] _lowerCAmelCase : str = list(self.graph)[0] stack.append(__a) visited.append(__a) _lowerCAmelCase : Tuple = -2 _lowerCAmelCase : Tuple = [] _lowerCAmelCase : str = s _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: _lowerCAmelCase : List[str] = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): _lowerCAmelCase : Tuple = len(__a) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) _lowerCAmelCase : int = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCAmelCase : Union[str, Any] = True if len(__a) != 0: _lowerCAmelCase : Any = stack[len(__a) - 1] else: _lowerCAmelCase : Tuple = False indirect_parents.append(__a) _lowerCAmelCase : Any = s _lowerCAmelCase : List[Any] = ss # check if se have reached the starting point if len(__a) == 0: return False def snake_case__ ( self, __a=-2, __a=-1): '''simple docstring''' _lowerCAmelCase : Tuple = time() self.dfs(__a, __a) _lowerCAmelCase : List[Any] = time() return end - begin def snake_case__ ( self, __a=-2): '''simple docstring''' _lowerCAmelCase : int = time() self.bfs(__a) _lowerCAmelCase : str = time() return end - begin class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : List[str] = {} def snake_case__ ( self, __a, __a, __a=1): '''simple docstring''' if self.graph.get(__a): # if there already is a edge if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: # if u does not exist _lowerCAmelCase : int = [[w, v]] # add the other way if self.graph.get(__a): # if there already is a edge if self.graph[v].count([w, u]) == 0: self.graph[v].append([w, u]) else: # if u does not exist _lowerCAmelCase : Any = [[w, u]] def snake_case__ ( self, __a, __a): '''simple docstring''' if self.graph.get(__a): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__a) # the other way round if self.graph.get(__a): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__a) def snake_case__ ( self, __a=-2, __a=-1): '''simple docstring''' if s == d: return [] _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = [] if s == -2: _lowerCAmelCase : Optional[int] = list(self.graph)[0] stack.append(__a) visited.append(__a) _lowerCAmelCase : Any = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: _lowerCAmelCase : List[str] = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(__a) return visited else: stack.append(node[1]) visited.append(node[1]) _lowerCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__a) != 0: _lowerCAmelCase : Optional[int] = stack[len(__a) - 1] else: _lowerCAmelCase : str = ss # check if se have reached the starting point if len(__a) == 0: return visited def snake_case__ ( self, __a=-1): '''simple docstring''' if c == -1: _lowerCAmelCase : Tuple = floor(random() * 1_0000) + 10 for i in range(__a): # every vertex has max 100 edges for _ in range(floor(random() * 102) + 1): _lowerCAmelCase : List[str] = floor(random() * c) + 1 if n != i: self.add_pair(__a, __a, 1) def snake_case__ ( self, __a=-2): '''simple docstring''' _lowerCAmelCase : List[Any] = deque() _lowerCAmelCase : int = [] if s == -2: _lowerCAmelCase : List[str] = list(self.graph)[0] d.append(__a) visited.append(__a) while d: _lowerCAmelCase : Dict = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def snake_case__ ( self, __a): '''simple docstring''' return len(self.graph[u]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Any = [] _lowerCAmelCase : Dict = list(self.graph)[0] stack.append(__a) visited.append(__a) _lowerCAmelCase : Tuple = -2 _lowerCAmelCase : Tuple = [] _lowerCAmelCase : int = s _lowerCAmelCase : List[Any] = False _lowerCAmelCase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: _lowerCAmelCase : Any = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): _lowerCAmelCase : Any = len(__a) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) _lowerCAmelCase : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCAmelCase : Union[str, Any] = True if len(__a) != 0: _lowerCAmelCase : Optional[Any] = stack[len(__a) - 1] else: _lowerCAmelCase : Optional[Any] = False indirect_parents.append(__a) _lowerCAmelCase : Dict = s _lowerCAmelCase : Tuple = ss # check if se have reached the starting point if len(__a) == 0: return list(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Tuple = list(self.graph)[0] stack.append(__a) visited.append(__a) _lowerCAmelCase : Union[str, Any] = -2 _lowerCAmelCase : List[str] = [] _lowerCAmelCase : List[str] = s _lowerCAmelCase : str = False _lowerCAmelCase : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: _lowerCAmelCase : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): _lowerCAmelCase : Tuple = len(__a) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) _lowerCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCAmelCase : List[str] = True if len(__a) != 0: _lowerCAmelCase : Union[str, Any] = stack[len(__a) - 1] else: _lowerCAmelCase : Optional[Any] = False indirect_parents.append(__a) _lowerCAmelCase : str = s _lowerCAmelCase : Dict = ss # check if se have reached the starting point if len(__a) == 0: return False def snake_case__ ( self): '''simple docstring''' return list(self.graph) def snake_case__ ( self, __a=-2, __a=-1): '''simple docstring''' _lowerCAmelCase : List[Any] = time() self.dfs(__a, __a) _lowerCAmelCase : Union[str, Any] = time() return end - begin def snake_case__ ( self, __a=-2): '''simple docstring''' _lowerCAmelCase : int = time() self.bfs(__a) _lowerCAmelCase : Any = time() return end - begin
658
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
1
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _snake_case = numpy.array([0, 0]) _snake_case = numpy.array([0.5, 0.8660254]) _snake_case = numpy.array([1, 0]) _snake_case = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = initial_vectors for _ in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = iteration_step(_lowerCamelCase ) return vectors def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i, start_vector in enumerate(vectors[:-1] ): _lowerCAmelCase : Optional[Any] = vectors[i + 1] new_vectors.append(_lowerCamelCase ) _lowerCAmelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = numpy.radians(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = numpy.cos(_lowerCamelCase ), numpy.sin(_lowerCamelCase ) _lowerCAmelCase : str = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _lowerCAmelCase , _lowerCAmelCase : Dict = zip(*_lowerCamelCase ) plt.plot(_lowerCamelCase , _lowerCamelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _snake_case = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
658
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
1
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
1
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = [0] * len(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCamelCase ) ): if indegree[i] == 0: queue.append(_lowerCamelCase ) while queue: _lowerCAmelCase : str = queue.pop(0 ) cnt += 1 topo.append(_lowerCamelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_lowerCamelCase ) if cnt != len(_lowerCamelCase ): print("Cycle exists" ) else: print(_lowerCamelCase ) # Adjacency List of Graph _snake_case = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase : int = tesseract_config if tesseract_config is not None else "" # apply OCR _lowerCAmelCase : Tuple = to_pil_image(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : int = pil_image.size _lowerCAmelCase : Dict = pytesseract.image_to_data(_lowerCamelCase , lang=_lowerCamelCase , output_type="dict" , config=_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates _lowerCAmelCase : Dict = [idx for idx, word in enumerate(_lowerCamelCase ) if not word.strip()] _lowerCAmelCase : Optional[int] = [word for idx, word in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] _lowerCAmelCase : Dict = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] _lowerCAmelCase : Dict = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] _lowerCAmelCase : Tuple = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] _lowerCAmelCase : Dict = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _lowerCAmelCase : Optional[int] = [] for x, y, w, h in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[str] = [x, y, x + w, y + h] actual_boxes.append(_lowerCamelCase ) # finally, normalize the bounding boxes _lowerCAmelCase : int = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( a): lowerCamelCase__ = ['pixel_values'] def __init__( self, __a = True, __a = None, __a = PILImageResampling.BILINEAR, __a = True, __a = None, __a = "", **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : int = size if size is not None else {"height": 224, "width": 224} _lowerCAmelCase : int = get_size_dict(__a) _lowerCAmelCase : Dict = do_resize _lowerCAmelCase : str = size _lowerCAmelCase : Optional[int] = resample _lowerCAmelCase : Dict = apply_ocr _lowerCAmelCase : Union[str, Any] = ocr_lang _lowerCAmelCase : Any = tesseract_config def snake_case__ ( self, __a, __a, __a = PILImageResampling.BILINEAR, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") _lowerCAmelCase : Any = (size["height"], size["width"]) return resize(__a, size=__a, resample=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ): '''simple docstring''' _lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Tuple = size if size is not None else self.size _lowerCAmelCase : Tuple = get_size_dict(__a) _lowerCAmelCase : int = resample if resample is not None else self.resample _lowerCAmelCase : List[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr _lowerCAmelCase : Tuple = ocr_lang if ocr_lang is not None else self.ocr_lang _lowerCAmelCase : List[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config _lowerCAmelCase : Any = make_list_of_images(__a) if not valid_images(__a): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") # All transformations expect numpy arrays. _lowerCAmelCase : Dict = [to_numpy_array(__a) for image in images] if apply_ocr: requires_backends(self, "pytesseract") _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = [] for image in images: _lowerCAmelCase , _lowerCAmelCase : Tuple = apply_tesseract(__a, __a, __a) words_batch.append(__a) boxes_batch.append(__a) if do_resize: _lowerCAmelCase : Any = [self.resize(image=__a, size=__a, resample=__a) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _lowerCAmelCase : Dict = [flip_channel_order(__a) for image in images] _lowerCAmelCase : List[Any] = [to_channel_dimension_format(__a, __a) for image in images] _lowerCAmelCase : Optional[Any] = BatchFeature(data={"pixel_values": images}, tensor_type=__a) if apply_ocr: _lowerCAmelCase : str = words_batch _lowerCAmelCase : List[Any] = boxes_batch return data
658
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
1
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
1
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = int(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = t // 3_600, (t // 60) % 60, t % 60 return F"{h}:{m:02d}:{s:02d}" if h != 0 else F"{m:02d}:{s:02d}" def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=300 ): '''simple docstring''' return F"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n " def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _lowerCAmelCase : Optional[int] = F"{elt:.6f}" if isinstance(_lowerCamelCase , _lowerCamelCase ) else str(_lowerCamelCase ) html_code += F" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class UpperCAmelCase_ : lowerCamelCase__ = 5 lowerCamelCase__ = 0.2 def __init__( self, __a, __a = None, __a = True, __a = None, __a = 300, ): '''simple docstring''' _lowerCAmelCase : List[Any] = total _lowerCAmelCase : Any = "" if prefix is None else prefix _lowerCAmelCase : str = leave _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Optional[int] = width _lowerCAmelCase : Tuple = None _lowerCAmelCase : Dict = None _lowerCAmelCase : Tuple = None def snake_case__ ( self, __a, __a = False, __a = None): '''simple docstring''' _lowerCAmelCase : List[Any] = value if comment is not None: _lowerCAmelCase : Union[str, Any] = comment if self.last_value is None: _lowerCAmelCase : Optional[int] = time.time() _lowerCAmelCase : Any = value _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Dict = self.warmup _lowerCAmelCase : Union[str, Any] = 1 self.update_bar(__a) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total): if self.first_calls > 0: self.first_calls -= 1 _lowerCAmelCase : Dict = time.time() _lowerCAmelCase : str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _lowerCAmelCase : List[str] = self.elapsed_time / (value - self.start_value) else: _lowerCAmelCase : Optional[Any] = None if value >= self.total: _lowerCAmelCase : Optional[int] = self.total _lowerCAmelCase : int = None if not self.leave: self.close() elif self.average_time_per_item is not None: _lowerCAmelCase : Tuple = self.average_time_per_item * (self.total - value) self.update_bar(__a) _lowerCAmelCase : str = value _lowerCAmelCase : List[Any] = current_time if self.average_time_per_item is None: _lowerCAmelCase : List[str] = 1 else: _lowerCAmelCase : Tuple = max(int(self.update_every / self.average_time_per_item), 1) def snake_case__ ( self, __a, __a=None): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = " " * (len(str(self.total)) - len(str(__a))) + str(__a) if self.elapsed_time is None: _lowerCAmelCase : Optional[int] = f"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: _lowerCAmelCase : Optional[int] = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}" else: _lowerCAmelCase : List[str] = ( f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <" f" {format_time(self.predicted_remaining)}" ) self.label += f", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment) == 0 else f", {self.comment}]" self.display() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _lowerCAmelCase : List[str] = disp.display(disp.HTML(self.html_code), display_id=__a) else: self.output.update(disp.HTML(self.html_code)) def snake_case__ ( self): '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML("")) class UpperCAmelCase_ ( a): def __init__( self, __a, __a=None): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : str = None if column_names is None else [column_names] _lowerCAmelCase : List[Any] = None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _lowerCAmelCase : Union[str, Any] = disp.display(disp.HTML(self.html_code), display_id=__a) else: self.output.update(disp.HTML(self.html_code)) def snake_case__ ( self, __a): '''simple docstring''' if self.inner_table is None: _lowerCAmelCase : str = [list(values.keys()), list(values.values())] else: _lowerCAmelCase : List[Any] = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__a) _lowerCAmelCase : Optional[Any] = columns self.inner_table.append([values[c] for c in columns]) def snake_case__ ( self, __a, __a=None, __a=300): '''simple docstring''' _lowerCAmelCase : Any = NotebookProgressBar(__a, prefix=__a, parent=self, width=__a) return self.child_bar def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = None self.display() class UpperCAmelCase_ ( a): def __init__( self): '''simple docstring''' _lowerCAmelCase : Tuple = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : List[str] = False def snake_case__ ( self, __a, __a, __a, **__a): '''simple docstring''' _lowerCAmelCase : Tuple = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Union[str, Any] = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss") _lowerCAmelCase : List[Any] = NotebookTrainingTracker(state.max_steps, __a) def snake_case__ ( self, __a, __a, __a, **__a): '''simple docstring''' _lowerCAmelCase : str = int(state.epoch) if int(state.epoch) == state.epoch else f"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1, comment=f"Epoch {epoch}/{state.num_train_epochs}", force_update=self._force_next_update, ) _lowerCAmelCase : Tuple = False def snake_case__ ( self, __a, __a, __a, __a=None, **__a): '''simple docstring''' if not has_length(__a): return if self.prediction_bar is None: if self.training_tracker is not None: _lowerCAmelCase : Any = self.training_tracker.add_child(len(__a)) else: _lowerCAmelCase : Tuple = NotebookProgressBar(len(__a)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def snake_case__ ( self, __a, __a, __a, **__a): '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() _lowerCAmelCase : List[Any] = None def snake_case__ ( self, __a, __a, __a, __a=None, **__a): '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _lowerCAmelCase : Any = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy _lowerCAmelCase : List[str] = state.global_step self.training_tracker.write_line(__a) def snake_case__ ( self, __a, __a, __a, __a=None, **__a): '''simple docstring''' if self.training_tracker is not None: _lowerCAmelCase : Tuple = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history): if "loss" in log: _lowerCAmelCase : Tuple = log["loss"] break if self.first_column == "Epoch": _lowerCAmelCase : int = int(state.epoch) else: _lowerCAmelCase : Optional[Any] = state.global_step _lowerCAmelCase : Union[str, Any] = "eval" for k in metrics: if k.endswith("_loss"): _lowerCAmelCase : Any = re.sub(R"\_loss$", "", __a) _lowerCAmelCase : Optional[Any] = metrics.pop("total_flos", __a) _lowerCAmelCase : str = metrics.pop("epoch", __a) _lowerCAmelCase : Any = metrics.pop(f"{metric_key_prefix}_runtime", __a) _lowerCAmelCase : Union[str, Any] = metrics.pop(f"{metric_key_prefix}_samples_per_second", __a) _lowerCAmelCase : List[str] = metrics.pop(f"{metric_key_prefix}_steps_per_second", __a) _lowerCAmelCase : List[str] = metrics.pop(f"{metric_key_prefix}_jit_compilation_time", __a) for k, v in metrics.items(): if k == f"{metric_key_prefix}_loss": _lowerCAmelCase : List[Any] = v else: _lowerCAmelCase : str = k.split("_") _lowerCAmelCase : int = " ".join([part.capitalize() for part in splits[1:]]) _lowerCAmelCase : List[str] = v self.training_tracker.write_line(__a) self.training_tracker.remove_child() _lowerCAmelCase : List[Any] = None # Evaluation takes a long time so we should force the next update. _lowerCAmelCase : int = True def snake_case__ ( self, __a, __a, __a, **__a): '''simple docstring''' self.training_tracker.update( state.global_step, comment=f"Epoch {int(state.epoch)}/{state.num_train_epochs}", force_update=__a) _lowerCAmelCase : Dict = None
658
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
658
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
1
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=False, __a=True, __a="None", __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : Dict = is_training _lowerCAmelCase : int = use_input_mask _lowerCAmelCase : Union[str, Any] = use_token_type_ids _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : str = type_sequence_label_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : str = num_labels _lowerCAmelCase : List[str] = num_choices _lowerCAmelCase : Optional[int] = relative_attention _lowerCAmelCase : int = position_biased_input _lowerCAmelCase : Dict = pos_att_type _lowerCAmelCase : Optional[Any] = scope def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : List[str] = None if self.use_input_mask: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) _lowerCAmelCase : Any = None if self.use_token_type_ids: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Tuple = None _lowerCAmelCase : int = None _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_config() _lowerCAmelCase : int = 300 return config def snake_case__ ( self, __a): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size()), []) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = DebertaModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model(__a, attention_mask=__a, token_type_ids=__a)[0] _lowerCAmelCase : Tuple = model(__a, token_type_ids=__a)[0] _lowerCAmelCase : str = model(__a)[0] self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size]) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = DebertaForMaskedLM(config=__a) model.to(__a) model.eval() _lowerCAmelCase : int = model(__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Tuple = DebertaForSequenceClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : str = model(__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels]) self.check_loss_output(__a) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = self.num_labels _lowerCAmelCase : Tuple = DebertaForTokenClassification(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[Any] = model(__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = DebertaForQuestionAnswering(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Tuple = model( __a, attention_mask=__a, token_type_ids=__a, start_positions=__a, end_positions=__a, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = DebertaModelTester(self) _lowerCAmelCase : Optional[int] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = DebertaModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): @unittest.skip(reason="Model not available yet") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = DebertaModel.from_pretrained("microsoft/deberta-base") _lowerCAmelCase : str = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]]) _lowerCAmelCase : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _lowerCAmelCase : Dict = model(__a, attention_mask=__a)[0] # compare the actual values for a slice. _lowerCAmelCase : List[Any] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], __a, atol=1E-4), f"{output[:, 1:4, 1:4]}")
658
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
1
import cva import numpy as np class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if k in (0.04, 0.06): _lowerCAmelCase : Any = k _lowerCAmelCase : Tuple = window_size else: raise ValueError("invalid k value") def __str__( self): '''simple docstring''' return str(self.k) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = cva.imread(__a, 0) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = img.shape _lowerCAmelCase : list[list[int]] = [] _lowerCAmelCase : Dict = img.copy() _lowerCAmelCase : Any = cva.cvtColor(__a, cva.COLOR_GRAY2RGB) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = np.gradient(__a) _lowerCAmelCase : Dict = dx**2 _lowerCAmelCase : List[Any] = dy**2 _lowerCAmelCase : List[Any] = dx * dy _lowerCAmelCase : Tuple = 0.04 _lowerCAmelCase : Dict = self.window_size // 2 for y in range(__a, h - offset): for x in range(__a, w - offset): _lowerCAmelCase : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCAmelCase : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCAmelCase : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCAmelCase : str = (wxx * wyy) - (wxy**2) _lowerCAmelCase : List[Any] = wxx + wyy _lowerCAmelCase : str = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0), 0) color_img.itemset((y, x, 1), 0) color_img.itemset((y, x, 2), 255) return color_img, corner_list if __name__ == "__main__": _snake_case = HarrisCorner(0.04, 3) _snake_case, _snake_case = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
658
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["YolosFeatureExtractor"] _snake_case = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
658
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase_ : def __init__( self, __a, __a=2, __a=32, __a=16, __a=3, __a=True, __a=True, __a=32, __a=4, __a=[0, 1, 2, 3], __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=0.02, __a=3, __a=[1, 384, 24, 24], __a=True, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : Optional[int] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Dict = is_training _lowerCAmelCase : Tuple = use_labels _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : int = backbone_out_indices _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Any = num_labels _lowerCAmelCase : Union[str, Any] = backbone_featmap_shape _lowerCAmelCase : List[str] = scope _lowerCAmelCase : str = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Any = (image_size // patch_size) ** 2 _lowerCAmelCase : Optional[int] = num_patches + 1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : str = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__a, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=__a, backbone_featmap_shape=self.backbone_featmap_shape, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = DPTModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Tuple = DPTForDepthEstimation(__a) model.to(__a) model.eval() _lowerCAmelCase : int = model(__a) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : str = DPTForSemanticSegmentation(__a) model.to(__a) model.eval() _lowerCAmelCase : Tuple = model(__a, labels=__a) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = config_and_inputs _lowerCAmelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase__ = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = DPTModelTester(self) _lowerCAmelCase : int = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(__a) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a, nn.Linear)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(__a) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Tuple = [*signature.parameters.keys()] _lowerCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) def snake_case__ ( self): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = True if model_class in get_values(__a): continue _lowerCAmelCase : Any = model_class(__a) model.to(__a) model.train() _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(__a, __a, return_labels=__a) _lowerCAmelCase : int = model(**__a).loss loss.backward() def snake_case__ ( self): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = False _lowerCAmelCase : Any = True if model_class in get_values(__a) or not model_class.supports_gradient_checkpointing: continue _lowerCAmelCase : Optional[Any] = model_class(__a) model.to(__a) model.gradient_checkpointing_enable() model.train() _lowerCAmelCase : List[str] = self._prepare_for_class(__a, __a, return_labels=__a) _lowerCAmelCase : List[Any] = model(**__a).loss loss.backward() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Union[str, Any] = _config_zero_init(__a) for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(config=__a) # Skip the check for the backbone _lowerCAmelCase : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _lowerCAmelCase : Dict = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _lowerCAmelCase : List[Any] = DPTModel.from_pretrained(__a) self.assertIsNotNone(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = "add" with self.assertRaises(__a): _lowerCAmelCase : Dict = DPTForDepthEstimation(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas") _lowerCAmelCase : Optional[int] = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(__a) _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=__a, return_tensors="pt").to(__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**__a) _lowerCAmelCase : Optional[Any] = outputs.predicted_depth # verify the predicted depth _lowerCAmelCase : List[str] = torch.Size((1, 384, 384)) self.assertEqual(predicted_depth.shape, __a) _lowerCAmelCase : Tuple = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]]).to(__a) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100, __a, atol=1E-4))
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ ( a): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = tempfile.mkdtemp() _lowerCAmelCase : Dict = 5 # Realm tok _lowerCAmelCase : List[str] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname, "realm_tokenizer") os.makedirs(__a, exist_ok=__a) _lowerCAmelCase : Dict = os.path.join(__a, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname, "realm_block_records") os.makedirs(__a, exist_ok=__a) def snake_case__ ( self): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname, "realm_tokenizer")) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = RealmConfig(num_block_records=self.num_block_records) return config def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], }) return dataset def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ], dtype=__a, ) return block_records def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = RealmRetriever( block_records=self.get_dummy_block_records(), tokenizer=self.get_tokenizer(), ) return retriever def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_config() _lowerCAmelCase : List[Any] = self.get_dummy_retriever() _lowerCAmelCase : Union[str, Any] = retriever.tokenizer _lowerCAmelCase : Tuple = np.array([0, 3], dtype="long") _lowerCAmelCase : str = tokenizer(["Test question"]).input_ids _lowerCAmelCase : Tuple = tokenizer( ["the fourth"], add_special_tokens=__a, return_token_type_ids=__a, return_attention_mask=__a, ).input_ids _lowerCAmelCase : List[str] = config.reader_seq_len _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = retriever( __a, __a, answer_ids=__a, max_length=__a, return_tensors="np") self.assertEqual(len(__a), 2) self.assertEqual(len(__a), 2) self.assertEqual(len(__a), 2) self.assertEqual(concat_inputs.input_ids.shape, (2, 10)) self.assertEqual(concat_inputs.attention_mask.shape, (2, 10)) self.assertEqual(concat_inputs.token_type_ids.shape, (2, 10)) self.assertEqual(concat_inputs.special_tokens_mask.shape, (2, 10)) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]), ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"], ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]), ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"], ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.get_config() _lowerCAmelCase : Tuple = self.get_dummy_retriever() _lowerCAmelCase : str = retriever.tokenizer _lowerCAmelCase : List[Any] = np.array([0, 3, 5], dtype="long") _lowerCAmelCase : Optional[Any] = tokenizer(["Test question"]).input_ids _lowerCAmelCase : List[str] = tokenizer( ["the fourth", "longer longer"], add_special_tokens=__a, return_token_type_ids=__a, return_attention_mask=__a, ).input_ids _lowerCAmelCase : int = config.reader_seq_len _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = retriever( __a, __a, answer_ids=__a, max_length=__a, return_tensors="np") self.assertEqual([False, True, True], __a) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]], __a) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname, "realm_block_records")) # Test local path _lowerCAmelCase : str = retriever.from_pretrained(os.path.join(self.tmpdirname, "realm_block_records")) self.assertEqual(retriever.block_records[0], B"This is the first record") # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download") as mock_hf_hub_download: _lowerCAmelCase : Dict = os.path.join( os.path.join(self.tmpdirname, "realm_block_records"), _REALM_BLOCK_RECORDS_FILENAME) _lowerCAmelCase : Any = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa") self.assertEqual(retriever.block_records[0], B"This is the first record")
658
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = FunnelConfig.from_json_file(_lowerCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) _lowerCAmelCase : List[str] = FunnelBaseModel(_lowerCamelCase ) if base_model else FunnelModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
658
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' try: with open(_lowerCamelCase , "rb" ) as flax_state_f: _lowerCAmelCase : Union[str, Any] = from_bytes(_lowerCamelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(_lowerCamelCase ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights _lowerCAmelCase : Dict = flatten_dict(jax.tree_util.tree_map(lambda _lowerCamelCase : x.dtype == jnp.bfloataa , _lowerCamelCase ) ).values() if any(_lowerCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) _lowerCAmelCase : Union[str, Any] = jax.tree_util.tree_map( lambda _lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCamelCase ) _lowerCAmelCase : Tuple = "" _lowerCAmelCase : Tuple = flatten_dict(_lowerCamelCase , sep="." ) _lowerCAmelCase : Any = pt_model.state_dict() # keep track of unexpected & missing keys _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _lowerCAmelCase : int = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _lowerCAmelCase : str = flax_key_tuple_array[:-1] + ["weight"] _lowerCAmelCase : Any = jnp.transpose(_lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _lowerCAmelCase : str = flax_key_tuple_array[:-1] + ["weight"] _lowerCAmelCase : str = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _lowerCAmelCase : Tuple = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = ( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) _lowerCAmelCase : Any = ".".join(_lowerCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict _lowerCAmelCase : int = np.asarray(_lowerCamelCase ) if not isinstance(_lowerCamelCase , np.ndarray ) else flax_tensor _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ) # remove from missing keys missing_keys.remove(_lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCamelCase ) pt_model.load_state_dict(_lowerCamelCase ) # re-transform missing_keys to list _lowerCAmelCase : Any = list(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(_lowerCamelCase ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) return pt_model
658
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=13, __a=30, __a=2, __a=3, __a=True, __a=True, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=10, __a=0.02, ): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : Dict = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : Any = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Dict = (image_size // patch_size) ** 2 _lowerCAmelCase : List[Any] = num_patches + 1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : List[Any] = ViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__a, initializer_range=self.initializer_range, ) return config, pixel_values def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = FlaxViTModel(config=__a) _lowerCAmelCase : Dict = model(__a) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Optional[int] = (self.image_size, self.image_size) _lowerCAmelCase : Any = (self.patch_size, self.patch_size) _lowerCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.type_sequence_label_size _lowerCAmelCase : Optional[Any] = FlaxViTForImageClassification(config=__a) _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images _lowerCAmelCase : Any = 1 _lowerCAmelCase : List[str] = FlaxViTForImageClassification(__a) _lowerCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowerCAmelCase : str = model(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[int] = config_and_inputs _lowerCAmelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = FlaxViTModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(__a) _lowerCAmelCase : Optional[Any] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowerCAmelCase : int = self._prepare_for_class(__a, __a) _lowerCAmelCase : Union[str, Any] = model_class(__a) @jax.jit def model_jitted(__a, **__a): return model(pixel_values=__a, **__a) with self.subTest("JIT Enabled"): _lowerCAmelCase : str = model_jitted(**__a).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): _lowerCAmelCase : Union[str, Any] = model_jitted(**__a).to_tuple() self.assertEqual(len(__a), len(__a)) for jitted_output, output in zip(__a, __a): self.assertEqual(jitted_output.shape, output.shape) @slow def snake_case__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class_name.from_pretrained("google/vit-base-patch16-224") _lowerCAmelCase : Union[str, Any] = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(__a)
658
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _snake_case = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) _lowerCAmelCase : Any = parser.parse_args() return args.f def A ( _lowerCamelCase , _lowerCamelCase="eval" ): '''simple docstring''' _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , F"{split}_results.json" ) if os.path.exists(_lowerCamelCase ): with open(_lowerCamelCase , "r" ) as f: return json.load(_lowerCamelCase ) raise ValueError(F"can't find {path}" ) _snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( a): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : List[Any] = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(__a, "argv", __a): run_flax_glue.main() _lowerCAmelCase : List[str] = get_results(__a) self.assertGreaterEqual(result["eval_accuracy"], 0.75) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[Any] = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(__a, "argv", __a): run_clm_flax.main() _lowerCAmelCase : int = get_results(__a) self.assertLess(result["eval_perplexity"], 100) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Tuple = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(__a, "argv", __a): run_summarization_flax.main() _lowerCAmelCase : Optional[int] = get_results(__a, split="test") self.assertGreaterEqual(result["test_rouge1"], 10) self.assertGreaterEqual(result["test_rouge2"], 2) self.assertGreaterEqual(result["test_rougeL"], 7) self.assertGreaterEqual(result["test_rougeLsum"], 7) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(__a, "argv", __a): run_mlm_flax.main() _lowerCAmelCase : Dict = get_results(__a) self.assertLess(result["eval_perplexity"], 42) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() _lowerCAmelCase : int = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(__a, "argv", __a): run_ta_mlm_flax.main() _lowerCAmelCase : Optional[int] = get_results(__a) self.assertGreaterEqual(result["eval_accuracy"], 0.42) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = 7 if get_gpu_count() > 1 else 2 _lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : int = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(__a, "argv", __a): run_flax_ner.main() _lowerCAmelCase : Optional[int] = get_results(__a) self.assertGreaterEqual(result["eval_accuracy"], 0.75) self.assertGreaterEqual(result["eval_f1"], 0.3) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Dict = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(__a, "argv", __a): run_qa.main() _lowerCAmelCase : int = get_results(__a) self.assertGreaterEqual(result["eval_f1"], 30) self.assertGreaterEqual(result["eval_exact"], 30)
658
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
_snake_case = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
658
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
1
import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase_ : def __init__( self, __a, __a, __a, __a, __a, __a=0.2, __a=0.2): '''simple docstring''' _lowerCAmelCase : Optional[Any] = bp_numa _lowerCAmelCase : Union[str, Any] = bp_numa _lowerCAmelCase : str = bp_numa _lowerCAmelCase : int = conva_get[:2] _lowerCAmelCase : Optional[int] = conva_get[2] _lowerCAmelCase : List[Any] = size_pa _lowerCAmelCase : str = rate_w _lowerCAmelCase : Any = rate_t _lowerCAmelCase : Dict = [ np.mat(-1 * np.random.rand(self.conva[0], self.conva[0]) + 0.5) for i in range(self.conva[1]) ] _lowerCAmelCase : Tuple = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa) + 0.5) _lowerCAmelCase : Dict = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa) + 0.5) _lowerCAmelCase : List[Any] = -2 * np.random.rand(self.conva[1]) + 1 _lowerCAmelCase : str = -2 * np.random.rand(self.num_bpa) + 1 _lowerCAmelCase : List[str] = -2 * np.random.rand(self.num_bpa) + 1 def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(__a, "wb") as f: pickle.dump(__a, __a) print(f"Model saved: {save_path}") @classmethod def snake_case__ ( cls, __a): '''simple docstring''' with open(__a, "rb") as f: _lowerCAmelCase : Any = pickle.load(__a) # noqa: S301 _lowerCAmelCase : Tuple = model_dic.get("conv1") conv_get.append(model_dic.get("step_conv1")) _lowerCAmelCase : int = model_dic.get("size_pooling1") _lowerCAmelCase : Optional[Any] = model_dic.get("num_bp1") _lowerCAmelCase : Optional[int] = model_dic.get("num_bp2") _lowerCAmelCase : Any = model_dic.get("num_bp3") _lowerCAmelCase : Dict = model_dic.get("rate_weight") _lowerCAmelCase : int = model_dic.get("rate_thre") # create model instance _lowerCAmelCase : int = CNN(__a, __a, __a, __a, __a, __a, __a) # modify model parameter _lowerCAmelCase : Tuple = model_dic.get("w_conv1") _lowerCAmelCase : Optional[int] = model_dic.get("wkj") _lowerCAmelCase : List[str] = model_dic.get("vji") _lowerCAmelCase : List[Any] = model_dic.get("thre_conv1") _lowerCAmelCase : Union[str, Any] = model_dic.get("thre_bp2") _lowerCAmelCase : List[Any] = model_dic.get("thre_bp3") return conv_ins def snake_case__ ( self, __a): '''simple docstring''' return 1 / (1 + np.exp(-1 * x)) def snake_case__ ( self, __a): '''simple docstring''' return round(__a, 3) def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = convs[0] _lowerCAmelCase : Union[str, Any] = convs[1] _lowerCAmelCase : Optional[int] = np.shape(__a)[0] # get the data slice of original image data, data_focus _lowerCAmelCase : Optional[Any] = [] for i_focus in range(0, size_data - size_conv + 1, __a): for j_focus in range(0, size_data - size_conv + 1, __a): _lowerCAmelCase : Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__a) # calculate the feature map of every single kernel, and saved as list of matrix _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : List[str] = int((size_data - size_conv) / conv_step + 1) for i_map in range(__a): _lowerCAmelCase : List[Any] = [] for i_focus in range(len(__a)): _lowerCAmelCase : List[Any] = ( np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(__a)) _lowerCAmelCase : List[str] = np.asmatrix(__a).reshape( __a, __a) data_featuremap.append(__a) # expanding the data slice to One dimenssion _lowerCAmelCase : Any = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__a)) _lowerCAmelCase : List[str] = np.asarray(__a) return focus_list, data_featuremap def snake_case__ ( self, __a, __a, __a="average_pool"): '''simple docstring''' _lowerCAmelCase : str = len(featuremaps[0]) _lowerCAmelCase : int = int(size_map / size_pooling) _lowerCAmelCase : List[Any] = [] for i_map in range(len(__a)): _lowerCAmelCase : int = featuremaps[i_map] _lowerCAmelCase : List[Any] = [] for i_focus in range(0, __a, __a): for j_focus in range(0, __a, __a): _lowerCAmelCase : Any = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__a)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__a)) _lowerCAmelCase : Union[str, Any] = np.asmatrix(__a).reshape(__a, __a) featuremap_pooled.append(__a) return featuremap_pooled def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(len(__a)): _lowerCAmelCase : str = np.shape(data[i]) _lowerCAmelCase : List[str] = data[i].reshape(1, shapes[0] * shapes[1]) _lowerCAmelCase : Any = data_listed.getA().tolist()[0] data_expanded.extend(__a) _lowerCAmelCase : Optional[int] = np.asarray(__a) return data_expanded def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = np.asarray(__a) _lowerCAmelCase : int = np.shape(__a) _lowerCAmelCase : Union[str, Any] = data_mat.reshape(1, shapes[0] * shapes[1]) return data_expanded def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : str = 0 for i_map in range(__a): _lowerCAmelCase : List[Any] = np.ones((size_map, size_map)) for i in range(0, __a, __a): for j in range(0, __a, __a): _lowerCAmelCase : int = pd_pool[ i_pool ] _lowerCAmelCase : Any = i_pool + 1 _lowerCAmelCase : Tuple = np.multiply( __a, np.multiply(out_map[i_map], (1 - out_map[i_map]))) pd_all.append(__a) return pd_all def snake_case__ ( self, __a, __a, __a, __a, __a, __a=bool): '''simple docstring''' print("----------------------Start Training-------------------------") print((" - - Shape: Train_Data ", np.shape(__a))) print((" - - Shape: Teach_Data ", np.shape(__a))) _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : Dict = [] _lowerCAmelCase : int = 1_0000 while rp < n_repeat and mse >= error_accuracy: _lowerCAmelCase : List[Any] = 0 print(f"-------------Learning Time {rp}--------------") for p in range(len(__a)): # print('------------Learning Image: %d--------------'%p) _lowerCAmelCase : Optional[Any] = np.asmatrix(datas_train[p]) _lowerCAmelCase : Optional[int] = np.asarray(datas_teach[p]) _lowerCAmelCase , _lowerCAmelCase : str = self.convolute( __a, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) _lowerCAmelCase : int = self.pooling(__a, self.size_poolinga) _lowerCAmelCase : Tuple = np.shape(__a) _lowerCAmelCase : Optional[Any] = self._expand(__a) _lowerCAmelCase : List[Any] = data_bp_input _lowerCAmelCase : str = np.dot(__a, self.vji.T) - self.thre_bpa _lowerCAmelCase : List[Any] = self.sig(__a) _lowerCAmelCase : List[str] = np.dot(__a, self.wkj.T) - self.thre_bpa _lowerCAmelCase : Any = self.sig(__a) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _lowerCAmelCase : Dict = np.multiply( (data_teach - bp_outa), np.multiply(__a, (1 - bp_outa))) _lowerCAmelCase : int = np.multiply( np.dot(__a, self.wkj), np.multiply(__a, (1 - bp_outa))) _lowerCAmelCase : Union[str, Any] = np.dot(__a, self.vji) _lowerCAmelCase : int = pd_i_all / (self.size_poolinga * self.size_poolinga) _lowerCAmelCase : int = pd_conva_pooled.T.getA().tolist() _lowerCAmelCase : int = self._calculate_gradient_from_pool( __a, __a, shape_featuremapa[0], shape_featuremapa[1], self.size_poolinga, ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): _lowerCAmelCase : Dict = self._expand_mat(pd_conva_all[k_conv]) _lowerCAmelCase : Union[str, Any] = self.rate_weight * np.dot(__a, __a) _lowerCAmelCase : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) _lowerCAmelCase : List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer _lowerCAmelCase : Dict = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _lowerCAmelCase : List[str] = self.vji + pd_j_all.T * bp_outa * self.rate_weight _lowerCAmelCase : int = self.thre_bpa - pd_k_all * self.rate_thre _lowerCAmelCase : int = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _lowerCAmelCase : Optional[int] = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _lowerCAmelCase : Union[str, Any] = rp + 1 _lowerCAmelCase : Optional[int] = error_count / patterns all_mse.append(__a) def draw_error(): _lowerCAmelCase : Any = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(__a, "+-") plt.plot(__a, "r--") plt.xlabel("Learning Times") plt.ylabel("All_mse") plt.grid(__a, alpha=0.5) plt.show() print("------------------Training Complished---------------------") print((" - - Training epoch: ", rp, f" - - Mse: {mse:.6f}")) if draw_e: draw_error() return mse def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] print("-------------------Start Testing-------------------------") print((" - - Shape: Test_Data ", np.shape(__a))) for p in range(len(__a)): _lowerCAmelCase : Tuple = np.asmatrix(datas_test[p]) _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.convolute( __a, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) _lowerCAmelCase : Optional[Any] = self.pooling(__a, self.size_poolinga) _lowerCAmelCase : Optional[Any] = self._expand(__a) _lowerCAmelCase : List[Any] = data_bp_input _lowerCAmelCase : str = bp_outa * self.vji.T - self.thre_bpa _lowerCAmelCase : List[Any] = self.sig(__a) _lowerCAmelCase : Any = bp_outa * self.wkj.T - self.thre_bpa _lowerCAmelCase : Optional[int] = self.sig(__a) produce_out.extend(bp_outa.getA().tolist()) _lowerCAmelCase : str = [list(map(self.do_round, __a)) for each in produce_out] return np.asarray(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = np.asmatrix(__a) _lowerCAmelCase , _lowerCAmelCase : int = self.convolute( __a, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) _lowerCAmelCase : List[str] = self.pooling(__a, self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
658
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 16_000 ): '''simple docstring''' _lowerCAmelCase : str = int(round(sample_rate * max_length ) ) if len(_lowerCamelCase ) <= sample_length: return wav _lowerCAmelCase : str = randint(0 , len(_lowerCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field(default=a , metadata={'help': 'Name of a dataset from the datasets package'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A file containing the training audio paths and labels.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A file containing the validation audio paths and labels.'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) lowerCamelCase__ = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) lowerCamelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Name or path of preprocessor config.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def snake_case__ ( self): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", __a, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`.") def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase : str = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _lowerCAmelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. _lowerCAmelCase : Tuple = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--label_column_name` to the correct text column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _lowerCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _lowerCAmelCase : Tuple = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _lowerCAmelCase : Dict = feature_extractor.model_input_names[0] def train_transforms(_lowerCamelCase ): _lowerCAmelCase : Dict = [] for audio in batch[data_args.audio_column_name]: _lowerCAmelCase : Tuple = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : str = {model_input_name: inputs.get(_lowerCamelCase )} _lowerCAmelCase : Any = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_lowerCamelCase ): _lowerCAmelCase : List[str] = [audio["array"] for audio in batch[data_args.audio_column_name]] _lowerCAmelCase : Union[str, Any] = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : Tuple = {model_input_name: inputs.get(_lowerCamelCase )} _lowerCAmelCase : Dict = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _lowerCAmelCase : Optional[int] = raw_datasets["train"].features[data_args.label_column_name].names _lowerCAmelCase , _lowerCAmelCase : Optional[int] = {}, {} for i, label in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = str(_lowerCamelCase ) _lowerCAmelCase : List[Any] = label # Load the accuracy metric from the datasets package _lowerCAmelCase : Optional[int] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase ): _lowerCAmelCase : List[Any] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_lowerCamelCase , references=eval_pred.label_ids ) _lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel=_lowerCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Union[str, Any] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _lowerCAmelCase : Optional[int] = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowerCAmelCase : List[Any] = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) # Initialize our trainer _lowerCAmelCase : str = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , ) # Training if training_args.do_train: _lowerCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase : Optional[int] = last_checkpoint _lowerCAmelCase : int = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCAmelCase : List[str] = trainer.evaluate() trainer.log_metrics("eval" , _lowerCamelCase ) trainer.save_metrics("eval" , _lowerCamelCase ) # Write model card and (optionally) push to hub _lowerCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) if __name__ == "__main__": main()
658
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "nielsr/canine-s": 2048, } # Unicode defines 1,114,112 total “codepoints” _snake_case = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _snake_case = 0 _snake_case = 0Xe_0_0_0 _snake_case = 0Xe_0_0_1 _snake_case = 0Xe_0_0_2 _snake_case = 0Xe_0_0_3 _snake_case = 0Xe_0_0_4 # Maps special codepoints to human-readable names. _snake_case = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _snake_case = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCAmelCase_ ( a): lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, __a=chr(__a), __a=chr(__a), __a=chr(__a), __a=chr(__a), __a=chr(__a), __a=chr(__a), __a=False, __a=2048, **__a, ): '''simple docstring''' _lowerCAmelCase : str = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else bos_token _lowerCAmelCase : List[Any] = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else eos_token _lowerCAmelCase : Optional[Any] = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else sep_token _lowerCAmelCase : Tuple = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else cls_token _lowerCAmelCase : str = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Tuple = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else mask_token super().__init__( bos_token=__a, eos_token=__a, sep_token=__a, cls_token=__a, pad_token=__a, mask_token=__a, add_prefix_space=__a, model_max_length=__a, **__a, ) # Creates a mapping for looking up the IDs of special symbols. _lowerCAmelCase : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _lowerCAmelCase : Dict = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _lowerCAmelCase : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } _lowerCAmelCase : Optional[int] = UNICODE_VOCAB_SIZE _lowerCAmelCase : Any = len(self._special_codepoints) @property def snake_case__ ( self): '''simple docstring''' return self._unicode_vocab_size def snake_case__ ( self, __a): '''simple docstring''' return list(__a) def snake_case__ ( self, __a): '''simple docstring''' try: return ord(__a) except TypeError: raise ValueError(f"invalid token: '{token}'") def snake_case__ ( self, __a): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__a) except TypeError: raise ValueError(f"invalid id: {index}") def snake_case__ ( self, __a): '''simple docstring''' return "".join(__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Any = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] _lowerCAmelCase : Optional[Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a, token_ids_a=__a, already_has_special_tokens=__a) _lowerCAmelCase : Union[str, Any] = [1] + ([0] * len(__a)) + [1] if token_ids_a is not None: result += ([0] * len(__a)) + [1] return result def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Any = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] _lowerCAmelCase : Any = len(cls + token_ids_a + sep) * [0] if token_ids_a is not None: result += len(token_ids_a + sep) * [1] return result def snake_case__ ( self, __a, __a = None): '''simple docstring''' return ()
658
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
1
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = [0 for i in range(r + 1 )] # nc0 = 1 _lowerCAmelCase : Any = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowerCAmelCase : Optional[Any] = min(_lowerCamelCase , _lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
658
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = original_name.split("." )[0] _lowerCAmelCase : Optional[Any] = key.split("." ) _lowerCAmelCase : str = int(key_list[key_list.index(_lowerCamelCase ) - 2] ) _lowerCAmelCase : Union[str, Any] = int(key_list[key_list.index(_lowerCamelCase ) - 1] ) _lowerCAmelCase : str = orig_block_num - offset _lowerCAmelCase : Any = key.replace(F"{orig_block_num}.{layer_num}.{original_name}" , F"block.{new_block_num}.{layer_num}.{new_name}" ) return key def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = OrderedDict() _lowerCAmelCase , _lowerCAmelCase : Dict = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): _lowerCAmelCase : Dict = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 _lowerCAmelCase : str = key[: key.find("proj" )] _lowerCAmelCase : str = key.replace(_lowerCamelCase , F"patch_embeddings.{total_embed_found}." ) _lowerCAmelCase : str = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: _lowerCAmelCase : Tuple = "poolformer.encoder." + key if "mlp.fc1" in key: _lowerCAmelCase : Optional[Any] = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: _lowerCAmelCase : List[Any] = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "mlp.fc2" , "output.conv2" ) if "norm1" in key: _lowerCAmelCase : List[Any] = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "norm1" , "before_norm" ) if "norm2" in key: _lowerCAmelCase : str = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "norm2" , "after_norm" ) if "layer_scale_1" in key: _lowerCAmelCase : Optional[Any] = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: _lowerCAmelCase : Any = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "layer_scale_2" , "layer_scale_2" ) if "head" in key: _lowerCAmelCase : Tuple = key.replace("head" , "classifier" ) _lowerCAmelCase : int = value return new_state_dict def A ( ): '''simple docstring''' _lowerCAmelCase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : Dict = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PoolFormerConfig() # set attributes based on model_name _lowerCAmelCase : Dict = "huggingface/label-files" _lowerCAmelCase : List[str] = model_name[-3:] _lowerCAmelCase : List[Any] = 1_000 _lowerCAmelCase : Tuple = "imagenet-1k-id2label.json" _lowerCAmelCase : str = (1, 1_000) # set config attributes _lowerCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : int = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : List[Any] = idalabel _lowerCAmelCase : str = {v: k for k, v in idalabel.items()} if size == "s12": _lowerCAmelCase : List[str] = [2, 2, 6, 2] _lowerCAmelCase : Tuple = [64, 128, 320, 512] _lowerCAmelCase : Tuple = 4.0 _lowerCAmelCase : List[str] = 0.9 elif size == "s24": _lowerCAmelCase : Dict = [4, 4, 12, 4] _lowerCAmelCase : List[str] = [64, 128, 320, 512] _lowerCAmelCase : Union[str, Any] = 4.0 _lowerCAmelCase : Any = 0.9 elif size == "s36": _lowerCAmelCase : List[Any] = [6, 6, 18, 6] _lowerCAmelCase : Optional[int] = [64, 128, 320, 512] _lowerCAmelCase : Any = 4.0 _lowerCAmelCase : int = 1e-6 _lowerCAmelCase : int = 0.9 elif size == "m36": _lowerCAmelCase : List[str] = [6, 6, 18, 6] _lowerCAmelCase : int = [96, 192, 384, 768] _lowerCAmelCase : int = 4.0 _lowerCAmelCase : List[Any] = 1e-6 _lowerCAmelCase : List[Any] = 0.95 elif size == "m48": _lowerCAmelCase : Optional[int] = [8, 8, 24, 8] _lowerCAmelCase : Tuple = [96, 192, 384, 768] _lowerCAmelCase : List[str] = 4.0 _lowerCAmelCase : str = 1e-6 _lowerCAmelCase : str = 0.95 else: raise ValueError(F"Size {size} not supported" ) # load image processor _lowerCAmelCase : Optional[int] = PoolFormerImageProcessor(crop_pct=_lowerCamelCase ) # Prepare image _lowerCAmelCase : List[str] = prepare_img() _lowerCAmelCase : str = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict _lowerCAmelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) # rename keys _lowerCAmelCase : List[str] = rename_keys(_lowerCamelCase ) # create HuggingFace model and load state dict _lowerCAmelCase : List[Any] = PoolFormerForImageClassification(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # Define image processor _lowerCAmelCase : Dict = PoolFormerImageProcessor(crop_pct=_lowerCamelCase ) _lowerCAmelCase : List[str] = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass _lowerCAmelCase : Optional[Any] = model(_lowerCamelCase ) _lowerCAmelCase : List[Any] = outputs.logits # define expected logit slices for different models if size == "s12": _lowerCAmelCase : Optional[int] = torch.tensor([-0.30_45, -0.67_58, -0.48_69] ) elif size == "s24": _lowerCAmelCase : Tuple = torch.tensor([0.44_02, -0.13_74, -0.80_45] ) elif size == "s36": _lowerCAmelCase : Tuple = torch.tensor([-0.60_80, -0.51_33, -0.58_98] ) elif size == "m36": _lowerCAmelCase : Tuple = torch.tensor([0.39_52, 0.22_63, -1.26_68] ) elif size == "m48": _lowerCAmelCase : List[Any] = torch.tensor([0.11_67, -0.06_56, -0.34_23] ) else: raise ValueError(F"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _snake_case = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
658
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
658
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
1
import math def A ( _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = 0 ): '''simple docstring''' _lowerCAmelCase : str = end or len(_lowerCamelCase ) for i in range(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = i _lowerCAmelCase : int = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowerCAmelCase : Union[str, Any] = array[temp_index - 1] temp_index -= 1 _lowerCAmelCase : List[Any] = temp_index_value return array def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # Max Heap '''simple docstring''' _lowerCAmelCase : Union[str, Any] = index _lowerCAmelCase : List[Any] = 2 * index + 1 # Left Node _lowerCAmelCase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowerCAmelCase : Tuple = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowerCAmelCase : Any = right_index if largest != index: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = array[largest], array[index] heapify(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = len(_lowerCamelCase ) for i in range(n // 2 , -1 , -1 ): heapify(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for i in range(n - 1 , 0 , -1 ): _lowerCAmelCase , _lowerCAmelCase : str = array[0], array[i] heapify(_lowerCamelCase , 0 , _lowerCamelCase ) return array def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = low _lowerCAmelCase : Optional[Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = array[j], array[i] i += 1 def A ( _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) == 0: return array _lowerCAmelCase : int = 2 * math.ceil(math.loga(len(_lowerCamelCase ) ) ) _lowerCAmelCase : int = 16 return intro_sort(_lowerCamelCase , 0 , len(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_lowerCamelCase ) max_depth -= 1 _lowerCAmelCase : Dict = median_of_a(_lowerCamelCase , _lowerCamelCase , start + ((end - start) // 2) + 1 , end - 1 ) _lowerCAmelCase : Optional[Any] = partition(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) intro_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = p return insertion_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() _snake_case = input("Enter numbers separated by a comma : ").strip() _snake_case = [float(item) for item in user_input.split(",")] print(sort(unsorted))
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
1
_snake_case = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) _snake_case = frozenset(["prompt", "negative_prompt"]) _snake_case = frozenset([]) _snake_case = frozenset(["image"]) _snake_case = frozenset( [ "image", "height", "width", "guidance_scale", ] ) _snake_case = frozenset(["image"]) _snake_case = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) _snake_case = frozenset(["prompt", "image", "negative_prompt"]) _snake_case = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) _snake_case = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) _snake_case = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) _snake_case = frozenset(["image", "mask_image"]) _snake_case = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) _snake_case = frozenset(["example_image", "image", "mask_image"]) _snake_case = frozenset(["class_labels"]) _snake_case = frozenset(["class_labels"]) _snake_case = frozenset(["batch_size"]) _snake_case = frozenset([]) _snake_case = frozenset(["batch_size"]) _snake_case = frozenset([]) _snake_case = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) _snake_case = frozenset(["prompt", "negative_prompt"]) _snake_case = frozenset(["input_tokens"]) _snake_case = frozenset(["input_tokens"])
658
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("-f" ) _lowerCAmelCase : Optional[Any] = parser.parse_args() return args.f def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , "all_results.json" ) if os.path.exists(_lowerCamelCase ): with open(_lowerCamelCase , "r" ) as f: _lowerCAmelCase : str = json.load(_lowerCamelCase ) else: raise ValueError(F"can't find {path}" ) return results def A ( ): '''simple docstring''' _lowerCAmelCase : str = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() _snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( a): @classmethod def snake_case__ ( cls): '''simple docstring''' _lowerCAmelCase : str = tempfile.mkdtemp() _lowerCAmelCase : int = os.path.join(cls.tmpdir, "default_config.yml") write_basic_config(save_location=cls.configPath) _lowerCAmelCase : int = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def snake_case__ ( cls): '''simple docstring''' shutil.rmtree(cls.tmpdir) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Union[str, Any] = f"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16") run_command(self._launch_args + testargs) _lowerCAmelCase : List[Any] = get_results(__a) self.assertGreaterEqual(result["eval_accuracy"], 0.75) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "glue_no_trainer"))) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs) _lowerCAmelCase : Optional[Any] = get_results(__a) self.assertLess(result["perplexity"], 100) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "clm_no_trainer"))) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : List[str] = f"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : Union[str, Any] = get_results(__a) self.assertLess(result["perplexity"], 42) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "mlm_no_trainer"))) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = 7 if get_gpu_count() > 1 else 2 _lowerCAmelCase : int = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Any = f"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : List[str] = get_results(__a) self.assertGreaterEqual(result["eval_accuracy"], 0.75) self.assertLess(result["train_loss"], 0.5) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "ner_no_trainer"))) @unittest.skip(reason="Fix me @muellerzr") @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : Optional[int] = get_results(__a) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"], 28) self.assertGreaterEqual(result["eval_exact"], 28) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "qa_no_trainer"))) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Tuple = f"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : Dict = get_results(__a) self.assertGreaterEqual(result["eval_accuracy"], 0.8) self.assertTrue(os.path.exists(os.path.join(__a, "swag_no_trainer"))) @slow @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : List[str] = get_results(__a) self.assertGreaterEqual(result["eval_rouge1"], 10) self.assertGreaterEqual(result["eval_rouge2"], 2) self.assertGreaterEqual(result["eval_rougeL"], 7) self.assertGreaterEqual(result["eval_rougeLsum"], 7) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "summarization_no_trainer"))) @slow @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Tuple = f"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : List[str] = get_results(__a) self.assertGreaterEqual(result["eval_bleu"], 30) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "translation_no_trainer"))) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(__a) _lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : int = f"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : Union[str, Any] = get_results(__a) self.assertGreaterEqual(result["eval_overall_accuracy"], 0.10) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() _lowerCAmelCase : List[Any] = f"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16") run_command(self._launch_args + testargs) _lowerCAmelCase : int = get_results(__a) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"], 0.6) self.assertTrue(os.path.exists(os.path.join(__a, "step_1"))) self.assertTrue(os.path.exists(os.path.join(__a, "image_classification_no_trainer")))
658
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
1
from sklearn.metrics import recall_score import datasets _snake_case = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" _snake_case = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" _snake_case = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), }), reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"], ) def snake_case__ ( self, __a, __a, __a=None, __a=1, __a="binary", __a=None, __a="warn", ): '''simple docstring''' _lowerCAmelCase : Tuple = recall_score( __a, __a, labels=__a, pos_label=__a, average=__a, sample_weight=__a, zero_division=__a, ) return {"recall": float(__a) if score.size == 1 else score}
658
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rwkv' lowerCamelCase__ = {'max_position_embeddings': 'context_length'} def __init__( self, __a=5_0277, __a=1024, __a=4096, __a=32, __a=None, __a=None, __a=1E-5, __a=0, __a=0, __a=6, __a=False, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Optional[Any] = context_length _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size _lowerCAmelCase : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size _lowerCAmelCase : Any = layer_norm_epsilon _lowerCAmelCase : Tuple = rescale_every _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = bos_token_id _lowerCAmelCase : Tuple = eos_token_id super().__init__( tie_word_embeddings=__a, bos_token_id=__a, eos_token_id=__a, **__a)
658
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
1
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } _snake_case = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } _snake_case = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = set() _lowerCAmelCase : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Optional[int] = char _lowerCAmelCase : Dict = set(_lowerCamelCase ) return pairs class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, __a, __a, __a="<s>", __a="</s>", __a="</s>", __a="<s>", __a="<unk>", __a="<pad>", __a="<mask>", **__a, ): '''simple docstring''' super().__init__( bos_token=__a, eos_token=__a, unk_token=__a, sep_token=__a, cls_token=__a, pad_token=__a, mask_token=__a, **__a, ) _lowerCAmelCase : str = vocab_file _lowerCAmelCase : Dict = merges_file _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Dict = 2 _lowerCAmelCase : Optional[int] = 3 self.add_from_file(__a) _lowerCAmelCase : List[Any] = {v: k for k, v in self.encoder.items()} with open(__a, encoding="utf-8") as merges_handle: _lowerCAmelCase : Union[str, Any] = merges_handle.read().split("\n")[:-1] _lowerCAmelCase : Any = [tuple(merge.split()[:-1]) for merge in merges] _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : Optional[Any] = {} def snake_case__ ( self, __a, __a = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Any = [self.cls_token_id] _lowerCAmelCase : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a, token_ids_a=__a, already_has_special_tokens=__a) if token_ids_a is None: return [1] + ([0] * len(__a)) + [1] return [1] + ([0] * len(__a)) + [1, 1] + ([0] * len(__a)) + [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def snake_case__ ( self): '''simple docstring''' return len(self.encoder) def snake_case__ ( self): '''simple docstring''' return dict(self.encoder, **self.added_tokens_encoder) def snake_case__ ( self, __a): '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : List[Any] = tuple(__a) _lowerCAmelCase : Optional[Any] = tuple(list(word[:-1]) + [word[-1] + "</w>"]) _lowerCAmelCase : List[str] = get_pairs(__a) if not pairs: return token while True: _lowerCAmelCase : Optional[Any] = min(__a, key=lambda __a: self.bpe_ranks.get(__a, float("inf"))) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase : Tuple = bigram _lowerCAmelCase : List[str] = [] _lowerCAmelCase : List[Any] = 0 while i < len(__a): try: _lowerCAmelCase : Tuple = word.index(__a, __a) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _lowerCAmelCase : List[str] = j if word[i] == first and i < len(__a) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _lowerCAmelCase : int = tuple(__a) _lowerCAmelCase : Dict = new_word if len(__a) == 1: break else: _lowerCAmelCase : Optional[int] = get_pairs(__a) _lowerCAmelCase : str = "@@ ".join(__a) _lowerCAmelCase : Union[str, Any] = word[:-4] _lowerCAmelCase : int = word return word def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[str] = re.findall(R"\S+\n?", __a) for token in words: split_tokens.extend(list(self.bpe(__a).split(" "))) return split_tokens def snake_case__ ( self, __a): '''simple docstring''' return self.encoder.get(__a, self.encoder.get(self.unk_token)) def snake_case__ ( self, __a): '''simple docstring''' return self.decoder.get(__a, self.unk_token) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = " ".join(__a).replace("@@ ", "").strip() return out_string def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(__a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : Dict = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Any = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__a): copyfile(self.vocab_file, __a) if os.path.abspath(self.merges_file) != os.path.abspath(__a): copyfile(self.merges_file, __a) return out_vocab_file, out_merge_file def snake_case__ ( self, __a): '''simple docstring''' if isinstance(__a, __a): try: with open(__a, "r", encoding="utf-8") as fd: self.add_from_file(__a) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset") return _lowerCAmelCase : Any = f.readlines() for lineTmp in lines: _lowerCAmelCase : Any = lineTmp.strip() _lowerCAmelCase : str = line.rfind(" ") if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") _lowerCAmelCase : List[Any] = line[:idx] _lowerCAmelCase : List[str] = len(self.encoder)
658
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
1
from __future__ import annotations class UpperCAmelCase_ : def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : str = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float.") if len(__a) != 0: _lowerCAmelCase : List[str] = len(rows[0]) if cols == 0: raise error for row in rows: if len(__a) != cols: raise error for value in row: if not isinstance(__a, (int, float)): raise error _lowerCAmelCase : Union[str, Any] = rows else: _lowerCAmelCase : Optional[int] = [] def snake_case__ ( self): '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def snake_case__ ( self): '''simple docstring''' return len(self.rows) @property def snake_case__ ( self): '''simple docstring''' return len(self.rows[0]) @property def snake_case__ ( self): '''simple docstring''' return (self.num_rows, self.num_columns) @property def snake_case__ ( self): '''simple docstring''' return self.order[0] == self.order[1] def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(__a) def snake_case__ ( self): '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def snake_case__ ( self): '''simple docstring''' return bool(self.determinant()) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(__a).determinant() def snake_case__ ( self, __a, __a): '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(__a, __a) return -1 * self.get_minor(__a, __a) def snake_case__ ( self): '''simple docstring''' return Matrix( [ [self.get_minor(__a, __a) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def snake_case__ ( self): '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse") return self.adjugate() * (1 / determinant) def __repr__( self): '''simple docstring''' return str(self.rows) def __str__( self): '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(__a) for value in row]) + ".]" for row in self.rows ]) + "]" ) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : int = TypeError("Row must be a list containing all ints and/or floats") if not isinstance(__a, __a): raise type_error for value in row: if not isinstance(__a, (int, float)): raise type_error if len(__a) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix") if position is None: self.rows.append(__a) else: _lowerCAmelCase : Tuple = self.rows[0:position] + [row] + self.rows[position:] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Tuple = TypeError( "Column must be a list containing all ints and/or floats") if not isinstance(__a, __a): raise type_error for value in column: if not isinstance(__a, (int, float)): raise type_error if len(__a) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix") if position is None: _lowerCAmelCase : str = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: _lowerCAmelCase : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return NotImplemented return self.rows == other.rows def __ne__( self, __a): '''simple docstring''' return not self == other def __neg__( self): '''simple docstring''' return self * -1 def __add__( self, __a): '''simple docstring''' if self.order != other.order: raise ValueError("Addition requires matrices of the same order") return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self, __a): '''simple docstring''' if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order") return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(__a, __a): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second") return Matrix( [ [Matrix.dot_product(__a, __a) for column in other.columns()] for row in self.rows ]) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix") def __pow__( self, __a): '''simple docstring''' if not isinstance(__a, __a): raise TypeError("A Matrix can only be raised to the power of an int") if not self.is_square: raise ValueError("Only square matrices can be raised to a power") if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power") _lowerCAmelCase : Any = self for _ in range(other - 1): result *= self return result @classmethod def snake_case__ ( cls, __a, __a): '''simple docstring''' return sum(row[i] * column[i] for i in range(len(__a))) if __name__ == "__main__": import doctest doctest.testmod()
658
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'luke' def __init__( self, __a=5_0267, __a=50_0000, __a=768, __a=256, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=None, __a=1, __a=0, __a=2, **__a, ): '''simple docstring''' super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : List[Any] = entity_vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[Any] = entity_emb_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : str = use_entity_aware_attention _lowerCAmelCase : Dict = classifier_dropout
658
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
1
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _lowerCAmelCase : str = n - k # Calculate C(n,k) for i in range(_lowerCamelCase ): result *= n - i result //= i + 1 return result def A ( _lowerCamelCase ): '''simple docstring''' return binomial_coefficient(2 * node_count , _lowerCamelCase ) // (node_count + 1) def A ( _lowerCamelCase ): '''simple docstring''' if n < 0: raise ValueError("factorial() not defined for negative values" ) _lowerCAmelCase : Any = 1 for i in range(1 , n + 1 ): result *= i return result def A ( _lowerCamelCase ): '''simple docstring''' return catalan_number(_lowerCamelCase ) * factorial(_lowerCamelCase ) if __name__ == "__main__": _snake_case = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'align_text_model' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=0, __a="absolute", __a=True, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Dict = layer_norm_eps _lowerCAmelCase : Tuple = position_embedding_type _lowerCAmelCase : Any = use_cache _lowerCAmelCase : int = pad_token_id @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' cls._set_token_in_kwargs(__a) _lowerCAmelCase , _lowerCAmelCase : Dict = cls.get_config_dict(__a, **__a) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type") == "align": _lowerCAmelCase : str = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(__a, **__a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'align_vision_model' def __init__( self, __a = 3, __a = 600, __a = 2.0, __a = 3.1, __a = 8, __a = [3, 3, 5, 3, 5, 5, 3], __a = [32, 16, 24, 40, 80, 112, 192], __a = [16, 24, 40, 80, 112, 192, 320], __a = [], __a = [1, 2, 2, 2, 1, 2, 1], __a = [1, 2, 2, 3, 3, 4, 1], __a = [1, 6, 6, 6, 6, 6, 6], __a = 0.25, __a = "swish", __a = 2560, __a = "mean", __a = 0.02, __a = 0.001, __a = 0.99, __a = 0.2, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : Tuple = width_coefficient _lowerCAmelCase : str = depth_coefficient _lowerCAmelCase : Optional[int] = depth_divisor _lowerCAmelCase : Optional[Any] = kernel_sizes _lowerCAmelCase : Optional[int] = in_channels _lowerCAmelCase : Union[str, Any] = out_channels _lowerCAmelCase : Any = depthwise_padding _lowerCAmelCase : Union[str, Any] = strides _lowerCAmelCase : Dict = num_block_repeats _lowerCAmelCase : str = expand_ratios _lowerCAmelCase : str = squeeze_expansion_ratio _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Any = hidden_dim _lowerCAmelCase : str = pooling_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = batch_norm_eps _lowerCAmelCase : Optional[int] = batch_norm_momentum _lowerCAmelCase : List[str] = drop_connect_rate _lowerCAmelCase : List[Any] = sum(__a) * 4 @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' cls._set_token_in_kwargs(__a) _lowerCAmelCase , _lowerCAmelCase : List[Any] = cls.get_config_dict(__a, **__a) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type") == "align": _lowerCAmelCase : Any = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(__a, **__a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'align' lowerCamelCase__ = True def __init__( self, __a=None, __a=None, __a=640, __a=1.0, __a=0.02, **__a, ): '''simple docstring''' super().__init__(**__a) if text_config is None: _lowerCAmelCase : List[Any] = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values.") if vision_config is None: _lowerCAmelCase : Optional[Any] = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values.") _lowerCAmelCase : int = AlignTextConfig(**__a) _lowerCAmelCase : int = AlignVisionConfig(**__a) _lowerCAmelCase : List[Any] = projection_dim _lowerCAmelCase : Optional[Any] = temperature_init_value _lowerCAmelCase : int = initializer_range @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.text_config.to_dict() _lowerCAmelCase : Optional[Any] = self.vision_config.to_dict() _lowerCAmelCase : str = self.__class__.model_type return output
658
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = None # Automatically constructed lowerCamelCase__ = "dict" lowerCamelCase__ = None lowerCamelCase__ = field(default='Translation' , init=a , repr=a) def __call__( self): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def snake_case__ ( self): '''simple docstring''' from .features import Value return {k: Value("string") for k in sorted(self.languages)} @dataclass class UpperCAmelCase_ : lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None # Automatically constructed lowerCamelCase__ = "dict" lowerCamelCase__ = None lowerCamelCase__ = field(default='TranslationVariableLanguages' , init=a , repr=a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = sorted(set(self.languages)) if self.languages else None _lowerCAmelCase : str = len(self.languages) if self.languages else None def __call__( self): '''simple docstring''' return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = set(self.languages) if self.languages and set(__a) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__a) - lang_set))}) are not in valid set ({', '.join(__a)}).") # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase : List[str] = [] for lang, text in translation_dict.items(): if isinstance(__a, __a): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. _lowerCAmelCase , _lowerCAmelCase : List[str] = zip(*sorted(__a)) return {"language": languages, "translation": translations} def snake_case__ ( self): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("string")), "translation": Sequence(Value("string")), }
658
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
1
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if index == len(_lowerCamelCase ): return True # Recursive Step for i in range(_lowerCamelCase ): if valid_coloring(graph[index] , _lowerCamelCase , _lowerCamelCase ): # Color current vertex _lowerCAmelCase : Tuple = i # Validate coloring if util_color(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , index + 1 ): return True # Backtrack _lowerCAmelCase : str = -1 return False def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = [-1] * len(_lowerCamelCase ) if util_color(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , 0 ): return colored_vertices return []
658
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
1